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We describe flow-insensitive type qualifiers, a lightweight, practical mechanism for specifying
and checking properties not captured by traditional type systems. We present a framework for
adding new, user-specified type qualifiers to programming languages with static type systems,
such as C and Java. In our system, programmers add a few type qualifier annotations to their
program, and automatic type qualifier inference determines the remaining qualifiers and checks
the annotations for consistency. We describe a tool CQual for adding type qualifiers to the
C programming language. Our tool CQual includes a visualization component for displaying
browsable inference results to the programmer. Finally, we present several experiments using
our tool, including inferring const qualifiers, finding security vulnerabilities in several popular C
programs, and checking initialization data usage in the Linux kernel. Our results suggest that
inference and visualization make type qualifiers lightweight, that type qualifier inference scales to
large programs, and that type qualifiers are applicable to a wide variety of problems.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.4 [Software Engineering]: Software/Program Verification; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms: Algorithms, Design, Reliability, Experimentation, Languages, Theory, Verification

Additional Key Words and Phrases: Type qualifiers, types, security, constraints, const, taint,
static analysis

1. INTRODUCTION

Software continues to increase in size and complexity, yet our ability to ensure its
quality lags behind. Well-publicized software glitches have led to failures such as
the Mars Climate Orbiter crash [Mars Climate Orbiter Mishap Investigation Board
1999], and security vulnerabilities in software have paved the way for attacks such
as the Code Red Worm [CERT 2001]. The potentially staggering cost of software
quality problems [NIST 2002] has led to a renewed call to increase the safety,
reliability, and maintainability of software [Gates 2002; PITAC 1999].
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In this paper, we propose using type qualifiers to improve software quality. Type
qualifiers are a lightweight, practical mechanism for specifying and checking proper-
ties not captured by traditional type systems. A type qualifier is an atomic property
that “qualifies” the standard types (examples below). Many programming lan-
guages have a few special-purpose type qualifiers. In contrast, we have developed a
general framework for adding new, user-specified qualifiers to languages with static
type systems, such as C and Java. In our framework the programmer adds a few
key qualifier annotations, and then the system performs type qualifier inference to
automatically infer the remaining qualifiers and check the consistency of qualifier
annotations.

As one example, we can use type qualifiers to detect potential security vulner-
abilities (Section 5.2). Security-conscious programs need to distinguish untrusted
values read from the network from trusted values the program itself creates. We can
model this property by using qualifiers tainted and untainted to mark the types of
untrusted and trusted data, respectively. Type qualifier errors occur when a value
of type tainted T is used where a value of type untainted T is expected, where T is
a standard unqualified type such as string . Any such type qualifier error indicates
a potential security vulnerability.

In addition to studying tainted and untainted , we explore two other qualifiers
in this paper. In Section 5.1 we study the ANSI C qualifier const, which is used
to mark l-values that cannot be updated [ANSI 1999]. In Section 5.3, we treat a
special annotation init in the Linux kernel as a type qualifier and use our system
to check that it is used correctly. Although these three (tainted and untainted , const,
and init) are the focus of the experiments in this paper, our system can be used
for other qualifiers, for example, user and kernel [Johnson and Wagner 2004], or
sensitive and unsensitive [Broadwell et al. 2003].

Type qualifiers have a number of advantages as a mechanism for specifying and
checking properties of programs:

—Of the multitude of proposals for statically-checked program annotations, types
are arguably the most successful. In many languages, programmers must already
include type annotations in their source code. Thus the machinery of types
is familiar to the programmer, and we believe it is natural for a programmer
to specify additional properties with a type qualifier. This bodes well for the
adoption of type qualifiers in practice, since a key concern about any specification
language is whether programmers are willing to use it.

—Type qualifiers are additional annotations layered on top of the standard types.
As such, they can be safely ignored by conventional tools (such as standard
compilers) that do not understand them. This natural backward compatibility
lowers the barrier to adopting type qualifiers.

—Static type qualifier systems conservatively model all runs of a program. This
is especially valuable for finding bugs that are hard to replicate and for finding
security vulnerabilities, and both are exactly the problems that are most difficult
to identify with dynamic techniques such as testing.

—Type qualifiers support efficient inference, which reduces the burden on the pro-
grammer by requiring fewer annotations. Efficient inference also allows us to
apply type qualifiers to large bodies of legacy code; we can sprinkle in a few type
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qualifier annotations, and inference determines the remaining qualifiers automat-
ically.

In our framework, type qualifiers are added to every level of the standard types.
For example, a source language pointer type ref (int) is extended to q1 ref (q2 int),
where the qi are qualifiers. The key technical property of type qualifiers is that
they do not affect the underlying standard type structure. That is, a program
with type qualifier annotations should type check only if the same program with
the annotations removed type checks according to the underlying standard type
system. Aside from this restriction, type qualifiers could potentially affect the type
system arbitrarily. In this paper, however, we focus on a particularly useful subclass
of type qualifiers, those that introduce subtyping.

In our system, each set of related type qualifiers is in a partial order. For example,
consider the qualifiers tainted and untainted . While it is an error for tainted data to
be used in untainted positions, the reverse is perfectly fine—presumably positions
that accept tainted data can accept any kind of data. Thus we choose untainted <
tainted as the partial order. The partial order among qualifiers is extended in the
natural way to a subtype relation among qualified types, which are simply types
with qualifiers.

We also provide a generic mechanism for programmers to specify and check type
qualifiers in their source code. Type qualifier annotations specify the initial type
qualifiers when program values are created. Type qualifier checks test the qualifiers
on a value, succeeding only if the actual qualifiers on the value are compatible (in
the partial order) with the specified qualifier.

Given a partial order among the type qualifiers and a program with some type
qualifier annotations and checks, we can efficiently perform flow-insensitive type
qualifier inference to infer the remaining qualifiers and check consistency. Our in-
ference algorithm is designed using constraint-based analysis. To infer qualifiers in
a source program, we scan the program text and generate a series of constraints
q1 ≤ q2 among qualifiers and qualifier variables, which stand for as-yet-unknown
qualifiers. We solve the constraints for the qualifier variables and warn the program-
mer if the constraints have no solution, which indicates a type qualifier error. Note
that although we have also studied flow-sensitive type qualifiers [Foster et al. 2002;
Aiken et al. 2003] (see Section 6), this paper discusses exclusively flow-insensitive
type qualifiers.

Type qualifiers can further come with well-formedness conditions that specify
how qualifiers on different positions of the same type are related. For example,
in the Linux kernel, functions and data marked with init are garbage collected
after kernel initialization time (Section 5.3). This optimization saves space, but the
programmer must be careful never to use an init function or pointer after the
initialization phase is complete. We can interpret this annotation as a qualifier init
and add an inverse qualifier noninit for data and functions that must be live after
initialization.

Then there are two conditions to ensure that init is used safely. First, for data that
is marked with init, we require that its type obey a well-formedness constraint :
in a type of the form q1 ref (q2 T ) (the type of a pointer, with qualifier q1, that
points to an object of type T with qualifier q2), if q1 is a noninit pointer, then the
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data that is pointed to must also be live after initialization, and hence q2 must
also be noninit. Second, we also treat init and noninit as effect qualifiers [Gifford
et al. 1987; Lucassen and Gifford 1988], and we require that any function that
transitively calls a function with effect qualifier init also has effect qualifier init,
i.e., the function can only be called during initialization time. We can enforce
these restrictions by adding qualifiers to model effects and by adding additional
constraints. For example, since noninit < init, we could generate the constraint
q2 ≤ q1 for the type q1 ref (q2 T ) to enforce well-formedness. However, if we
added this constraint it would apply to all qualifiers, even though not all qualifiers
should propagate in this way. Hence instead we introduce gated qualifier constraints
q2 ≤S q1. Here S is a set of qualifiers (for our example noninit and init), and such
a constraint is satisfiable if q1 ∈ S ∧ q2 ∈ S ⇒ q2 ≤ q1 (Section 3.3). In general
these gated constraints allow us to restrict the set of qualifiers that propagate along
certain edges, and are also used in handling type casts.

In order to improve the precision of type qualifier inference further, we also sup-
port parametric type qualifier polymorphism. For example, the C standard library
function strcat, which destructively appends its second argument to its first ar-
gument and returns the result, can be given the type

∀κ, κ′[κ′ ≤ κ]. ref (κ char)× ref (κ′ char) −→ ref (κ char)

Here the brackets contain constraints on the polymorphic variables. This is es-
pecially important in modeling library functions precisely, so that the many calls
to the same library function are not conflated. We perform polymorphic qualifier
inference by translating it into a context-free language reachability problem on the
constraint graph among the qualifiers (Section 4.1).

To test our ideas in practice, we built a tool called CQual1 for adding user-
defined flow-insensitive type qualifiers to C (Section 4). CQual has been used both
in our own research and by others [Zhang et al. 2002; Broadwell et al. 2003]. A
key feature of CQual is that it includes a user interface that shows programmers
not only what type qualifiers were inferred but why they were inferred. After
inference, the program source code is presented to the user with each identifier
colored according to its inferred qualifiers. For each error message, the user can
browse qualifier constraints that exhibit the error. For example, if an error occurs
because tainted data is used in an untainted position, the user is shown a set of
constraints (roughly corresponding to a program path) that shows step-by-step
how tainted was propagated to untainted . From our own personal experience, such
an interface, while often neglected in the research literature, is one of the most
important and visible features of any program analysis tool, and we found the
interface invaluable in our research. In Section 4 we discuss some of the heuristics
we use to make this visualization tool more useful.

Type qualifier systems applied to type-safe languages can be made sound, mean-
ing that programs with valid qualifier annotations do not violate an operational
semantics of the qualifiers (Section 2.3). For example, the addition of type quali-
fiers to Java can be made sound. However, since C is not type safe, neither are type
qualifiers directly applied to the C type system. Instead, there is a range of de-

1Freely available under the GNU General Public License at http://cqual.sourceforge.net.
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sign choices that trade off soundness for simplicity and fewer false positive results.
Our tool CQual allows the user to select from among several soundness options
for particular qualifiers. Another alternative would be to combine CQual with a
system for enforcing memory safety such as CCured [Necula et al. 2002].

We have performed a number of experiments with CQual (Section 5). We have
used CQual to infer const qualifiers, and we have found that we were able to infer
many additional consts, even in programs that already make a significant effort to
use const. We have used tainted and untainted qualifiers to check for format-string
bugs, a particular kind of security vulnerability, in several popular C programs, and
we have found format-string vulnerabilities that were not known to us. We have
also used CQual to find bugs in the Linux kernel involving invalid uses of init data
and functions in noninit functions.

In summary, the contributions of this paper are as follows:

—We present a framework for adding type qualifiers to almost any language with
standard types, and we show that flow-insensitive type qualifier inference can be
carried out efficiently.

—We introduce a natural notion of qualifier polymorphism that allows types to be
polymorphic in their qualifiers. We present examples from existing C programs
to show that qualifier polymorphism is useful and in fact necessary in some
situations.

—We describe a practical tool CQual that adds type qualifiers to the C program-
ming language, and we discuss some key implementation details. We believe
many of the lessons learned in developing CQual are applicable to other lan-
guages and other static analysis tools, as well.

—We describe a novel visualization component that gives users of CQual a natural
interface for understanding the results of type qualifier inference.

—We present empirical evidence that type qualifiers are useful in practice by de-
scribing a number of experiments with type qualifier systems. In the process, we
show that our algorithms scale to large programs.

An earlier version of this work was presented in conference publications [Foster
et al. 1999; Shankar et al. 2001]. New contributions of this paper include poly-
morphism via CFL reachability (Section 3.1), gated qualifier constraints for effects
and well-formedness constraints (Section 3.3), better handling of type casts (Sec-
tion 4.2), and additional experiments.

2. QUALIFIERS AND QUALIFIED TYPES

We will present our type qualifier system using lambda calculus extended with
updatable references, as shown in Figure 1. In general, type qualifiers can be added
to any language with a standard type system, but showing the system on the
language in Figure 1 will illustrate most of the important points. In this Section we
present a basic type qualifier system that will need some extensions, described in
Section 3, to be more useful in practice and to handle certain classes of qualifiers.
Section 4 contains a discussion of how to address some of the issues that come up
in applying type qualifiers to the C programming language.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



6 · Jeffrey S. Foster et al.

e ::= v values
| e1 e2 application
| letx = e1 in e2 name binding
| ref e allocation
| *e dereference
| e1 := e2 assignment

v ::= x variable
| n integer
| λx:s.e function

s ::= int integer type
| ref (s) pointer to type s
| s −→ s′ function from type s to type s′

Fig. 1. Source Language

x ∈ dom(Γ)

Γ `s x : Γ(x)
(Vars)

Γ `s n : int
(Ints)

Γ[x 7→ s] `s e : s′

Γ `s λx:s.e : s −→ s′
(Lams)

Γ `s e : s

Γ `s ref e : ref (s)
(Refs)

Γ `s e1 : s −→ s′ Γ `s e2 : s

Γ `s e1 e2 : s′
(Apps)

Γ `s e1 : s1 Γ[x 7→ s1] `s e2 : s2

Γ `s letx = e1 in e2 : s2

(Lets)

Γ `s e : ref (s)

Γ `s *e : s
(Derefs)

Γ `s e1 : ref (s) Γ `s e2 : s

Γ `s e1 := e2 : s
(Assigns)

Fig. 2. Standard Type Checking System

const

nonconst

tainted

untainted

const tainted
jjjj TTTT

nonconst tainted const untainted

nonconst untainted

TTTT jjjj

Fig. 3. Example Qualifier Partial Order

We will assume for the remainder of this section that our input programs are
type correct with respect to the standard type system, shown in Figure 2 for com-
pleteness, and that function definitions have been annotated with standard types s.
If that is not the case, we can always perform a preliminary standard type inference
pass.

In our framework, the user specifies a set of qualifiers Q and a partial order ≤
among the qualifiers. In practice, the user may wish to specify several sets (Qi,≤i)
of qualifiers that do not interact, each with their own partial order. But then
we can form (Q,≤) = (Q1,≤1) × · · · × (Qn,≤n), so without loss of generality we
can assume a single partial order of qualifiers. For example, Figure 3 gives two
independent partial orders and their equivalent combined, single partial order (in
this case the partial orders are lattices). In Figure 3, as in the rest of this paper,
we write elements of Q using slanted text. We sometimes refer to elements of Q as
type qualifier constants to distinguish them from type qualifier variables introduced
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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in Section 2.2.
For our purposes, types Typ are terms over a set Σ of n-ary type constructors.

Grammatically, types are defined by the language

Typ ::= c(Typ1, . . . ,Typarity(c)) c ∈ Σ

In our source language, the type constructors are {int , ref ,−→} with arities 0, 1,
and 2, respectively. We construct the qualified types QTyp by pairing each standard
type constructor in Σ with a type qualifier (recall that a single type qualifier in our
partial order may represent a set of qualifiers in the programmer’s view). We allow
type qualifiers to appear on every level of a type. Grammatically, our new types
are

QTyp ::= Q c(QTyp1, . . . ,QTyparity(c)) c ∈ Σ

For our source language, the qualified types are

τ ::= Q ν
ν ::= int | ref (τ) | τ −→ τ

To avoid ambiguity, when writing down qualified function types we parenthesize
them as Q (τ −→ τ). Some example qualified types in our language are tainted int
and const ref (untainted int). We define the top-level qualifier of type Q ν as its
outermost qualifier Q.

2.1 Assertions, Annotations, and Type Checking

So far we have types with attached qualifiers and a partial order among the quali-
fiers. A key idea behind our framework is that the partial order on type qualifiers
induces a subtyping relation among qualified types. In a subtyping system, if type
B is a subtype of type A, which we write B ≤ A (note the overloading on ≤), then
wherever an object of type A is allowed an object of type B may also be used.
(Subclassing in object-oriented programming languages such as Java and C++ is
closely related to subtyping.)

Figure 4a shows how a given qualifier partial order is extended to a subtyping
relation for our source language. These rules are standard, and a discussion of them
can be found elsewhere [Mitchell 1991]. In general, for any c ∈ Σ the rule

Q ≤ Q′ τi ≤ τ ′i τ ′i ≤ τi i ∈ [1..n]
Q c(τ1, . . . , τn) ≤ Q′ c(τ ′1, . . . , τ

′
n)

should be sound. Whether the equality (here expressed by two≤ constraints) can be
relaxed for any particular position depends on the meaning of the type constructor
c.

Next we wish to extend our standard type system to work with qualified types.
Thus far, however, we have supplied no mechanism that allows programmers to
talk about the qualifiers used in their programs. One place where this issue comes
up is when constructing a qualified type during type checking. For example, if we
see an occurrence of the integer 0 in the program, how do we decide which qualifier
Q to pick for its type Q int? We wish to have a generic solution for this problem,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Q ≤ Q′

Q int ≤ Q′ int
(Int≤)

Q ≤ Q′ τ ≤ τ ′ τ ′ ≤ τ

Q ref (τ) ≤ Q′ ref (τ ′)
(Ref≤)

Q ≤ Q′ τ ′1 ≤ τ1 τ2 ≤ τ ′2
Q (τ1 −→ τ2) ≤ Q′ (τ ′1 −→ τ ′2)

(Fun≤)

(a) Subtyping Qualified Types

Γ ` n : int
(Int)

Γ[x 7→ τ ] ` e : τ ′ strip(τ) = s

Γ ` λx:s.e : τ −→ τ ′
(Lam)

Γ ` e : τ

Γ ` ref e : ref (τ)
(Ref)

Γ ` e : ν

Γ ` annot(e, Q) : Q ν
(Annot)

(b) Rules for Unqualified Types ν

x ∈ dom(Γ)

Γ ` x : Γ(x)
(Var)

Γ ` e1 : Q (τ −→ τ ′) Γ ` e2 : τ2
τ2 ≤ τ

Γ ` e1 e2 : τ ′
(App)

Γ ` e1 : τ1 Γ[x 7→ τ1] ` e2 : τ2

Γ ` letx = e1 in e2 : τ2
(Let)

Γ ` e : Q ref (τ)

Γ ` *e : τ
(Deref)

Γ ` e1 : Q ref (τ) Γ ` e2 : τ ′ τ ′ ≤ τ

Γ ` e1 := e2 : τ
(Assign)

Γ ` e : Q′ ν Q′ ≤ Q

Γ ` check(e, Q) : Q′ ν
(Check)

(c) Rules for Qualified Types τ

Fig. 4. Qualified Type Checking System

so in our system, we extend the syntax with two new forms:

e ::= · · ·
| annot(e,Q) qualifier annotation
| check(e,Q) qualifier check

A qualifier annotation annot(e,Q) specifies the outermost qualifier Q to add to
e’s type. Annotations may only be added to expressions that construct a term,
and whenever the user constructs a term our type system requires that they add
an annotation. Clearly this last requirement is not always desirable, and in Sec-
tion 2.2 we describe an inference algorithm that allows programmers to omit these
annotations if they like. Dually, a qualifier check check(e,Q) tests whether the
outermost qualifier of e’s type is compatible with Q. Notice that if we want to
check a qualifier deeper in a non-function type, we can do so by first applying the
language’s deconstructors. (For example, we can check the qualifier on the contents
of a reference x using check(*x,Q)).

Finally, we wish to extend the original type checking system to a qualified type
system that checks programs with qualified types, including our new syntactic forms
annot(·, ·) and check(·, ·). Intuitively this extension should be natural, in the sense
that adding type qualifiers should not modify the underlying type structure (we
make this precise below). We also need to incorporate subsumption [Mitchell 1991]
into our qualified type system to allow subtyping.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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We define a pair of translation functions between standard and qualified types
and expressions. For a qualified type τ ∈ QTyp, we define strip(τ) ∈ Typ to be τ
with all qualifiers removed. Analogously, strip(e) is e with any qualifier annotations
or checks removed. In the other direction, for a standard type s ∈ Typ we define
embed(s, q) to be the qualified type with the same shape as s and all qualifiers
set to q. Analogously, embed(e, q) is e with annot(e′, q) wrapped around every
subexpression e′ of e that constructs a term.

Figures 4b and c show the qualified type system for our source language. Judg-
ments are either of form Γ ` e : ν (three rules in Figure 4b) or Γ ` e : τ (the
remaining rules in Figure 4c), meaning that in type environment Γ, expression e
has unqualified type ν or qualified type τ . Here Γ is a mapping from variables to
qualified types.

The rules (Int) and (Ref) are identical to standard type checking rules, and (Lam)
simply adds a check that the parameter’s qualified type τ has the same shape as the
specified standard type. (This check is not strictly necessary—see Lemma 1 below.)
Notice that these three rules produce types that are missing a top-level qualifier.
The rule (Annot) adds a top-level qualifier to such a type, which is produced in
our qualified type grammar by non-terminal ν. Inspection of the type rules shows
that judgments of the form Γ ` e : ν can only be used in the hypothesis of (Annot).
Thus the net effect of the four rules in Figure 4b is that all constructed terms must
be assigned a top-level qualifier with an explicit annotation.

The rules (Var) and (Let) are identical to the standard type checking rules. The
rules (App), (Deref), and (Assign) are similar to the standard type checking rules,
except that they match the types of their subexpressions against qualified types,
and (App) and (Assign) allow subsumption. Notice that these three rules allow
arbitrary qualifiers (denoted by Q) when matching a type. Only the rule (Check)
actually tests a qualifier on a type.

Lemma 1. Let e be a closed term, and let `s be the standard type checking judg-
ment.

—If ∅ `s e : s, then for any qualifier q we have ∅ ` embed(e, q) : embed(s, q).

—If ∅ ` e : τ , then ∅ `s strip(e) : strip(τ).

Proof. (Sketch) Both properties can be proven by structural induction on e.
The proofs are straightforward, since each rule in the standard type system corre-
sponds exactly to one rule in Figure 4 with the qualifiers removed, and vice-versa.
For the first claim, we also must observe that consistently adding the same qualifier
q to all types maintains the same equalities between types in the program, which is
sufficient for maintaining typability because embed(·, ·) does not add any type qual-
ifier checks. For the second statement, we must also observe that the subsumption
rules in Figure 4a require type structures to be equal, and so if τ ≤ τ ′, it is always
the case that strip(τ) = strip(τ ′).

This lemma formalizes our intuitive requirement that type qualifiers do not affect
the underlying type structure.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Γ `′ n : int
(Int′)

Γ[x 7→ τ ] `′ e : τ ′ τ = embed ′(s)

Γ `′ λx:s.e : τ −→ τ ′
(Lam′)

Γ `′ e : τ

Γ `′ ref e : ref (τ)
(Ref′)

Γ `′ e : ν

Γ `′ annot(e, Q) : Q ν
(Annot′)

Γ `′ e : ν κ fresh

Γ `′ e : κ ν
(Fresh′)

(a) Rules for Unqualified Types ν

x ∈ dom(Γ)

Γ `′ x : Γ(x)
(Var′)

Γ `′ e1 : Q (τ −→ τ ′) Γ `′ e2 : τ2
τ2 ≤ τ

Γ `′ e1 e2 : τ ′
(App′)

Γ `′ e1 : τ1 Γ[x 7→ τ1] `′ e2 : τ2

Γ `′ letx = e1 in e2 : τ2
(Let′)

Γ `′ e : Q ref (τ)

Γ `′ *e : τ
(Deref′)

Γ `′ e1 : Q ref (τ) Γ `′ e2 : τ ′ τ ′ ≤ τ

Γ `′ e1 := e2 : τ ′
(Assign′)

Γ `′ e : Q′ ν Q′ ≤ Q

Γ `′ check(e, Q) : Q′ ν
(Check′)

(b) Rules for Qualified Types τ

Fig. 5. Qualified Type Inference System

2.2 Inference

As described so far, type qualifiers place a rather large burden on programmers
wishing to use them: programmers must add explicit qualifier annotations to all
constructed terms in their programs. We would like to reduce this burden by per-
forming type qualifier inference, which is analogous to standard type inference. As
with standard type inference, we introduce type qualifier variables QVar to stand
for unknown qualifiers that we need to solve for. We write qualifier variables with
the Greek letter κ. In the remainder of this paper we use type qualifier constants
to refer to elements of the given qualifier partial order, and we use type qualifiers
to refer to either a qualifier constant or a qualifier variable. We define a func-
tion embed ′(s) that maps standard types to qualified types by inserting fresh type
qualifier variables at every level:

embed ′(int) = κ int κ fresh
embed ′(ref (s)) = κ ref (embed ′(s)) κ fresh

embed ′(s −→ s′) = κ (embed ′(s) −→ embed ′(s′)) κ fresh

The type qualifier inference rules for our source language are shown in Figure 5.
In this system, Q stands for either a qualifier constant or a qualifier variable κ.
These rules are essentially the same as the rules in Figure 4, with two differences.
First, we allow qualifier annotations to be omitted in the source program. If they
are, rule (Fresh′) is used to introduce a fresh type qualifier variable to stand for the
unknown qualifier on the term. Although this rule is not syntax-driven, it could be
made so, since either rule (Annot′) or rule (Fresh′) must be used before applying
any of the rules in part (b). Second, we use embed ′ in (Lam′) to map the given
standard type to a type with fresh qualifier variables. To simplify the rules slightly
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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C ∪ {Q int ≤ Q′ int} ⇒ C ∪ {Q ≤ Q′}
C ∪ {Q ref (τ) ≤ Q′ ref (τ ′)} ⇒ C ∪ {Q ≤ Q′} ∪ {τ ≤ τ ′} ∪ {τ ′ ≤ τ}

C ∪ {Q (τ1 −→ τ2) ≤ Q′ (τ ′1 −→ τ ′2)} ⇒ C ∪ {Q ≤ Q′} ∪ {τ ′1 ≤ τ1} ∪ {τ2 ≤ τ ′2}

(a) Resolution Rules for Subtyping Constraints

C ∪ {q ≤ Q} ∪ {Q ≤ Q′} ∪⇒ {q ≤ Q′}
C ∪ {Q ≤ Q′} ∪ {Q′ ≤ q} ∪⇒ {Q ≤ q}

(b) Resolution Rules for Qualifier Constraints

Fig. 6. Constraint Resolution

we use our assumption that the program is correct with respect to the standard
types to avoid some shape matching constraints. For example, in (App′) we know
that e1 has a function type, but we do not know its qualifier.

Given a solution to the constraints generated by inference (see below), we believe
it is straightforward to show that the inference system in Figure 5 is sound and
complete with respect to the checking system in Figure 4, although we have not
proven it formally.

After we have applied the type rules in Figure 5, we have a typing derivation that
contains qualifier variables to be solved for. The qualifier variables must satisfy two
kinds of constraints that form the side conditions of the inference rules: subtyping
constraints of the form τ1 ≤ τ2 and qualifier constraints (from the rule (Check′))
of the form Q1 ≤ Q2. We say that these constraints are generated by the typing
rules. In order to find a valid typing (if one exists), we must solve the generated
constraints for the qualifier variables.

The first step is to apply the rules of Figure 6a to reduce the subtyping constraints
to qualifier constraints. Notice that because we assume that the program we are
analyzing type checks with respect to the standard types, we know that none of
the structural matching cases in Figure 4a can fail.

After exhaustively applying the rules in Figures 5 and 6a, we are left with qualifier
constraints of the form Q1 ≤ Q2, where the Qi are type qualifier constants from
Q or type qualifier variables κ. We need to solve these qualifier constraints to
complete type qualifier inference.

Definition 2. A solution S to a system of qualifier constraints C is a mapping
from type qualifier variables to type qualifier constants such that for each constraint
Q1 ≤ Q2, we have S(Q1) ≤ S(Q2).

We write S |= C if S is a solution to C. Note that there may be many possible
solutions to C. We say that C is satisfiable if there exists an S such that S |= C.
For many uses of type qualifiers, we are interested in satisfiability rather than the
actual solution. If we are looking for a solution there are two in particular that we
may be interested in.

Definition 3. If S |= C, then S is a least (respectively greatest) solution if,
for any other S′ such that S′ |= C, and for all κ ∈ dom(S), we have S(κ) ≤ S′(κ)
(respectively S(κ) ≥ S′(κ)).
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For example, the const inference of Section 5.1 finds a greatest solution, to add
as many consts as possible. For the format-string vulnerability experiment in Sec-
tion 5.2, we are mostly interested in satisfiability. However, if we wanted to compute
a full solution, we would find a least solution to require as little data to be tainted
as possible.

A system of qualifier constraints is also known as an atomic subtyping constraint
system. In general, checking satisfiability and/or solving atomic subtyping con-
straints over an arbitrary partial order is NP-hard, even with fixed Q [Pratt and
Tiuryn 1996]. However, there are well-known linear-time algorithms for solving
such constraints efficiently if Q is a semilattice [Rehof and Mogensen 1996]. In this
case, given a system of constraints C of size n and a fixed set of qualifiers, we can
check satisfiability of the constraints and find a solution in O(n) time [Rehof and
Mogensen 1996; Foster 2002].

For example, if Q is a lattice, we can repeatedly apply the transitive closure
rules in Figure 6b to the qualifier constraints until we reach a fixpoint. These rules
effectively propagate qualifier constants q through the constraints. Here ∪⇒ means
the constraint on the right-hand side is added given the constraints on the left-hand
side. After reaching a fixpoint, the constraint system C is satisfiable if and only
if there is no constraint q ≤ q’ ∈ C where q 6≤ q’ in the lattice. For a qualifier
variable κ, its least solution is

⊔
{q≤κ}∈C q and its greatest solution is

d
{κ≤q}∈C q.

2.3 Semantics and Soundness

We can prove that our qualified type system (applied to our extended lambda
calculus), including parametric polymorphic type qualifiers (Section 3.1), is sound
under a natural semantics for type qualifiers. Figure 7 gives our semantic reduction
rules. In these semantics a store S is a mapping from locations l to values v.
In order to type check programs with locations in them, we treat locations l as
free variables and type them using rule (Var). Thus in the proof of soundness, as
reduction proceeds and new locations are allocated we keep track of their types in
the type environment. We use ∅ for the empty store. Values are standard values
(integers, locations, or functions) paired with uninterpreted qualifiers, written as a
superscript. Notice that in these semantics the rules that deconstruct values ([App],
[Deref], and [Assign]) throw away the outermost qualifier. Only rule [Check] tests
the top-level qualifier of a value.

Any program to which none of the rules in Figure 7 apply is stuck, which we
express by reducing the program to a special symbol err . The symbol err is not
a value and has no valid type. We can prove that our system is sound by showing
that no well-typed program reduces to err . The proof is omitted, since it uses
standard techniques [Wright and Felleisen 1994; Eifrig et al. 1995; Odersky et al.
1997]; a proof excepting qualifier polymorphism is available in the first author’s
thesis [Foster 2002]. In the theorem below, we use r to stand for a reduction result,
either a value vQ or err.

Theorem 4. If ∅ ` e : τ and 〈∅, e〉 → 〈S′, r〉, then r is not err.
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l ∈ dom(S)

〈S, lQ〉 → 〈S, lQ〉
[Var]

〈S, annot(n, Q)〉 → 〈S, nQ〉
[Int]

〈S, annot(λx:s.e, Q)〉 → 〈S, (λx:s.e)Q〉
[Lam]

〈S, e1〉 → 〈S1, (λx.e)Q1 〉 〈S1, e2〉 → 〈S2, v2
Q2 〉

〈S2, e[x 7→ v2
Q2 ]〉 → 〈S3, v3

Q3 〉
〈S, e1 e2〉 → 〈S3, v3

Q3 〉
[App]

〈S, e1〉 → 〈S1, v1
Q1 〉 〈S1, e2[x 7→ v1

Q1 ]〉 → 〈S2, v2
Q2 〉

〈S, letx = e1 in e2〉 → 〈S2, v2
Q2 〉

[Let]

〈S, e〉 → 〈S1, vQ〉 l 6∈ dom(S1)

〈S, annot(ref e, Q′)〉 → 〈S1[l 7→ vQ], lQ
′ 〉

[Ref]

〈S, e〉 → 〈S1, lQ〉 l ∈ dom(S1)

〈S, *e〉 → 〈S1, S1(l)〉
[Deref]

〈S, e1〉 → 〈S1, lQ〉 〈S1, e2〉 → 〈S2, vQ′ 〉 l ∈ dom(S2)

〈S, e1 := e2〉 → 〈S2[l 7→ vQ′
], vQ′ 〉

[Assign]

〈S, e〉 → 〈S1, vQ′ 〉 Q′ ≤ Q

〈S, check(e, Q)〉 → 〈S1, vQ′ 〉
[Check]

Fig. 7. Big-Step Operational Semantics with Qualifiers

3. REFINEMENTS

3.1 Parametric Polymorphism

There is a well-known problem with standard monomorphic type systems, like the
one we have presented so far: multiple calls to the same function are conflated,
leading to a loss of precision. For example, suppose we have qualifier constants a
and b with partial order b < a, and consider the following two function definitions
of the identity function, where we have annotated the argument with a qualified
type:

let id1 = λx:(a int).x
let id2 = λx:(b int).x

We would like to have only a single copy of this function, since both versions
behave the same and in fact compile to the same code. Unfortunately, without
polymorphism we need both. The return type of id1 must be a int , and thus an
object of type b int can be passed to id1 , but the return value has qualifier a.
The argument type of id2 must be b int , and thus an object of type a int cannot
be passed to id2. The problem here is that the type of the identity function on
integers is Q int −→ Q int with Q appearing both covariantly (to the right of the
arrow) and contravariantly (to the left of the arrow).
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Notice, however, that the identity function behaves the same for any qualifier Q.
We specify this in type notation with the parametric polymorphic type signature
[Milner 1978] ∀κ.κ int −→ κ int . When we apply a function of this type to an
argument, we first instantiate its type at a particular qualifier, in our case either
as a int −→ a int or b int −→ b int .

The traditional way to add polymorphism to a constraint-based type inference
system is to use polymorphically constrained types [Eifrig et al. 1995; Odersky et al.
1997]. In this approach, we modify our type grammar as follows:

σ ::= ∀~κ[C].τ
τ ::= Q ν
ν ::= int | ref (τ) | τ −→ τ
C ::= ∅ | {Q ≤ Q} | C ∪ C

The type ∀~κ[C].τ represents all types of the form τ [~κ 7→ ~Q] for any ~Q that satisfies
the constraints C[~κ 7→ ~Q]. Note that polymorphism only applies to the qualifiers
and not to the underlying types. Adding polymorphism only serves to make type
qualifier inference more precise, and it does not affect the operational semantics.
We can prove soundness for such a system using standard techniques [Wright 1995;
Eifrig et al. 1995; Odersky et al. 1997; Mossin 1996].

In practice, polymorphically constrained type inference systems are tricky to im-
plement directly. Instead, we use an equivalent formulation based on instantiation
constraints, due to Rehof et al. [Rehof and Fähndrich 2001]. In this approach,
inferring polymorphic qualifiers is reduced to a context-free language (CFL) reach-
ability problem [Reps et al. 1995] on the qualifier constraints viewed as a graph.
The CFL reachability problem can be solved in cubic time. This formulation has
the added advantage of naturally supporting polymorphic recursion, which our im-
plementation does as well.

In this formulation, the nodes in the qualifier constraint graph are qualifier con-
stants and variables. A qualifier constraint Q ≤ Q′ generated by the rules in
Figures 5 and 6a is represented by an unlabeled directed edge Q −→ Q′ from the
node for Q to the node for Q′. Labeled edges will be used to represent qualifier
instantiation, as discussed next.

Figure 8a extends the rules in Figure 5 to add polymorphism. As is standard,
the rule (LetCFL) introduces polymorphism, which is restricted to syntactic val-
ues (variables, integers, or functions in our language) [Wright 1995] in order to be
sound in the presence of updatable references. In rule (LetCFL), we bind vari-
able x to a pair containing its type and fv(Γ), the set of qualifier variables that
cannot be quantified [Henglein 1993]. Note this is the inverse of standard polymor-
phic type inference. In particular, the type scheme (τ1, fv(Γ)) corresponds to the
polymorphically constrained type ∀~κ[C].τ1 where ~κ = (fv(τ1) ∪ fv(C))− fv(Γ).

Each instantiation occurs at a particular syntactic location in the program, which
we associate with an index i. Rule (VarCFL) instantiates the type of variable x,
which is labeled with index i. We create a type τ ′ = fresh(τ), where fresh(τ) is
a type with the same shape as τ but fresh qualifier variables. Then we make an

instantiation constraint τ
)i−→ τ ′, represented as a labeled directed edge (we write

the edge as a hypothesis to the rule). Intuitively this corresponds to a substitution
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Flow-Insensitive Type Qualifiers · 15

Γ `′ v : τ1 Γ[x 7→ (τ1, fv(Γ))] `′ e : τ2

Γ `′ letx = v in e : τ2
(LetCFL)

Γ(x) = (τ, ~κ) τ ′ = fresh(τ) τ
)i−→ τ ′ κ

(i,)i−→ κ (∀κ ∈ ~κ)

Γ `′ xi : τ ′
(VarCFL)

(a) Type Rules

C ∪ {Q int
(i−→ Q′ int} ⇒ C ∪ {Q

(i−→ Q′}

C ∪ {Q int
)i−→ Q′ int} ⇒ C ∪ {Q′ )i−→ Q}

C ∪ {Q ref (τ)
(i−→ Q′ ref (τ ′)} ⇒ C ∪ {Q

(i−→ Q′} ∪ {τ
(i−→ τ ′} ∪ {τ ′

)i−→ τ}

C ∪ {Q ref (τ)
)i−→ Q′ ref (τ ′)} ⇒ C ∪ {Q

)i−→ Q′} ∪ {τ
)i−→ τ ′} ∪ {τ ′

(i−→ τ}

C ∪ {Q (τ1 −→ τ2)
(i−→ Q′ (τ ′1 −→ τ ′2)} ⇒ C ∪ {Q

(i−→ Q′} ∪ {τ ′1
)i−→ τ1} ∪ {τ2

(i−→ τ ′2}

C ∪ {Q (τ1 −→ τ2)
)i−→ Q′ (τ ′1 −→ τ ′2)} ⇒ C ∪ {Q

)i−→ Q′} ∪ {τ ′1
(i−→ τ1} ∪ {τ2

)i−→ τ ′2}

(b) Structural Edge Generation Rules

Fig. 8. Polymorphic Constraint Graph Construction

Si, where Siτ = τ ′. (See [Rehof and Fähndrich 2001; Henglein 1993] for details.)
We also add self loops labeled with both (i and )i for each κ ∈ ~κ, i.e., for each
qualifier variable that (LetCFL) determined was not generalizable. Intuitively this
corresponds to requiring Siκ = κ, meaning κ was instantiated to itself, i.e., κ was
not actually instantiated.

After we have generated qualifier constraints and instantiation constraints, we
apply the rules in Figure 8b exhaustively to propagate instantiation constraints
from types to qualifiers, taking contravariance into account by flipping the kind of
parenthesis and the direction of the edge. Given this graph, the CFL reachability
problem is to find all paths in the graph made up of edges whose labels do not
contain any mismatched parentheses (ignoring the unlabeled edges), where only
open and closed parentheses with the same index match [Rehof and Fähndrich
2001].

As an example, consider again the identity function, with two uses:

let id = λx: int .x in
let a = annot(0, a) in
let b = annot(1, b) in

let y = id1 a in
let z = id2 b in 42

In this program, a has qualifier a and b has qualifier b, and we have labeled the
two uses of id with location 1 and location 2. Then the CFL reachability graph
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generated by this example looks like the following:

a (1

''PPPPPP κy

κx // κret

)1 66llllll

)2
))RRRRRR

b (2

77nnnnnn κz

Here κret is the qualifier variable on the return type of id, and κx, κy, and κz

are the qualifier variables for x, y, and z, respectively. Since we require paths
with balanced parentheses, there are only two paths through this graph: from a
to κy, indicating that y should be qualified with a, and from b to κz. The other
paths, from a to κz and from b to κy, are unrealizable [Reps et al. 1995], since they
correspond to a call at position 1 followed by a return at position 2 and vice-versa.
The CFL reachability technique eliminates these unrealizable paths from inference,
giving us polymorphism.

This system is equivalent to one that uses polymorphically constrained types.
This is important, because CQual allows the user to specify polymorphically con-
strained types by hand (Section 4.1). In particular, for a polymorphically con-
strained type ∀~κ[C].τ , the constraints C are added directly to the constraint graph,
and the type is instantiated as usual, with self edges for non-quantified variables.

Optimizations. Our CFL reachability algorithm has several important optimiza-
tions that improve on the cubic time bound in practice for C programs. When the
algorithm discovers a non-trivial matched parenthesis path through the graph, it
creates a transitive summary edge from the start to the end of the path and flags
the path so that it will not be explored again. This optimization was originally
described by Horwitz, Reps and Sagiv, and improves the asymptotic running time
of matched parenthesis CFL reachability to O(n)[Horwitz et al. 1995].

Qualifier variables associated with global program variables are made monomor-
phic by treating them as if they have self-edges with every parenthesis in the lan-
guage. As a consequence, the CFL reachability relation is transitive at globals. To
see why, consider CFL paths p1 : x → · · · → y and p2 : y → · · · → z. There
must not be any mismatched parentheses along these paths, but there may be un-
matched parenthesis [Rehof and Fähndrich 2001]. For example, p1 may end with
an unmatched (1 and p2 may begin with an unmatched )2. For this reason, it is
not always possible to concatenate two valid CFL paths to obtain a new valid CFL
path. If y is global, though, then we can use the self-edges on y to match all the
unmatched opening parentheses in p1 and all the unmatched closing parentheses in
p2. We can then concatenate p1 and p2 to obtain a valid CFL path.

We exploit this fact to speed up the CFL reachability computation. Since CFL
paths are not normally concatenable, the CFL reachability algorithm often must
explore the same region of the graph several times—once for each entry point to
that region. CFL paths are concatenable at global nodes, though, so the CFL
reachability algorithm can compute the reachability set of a global node once and
reuse that information whenever a reachability query encounters that global node.
This optimization provides several orders of magnitude speed improvement and was
originally described by Das et al. [Das et al. 2001].
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Q ≤ Q′ τ ≤ τ ′ const ≤ Q′

Q ref (τ) ≤ Q′ ref (τ ′)
(Ref′≤)

Fig. 9. Subtyping Non-Writable References

We also prune regions of the graph that have no outgoing edges with closing
parenthesis labels. Searching for matched parenthesis paths through these regions
is futile. Since we perform many CFL reachability queries, stopping as soon as we
reach one of these regions provides another order of magnitude speedup.

3.2 Subtyping under Non-Writable Pointer Types

As is standard, in Figure 4a we use a conservative rule (Ref≤) for pointer subtyping:
the constraint ref (τ) ≤ ref (τ ′) is satisfiable only if τ = τ ′. This rule can often
lead to non-intuitive “backward” qualifier propagation. For example, consider the
following code:

let f = λx: ref (int). *x in
f y;
f z

Ignoring the outermost qualifier, inference assigns the domain of f type ref (κ int).
Assume that the types of y and z are ref (κ′ int) and ref (κ′′ int), respectively.
Then by (Ref≤), the first application requires κ′ = κ, and the second application
requires κ′′ = κ. Putting the two together yields the rather counter-intuitive κ′ =
κ′′. In other words, y’s qualifier κ′ is propagated from x into f and then backward
to κ′′ and z.

While we could solve this problem with polymorphism, in many cases there is a
far simpler solution. Since f does not write through its parameter x, we know that
y and z cannot be modified by f , and thus we can soundly weaken our constraints
to κ′ ≤ κ and κ′′ ≤ κ [Pierce 2002] (Section 15.5). Think of an updatable reference
x containing data of type τx as an object with two methods getx : void −→ τx

and setx : τx −→ void to read and write the reference, respectively [Fähndrich
et al. 1998]. Here void is a placeholder meaning “no parameter” or “no result.”
Notice that τx appears both co- and contravariantly (on the left and right sides of
the function arrow). When we apply f to y in the above code, we generate two
constraints:

void −→ τy ≤ void −→ τx (1) get compatibility
τy −→ void ≤ τx −→ void (2) set compatibility

These constraints correspond to (Fun≤) in Figure 4a: the constraint (1) yields
τy ≤ τx and (2) yields τx ≤ τy, which put together produce τy = τx. But if f
does not write through x, then intuitively x does not have a set method. Thus,
analogous to standard width subtyping in object-oriented type systems, we do not
generate constraint (2), and the result is that we only require τy ≤ τx.

Thus we can use a new subtyping rule for references, as shown in Figure 9 for a
system where const marks non-updatable reference types. We refer to this as deep
subtyping. There are a number of techniques for checking whether a particular name
is used to write to an updatable reference, and any one could be used to decide

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



18 · Jeffrey S. Foster et al.

where to use deep subtyping. In Section 4.1 we describe our implementation, which
uses explicitly specified const annotations.

3.3 Gated Qualifier Constraints, Effect Qualifiers, and Well-formedness Constraints

The qualifier inference rules described in Section 2 generate subtyping constraints
following the standard “data flow” of the program, which allows qualifiers to model
how values are propagated during evaluation. However, checking some program
properties requires modeling other aspects of computation. Two examples that we
have encountered in practice are effect qualifiers that interact with control flow,
rather than data flow, and qualifiers that place structural well-formedness con-
straints on types. Both of these features are used in our experiment checking
initialization in the Linux kernel (Section 5.3).

Before discussing effect qualifiers and well-formedness constraints further, we
need to introduce some new machinery into our type system. To support these
additional qualifiers, our type system will generate extra constraints during the
analysis. Depending on whether the qualifier is a standard qualifier, an effect
qualifier, or a well-formedness qualifier, it may or may not interact with these new
constraints (examples below). To model this behavior, we introduce gated qualifier
constraints of the form τ ≤p

S τ ′, where S is a set of qualifier constants (which we call
the gate), and p is a polarity, either → or ←. Following structural decomposition
rules analogous to Figure 6a (with the polarity flipping for contravariant positions),
this constraint reduces to a set of constraints Q ≤p

S Q′ (not shown). The constraint
resolution algorithm mentioned in Section 2.2 includes the transitive closure rules
shown in Figure 6b, which propagate bounds from Q to Q′ and vice-versa. In
contrast, for a constraint Q ≤p

S Q′, only qualifiers q ∈ S are propagated through
this constraint, and then only in the direction specified by p:

C ∪ {q ≤ Q} ∪ {Q ≤→S Q′}∪⇒{q ≤ Q′} q ∈ S
C ∪ {Q ≤←S Q′} ∪ {Q′ ≤ q}∪⇒{Q ≤ q} q ∈ S

We write Q ≤S Q′ as a shorthand for Q ≤→S Q′ and Q ≤←S Q′.
One use of gated qualifier constraints is to model effects [Gifford et al. 1987;

Lucassen and Gifford 1988]. The effect of a function is traditionally the set of
locations the invocation of the function may access. In our type qualifier system,
the effect of a function is a qualifier q, which must be the least upper bound of
the set of qualifiers on types that may be affected when the function is executed.
Formally, we extend our typing judgments from Figure 5 to the form Γ ` e : τ ;Q,
meaning that in type environment Γ, expression e has type τ , and evaluating e
has effect Q. We then modify our type rules to track effects, e.g., the (App′) rule
becomes

Γ `′ e1 : Q (τ −→ τ ′);Q1 Γ `′ e2 : τ2;Q2 τ2 ≤ τ
Q1 ≤Se κ Q2 ≤Se κ Q ≤Se κ κ fresh

Γ `′ e1 e2 : τ ′;κ
(App′)

where Se is the set of effect qualifiers. In words, this rule means that the effect
of applying function e1 to argument e2 is the least upper bound of the effect of
evaluating e1, the effect of evaluating e2, and the effect of invoking e1. Notice
that by using constraints with gate Se, only qualifiers that are specified in the
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configuration file to be effects will be propagated over the edges Qi ≤Se
κ and

Q ≤Se κ.
We also use gated qualifier constraints to enforce well-formedness conditions on

types, which require that qualifiers on different positions of the same type are
related [Henglein 1991]. For example, a pointer qualifier may propagate (or flow)
to the pointed-to qualifier or vice-versa, or a qualifier on an aggregate may flow to
qualifiers on the fields of the aggregate or vice-versa (Section 5.3). To enforce these
conditions, we implicitly require that all types in the program be well-formed, and
we place gated qualifier constraints on well-formed types.

For example, let Sdown∗ be the set of all qualifiers that flow from pointer qualifiers
to pointed-to qualifiers (“down pointers”), and let Sup∗ be the set of all qualifiers
that flow in the opposite direction (“up pointers”). Then a type Q ref (Q′ τ) is
well-formed if Q′ τ is well-formed and the following constraints are satisfied:

Q ≤→Sdown∗
Q′ Q′ ≤←Sdown∗

Q Q ≤←Sup∗
Q′ Q′ ≤→Sup∗

Q

In other words, these constraints will effectively add the following reductions (in
order):

C ∪ {q ≤ Q} ∪ {Q ≤→Sdown∗
Q′}∪⇒{q ≤ Q′} q ∈ Sdown∗

C ∪ {Q ≤ q} ∪ {Q′ ≤←Sdown∗
Q}∪⇒{Q′ ≤ q} q ∈ Sdown∗

C ∪ {Q′ ≤ q} ∪ {Q ≤←Sup∗
Q′}∪⇒{Q ≤ q} q ∈ Sup∗

C ∪ {q ≤ Q′} ∪ {Q′ ≤→Sup∗
Q}∪⇒{q ≤ Q} q ∈ Sup∗

Thus using this machinery, qualifiers in Sdown∗ propagate from pointers to pointed-
to types, and qualifiers in Sup∗ propagate in the opposite direction. Notice that
ordinary qualifiers not in Sdown∗ or Sup∗ are unaffected by this constraint. For
example, the tainting analysis used to find format-string bugs in Section 5.2 has
no well-formedness conditions. Our implementation also provides support for two
other well-formedness conditions: in a similar manner as above, the user may spec-
ify that qualifiers on pointers-to-aggregates (structures and unions) constrain the
corresponding pointers-to-fields, and separately, the user may specify that quali-
fiers on aggregates (structures and unions) constrain their fields. For symmetry,
our implementation supports well-formedness constraints that flow up and down,
though for most applications one direction is sufficient. For example, in an analysis
to track untrusted pointers in operating system kernels [Johnson and Wagner 2004],
we observed that any pointer loaded through an untrusted pointer must also be un-
trusted, which we modeled using the downward pointer well-formedness condition.
This could also be implemented via a dual constraint that trusted pointers can only
be loaded through other trusted pointers, but this would be redundant.

Gated qualifier constraints are a particular example of conditional constraints,
which are of the form C1 ⇒ C2, where the Ci are qualifier constraints. In particular,
Q ≤→S Q′ can be reduced to the conditional constraints

{q ≤ Q} ⇒ {q ≤ Q′} ∀q ∈ S

and Q ≤←S Q′ can be reduced to the conditional constraints

{Q′ ≤ q} ⇒ {Q ≤ q} ∀q ∈ S
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CQual includes support for general conditional constraints, although none is in-
cluded in our examples. A solution S solves a conditional constraint C1 ⇒ C2 if
either S 6|= C1 or S |= C2.

We believe that the system with effect qualifiers and well-formedness conditions
added is still sound, using a small variation on the subject-reduction style proof
mentioned in Section 2.3.

4. CQUAL

To test our ideas in practice, we have built a tool called CQual that adds flow-
insensitive type qualifiers to the C programming language.2 To use CQual, pro-
grammers annotate their C programs with a few type qualifiers, and then CQual
performs type qualifier inference, as discussed in Sections 2 and 3.

Rather than computing a full solution to the qualifier constraints, CQual com-
putes the transitive closure of the constraints and checks satisfiability. CQual
includes some extra closure rules to handle the discrete partial order and some
semilattices. The results, which include the computed closure and warnings for un-
satisfiable constraints, are presented to the user with an Emacs-based user interface
[Harrelson 2001]. An Eclipse plug-in interface is also available [Greenfieldboyce and
Foster 2004].

The correspondence between the core part of C and the lambda calculus-based
formalism of the previous sections is fairly straightforward: primitive values such
as integers, characters, and so on are treated like int values, pointers are modeled
with ref types, C functions correspond to lambda expressions, and local variable
bindings correspond to let- or lambda-bound variables. In the rest of this section,
we discuss extending C types to include qualifiers, to take the place of annotations
and checks, as well as how we analyze some of the interesting features of C and
some of the choices we made in designing CQual. Appendix A gives a complete
description of CQual’s configuration files and surface syntax. We believe that the
lessons learned while developing CQual are applicable to other languages as well.
Section 5 describes a series of experiments using CQual.

4.1 Modeling C Types

In this section we discuss some of the issues in handling C types as they are used in C
programs, which is somewhat more complicated than the idealized types previously
presented.

L-Types and R-Types. In C there is an important distinction between l-values,
which correspond to memory locations, and r-values, which are ordinary values like
integers. In the C type system, l-values and r-values are given the same type. For
example, consider the following code:

int x;
x = ...;
... = x;

The first line defines the variable x as a location containing an integer. On the
second line x is used as an l-value: it appears on the left-hand side of an assignment,

2CQual also supports flow-sensitive type qualifiers [Foster et al. 2002].
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meaning that the location corresponding to x should be updated. On the third line
x is used as an r-value. Here when we use x as an r-value we are not referring to
the location x, but to x’s contents. In the C type system, x is given the type int
in both places, and the syntax distinguishes integers that are l-values from integers
that are r-values.

In our formal type checking system (Figure 4), types are used to distinguish l-
values and r-values, and this is what CQual actually implements. CQual gives
the variable x (ignoring qualifiers for a moment) the type ref (int), meaning that
the name x is a location containing an integer. When x is used as an l-value its type
stays the same—the left-hand side of an assignment is always a ref type. When
x is used as an r-value the outermost ref is removed, i.e., x as an r-value has the
type int .

Qualifier Annotations and Checks. In Section 2, we introduced type qualifier
annotations and checks to specify and test the qualifier on a value. However, C
source code already contains type information, and in fact allows a limited set of
qualifiers to appear on types. Thus rather than add new syntactic forms for qualifier
annotations and checks, CQual simply extends the set of qualifiers that can appear
in types. To make lexing and parsing simple, CQual requires that all user-defined
qualifiers begin with a dollar sign (not shown in this paper). The partial order
among qualifiers, as well as other information described below, is supplied in a
separate configuration file, fully described in Appendix A.

The next question that arises is how to interpret a qualifier appearing in a type
in the surface syntax of C. There are two main issues. First, suppose we see a
declaration a int x. Then we assign x the type x ref (x′ int), where x and x′

are fresh qualifier variables, which we then constrain by a. But should we interpret
the occurrence of a as constraining x or as constraining x′? In CQual, the user
must specify this for each qualifier (in the configuration file). The qualifier a may
be declared to constrain x, i.e., the ref level, or it may be declared to constrain
x′, i.e., the int or value level. Most qualifiers constrain the value level of a type;
for example, tainted and untainted behave this way. The canonical example of a
qualifier that constrains the ref level of a type is const (Section 5.1).

The second issue in interpreting a qualifier in the surface syntax is to decide
whether it corresponds to a qualifier annotation, a qualifier check, or both. For
example, if we see tainted int x in the source code, the qualifier occurrence should
be equivalent to annot(x, tainted). On the other hand, if we see untainted int
x, that should be equivalent to check(x, untainted). In our experience with the
qualifiers discussed in Section 5, we have found that all occurrences of the same
qualifier should be treated consistently, so in CQual the programmer specifies in
the configuration file how to treat each qualifier.

Suppose there is declaration a int x where a is a value-level qualifier and x′ is
the value-level qualifier variable on x. Then if a is specified as positive, then the
constraint a ≤ x′ is generated, i.e., a is a qualifier annotation. If a is negative, then
the constraint x′ ≤ a is generated, i.e., a is a qualifier check. Otherwise, a may
be non-variant, in which case both constraints are generated, corresponding to a
check and an annotation.

Finally, it is worth mentioning that arguments in C are passed by value, and
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hence function types contain the r-types of their declared parameters, even though
within the body of a function the parameter is treated as having an l-type. For
example, given the declaration void f(int x), we assign f the type x′ int −→
void (ignoring qualifiers except on x), and within the body of f the variable x has
type x ref (x′ int).

Structures. One of the key considerations in any whole-program analysis of C
code is how structures (record types) are modeled [Chandra and Reps 1999; Heintze
and Tardieu 2001; Yong et al. 1999]. Suppose that the user declares a structure for
foo:

struct foo {
int x;
int *y;
...

}

Then in theory, if we see two definitions struct foo a and struct foo b we can
simply assign a and b two distinct copies of the type struct foo. Unfortunately,
in practice this turns out to be prohibitively expensive. If struct foo has m fields
and we assign each of n instances of struct foo fresh copies of the types of its
fields, then we are doing O(mn) work. Since many C programs contain extremely
long structure type declarations and many instances of the same struct, m and
n can be relatively large, causing a large slowdown in type qualifier inference. In
this worst case, m and n may be linear in the size of the program, resulting in a
quadratic algorithm.

We solve this problem by associating a mapping Fa from field names to qualified
types with each occurrence struct foo a of type struct foo. This mapping is
initially empty. When the programmer references a.x, we check for an entry x ∈ Fa

and, if such an entry is found, we use Fa(x) as the qualified type for a.x. Otherwise,
we create such an entry based on the declaration of field x in struct foo and add
it to Fa. When we discover a subtyping relation between two structs, say a and b,
we scan Fa and Fb and unify Fa(x) = Fb(x) for any shared fields x. Finally, we set
Fa = Fb. This approach has two advantages:

—The total number of qualified types created for structure fields is guaranteed to
be linear in the size of the input program.

—Equating the field types does not lose much precision because most structures in
C programs are referenced through pointers, and thus most subtyping relations
between structure fields reduce to type equality.

Multiple Files. Very few C programs are contained within a single source file,
and thus CQual is designed to perform type qualifier inference on multiple files
simultaneously. We require that globals declared in multiple files have the same
type, which can be achieved by unifying their types. Aggregates must be handled
carefully. Suppose struct foo and struct bar are declared with exactly the same
fields. In ANSI C equivalence of struct types is by name, and thus if struct foo
and struct bar are declared in the same file, then they are considered different even
though they are the same structurally. However, if they are declared in separate
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files then a struct foo can be passed to a struct bar and vice-versa. Shared
header files tend to reduce the incidence of this, but it does happen occasionally in
practice. Thus CQual performs structural matching on struct and union types
to determine equivalence. We also handle the special case where struct foo is
declared with no fields in some files, a trick used to hide implementation details.
When we unify two aggregates and one has no fields, we replace the empty aggregate
with the other one.

Note that we do not require that the programmer analyze all files of a program
together. However, to get safe results when analyzing a single file CQual must be
supplied with full qualified type declarations for any undefined globals.

Parametric Qualifier Polymorphism. As discussed in Section 3.1, CQual in-
cludes parametric polymorphic recursive qualifier inference. In addition, we allow
the programmer to directly assign a polymorphic type signature to a function. The
given type signature is assumed to be correct, and any function with a polymorphic
type signature is not type checked. As an example type, consider the C standard
library function char *strcat(char *dest, char *src), which appends src to
the end of dest and returns dest. We can assign strcat the polymorphic type

∀κ, κ′[κ′ ≤ κ]. ref (κ char)× ref (κ′ char) −→ ref (κ char)

which means that the qualifier on strcat’s second argument must be a subtype of
its first argument, and that its first argument is returned. We omit the top-level
ref qualifiers for clarity.

In the surface syntax, we declare this function with

$ 1 2 char *strcat($ 1 2 char *, $ 1 char *);

The $ 1 2 and $ 1 are explicit qualifier variables representing the unordered sets
{1, 2} and {1}, respectively. We use the names of the qualifier variables to encode
the subtyping constraints. We generate the constraint κ ≤ κ′ if the set encoded
in the name of κ is a subset of the set encoded in the name of κ′. The existence
of the Dedekind-MacNeille Completion [Davey and Priestley 1990] implies that
any set of subtyping constraints can be encoded this way. While this is not the
most transparent representation of subtyping constraints, it has the advantage of
requiring no changes to the surface syntax.

Subtyping Under Pointer Types with const. In Section 3.2 we argued that if there
are no updates through a reference, we can use the deep subtyping rule (Ref′≤) in
Figure 9 rather than the conservative (Ref≤) in Figure 4a. In ANSI C, programmers
use const to annotate l-values that are never written. Thus in CQual we perform
deep subtyping on locations explicitly annotated with const by the programmer.
This is sound up to the unsafe features of C such as type casts. Although we could
do so, we do not use the const inference described later to infer additional l-values
that are not written to.

Arrays, Address-of, Function Pointers, and Memory Allocation. Finally, we dis-
cuss some additional language constructs and features. All elements of an array are
given the same type qualifier, and we allow conversions between arrays and pointers
as is standard [ANSI 1999]. Given our choice of distinguishing l- and r-values at
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the type level, handling the address-of operation is straightforward: if a variable
defined int x has l-type x ref (x′ int), then &x is an r-value of exactly the same
type. We assign function types to C functions just as in the language in Section 2.
In ANSI C, function types are almost always immediately promoted to pointers
to functions [ANSI 1999], and CQual behaves similarly. Since function pointers
cannot be written through, we allow subtyping under function pointer types as
discussed in Section 3.2. Note that we need not do anything special to handle
calls through function pointers; the standard typing rules in Figure 5 infer types
for a language with full higher-order functions, which subsumes ANSI C’s more
limited function pointers. Finally, in C memory allocation is done via a library call
to malloc(). CQual does not handle this function call in any special way, but
our standard prelude file gives malloc() the type (ignoring the qualifiers on the
function arrow and pointer)

∀κ[∅].size t −→ ref (κ void)

This is a slight abuse of parametric polymorphism, since κ is not bound in a pa-
rameter type, but it has the effect of giving each call to malloc() a fresh qualifier
variable.

4.2 Unsafe Features of C

The C programming language contains many features that allow the programmer
to violate memory and type safety. Some of the major holes are type casts, unions,
variable-argument functions, and arbitrary pointer arithmetic. CQual incorpo-
rates a range of techniques in order to track qualifiers even through unsafe language
constructs, although the techniques are neither sound nor complete.

Type Casts. Type casts allow a C programmer to treat a value as having any type
they choose, which lets the programmer bypass limitations of the C type system.
For example, a pointer to any type can legally be cast to and from a pointer to
the special type void . Such casts are commonly used for generic functions on data
structures. For example, a programmer may define a list data structure whose
elements have type pointer to void , and then the same code for list operations can
be used for lists of pointers to objects of any type.

By default, CQual assumes that type casts cast away the qualifiers as well
as the types. For example, some type casts are added to programs exactly to
cast away const qualifiers, and so it would be a bad idea to ignore such a cast in
general. For other qualifiers, the programmer can tell CQual to model type casts
by propagating qualifiers “through” the cast. For example, consider the following
code:

a char *y;
void *x = (void *) y;

This code declares y to be a pointer to character, where the character has qualifier
a, and then initializes x, which is a pointer to void , with y. If the programmer tells
CQual to propagate the qualifier a through type casts, x is inferred to have type
a void *.

More formally, consider a type cast (τ) e, which has type τ , and let τ ′ be the
type of expression e. For this type cast, CQual generates the special constraint
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Q ≤Scast Q′

Q int ≤c Q′ int

Q ≤Scast Q′ τ ≤c τ ′ τ ′ ≤c τ

Q ref (τ) ≤c Q′ ref (τ ′)

Q ≤Scast Q′ τ ′1 ≤c τ1 τ2 ≤c τ ′2
Q (τ1 −→ τ2) ≤c Q′ (τ ′1 −→ τ ′2)

τ ≤c Q2 ν Q2 ν ≤c τ (ν 6= ref (·))
Q1 ≤Scast Q2 Q2 ≤Scast Q1

Q1 ref (τ) ≤c Q2 ν

τ ≤c Q1 ν Q1 ν ≤c τ (ν 6= ref (·))
Q1 ≤Scast Q2 Q2 ≤Scast Q1

Q1 ν ≤c Q2 ref (τ)

Q1 ≤Scast Q2 Q2 ≤Scast Q1 (ν 6= · −→ ·)
Q1 (τ −→ τ ′) ≤c Q2 ν

Q1 ≤Scast Q2 Q2 ≤Scast Q1 (ν 6= · −→ ·)
Q1 ν ≤c Q2 (τ −→ τ ′)

Fig. 10. Rules for Handling Casts, including Shape Mismatches.

τ ′ ≤c τ . When the shapes of τ ′ and τ match, this reduces to a set of gated
qualifier constraints Q ≤Scast Q′ (Section 3.3), where Scast is the set of qualifiers
that propagate through casts. In order to handle type casts like the example above,
the constraint ≤c also allows matching between base types like void and char .
Further, the constraint ≤c allows matching between structurally dissimilar types.
In particular, in C any pointer type may legally be cast to void *. For example, a
programmer might write

a char **s;
char **t;
void *v = (void *) s;
t = (char **) v;

Here s and t are pointers to pointers to character. Notice that the type structure
of v and the type structures of s and t do not even have the same shape. To model
these kinds of casts, CQual “collapses” the mismatched levels at type casts by
equating their qualifiers. Figure 10 gives rules to conservatively equate qualifiers
at shape mismatches. In these rules, for pointers, we match up as many levels of
the pointer qualifiers as possible, then the qualifiers on any extra pointer levels of
one type are equated with the qualifier on the base of the other. For our example
above, inference determines that v has type a void *, and both s and t have type
a char *a * (both levels of pointers get qualifier a). When collapsing at casts, we
do not collapse function argument qualifiers.

C programs cast pointers to and from integral types often enough that it is worth
having special support for this programming idiom. We handle this case by treating
every integral program variable as if it were a void pointer. For example, int a is
given type a ref (a′ void). All the standard type inference rules for void pointers
are applied to a. This technique captures most of the casts between pointers and
integral types, especially when combined with the special handling of casts between
void pointers and structs described below.

Another common C idiom is to cast structure pointers to void pointers. To im-
prove the precision of our analysis, we let void pointers “masquerade” as pointers to
any structure, and have the void pointer don the appropriate mask when interacting
with a structure. More concretely, with each void pointer p we associate a map-
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ping Tp : {structure declarations} → {qualified structure types}. Initially, Tp(x) is
undefined for all x. Upon discovering a type relation between p and some struct
foo *a with type a ref (τa), we first look up τ = Tp(struct foo). If τ is defined,
we generate the constraint τ = τa. Otherwise, we set Tp(struct foo) = τa. When
we discover a subtyping relation between two void pointers p1 and p2, we unify
the maps Tp1 and Tp2 in the obvious way. This approach is not always safe, since
programmers can convert from one struct type to another via a void pointer, and
no constraints between the fields of the struct types will be generated. This is a
relatively rare operation in many coding styles, though, and so we believe that this
choice balances safety and precision.

C also permits casts between structures that do not have identical definitions.
One structure may have more fields than another, or corresponding fields may
differ in their type and, importantly, their size in memory. For these kinds of casts,
CQual matches up as many fields as possible and ignores any extra fields that
only appear in one of the structs. Also, the fields are matched by their index in
the structure, i.e., the first fields are paired, then the second fields, etc., instead of
matching by byte-offset.

Sometimes casts to discard qualifiers are useful. CQual assumes that any cast
to a type that contains an explicit qualifier should stop propagation of any other
qualifiers in the same partial order. For example, in the following code

a char *y;
void *x = (b void *) y;

the variable x is inferred to have qualifier b but not a. Such “trusted casts” are
essential for making CQual usable in practice by allowing the programmer to
suppress false warnings. For example, in our experiments in Section 5.2, we needed
to use trusted casts in a few places to remove warnings that did not correspond to
format-string vulnerabilities. In our experience, trusted casts typically do not need
to be used heavily, and of course great care must be taken when they are used.

Unions and Pointer Arithmetic. We make the same assumptions as the C stan-
dard about unions and pointer arithmetic. Namely, we model unions in the same
way we model structures, and we assume that values of a union type are always
accessed at the correct type with the correct qualifiers. We assume that pointer
arithmetic does not violate object bounds and is only used to access array elements,
rather than jump to a value of a different type. In other words, if p is a pointer to
type τ , then we assume p + i for any integer i also has type τ .

Libraries. Most C programs make some use of the extensive set of standard C li-
braries. Unfortunately, we do not necessarily have source code for library functions.
Thus we require that the programmer supply a model for any library function that
has an effect on the qualifiers. This model is usually a small stub function that
mimics the behavior of the library function with respect to the qualifiers. Alter-
nately, programmers may also supply polymorphic type signatures for functions
in lieu of a stub function. In order to make it easy to identify library functions,
CQual provides the programmer with a list of all globals that are used but never
defined.
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Variable-Argument Functions. In C, functions can be declared to take a variable
number of arguments using the varargs language feature. One major problem
with varargs functions is that there is no way to specify types for the variable
arguments. CQual extends the grammar for C types to allow a qualifier constant
or a polymorphic qualifier variable (Section 4.1) to be associated with the variable
arguments. When the varargs function is called, we make constraints between
that qualifier constant or polymorphic qualifier variable and all qualifiers on all
levels of the actual arguments. For example, for the tainting analysis described in
Section 5.2, we give the sprintf function the polymorphic type

int sprintf(char $ 1 2 * str, const char untainted * format, $ 1 ...);

meaning that for any qualifier κ on any varargs parameter, κ ≤ κ′ where κ′ is
the qualifier on the contents of str. To avoid unnecessary conservatism, we only
generate such constraints for varargs functions that have explicitly marked varargs
qualifiers. CQual provides a list of all undefined varargs functions to the user.

4.3 Presenting Qualifier Inference Results

Unlike traditional optimizing compiler technology, in order to be useful the results
of the analysis performed by CQual must be presented to the user. We have
found that in practice this often-overlooked aspect of program analysis is critically
important—a user of CQual needs to know not only what was inferred but why it
was inferred, especially when the analysis detects an error. To address this issue,
CQual presents type qualifier inference results to the user via Program Analysis
Mode (PAM) for Emacs [Harrelson 2001]. PAM was developed concurrently with
CQual, based on an earlier version that was part of the BANE toolkit [Fähndrich
1999]. PAM is a generic system for adding color markups and hyperlinks to program
source code in Emacs. The ideas behind PAM, inspired by the MrSpidey system
[Flanagan et al. 1996], can be adapted to many environments, and an Eclipse in-
terface is also available [Greenfieldboyce and Foster 2004].

After CQual analyzes the source programs, the user is presented with a buffer
containing a list of the files that were analyzed and a list of any errors. Each file
name in the buffer is a hyperlink to the start of the source file. Each error lists
an inconsistent path through the qualifier constraint graph (see below) and has a
hyperlink to the line and column in the source code where the error was discovered.
When the user clicks on a hyperlink to bring up a file, the preprocessed source code
of the file is colored according to the inferred qualifiers, with colors specified in
the configuration file. If an identifier is inferred to have a particular qualifier, it is
given that qualifier’s color. If a qualifier variable is unconstrained by the program
(or has constraints that are meaningless, such as κ ≤ >), then it is not colored.
CQual presents preprocessed source code because otherwise, due to C preprocessor
macro expansions, jumping to particular line and column positions and marking
up identifiers would not always be possible (for example, macro expansion can
introduce new identifiers not present in the original source).

For each identifier in the program, CQual tries to show the user how its qualifiers
were inferred. Clicking on an identifier brings up its type and qualifier variables.
and clicking on a qualifier variable shows a path through the qualifier constraint
graph that entails the inference result. Figure 11 shows a screen shot of CQual
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Fig. 11. Sample Run of CQual

displaying such a path. In this example the result of getenv is annotated as tainted ,
and printf is annotated as taking an untainted first argument (see Section 5.2 for a
discussion of these particular qualifiers). The result of getenv is passed to s, which
is copied to t, which is passed as the first argument to printf. The screen shot in
Figure 11 shows what happens when the user clicks on one of t’s qualifier variables
∗t: CQual presents the user with a path from tainted to ∗t and from ∗t to untainted .
In this particular case the path indicates an error, since tainted 6≤ untainted in the
partial order. This path is also available on the initial screen when CQual is
first run. To make the paths even more useful, in CQual each element of the
path, which represents a constraint, is hyperlinked to the position in the source
code where that constraint was generated. In this way the programmer can step
through a path one constraint at a time, viewing each line of source code that led
to a particular inference result.

In general, for a given qualifier variable x, CQual presents the user with the
shortest transitive paths (possibly bidirectional for non-variant qualifiers) from x
to any qualifier constants appearing in x’s solution. Clearly there could be many
paths, some of which may be cyclic, from x to its bounds. We settled on presenting
the shortest path as a way of reducing the burden on the user. In our experience,
this heuristic is very important for usability.

As explained above, CQual presents a list of type qualifier errors to the user
for evaluation. A naive algorithm for generating type qualifier errors would be to
solve the generated constraints on-line, signaling an error whenever newly generated
constraints are unsatisfiable. As we have discovered, using this approach a single
program error can result in thousands of type errors. The problem is that the
original error can “leak out” to rest of the program and pollute the inferred types,
because once a portion of the constraint graph is unsatisfiable, any constraints
that interact with that portion of the graph typically also become unsatisfiable.
Displaying these extraneous errors would not only be overwhelming, but would
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Name Warnings
Unfiltered Filtered

bftpd-1.0.11 4 1
cfengine-1.5.4 5261 3
muh-2.05d 20 2

Fig. 12. Tainting Analysis Error Filtering Results

also make it difficult for the programmer to find the root cause of the error, since
most of the warnings would be only remotely related to the original programming
mistake.

CQual reduces the number of error messages by solving the constraints off-line,
after all constraints have been generated, and then using heuristics to decide where
to report error messages. For derivative errors, which result when one error spreads
through a large portion of the constraint graph, CQual uses the following heuristic.
Let x be a type variable with error path l ≤ l1 ≤ · · · ≤ ln ≤ x ≤ u1 ≤ · · · ≤ um ≤
u, where l and u are inconsistent constant qualifier bounds on x. Then CQual
considers the type error on x to be derivative if there exists some x′ = li = uj .
In this case, the error on x is probably just a side-effect of the error on x′, and so
CQual only reports an error involving x′ and not one involving x.

CQual also contains a heuristic for eliminating redundant error messages. Even
if the path l ≤ l1 ≤ · · · ≤ ln ≤ x ≤ u1 ≤ · · · ≤ um ≤ u does not satisfy the deriva-
tive condition, printing out a warning message for each li, uj , and for x would give
the programmer little new information. Thus CQual suppresses these useless addi-
tional warnings, and only reports one error for this path. Lastly, CQual flags type
variables corresponding to intermediate values in the program as anonymous, and
CQual will initially only report warnings for positions involving non-anonymous
variables. In the unlikely event that all type errors involve only anonymous vari-
ables, CQual disables this heuristic and reports warnings involving anonymous
variables.

Despite their ad-hoc nature, these heuristics have proven extremely effective.
Figure 12 shows that these error filtering techniques can reduce the number of
warnings by over three orders of magnitude. (See Section 5.2 for more information
on the tainting analysis used in this benchmark.) Furthermore, in our experience
the warnings that are produced have pointed us directly to the source of the error.
In most cases, we have found that fixing the errors that CQual displays has resulted
in a program that type checks. Thus these heuristics seem to do a very good job
of making CQual display exactly one useful error message for each programming
error. Overall, we have found these heuristics to be indispensable to making CQual
much more usable.

One of the main problems in presenting analysis results is that for a large input
program, there is a correspondingly large amount of information we may wish to
present to the user. This information is usually represented compactly during
analysis, but if represented textually it becomes extremely unwieldy. Clearly this is
the case here: the constraint graph is relatively compact, but writing out all paths
from qualifier variables to their bounds would be prohibitively expensive.

PAM sidesteps this problem completely by using a client-server architecture.
PAM runs CQual as a subprocess. As the user clicks on hyperlinks in PAM buffers,
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PAM passes the click events to the CQual subprocess, which then sends commands
to PAM to move the cursor position, display additional screens of information, and
so on. In this way CQual maintains the inference results in its internal, compact
form, and the results are presented verbosely only on demand by the user.

5. EXPERIMENTS

In this section we describe three experiments using CQual. All experiments were
performed on a dual processor (though CQual is single-threaded) Pentium Xeon
2GHz machine with 2GB of physical memory and hyperthreading enabled.

In the first experiment, we infer const qualifiers for C programs. In this case, we
treat assignment statements as if they had the form check(e1, nonconst) := e2, to
require that the left-hand side of every assignment is not const, and then we infer
the maximum number of consts. In the second experiment, we find security vulner-
abilities by checking whether tainted (untrusted) data might ever flow to untainted
positions. In this case, we constructed a header file that marks the return values
of untrusted functions with tainted , corresponding to annot(·, tainted), and marks
trusted argument positions with untainted , corresponding to check(·, untainted).
Finally, in the last experiment, we check that after initialization the Linux ker-
nel does not use functions or data whose memory space has been reclaimed. In
this case, we treat existing annotations marking initialization data as qualifier an-
notations annot(·, init), and for any function live after initialization time we add
constraints equivalent to check(·, noninit).

5.1 Const Inference

In ANSI C, the const qualifier can be added to types to specify that certain up-
datable references cannot, in fact, be updated. For example, if the programmer
defines

const int x = 42;

then any assignment to x, such as x = 3, is forbidden. In this section we discuss
checking and inferring ANSI C const qualifiers with CQual.

In ANSI C, locations that can be written are simply unannotated. In our frame-
work, we add a qualifier nonconst to make this explicit. As in ANSI C, we also allow
nonconst types to be used where const types are expected, i.e., the partial order
among these two qualifiers is nonconst < const. For purposes of this experiment, we
added a small amount of code to CQual to count how many positions (see below)
are not reachable from nonconst, i.e., how many positions can be made const.

As mentioned earlier, in our system const and nonconst are ref-level qualifiers.
To understand why, consider the following C program:

const int x = 42;
int y;
y = x;

This program is valid: we read the value of x, which is allowed, and we write its
value to y, which is allowed because y is nonconst. In the language of Section 3 the
assignment would be written y := *x, where y has type nonconst ref (int) and x
has type const ref (int) (omitting the qualifier on int). The assignment requires
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that y is nonconst (which it is), but also that the type of the right-hand side (int)
is a subtype of the left-hand side contents type (also int). If instead we had opted
to put const and nonconst on the value level, then our type rules would reject this
program because const int 6≤ nonconst int . Thus in our system, the const qualifier
never appears on anything other than a ref constructor. Expressions that are only
r-values, like the integer 3, do not have a ref type, and thus const does not apply
to them.

The main use of const is annotating the types of pointer-valued function param-
eters. Below is a table listing which assignments are allowed by the four possible
placements of const on the type pointer to integer. Recall that C types are most
easily read from right to left; thus, for instance, the second example below can be
read as defining a pointer to a constant integer.

Definition p = ... *p = ...
int *p valid valid
const int *p valid invalid
int *const p invalid valid
const int *const p invalid invalid

Suppose that the programmer declares a function void f(const int *p). Looking
at our table, we see that the caller of f knows that, up to casting, f does not write
through its argument p. This annotation is quite useful, since it means that one
may freely pass pointers as arguments to f without fearing that the data they point
to will be modified through p. Note that const does not guarantee that *p is not
modified through other aliases, but only that it is not modified through p.

Making const and nonconst ref-level qualifiers also illuminates the suspicious-
looking subtyping among pointers in C. Consider again our function f(const int
*p). With subtyping, both a nonconst int * and a const int * may be passed to
f, and neither can be written to by f via p. This is exactly what we want, but in
the C syntax it looks like we are performing subtyping under a ref , which would
be unsound. However, in our notation we are passing type nonconst ref (int) to
const ref (int), and that is allowed by the standard rule for subtyping references
from Figure 4a.

To enforce the semantics of const, we can transform the input program by re-
placing each assignment statement e1 := e2 with check(e1, nonconst) := e2, which
requires that the left-hand side of every assignment is not const. Alternatively, we
can modify the rule for assignment from Figure 5 to require the same thing:

Γ `′ e1 : Q ref (τ) Γ `′ e2 : τ ′ τ ′ ≤ τ Q ≤ nonconst

Γ `′ e1 := e2 : τ

The latter is in fact what we do in CQual. We also make const a positive qualifier,
so that occurrences of it in the program correspond to qualifier annotations.

Given an input program, we can assume that every position without a const
qualifier has an implicit nonconst qualifier, just like a C compiler, and using our
new rule for assignment CQual can check that a program uses const correctly.
Unlike an ordinary C compiler, however, CQual can do better: we can use flow-
insensitive type qualifier inference to infer const annotations.
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Name Description Lines Preproc.

woman-3.0a Manual page viewer 1496 8611
patch-2.5 Apply a diff 5303 11862
m4-1.4 Macro preprocessor 7741 18830
diffutils-2.7 Find diffs between files 8741 23237
ssh-1.2.264 Secure shell 18620 127099
uucp-1.04 Unix to unix copy 36913 272680

Fig. 13. Const Inference Benchmarks

A system that performs const inference has many benefits for the programmer.
Although use of const is considered good programming style, it is well-known folk-
lore that const is difficult to use in practice. Often an attempt to add a single const
annotation to a program requires adding many other consts throughout the code.
For the same reason, it can be difficult to mix code that uses const with code that
does not. The result is that it is often easiest to simply omit const annotations
altogether.

To perform const inference using CQual, we do not assume that any position
without a const qualifier is nonconst. Instead we make no constraint on the qualifier
variables in such positions. Then, given our new rule for assignment, we infer which
qualifier variables must be nonconst. All of the remaining qualifier variables may
be set to const. Note that we are actually computing the greatest solution of the
generated qualifier constraints, since nonconst < const.

In Section 4.2 we describe some techniques for handling unsafe features of C. For
purposes of these experiments we simply model unsafe features unsafely. We allow
type casts to remove const qualifiers—we must do this, since many such casts are
added precisely to remove const—and we do not perform any type checking on the
extra arguments passed to varargs functions. We supply program stubs for library
functions, and we make the conservative assumption that positions not marked
const are indeed nonconst for such functions, as are all fields of structures used by
library functions. In general library functions are annotated with as many consts
as possible,3 and so lack of const really does mean nonconst.

We ran const inference on six programs, listed in Figure 13, that make a signif-
icant effort to use const. Several of these “programs” are actually collections of
programs that share a common code base. We list program size in terms of original
(non-comment, non-blank) lines of code and preprocessed lines of code. We ana-
lyzed each set of programs simultaneously, which occasionally required renaming as
distinct certain functions that were defined in several files. We measured the num-
ber of const pointers in function signatures, i.e., the number of const annotations
inferred “under” pointer types, which are the annotations most likely to be useful
for a programmer. For example, for function int foo(int x, int *y), there is

3. . .and sometimes more. For example, the strchr function is declared char *strchr(const char

*s, int c). The call strchr(s, c) returns a pointer somewhere in s, and yet the return type
lacks const. This implicit cast is a way to emulate parametric qualifier polymorphism.
4The ssh distribution also includes a compression library zlib and the GNU MP library (arbitrary
precision arithmetic). We treated both of these as unanalyzable libraries; zlib contains certain
structures that are inconsistently defined across files, and the GNU MP library contains inlined
assembly code.
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Name Declared Inferred Inferred Max Mono Poly
Mono Poly Time Mem Time Mem

woman-3.0a 50 64 69 95 0.31s 27M 0.34s 29M
patch-2.5 84 96 103 148 0.43s 35M 0.49s 39M
m4-1.4 88 239 251 370 0.77s 58M 0.85s 64M
diffutils-2.7 153 210 242 372 0.81s 61M 0.90s 66M
ssh-1.2.26 154 303 332 561 4.03s 272M 4.44s 298M
uucp-1.04 433 1161 1288 1773 16.37s 1031M 17.71s 1080M

Fig. 14. Const Inference Results
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Fig. 15. Graph of Const Inference Results

one potential const pointer, namely y.
Figure 15 shows our results, which are tabulated in Figure 14. The second

column of the table in Figure 14 lists the number of const pointers on function
signatures declared by the programmer. The third and fourth columns list the
number inferred by const inference (which includes the explicitly specified ones)
and the number inferred by polymorphic const inference (with the library functions
effectively monomorphic), and the fifth column lists the total number of possible
const pointer positions on function signatures. The last columns list the running
time and memory usage of the monomorphic and polymorphic analyses, which are
the average of three runs. These measurements show that many more consts can be
inferred than are typically present in a program, even one that makes a significant
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effort to use const. For some programs the results are quite dramatic, notably
for uucp-1.04, which can have more than 2.5 times more consts than are actually
present. An inspection of the code suggests that const is used consistently only in
certain portions of the code, and that other parts of the code make no use of const.
Additionally, the program uses several typedefs to define new names for pointer
types. Because we allow different instances of the same named type to have different
qualifiers, we are able to infer that some uses of those pointer types can have const
annotations. Clearly this is a case where const inference is very desirable. Faced
with a program that heavily uses a single named type, few programmers would
attempt to introduce a new type name with const annotations, but inference makes
that process easy.

For this set of benchmarks polymorphic analysis allows 5-15% more consts than
monomorphic analysis. These results show that qualifier polymorphism is both
useful and already latent in C programs, although we believe that most of the
benefit for polymorphism comes from allowing fewer type casts rather than more
consts.

5.2 Format-String Vulnerabilities

Systems security is an ever more important problem as more critical services are
connected to the Internet. Systems written in C are a particularly fruitful source
of security problems, due to the tendency of C programmers to sacrifice safety for
efficiency and the sometimes subtle interactions of C language and library features.
One class of C security problems is the so-called format-string vulnerability, which
arises from the combination of unchecked variable argument (varargs) functions
and standard C library implementations.

The standard ANSI C libraries contain a number of varargs functions that take
as an argument a format specifier that gives the number and types of the additional
arguments. For example, the standard printing function is declared as

int printf(const char *format, ...);

When printf(format, a1, a2, ...) is called, the string format is displayed
with the ith format specifier replaced by extra argument ai. For example, here is
the typical, correct way to print a string buf:

printf("%s", buf);

But for simply printing a string, the above construction appears at first to be
unnecessarily verbose. A programmer can save themselves five characters—and
possibly some whitespace—if they instead write

printf(buf); /* may be incorrect */

Unfortunately, this innocuous-looking change may lead to security problems. If buf
contains a format specifier (for example, %s or %d), perhaps supplied by a malicious
adversary, printf attempts to read the corresponding argument off of the stack.
Since there is no corresponding argument, printf will mostly likely crash, either
when reading off the end of the stack or when it attempts to treat the garbage off
the end of the stack if as it were a pointer to a null-terminated string.
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char *getenv(const char *name);

int printf(const char *fmt, ...);

int main(void)

{
char *s, *t;

s = getenv("LD LIBRARY PATH");

t = s;

printf(t);

}

Fig. 16. Program with a Format-String Vulnerability

It turns out that format-string vulnerabilities are even worse than they first
appear. Many implementations of the C standard libraries support the %n format
specifier, which is now part of the ANSI C standard [ANSI 1999]. When a printf-
like function encounters a %n format specifier, it writes through the corresponding
argument, which must be a pointer, the number of characters printed so far. Given
the ability to write to memory, a clever adversary can often exploit format-string
vulnerabilities to completely compromise security—for example, to gain remote root
access [Newsham 2000]. Since the ability to exploit format-string vulnerabilities was
discovered in 2000, security experts and malicious attackers have discovered many
such vulnerabilities in widely-deployed, security-critical systems. Unfortunately, it
is too restrictive to merely forbid non-constant format-strings, and clearly the %n
specifier cannot be eliminated, given that it is part of the standard.

Format-string vulnerabilities are one of a wider class of security bugs that can
occur in any language. When programmers write security-conscious programs,
they should distinguish two different classes of data: untrusted data read from
the external environment should never be passed unchecked to functions requiring
trusted data. In our case, untrusted data should never be used directly as a format
specifier. We can track the trust level of data in CQual by introducing the qualifier
tainted to mark untrusted data and untainted to mark trusted positions. It is
safe to interpret untainted data as tainted but not vice-versa, hence we choose
untainted < tainted as our partial order. Furthermore, we choose that tainted is
a positive qualifier (so that occurrences of it correspond to annot(·, tainted)), and
we make untainted a negative qualifier (so that occurrences of it correspond to
check(·, untainted)).

As an example use of these qualifiers, consider the simple program shown in Fig-
ure 16. This program calls getenv to return the value of an environment variable,
which is then stored successively in s and then t, and finally is passed as a format
specifier to printf. Assuming we do not trust the user’s environment variables,
this program has a format-string vulnerability. Indeed, on one system we tried,
setting LD LIBRARY PATH to a string of eight %s’s causes this program to have a
segmentation fault.

To detect this format-string vulnerability, we annotate the program as shown in
the top half of Figure 11 on page 28. Marking the result of getenv with tainted
produces the constraint tainted ≤ getenv ret ′. Marking the format-string argument
of printf as untainted produces the constraint printf arg0 ′ ≤ untainted . Notice
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Name Description Lines Preproc.

identd-1.0.0 Network id service 223 1224
mingetty-0.9.4 Remote terminal controller 270 1599
bftpd-1.0.11 FTP server 2323 6032
muh-2.05d IRC proxy 3039 19083
cfengine-1.5.4 Sysadmin tool 26852 141863
imapd-4.7c UW IMAP4 server 21796 78049
ipopd-4.7c UW POP3 server 20159 78056
mars nwe-0.99 Novell Netware emulator 21199 72954
apache-1.3.12 HTTP server 32680 135702
openssh-2.3.0p15 Secure shell 25907 218947

Fig. 17. Format-String Vulnerability Detection Benchmarks

Name Warn Bugs Mono Poly
Time Mem Time Mem

identd-1.0.0 0 0 0.05s 7M 0.05s 7M
mingetty-0.9.4 0 0 0.06s 8M 0.06s 9M
bftpd-1.0.11 1 1 0.20s 18M 0.21s 20M
muh-2.05d 2 ∼ 2 0.56s 42M 0.56s 45M
cfengine-1.5.4 5 3 6.89s 464M 8.26s 501M
imapd-4.7c 0 0 6.44s 404M 8.28s 478M
ipopd-4.7c 0 0 6.57s 404M 8.66s 471M
mars nwe-0.99 0 0 2.90s 186M 3.12s 207M
apache-1.3.12 0 0 7.12s 478M 8.15s 533M
openssh-2.3.0p1 0 0 14.13s 955M 14.17s 970M

Fig. 18. Format-String Vulnerability Detection Results

that we need not annotate the types of s or t. When CQual performs inference
on this program, the generated qualifier constraints are inconsistent, meaning that
tainted data is passed to an untainted argument, i.e., that this program may have
a format-string vulnerability. The bottom half of Figure 11 displays the set of
inconsistent constraints, and as mentioned in Section 4.3 the user can explore this
error path to discover why type qualifier inference failed.

We used CQual to check for format-string vulnerabilities in ten popular C pro-
grams. For this experiment, we enable flow of qualifiers through casts (Section 4.2)
to model taint propagation conservatively. We add tainted and untainted to pro-
grams by supplying a header file that contains declarations of the standard C library
functions with the appropriate qualifiers and the appropriate parametric polymor-
phic types (Section 4.1). We use the same file of annotated library functions for all
of our benchmarks. For one benchmark we also annotated two application-specific
memory allocation and deallocation functions as polymorphic.

Figure 17 lists our benchmarks. All of these programs read data from the network,
possibly controlled by a malicious adversary, and hence all could potentially have
format-string vulnerabilities. For each program we list the numbers of lines of
source code, both before and after preprocessing. The results of applying CQual
are shown in Figure 18. The second and third columns list the number of warnings
reported by monomorphic CQual and the number of actual format-string bugs

5We checked for vulnerabilities in the SSH daemon portion of the code.
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discovered.6 The results for the polymorphic analysis are discussed below. The
remaining columns list the running time and memory usage for monomorphic and
polymorphic qualifier inference.

For most of these programs CQual issues no warning, indicating that the pres-
ence of a format-string bug is unlikely. This is especially interesting for two of
our test cases, mars nwe and mingetty, which contain suspicious-looking calls to a
function that accepts format-strings [Huuskonen 2000b; 2000c]. Since we originally
studied these programs, the mars nwe code has been patched, and the suspicious-
looking call has been said to be fully exploitable [Frasunek 2001a]. Because CQual
does not model internal compiler functions to read variable arguments,7 we believe
CQual may be wrong in this case, though the patch for mars nwe did not give any
details about an exploit and stated there were no working exploits yet [Frasunek
2001b]. The mingetty program has also been patched in some distributions, al-
though at least one patch says that the code cannot be abused “to the best of [the
writer’s] knowledge” [Huuskonen 2000a].

CQual finds potential format-string vulnerabilities in three of the programs. For
bftpd, the one warning corresponds to one format-string vulnerability, and after
eliminating the vulnerability (by replacing a function call of the form sendstrf(s,
entry->d name) with a call sendstrf(s, "%s", entry->d name)), CQual pro-
duces no more warnings. With polymorphism, again CQual reports one warning
corresponding to the same vulnerability, with no additional warnings after we elim-
inate the vulnerability. (The displayed error path is changed slightly, as is the case
whenever we use polymorphism.)

For muh, the first run of CQual produces one warning corresponding one format-
string vulnerability, and then the second run, after eliminating the vulnerability,
produces another warning. A brief inspection of the code at the second warning
site suggests it may have a vulnerability, because according to the analysis it has a
possibly-tainted string in a format string position (but see below). After eliminating
the potential vulnerability, CQual produces no more warnings. Interestingly, with
polymorphism CQual initially reports one error corresponding to the same initial
format-string vulnerability. But after eliminating that first vulnerability, no more
errors are reported—thus the second warning in the monomorphic case was a false
positive. Investigating further reveals that the warning can be suppressed in the
monomorphic case by annotating three functions as polymorphic. Thus the second
bug, although it appeared to be a vulnerability, was in fact not one. However,
the code could change in the future, and since the transformation to eliminate the
vulnerability does not affect the semantics of the program, it seems worth doing
even though it is not necessary.

For cfengine, three warnings appear in the first run, and one additional warning
appears in the second and third runs. After eliminating the three format-string
vulnerabilities, we needed to do a little more work. One warning was produced by an
incorrect call to sprintf that was simply a bug (the first argument to sprintf had

6CQual also reports a warning about const for both apache (a false warning) and openssh (a
correct warning the compiler also flags).
7In gcc the important function is builtin next arg; in other compilers different techniques,
such as pointer arithmetic, are used to access varargs.
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been omitted), so to eliminate that warning we corrected the bug. To suppress the
final warning, we needed to annotate two functions with const parameters, declare
one function to be polymorphic, and add three typecasts removing tainting from a
single character extracted from a tainted string. Without a deep understanding of
the code we cannot be sure these typecasts are safe, though it is also not obvious
that they are unsafe, and hence it may be better to leave these warnings in. With
polymorphism, the first run reports two warnings (corresponding to the buggy call
to sprintf and a vulnerability), and two successive runs each report one warning
corresponding to one remaining format-string vulnerability. After these runs, there
are no further warnings. Thus an alternative solution to the suppress the extra
monomorphic warnings would be adding parametric polymorphism in more places
instead of adding const and two type casts.

In the case of muh, we knew beforehand [Henrion 2000] that these vulnerabilities
were present in the code. In the cases of cfengine [Savola 2000] and bftpd [Bailleux
2000], the vulnerabilities were unknown to us at the time, although we subsequently
discovered that these bugs had been previously reported. Nevertheless, this suggests
that our tool is effective in finding unknown format-string vulnerabilities.

5.3 Initialization in the Linux Kernel

In order to reduce its memory footprint, the Linux kernel frees much of its ini-
tialization code and data after the initialization phase has completed. To support
this explicit garbage collection step, all functions that the programmer believes are
used only during the kernel initialization phase are declared with a special flag
init. The compiler places the code for all init functions (those that have been

annotated with init) in the .text.init section of the executable (instead of
in the .text section), and after the kernel has finished all initialization it deallo-
cates the .text.init section. Calling an init function after this point is very
dangerous, since the code implementing that function may have been overwritten.
Similarly, global variables can be explicitly declared to reside in a .data.init sec-
tion that is deallocated after initialization, and referencing these variables after the
initialization phase has completed is a dangerous error.

To check for correct usage of init code and data, we must reason about not just
the parameter and return types of a function, but also what code and data it may
access during execution. Thus we model init using effect qualifiers, introduced
in Section 3.3. Each variable and function in the Linux kernel is assigned one of
two effect qualifiers, either init (corresponding to the init annotation) or noninit,
indicating whether or not it survives after the initialization phase. Since noninit
functions and data are available for use at all times, noninit items can be used
wherever an init item is expected. Thus noninit < init. When annotating a variable
declaration, init and noninit describe a property of l-values, and thus they are ref-
level qualifiers, i.e.,

init int y;

indicates that y has the qualified type init ref (int ). We require the user to declare
that the effect of a dereference is the qualifier on the dereferenced pointer:

$$a op deref ($$a *$ 1 x) $ 1;
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Here $$a is a polymorphic type variable and $ 1 is a polymorphic qualifier variable
(Section 4.1). Thus, this declaration states that the dereference operator takes a
pointer to any type and returns an object of that type, and has as its effect the
qualifier $ 1 on x. This use of standard type polymorphism is restricted to this spe-
cial case, as well as a few other built-in C operators. We use a separate declaration
for this fact, rather than hard-coding it into the type system, to maintain max-
imum flexibility. In addition to this analysis-specific annotation, this experiment
also used polymorphic annotations for common kernel functions such as memcpy.
The op deref annotation was the only init-specific annotation required for this
analysis, since the kernel source already contains init annotations.

We specify that init is a positive qualifier (corresponding to annot(·, init)) and
noninit is a negative qualifier (corresponding to check(·, noninit)). The init analysis
also makes use of two of the well-formedness constraints described in Section 3.3.
First, observe that a structure and its fields must all reside in the same section.
Thus, for the init analysis, the qualifier on a pointer to a structure must be the same
as the qualifiers on all the pointers to its fields. Certain untypeable operations in
C may result in an init or noninit qualifier on a structure. For example, if the
programmer uses memcpy to copy an array of init pointers into a structure, then
standard type-inference rules will conclude that the structure is init. Note that
when this happens, the fields of that structure are init pointers. The init analysis
captures these semantics by using a well-formedness constraint: if a structure is init
or noninit, then so are all its fields.

With these annotations, CQual can infer the effect of every function in the Linux
kernel. The only thing left to do is enforce the kernel policy regarding init functions:
no init function is called after the initialization phase has ended. Although this rule
is sufficient to ensure the kernel has no init bugs, the kernel developers tend to follow
an even stricter policy: every function not explicitly annotated with init should be
safe to call after the initialization phase. To implement this policy, for each function
foo not explicitly marked with init, we create a dummy function foo′ that calls foo,
and assert that foo′ effect ≤ noninit. Notice that this technique allows foo itself
to be polymorphic in its effect, rather than always being noninit. Also notice that
this rule is slightly conservative, since it may be that foo is never actually called
after initialization time. However, if that is the case then foo() could be explicitly
declared init to save memory, so issuing a warning in this case is still useful to the
programmer.

We ran CQual on each source file in Linux kernel 2.6.0-test6, one at a time.
(Currently CQual runs out of memory if we try to analyze the whole kernel,
including all device drivers, at once.) Unfortunately for separate analysis, in the
kernel sources init annotations are placed only on function and data definitions, and
not on declarations or on function pointer parameters. We optimistically assume
that functions and data that are declared but not defined are noninit, as are any
function pointers. This optimistic assumption is not always safe, meaning that we
will not be able to find all misuses of init, but in practice the results are still very
useful. In our experiments, the analysis produced 28 warnings, only 5 of which
corresponded neither to real errors nor to missed opportunities to add init. The
results are summarized in Figure 19. We examined the warnings by hand and
divided them into the following categories:
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Cause of warning Comment Count

Bug An actual bug 3
init opportunity Function can be init 6
init module API Common init omission 14
Flow-insensitivity False positives 3
Structure modeling False positives 2

All warnings 28

Fig. 19. Warnings generated by CQual init analysis on Linux kernel 2.6.0-test6

Actual bugs. These errors could crash the kernel.
Init opportunities. These warnings indicate one or more functions that could

safely be declared init, saving memory in the kernel.
Init module API. Every dynamically loaded module in the Linux kernel should

have an init module routine, and this routine can be declared init. Omitting the
init is not a bug since the routine is only called during initialization, but it is a
deviation from the specification. It is also a missed init opportunity.

Flow-insensitivity. Three of the warnings that were not errors or missed init
opportunities and thus were false positives resulted from the flow-insensitivity of
the analysis. For example, some device drivers maintain a flag indicating whether
or not they have been initialized and only call init functions when the flag is off.

Structure modeling. Two warnings resulted from the lack of subtyping and poly-
morphism in our analysis of fields in C data structures.

We have submitted reports on all these warnings to kernel developers, and so far
we have received confirmation of a few of them.

6. DISCUSSION

In this paper, we have presented a framework for adding type qualifiers to a lan-
guage. In our framework, the type qualifiers form a partial order and introduce
subtyping. They may also interact with the structure of terms, via well-formedness
constraints, and they may be used to model effects. Our system also includes
parametric polymorphism over qualifiers.

We have discussed three example sets of qualifiers in the paper: const and non-
const, tainted and untainted , and init and noninit. In all of the examples we have
shown, the qualifiers form the two-element lattice. Others have used CQual’s
flow-insensitive type qualifiers to check additional properties. Johnson (one of the
authors of this paper) and Wagner introduce user and kernel qualifiers to ensure
that the Linux kernel does not trust pointers passed from the user into system calls
[Johnson and Wagner 2004]. In this case, the qualifiers are in the discrete partial
order (no qualifier is related to any other), and the qualifiers have well-formedness
constraints. Broadwell et al. introduce a sensitive qualifier to mark data that should
not be revealed in a core dump file, and use CQual’s type qualifier inference to
determine where sensitive propagates [Broadwell et al. 2003]. Data that can be
public is marked unsensitive, and the qualifiers form the two-element lattice. In
earlier unpublished work, we introduced YY and YYYY qualifiers to mark strings
that contain two- and four-digit years, respectively, and NONYEAR for strings that
do not contain years. We then used CQual to look for Y2K bugs where strings
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containing years were passed to the wrong date-related functions. In this case, the
qualifiers are in the discrete partial order. We have also used other partial orders
for flow-sensitive qualifiers (see below).

We have focused on flow-insensitive qualifiers in this paper because their theory
is simple yet we have found them to be very effective in practice. As suggested
by the previous examples, flow-insensitive type qualifiers can be used to check
a number of different properties. Additionally, because our formulation of type
qualifiers supports efficient inference (even with context-sensitivity), we can perform
whole-program analysis on relatively large programs with few annotations. Another
benefit of this approach is conceptual simplicity for the programmer. It is already
the case in many languages that each variable has a fixed type throughout the
program, i.e., assignment statements do not change the (static) types of variables.
Adding type qualifiers that obey the same flow-insensitive discipline is a small (in
some sense, the smallest) natural extension that still allows us to check interesting
new properties.

Clearly, however, there are properties of imperative programs that flow-insensitivity
cannot model. As one example, we cannot track state changes. For example, if af-
ter an assignment *p = x we want to change the qualifier on *p, we cannot do that
with the system in this paper. For this we need flow-sensitive analysis. In prior
work, we have described a flow-sensitive type qualifier system [Foster et al. 2002;
Aiken et al. 2003] that is part of an earlier version of CQual. In our flow-sensitive
analysis each memory location can have different qualifiers at different program
points. For example, if x has type ref (κ int) at one program point, it may have
type ref (κ′ int) at another. Intuitively, our flow-sensitive system generates and
solves qualifier constraints just as described in this paper, except with more qualifier
variables (different ones for different program points). However, it is not quite that
simple, and sound, scalable flow-sensitive analysis in the presence of heap aliasing
is considerably more complicated than what we have presented here.

As a side note, we have studied two flow-sensitive qualifier analyses, both with
different partial orders than described in this paper. In a deadlock detection experi-
ment [Foster et al. 2002], we introduced flow-sensitive qualifiers locked and unlocked
and then made sure that no code tries to acquire a mutex it has already locked.
For this analysis we also introduced another qualifier > to stand for the unknown
lock state, with partial order locked < > and unlocked < >. In another experi-
ment, we used qualifiers to check that file operations were applied to files that had
been previously opened in the correct mode (for reading, writing, etc) [Foster 2002].
For this experiment we added qualifiers such as read , write, and close in a more
complicated partial order (see [Foster 2002]).

Flow-insensitivity is of course not the only limitation. A finite set of type quali-
fiers cannot describe all possible properties to check in a program. For example, we
could not precisely model a generative system in which we would like each call to a
function to return a type with a new constant qualifier on it. We also cannot easily
model correlations among data. For example, suppose we have a structure struct
foo { int n; int a[]; } where n is the length of array a. Then there is no
natural way to represent that association precisely with a fixed set of qualifiers for
all instances of struct foo. Finally, our restriction to subtyping also limits the
expressiveness of qualifiers somewhat. For example, if we wanted to reason about
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the exact values of integers using qualifiers, we could not do it very precisely. In
particular, we can give + the type ∀~κi[C].κ1 int ×κ2 int −→ κ3 int for some set
of constraints C, but C is restricted to subtyping constraints. Extensions to handle
all of these kinds of properties is an interesting area for future work.

Despite the limitations of flow-insensitive type qualifiers, we believe they are still
valuable and effective.

7. RELATED WORK

There are three main threads of related work: prior systems that use type qualifiers,
other systems similar to CQual that find and prevent general errors in programs,
and particular systems for finding format-string vulnerabilities.

7.1 Flow-Insensitive Type Qualifiers

Specific examples of flow-insensitive type qualifiers have been proposed to solve a
number of problems. For example, ANSI C contains the type qualifier const [ANSI
1999], discussed in Section 5.1. The const qualifier was added to the standard in
1989 [ANSI 1989], inspired by C++’s const, which Stroustrup “invented” [Strous-
trup 2005]. Binding-time analysis [Dussart et al. 1995] can be viewed as associating
one of two qualifiers with expressions, either static for expressions that may be com-
puted at compile time or dynamic for expressions not computed until run-time. The
Titanium programming language [Yelick et al. 1998] uses qualifiers local and global
to distinguish data located on the current processor from data that may be located
at a remote node [Liblit and Aiken 2000]. Solberg [Solberg 1995] gives a framework
for understanding a particular family of related analyses as type annotation (qual-
ifier) systems. Pratikakis et al. [Pratikakis et al. 2004] give a system for inferring
qualifiers for transparent Java futures. In contrast to these systems, our approach
is an extensible, general framework for adding new, user-specified qualifiers that
are expressible in our system.

Chin et al. [Chin et al. 2005] develop a semantic type qualifier system that allows
qualifiers to be associated with language operations. Their system uses theorem
proving to check that qualifier specifications are correct, and they can verify richer
properties than subtyping constraints allow (for example, pos and neg qualifiers for
integers). Their system does not currently include inference, unlike CQual.

Several related techniques have been proposed for using qualifier-like annotations
to address security issues. A major topic of recent interest is secure information
flow [Abadi et al. 1999; Denning 1976; Smith and Volpano 1998; Volpano and Smith
1997], which associates high and low security levels with expressions and tries to
prevent high-security data from “leaking” to low-security outputs. Other examples
of security-related annotation systems are lambda calculus with trust annotations
[Ørbæk and Palsberg 1997] and Java security checking [Skalka and Smith 2000].
These systems include checks for implicit flows from conditional guards to the body
of the conditional. Section 7.3 below contains a discussion of why CQual does not
include this feature.

Type qualifiers, like any type system, can be seen as a form of abstract inter-
pretation [Cousot and Cousot 1977]. Flow-insensitive type qualifiers can be viewed
as a label flow system [Mossin 1996] in which we place constraints on where la-
bels may flow. Type qualifiers can also be viewed as refinement types [Freeman
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and Pfenning 1991], which have the same basic property: refinement types do not
change the underlying type structure. The key difference between qualifiers and
Freeman and Pfenning’s refinement types is that the latter is based on the theory
of intersection types, which is significantly more complex than atomic subtyping.
Mandelbaum et al. [Mandelbaum et al. 2003] have developed a type system that
incorporates a logic of type refinements to allow reasoning about state, correspond-
ing to flow-sensitivity. There is currently a limited implementation of their type
system, but as of yet its scalability and effectiveness in practice are unknown.

7.2 Error Detection and Prevention Systems

Many systems have recently been proposed that allow programmers to check more
properties of their programs. Vault [DeLine and Fähndrich 2001; Fähndrich and
DeLine 2002] and Cyclone [Grossman et al. 2001; Grossman et al. 2002] are two safe
variants of C that allow a programmer to enforce conditions on how resources are
used in programs. These systems allow flow-sensitive tracking of resources, which
is not modeled in our flow-insensitive framework (but see Foster et al. [Foster
et al. 2002]). However, Vault and Cyclone also require per-function annotations,
whereas CQual only requires a few annotations on the entire program and performs
whole-program inference. Additionally, to use Vault and Cyclone the programmer
must rewrite their program into the new language (which may vary from trivial
to difficult), whereas CQual is designed to work with a legacy language, namely
C. Because CQual operates on C, it cannot be fully sound, unlike these new
languages.

Several systems based on dataflow analysis have been proposed to statically check
properties of source code. These systems are flow-sensitive, in contrast to the flow-
insensitive qualifiers described in this paper. One such system is Evans’s Splint
[Evans 1996], which introduces a number of additional qualifier-like annotations to
C as an aid to debugging memory usage errors. Evans found Splint to be valuable
in practice [Evans 1996], and Splint has also been used to check for buffer overruns
[Larochelle and Evans 2001]. The main different between Splint and CQual is
annotations. Splint’s analysis is intraprocedural, relying on programmers-supplied
annotations at function calls, whereas CQual can perform whole-program infer-
ence.

Another such system is meta-level compilation [Engler et al. 2000; Hallem et al.
2002], in which the programmer specifies a flow-sensitive property as a finite state
automaton. Meta-level compilation includes an interprocedural dataflow compo-
nent [Hallem et al. 2002] but does not model general aliasing, unlike CQual. Meta-
level compilation has been used to find many different kinds of bugs in programs,
including tainting bugs [Yang et al. 2003]. The key difference between CQual’s
approach and meta-level compilation is soundness. While CQual is not fully sound
(e.g., due to arbitrary pointer arithmetic in C), CQual strives for soundness up to
the limitations of C. In contrast, the goal of meta-level compilation is bug finding,
and features like aliasing are ignored in order to limit false positives (which there
are more of in CQual).

A third dataflow-based system is ESP [Das et al. 2002], an error detection tool
based on sound dataflow analysis. ESP incorporates a conservative alias analysis
to model pointers, and uses path-sensitive symbolic execution to model predicates.
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ESP has been used to check the correctness of C stream library usage in gcc [Das
et al. 2002]. ESP is designed to soundly detect all errors with a minimum of false
positives; as such, the algorithms it uses for tracking state are quite sophisticated,
and it is not easy for a programmer to predict in advance whether their program
will check successfully. In contrast, CQual produces more warnings, but gives the
programmer a relatively simple, predictable, type-based discipline to avoid errors.

The Extended Static Checking (ESC) system [Detlefs et al. 1998; Leino and Nel-
son 1998; Flanagan et al. 2002] is a theorem-proving based tool for finding errors
in programs. Programmers add extensive annotations, including preconditions,
postconditions, and loop invariants to their program, and ESC uses sophisticated
theorem proving technology to verify the annotations. ESC includes a rich an-
notation language; the Houdini assistant [Flanagan and Leino 2001] can be used
to reduce the burden of adding annotations. ESC provides significantly more so-
phisticated checking than CQual, but at the cost of scalability, both in terms of
annotations and efficiency.

SLAM [Ball and Rajamani 2001; 2002] and BLAST [Henzinger et al. 2002] verify
software using model checking techniques. Both tools can track program state
very precisely and are by their nature flow- and path-sensitive. They use predicate
abstraction followed by successive refinement to make analysis more tractable, and
they have been used to check properties of device drivers. SLAM includes techniques
for producing small counterexamples to explain error messages [Ball et al. 2003].
While the scalability of these tools is promising, the systems’ worst-case complexity
is much higher than CQual.

A number of techniques that are less easy to categorize have also been proposed.
The AST toolkit provides a framework for posing user-specified queries on abstract
syntax trees annotated with type information. The AST toolkit has been success-
fully used to uncover many bugs [Weise 2001]. The PREfix tool [Bush et al. 2000],
based on symbolic execution, is also highly effective at finding bugs in practice
[Pincus 2002]. Both of these tools are unsound, and are designed to catch bugs
rather than show the absence of errors.

A number of systems have been proposed to check that implementations of data
structures are correct. Graph types [Klarlund and Schwartzbach 1993; Møller and
Schwartzbach 2001] allow a programmer to specify the shape of a data structure
and then check, with the addition of pre- and postconditions and loop invariants,
that the shape is preserved by data structure operations. Shape analysis with
three-valued logic [Sagiv et al. 1999] can also model data structure operations very
precisely. Both of these techniques are designed to run on small inputs, and neither
in its current form scales to large programs.

7.3 Format-String Vulnerabilities

Our approach to finding format-string vulnerabilities (described in a previous pub-
lication by us [Shankar et al. 2001]) is conceptually similar to Perl’s taint mode
[Wall et al. 2000], but with a key difference: unlike Perl, which tracks tainting
dynamically, CQual checks tainting statically without ever running the program.
Moreover, CQual’s results are conservative over all possible runs of the program.
This gives us a major advantage over dynamic approaches for finding security flaws.
Often security bugs are in the least-tested portions of the code, and a malicious
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adversary is actively looking for just such code to exploit. Using static analysis,
we conceptually analyze all possible runs of the program, providing complete code
coverage.

Several lexical techniques have been proposed for finding security vulnerabilities.
Pscan [DeKok ] searches the source code for calls to printf-like functions with a
non-constant format string. Thus pscan cannot distinguish between safe calls when
the format string is variable and unsafe calls. Lexical techniques have also been
proposed to find other security vulnerabilities [Bishop and Dilger 1996; Viega et al.
2000]. The main advantage of lexical techniques is that they are extremely fast and
can analyze non-preprocessed source files. However, because lexical tools have no
knowledge of language semantics there are many errors they cannot find, such as
those involving aliasing or function calls.

Another approach to eliminating format-string vulnerabilities is to add dynamic
checks. The libformat library intercepts calls to printf-like functions and aborts
when a format string contains %n and is in a writable address space [Robbins 2001].
A disadvantage to libformat is that, to be effective, it must be kept in synchro-
nization with the C libraries. Another dynamic system is FormatGuard, which
injects code to dynamically reject bad calls to printf-like functions [Cowan et al.
2001]. The main disadvantage of FormatGuard is that programs must be recom-
piled with FormatGuard to benefit. Another downside to both techniques is that
neither protect against denial-of-service attacks.

It is important to realize that while CQual is successful at finding format-string
vulnerabilities, it can never find all such bugs. One reason is the unsafe features
of C, as discussed in Section 4.2. However, there is a more fundamental reason.
Suppose the programmer performs a branch based on a tainted value. Then con-
ceptually the program counter has become tainted, and any result that is control-
dependent on the branch is suspect. Secure information flow systems, dual to our
tainting analysis, use implicit flows (see above) to try to prevent just these kinds
of security problems. We have found that modeling all possible information flows
often leads to a very conservative analysis. For example, the sendmail program is
a network daemon that waits for data from the network and then performs various
tasks depending on the data. If taint propagates to the program counter, then all of
sendmail’s computation must be tainted, which, while safe, is not a useful result.

8. CONCLUSION

We have presented a framework for flow-insensitive type qualifiers, a lightweight,
specification-based technique for improving software quality. To use our system,
the programmer supplies a set of qualifiers, a partial order among the qualifiers,
and a source program with a few key type qualifier annotations. Constraint-based
type qualifier inference takes as input the source program, determines the remaining
qualifiers, and checks for consistency. Any inconsistent qualifiers indicate potential
bugs in the program.

To show that our framework is useful in practice, we have described a tool CQual
that implements our algorithms. An important component of our tool is a user
interface for presenting analysis results. In this interface, the source code is colored
according to the inferred qualifiers, and users can browse through the inference
results to see how the results were inferred.
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Finally, we have presented a number of experiments using CQual. We performed
const inference for C programs, and we discovered that inference can add many more
consts to existing programs, even ones whose authors make a significant effort to
use const. We also used CQual to find a number of format-string bugs in popular
programs; several of these bugs were unknown to us at the time. Finally, we used
CQual to check whether functions and data marked as being collectible after kernel
initialization time are annotated correctly or not, and we found several bugs as well
as missed opportunities to collect functions.

In conclusion, we believe we have shown that type qualifiers are lightweight and
easy to use because they are natural extensions of type systems and because of
constraint visualization; that type qualifiers are practical, because both monomor-
phic and polymorphic inference scale to large programs; and that type qualifiers
are useful for a number of realistic applications.
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A. CQUAL SURFACE SYNTAX AND CONFIGURATION FILES

CQual is implemented using the RC region compiler’s C front end [Gay and Aiken
2001]. In the surface syntax we write all constant qualifiers except built-in ones
like const with a dollar sign, so that the lexer can unambiguously tokenize them.
(While some C compilers do allow dollar signs in identifiers, their use is infrequent,
so CQual reserves them for qualifiers.) We allow CQual qualifiers to appear in
the same positions where const can occur. We also extend the syntax of C to allow
qualifiers in two additional places: on the ... of varargs functions (as mentioned
in Section 4.1) and after the right parenthesis of a function declaration’s parameter
list. The latter places the qualifier on the function arrow itself, i.e., it is an effect.
For example,

void f(void) q;

declares a function of type q (void −→ void) (qualifiers on void omitted for clarity).
We also allow functions to be declared with polymorphic type signatures, as de-

scribed in Section 4.1. Generalized qualifier variables as written as $ n1 ... nk

where n1 . . . nk are numbers representing the set {n1, . . . , nk}. Using si as an ab-
breviation for such a set of numbers, a declaration of the form

$ s0 typ0 f($ s1 typ1, . . ., $ sk typk);

declares a function f of the type

∀~κi[C].κ1 typ1 × · · · × κk typk → κ0 typ0

where κi ≤ κj ∈ C if si ⊆ sj . (The qualifier on the function arrow has been omitted
for clarity.)

As mentioned in Section 5.3, CQual allows the user to give declarations of the
qualified types of built-in operations such as the dereferencing operator *. These
are given in the form of special function declarations like

$$a op deref($$a *$ 1 x) $ 1;

This declaration states that the dereference operator, which takes a pointer to any
type $$a (this is a type variable that ranges over standard types) and returns an
object of that type, has as its effect the qualifier $ 1.

Qualifier partial orders are specified using a special configuration file. Figure 20
gives the partial order configuration file for the qualifiers discussed in Section 5.
The complete grammar for partial order configuration files is shown in Figure 21.
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partial order {
const [level = ref, sign = pos]

$nonconst [level = ref, sign = neg]

$nonconst < const

}

partial order {
$untainted [level = value, color = "pam-color-untainted", sign = neg]

$tainted [level = value, color = "pam-color-tainted", sign = pos]

$untainted < $tainted

}

partial order [effect] {
$init [level = ref, color = "pam-color-tainted", sign = pos,

fieldflow = down, fieldptrflow = all]

$noninit [level = ref, color = "pam-color-untainted", sign = neg,

fieldflow = down, fieldptrflow = all]

$noninit < $init

}

Fig. 20. Example Partial Order Configuration File

po-defn ::= partial order [ po-opt∗ ]? { po-entry∗ }
po-opt ::= flow-insensitive

| flow-sensitive

| nonprop

| effect

| casts-preserve

po-entry ::= qual-name [ qual-opt∗ ]?

| qual-name < qual-name
qual-opt ::= color = "color-name"

| level = ref | level = value

| sign = pos | sign = neg | sign = eq

| ptrflow = dir
| fieldflow = dir
| fieldptrflow = dir

dir ::= up | down | all

Fig. 21. Partial Order Configuration File Grammar

In this grammar, x∗ means zero or more occurrences of x, and [ x ]? means either
zero or one occurrence of [ x ].

Each partial order can be declared to contain either flow-insensitive qualifiers,
flow-sensitive qualifiers [Foster et al. 2002], or non-propagating qualifiers (which
should not be inferred). Additionally, partial orders may also be marked as con-
taining effect qualifiers (Section 5.3) and/or qualifiers that are preserved through
casts (Section 4.2). The canonical example of a non-propagating qualifier is restrict,
which has a special meaning in C [Aiken et al. 2003]. For each partial order the
user lists the qualifiers and their options. The sign option specifies the variance
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of a qualifier: positive (pos), negative (neg), or non-variant (eq) (Section 4.1).
The level options are explained in Section 4.1, and the color option is used in
the visualization described in Section 4.3. Each qualifier also has well-formedness
conditions (Section 3.3), specified as flowing between pointer and pointed-to data
(ptrflow), between aggregate and contents (fieldflow), and between aggregate
and pointer-valued contents (fieldptrflow). Finally, the partial order is specified
by declarations a < b for each pair of qualifiers so related in the partial order. We
compute the reflexive transitive closure of the specified relations to yield the final
partial order.

Received Month Year
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