
Crowd-scale Interactive Formal Reasoning and Analytics

Ethan Fast1, Colleen Lee1, Alex Aiken1, Michael Bernstein1, Daphne Koller1, Eric Smith2

Stanford University1, Kestrel Institute2

{ethan.fast, clee0, aiken, msb, koller}@cs.stanford.edu, eric.smith@kestrel.edu

ABSTRACT
Large online courses often assign problems that are gradable
by simple checks such as multiple choice, but these checks
are inappropriate for domains in which students may pro-
duce an infinity of correct solutions. One such domain is
derivations: sequences of logical steps commonly used in
assignments for technical, mathematical and scientific sub-
jects. We present DeduceIt, a system for creating, grading,
and analyzing derivation assignments across arbitrary formal
domains. DeduceIt supports assignments in any logical for-
malism, provides students with incremental feedback, and ag-
gregates student paths through each proof to produce instruc-
tor analytics. DeduceIt benefits from checking thousands of
derivations on the web: it introduces a proof cache, a novel
data structure which leverages a crowd of students to decrease
the cost of checking derivations and providing real-time, con-
structive feedback. We evaluate DeduceIt with 990 students
in an online compilers course, finding students take advan-
tage of its incremental feedback and instructors benefit from
its structured insights into confusing course topics. Our work
suggests that automated reasoning can extend online assign-
ments and large-scale education to many new domains.

Author Keywords
MOOC, theorem prover, formal logic, online education

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Graphical
user interfaces

General Terms
Human Factors; Design

INTRODUCTION
As online courses enroll thousands of students [22], course
staff are unable to provide feedback on assignments and in-
stead turn to automatic grading systems. Automatic grading
works well for multiple choice quizzes, but it remains diffi-
cult in domains where students may construct many correct
solutions [2, 10]. Derivations, or sequences of logical steps

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST’13, October 6–9, 2013, St. Andrews, United Kingdom.
Copyright c© 2013 ACM 978-1-4503-2271-3/13/10...$15.00.
http://dx.doi.org/10.1145/2501988.2502028

where each step follows from its predecessors, are one popu-
lar assignment type that technical, mathematical, or scientific
subjects often assign in their offline problem sets. However,
because derivations encode open-ended reasoning, they are
uncommon in large online courses today.

With derivation assignments, it is important to provide per-
sonalized, realtime feedback to students and instructors.
While a grading system can report whether an answer is
correct (e.g., through multiple choice or string matching), it
doesn’t know enough about a student’s reasoning to provide
guidance for a wrong answer. Most grading systems offer
limited feedback that is unassociated with the intermediate
steps of a solution [1]. But derivations are prone to a great
deal of internal variation, and often have many right answers
[3], so we face the challenge of providing constructive sug-
gestions [9]. Similarly, students tend to learn better when sub-
ject to real-time feedback loops [8], for example help from
human TAs in a traditional course setting [9, 3, 30]. How-
ever, theorem prover calls are expensive computations [14]
and often do not complete at interactive speeds. Instructors,
only seeing the final product, also remain largely uninformed
about the paths that students take to construct derivations.

In this paper, we pursue large-scale online derivation assign-
ments for any formal domain and at any level of abstraction.
Critically, we suggest that hosting these derivations online,
at large scale, allows realtime personalized feedback for stu-
dents and detailed analytics for instructors. Unlike previous
work focused on single domains like calculus (e.g., [31, 23]),
we allow instructors to support derivations in any formal do-
main: for example, compilers, regular expressions, or mathe-
matics. Instructors may also specify levels of proof detail for
an assignment; for instance, they may require that students
report some derivation rules but elide others.

Our approach illustrates the interface benefits that follow
from the scale of online courses. Rather than provide slow
feedback based entirely on proof search, we create a proof
cache that saves other students’ previous attempts at the
derivation and can thus provide realtime feedback and guid-
ance to students. By aggregating these paths, we enable in-
structors to analyze student progress and challenges.

In this paper we present:

• DeduceIt: A web-based system which allows instructors to
to specify a general class of derivation exercises, scales to
a large workload of students, and enables students to com-
plete assignments at varied levels of abstraction. DeduceIt
provides students with constructive and real-time feedback.

1

Figure 1: The DeduceIt interface: (a) set of available rules (b) interactive derivation component (c) set of given assumptions

• The proof cache: A novel data structure which records
the history of every attempted derivation, reusing compu-
tations from previously derived steps. We show that this
cache increases derivation-checking efficiency by 87% and
provides feedback in less than one second, much faster than
what is possible in a single user system.

• An empirical evaluation of DeduceIt: a deployment of
DeduceIt to 990 students online for assignments in type
checking, regular expressions, finite automata, and several
other topics. We detail how: 1) students take advantage
of DeduceIt’s incremental feedback for exploration, and 2)
instructors use DeduceIt to obtain structured insights into
confusing course topics.

The rest of this paper is organized as follows: we begin with
related work and a motivating example, then we present De-
duceIt’s interface and capabilities. Next, we describe the im-
plementation of the system and provide an empirical evalua-
tion, using data collected from students in an online class. We
close with reflections, conclusions, and future work.

RELATED WORK
At its core, DeduceIt is an interactive proof solving system.
Many existing tools provide users with rich and automated
feedback as a form of proof assistance [23, 6, 24, 21, 15, 4,
25, 31], but they are tied to specific formalisms or require
background knowledge generally not assumed in a MOOC
audience. For instance, some tools allow users to explore
complex problem domains, but they require knowledge of an
underlying programming language that students or instructors
may find difficult to understand (e.g., [23, 24]); other tools
present a more pedagogically oriented interface, but they are
limited in the kinds of formalisms they can support (e.g, [31]).

Automated theorem provers have been applied to educational
settings [27, 28, 25, 4], and the idea of using theorem provers
to enable education has engendered much discussion among
researchers [10, 2]. However, systems designed to address
educational use have also tended toward interfaces designed
for a single domain (e.g., geometry [25]) or present unstruc-
tured interactions that are designed for users already famil-
iar with programming (e.g., ProveEasy [4]). DeduceIt aims
to support constrained interactions across many (incomplete)
formalisms at just enough depth for students to explore.

Other work addresses automatic feedback and grading sys-
tems with a more domain specific focus. Simple forms of
automatic grading have been studied in both physical and on-
line classrooms [12]. These systems tend to restrict an assign-
ment’s answer domain with assumptions like multiple choice
answers, concrete-valued answers (e.g., answers that match
against a string or numerical value), or a set of test cases to
evaluate a programming assignment. Tools can assist with
formal reasoning tasks like model checking or logical infer-
ence [18], but these tools aren’t designed toward pedological
ends. Further, automated grading and plagiarism detection
systems have long evaluated student program code—where
solutions may be unstructured and creative—in computer sci-
ence departments [5, 26], but we are concerned with a system
that works across all kinds of derivations.

Finally, crowdsourcing research has enabled new forms of
problem-solving and evaluation. For instance, peer con-
sistency evaluation can be used to effectively judge the
accuracy—and grade—of a student’s answer, even in the ab-
sence of a ground truth [13] and crowd-based peer assessment
has been successfully applied to grade student assignments

2

[29, 17]. DeduceIt does not require human evaluation; it in-
stead uses crowds to guide its exploration of the proof space.

SCENARIO
DeduceIt provides students with feedback and support for any
formal domain, and allows instructors to specify the level of
abstraction at which a student may work though a derivation.
In this section, we demonstrate these ideas.

Regular Expressions I is an assignment we use to introduce
students to DeduceIt. Here, students must show that two regu-
lar expressions are equal: (A+B)∗ ≡ ((B+A).(B+A)∗)+ε.
We assign the syntax +, ∗, ε, and . as union, Kleene closure,
empty string, and concatenation. Students must derive the ex-
pression ((B+A).(B+A)∗)+ε starting from a set of givens,
in this case the single expression (A+B)∗, using given prop-
erties of regular expressions.

Constraints on the Derivation Interface
DeduceIt limits the actions available to students at each step
of the derivation. Students may freely enter expressions into
the conclusion box of a derivation, but the rules and givens
input fields are constrained to lists of possibilities. This offers
students a form of guidance.

Since our student has been given only (A+ B)∗ from which
to start her derivation, she reasons that she must select this
expression from the givens input field on the first step. From
the rule field she must select a rule from the list of assign-
ment rules, and in the conclusion field she must enter a newly
derived expression. She selects the “Unfold” rule, which ex-
pands a Kleene star expression. She then tries Unfold on
the full starting expression, mentally applying the rule to the
given and typing out ((A+B).(A+B)∗) + ε in the conclu-
sion. She submits the step.

The derivation returns with her step highlighted in green: it
was successful. A new set of input fields lies below her pre-
vious entry, querying her for the next step.

Working at Specifiable Levels of Abstraction
Since our student’s previous conclusion is nearly identical to
the goal, she wants to use it for her next step. If she can
transform its two sub-expressions A+B to B + A, then she
will have proven the goal and completed the assignment. She
decides to apply Commutativity to each of the two A + B
sub-expressions, entering her result in the conclusion input
box on the next line of the derivation. This new conclusion is
identical to the goal expression: ((B +A).(B +A)∗) + ε

She selects “Commutativity” from the rule input field, selects
((B + A).(B + A)∗) + ε from the givens field, and sub-
mits the step. DeduceIt checks her derivation, infers through
proof search that she means to apply Commutativity twice—
on the two appropriate sub-expressions—and responds that
her derivation is correct. She has completed this assignment.

Here our student interacts with DeduceIt at a relatively high
level of abstraction: she applies Commutativity twice, simul-
taneously, in a single derivation step. Under a different as-
signment setup she might be required to enter each applica-
tion of Commutativity separately; or alternatively, she might

be allowed to apply Commutativity freely without needing to
specify it as a separate proof step.

Providing Constructive and Real-time Feedback
Immediate feedback is critical to the design of interactive ed-
ucational systems [8]. If DeduceIt were running locally on
her computer, the student would have needed to wait up to
four seconds for each incremental piece of feedback. Instead,
feedback is available in under one second, which allows her to
move from one step to another with confidence that her prior
reasoning is correct. This acceleration is possible because
DeduceIt can utilize proof steps that other students computed
previously.

Displaying Analytics and Hints
The instructor opens the analytics interface. He sees that
many students are struggling to complete an easy exercise,
and in particular that they are often veering into a dead-end
proof path, so he annotates that subtree of the derivation with
a hint suggesting why the direction will not be fruitful. When
a student next tries this direction, she receives the feedback
and reroutes, saving herself some frustration.

DEDUCEIT
DeduceIt is an online derivation system that supports arbi-
trary formal domains and specifiable levels of abstraction. It
takes advantage of large courses by creating a cache of proofs
that it uses to optimize verification and power derivation ana-
lytics for the instructor.

Interacting with a DeduceIt Derivation
Each DeduceIt assignment contains an interactive derivation
(Figure 1). To move forward in the derivation, a student must
derive a conclusion by applying the selected rule on the se-
lected givens(s).

On each derivation step, DeduceIt responds with one of sev-
eral kinds of feedback: if the derivation is so far valid, all its
steps will turn green; if the system cannot parse the conclu-
sion of some step in the derivation, that step will turn yellow;
or if the system can parse but not prove the conclusion of
some step in the derivation, that step will turn red. Each valid
step preceding an invalid step will remain green.

DeduceIt derivations have constraints that aim to make it eas-
ier for students to complete derivations while avoiding syn-
tactical mistakes that are unrelated to learning. Students may
only select expressions they have already derived (or mem-
bers of the set of starting givens) from the givens input field.
Likewise, students may only select rules which are associated
with the current assignment from the rules input field.

Finally, if an invalid step has any hint annotations on the
proof tree, a hint appears adjacent to that step. Hints take the
form of a question mark, expanding into text on mouseover.

Assignment Analytics on the Proof Tree
Because many students complete each derivation, DeduceIt
can give instructors real-time access to assignment analytics.
DeduceIt creates a proof tree for each assignment (Figure 2),
which tracks the history of all associated derivations. These

3

Figure 2: Annotating a node on the proof tree.

derivations share a common root node, and each step in a
derivation maps from a parent node to a child node via a step
in the proof. Every node keeps track of derivation state in-
formation and a count of how many students have traversed
it. An instructor may annotate any node in the tree with
hints, and these will be visible to a student if she enters upon
that path in her own derivation. An instructor may also use
this tree to override the behavior of the underlying deriva-
tion checker, e.g., forcibly label a given derivation step valid.
This can be useful for steps which make use of particularly
long chains of free rules that aren’t discovered and verified
because of limitations in proof search.

Extensions to the Derivation Interface
Based on our experiences with DeduceIt, we have developed
several other forms of derivation feedback which we have not
yet deployed for an online class.

Displaying the Proof Path
DeduceIt maintains aggregate data about every derivation, so
the system knows when students are proceeding down well-
traveled paths in a derivation, down correct but—so far—
more lengthy paths, or down paths which have not yet led
to the goal. DeduceIt can optionally display this information
with a status indicator, a colored circle of green, yellow, or or-
ange at the top of the derivation, indicating whether students
are on a common path, an uncommon but successful path, or
an as yet unsuccessful path.

DeduceIt could provide students even more fine-grained in-
formation: the exact number of other successful or unsuc-
cessful students who have worked to the current state of their
derivation; or detection of the exact step in their derivation
where they left the well-traveled path. It is also possible to
further process the proof tree. By collapsing some nodes
which are syntactically different but semantically equivalent
(e.g., the expressions (1 + 2) + 3 and 1 + (2 + 3)) we could
construct a more meaningful notion of a derivation path.

Providing Automatic Hints
DeduceIt allows instructors to set up hints for any derivation
step by annotating an assignment’s proof tree. Optionally,
DeduceIt can construct these hints automatically using proof

Figure 3: Instructors must specify a rewrite language for each
assignment.

search by holding the rule and assumption fields constant and
searching for alternative valid conclusions.

For instance, suppose that students enter x = 3 + 1, Balance
Equation, and x + 1 = 3 in the fields for conclusion, rule,
and assumptions. This is an incorrect step, so DeduceIt will
highlight it in red. But the hint-generating DeduceIt is able to
give students more specific feedback, e.g., “Balance Equation
can be applied, but your conclusion is incorrect.” Here proof
search finds a viable alternative conclusion, x = 3 − 1, so
DeduceIt knows it is possible to apply the selected rule upon
the selected given.

Other hint-generating systems might hold constant different
parts of the derivation (e.g., searching for rules and assump-
tions to match a given conclusion), or draw inspiration from
Model-Tracing Tutors [11].

Background: Term Rewriting Systems
To understand the instructor’s authoring interface, we begin
by reviewing the major concepts behind term rewriting sys-
tems. DeduceIt uses a term rewriting system to verify student
derivations. Term rewriting systems consist of a set of expres-
sions with nested sub-expressions, and relations which define
transformations on those expressions; each transformation is
called a rewrite rule [19, 24]. Term rewrite rules have a left
side, which must match a term for the rule to be applied, and a
right side, which defines the new expression produced by the
rule. Variables may appear in the rule (declared in the system
with $ notation) which binds to the term or its subexpressions.
For example, in a language which supports integers, symbols,
and the binary operators +, −, and = (this happens to be a
subset of the default DeduceIt language), one such rule might
be: ($x+$y = $z)→ ($x = $z−$y). The system can apply
this rule to the expression 2 + 1 = 3 to produce 2 = 3− 1.

Assignment Creation Across Arbitrary Formalisms
Taking advantage of term rewriting systems, instructors can
use DeduceIt to define nearly any kind of formal assign-
ment. To create an assignment, an instructor must specify
four things:

1. Rewrite language: Every assignment has a default rewrite
language composed of variables, symbols, integers, and
several common unary and binary operators. In many as-
signment domains this will be sufficient, but an instructor

4

Figure 4: Editing a ruleset on the instructor interface.

may optionally augment the language with extra syntax for
functions and constants (Figure 3).

2. Rulesets: Named sets of rewrite rules which a student may
apply while working through an assignment’s derivation.
One ruleset corresponds to many underlying rewrite rules.
This is necessary because an instructor may want to refer
to several distinct rules by the same name (e.g., 1∗X → X
and X ∗ 1 → X are two distinct rewrite rules describing
the multiplicative identity.)

3. The given expression(s): A set of expressions which serve
as the starting point of a derivation.

4. The goal expression: The desired result of a derivation.

Most assignments have a small number of rulesets and given
expressions, because DeduceIt is designed for pedagogical
purposes and not large, general proofs. This makes debug-
ging fairly straightforward, and in practice assignments take
between 5 and 30 minutes to prepare and up to another 30 to
test, as reported by the TA for the class in our evaluation.

Customizing an Assignment Language
Instructors can customize an assignment’s language, allowing
students to use familiar notation. By default DeduceIt pro-
vides the unary operators ˜ and −, and the binary operators .,
&, |, ,, ∗, \, +, −, =, 6=, ≤, ≥, <, >, =>, :=, and→, listed
in order of precedence. DeduceIt also supports variables
(only used when defining rewrite rules), symbols, and inte-
gers. For example, three expressions in the rewrite language
are: “$p, ($p => $q)→ $q”, “a.b.b.a”, and “x+ 2 = y”.

Note that with several exceptions (the notation specific to
rewrites: :=, →, and $) the operators used in expressions
have no meaning without an accompanying set of rules; they
simply determine the parsing of an expression.

Instructors may add two kinds of syntax to DeduceIt’s stan-
dard rewrite language: constants and functions. This is con-
venient in many domains, where familiarly named functions
and constants enhance the readability of an assignment. For
these custom functions and constants, constants appear as a

symbol value preceded by a backslash, e.g., \e. Functions
look much the same, except they have arguments which they
accept in brackets, e.g., \sin{x}.

Defining an Assignment Domain with Rulesets
To control the level of abstraction at which students complete
an assignment, instructors define a ruleset for each student-
facing rule. A ruleset defines a set of transformations that
a student may use in a derivation, because each rule often
requires multiple rewrite rules for its implementation, e.g.,
1 ∗ X → X and X ∗ 1 → X for the multiplicative iden-
tity. Each ruleset has a name, a student-facing description, a
set of rewrite rules, and an optional set of constraints (Fig-
ure 4). The name and description of a ruleset are all a student
sees when using DeduceIt; students do not need to understand
rewrite rules.

To allow students to elide less important proof steps, the in-
structor may choose whether a ruleset is required or free. Re-
quired rulesets must be named explicitly when a student uses
them in a derivation. Free rulesets, however, may be elided.
Behind the scenes, DeduceIt will attempt to fill in free steps
automatically through proof search. This is useful when a
student must use trivial transformations which are necessary
to the derivation but unimportant to the assignment.

Instructors can define both strict and context independent
rewrite rules. To apply a strict rule, its left side must match
exactly on an expression, whereas a context independent rule
may be applied to an expression or any of its subexpressions.
For many assignments a single context independent rule can
take the place of many strict rules. This eases the burden
on an instructor and usually speeds up proof search. How-
ever, strict rewrite rules cannot be entirely replaced with con-
text independent rules. Some transformations may be context
dependent (e.g., lexing character values of a string). More-
over, strict rewrite rules allow instructors to simulate com-
plex assignment domains which would otherwise lie outside
the scope of a typical rewrite rule based system.

For example, we use strict rewrite rules to define a
type checking assignment over a specific domain of input
\type{t}{expr}. Because we tailor such rules specifically
to the context of this assignment, we do not need the power
of full type analysis: rewrite rules are sufficient. Further, as
students see only the description of each rule, which tends to
be general, and not the underlying implementation as rule-
sets, which is often more specific, DeduceIt appears to have
expressive capability far beyond rewrite systems. Instructors
would use a similar approach to deploy assignments in do-
mains like parsing or multivariate calculus.

Sharing Rewrite Languages
Some rewrite languages are common enough that it makes
sense to share them among different assignments: for in-
stance, many assignments might use the languages defined
for basic algebraic manipulation, predicate logic, or the ex-
pansion of regular expressions. DeduceIt allows instructors
to reuse a rewrite language across assignments.

IMPLEMENTATION AND PROOF CACHE

5

The core implementation challenge of DeduceIt is to run a
large-scale theorem prover in real time. DeduceIt is a sys-
tem formed of three distinct components: a frontend inter-
face, a backend theorem prover, and a database. The fron-
tend manages all user interactions (for both students and in-
structors) as described in the previous section, the backend
theorem prover exposes an online API which the frontend
calls—when necessary—to check student derivations, and the
database stores all the data associated with users and assign-
ments, including the various proof trees which together con-
stitute the proof cache.

The frontend is a Ruby on Rails web application deployed on
Heroku, the backend is a Haskell application also deployed on
Heroku, and the database is a MongoDB installation running
on MongoHQ. Each of these components can be scaled to
serve arbitrary numbers of students.

Theorem Prover
To verify student derivations, DeduceIt applies proof search
over a term rewriting system. DeduceIt’s theorem prover also
includes a parser which is constructed dynamically on each
theorem prover call, allowing instructors to define custom as-
signment syntax. The parser deconstructs the arguments of a
theorem prover call into expression terms of the rewrite lan-
guage before it passes these terms to the prover.

The Theorem Prover API
The DeduceIt prover is wrapped in a web server which can
be queried via an API over the following arguments: rule-
sets, assumptions, syntax, and conclusion. To every query
the prover will respond with either “proven”, “unproven”, or
“syntax error.” The frontend uses this API to assess the valid-
ity of each step in a derivation.

The syntax argument defines any new syntax on the default
rewrite language. The rest of the parameters are used for
proof search: DeduceIt tries to prove the provided conclusion
expression using the set of rewrite rules defined in rulesets on
the starting expressions in assumptions.

Proof Search
Proof search applies rewrite rules iteratively upon a group of
expressions to generate new expressions. In general, a search
may be considered either forward, starting from the known
expressions and working toward the desired expressions, or
backward, starting from the desired expressions and working
toward the known expressions with an inverted set of rules.
DeduceIt supports both kinds of search.

In practice, DeduceIt conducts one round of forward search
and one round of backward search; the two rounds of search
then meet in the middle, i.e., they check for terms generated
in common. We introduce backward search to ensure De-
duceIt will correctly check rewrite languages which allow the
introduction of new symbols, e.g., predicate logic and the rule
$a → $a ∨ $b (note here that $b is a variable in the rewrite
rule which binds to any expression, so forward search cannot
enumerate every possible value of $b). Moreover, the meet-
in-the-middle approach tends to be more effective than two
rounds of only forward or backward search [14].

We find the system is limited to two rounds of search un-
der reasonable time constraints, with an upper bound of 4
seconds for students interacting with a web application. At
each iteration of search DeduceIt applies the set of avail-
able rewrite rules—defined by the collection of rulesets—
non-deterministically and exhaustively. Notably, this delay
falls into the third classification of Nielsen’s work on re-
sponse times, below the ten-second limit for keeping a user
focused on his or her dialog with the system [20]. While the
theorem prover could be made more efficient, the next section
will demonstrate that in many cases this is unnecessary.

Proof Cache
DeduceIt introduces the idea of a proof cache, which takes
advantage of other students’ explorations to make the entire
system run at more interactive speeds.

The proof cache tracks all responses that the frontend appli-
cation receives from the prover. This cache is composed of
many proof trees, one for each assignment, and together these
proof trees track the aggregate history of every attempted
derivation. Proof trees are a useful tool for managing assign-
ments, but they can also, by acting as a cache, dramatically
improve the overall performance of the system.

DeduceIt’s bottleneck is in its prover; proof search is by far
the most computationally expensive aspect of the system. A
proof cache can limit the outbound queries to the prover and
so, intuitively, increase the performance of the system.

To check a new derivation step using the proof cache, Dedu-
ceIt queries the proof tree for that derivation’s assignment: if
the new step already exists in the tree, then the system doesn’t
need to query the prover; it simply returns the stored result.

Besides the benefits of providing an infrastructure for hints
and a summary of how well students are doing in an assign-
ment, the proof cache has a very significant performance ben-
efit for two reasons:

1. Most students complete derivations with steps that other
students have used previously or future students will use.

2. It is more efficient to reuse the intermediate results of one
student’s derivation to check the validity of a derivation
step than to check every derivation step with the prover.

An average prover call takes 810ms, whereas a typical cache
lookup takes only 23ms. This improvement moves DeduceIt
up a level on Nielsen’s scale of responsiveness, under one
second, to the level at which a user’s flow of thought is un-
interrupted [20]. We evaluate the performance impact of the
proof cache more fully in the next section.

EVALUATION
DeduceIt hypothesizes that online derivation systems can
scale to many students, across formal domains, and provide
useful instructor analytics. To evaluate DeduceIt, we de-
ployed it in the winter 2013 offering of Coursera’s Compilers
class, assigning several DeduceIt problems every week of the
course. Out of the 7625 students who enrolled, 990 of them
completed at least one DeduceIt assignment.

6

Figure 5: Normalized histograms show student time distri-
butions for each assignment. The x-axis measures time in
minutes. These time distributions are approximately normal
with right skew and centered upon a fixed time value which
tracks loosely with an assignment’s difficulty.

In this section we provide evidence for two claims:

1. Students successfully use DeduceIt for derivations. We
show through data analysis and user feedback that students
engage with DeduceIt to solve problems.

2. DeduceIt provides instructors with insights that translate
into future course improvements. Here we provide exam-
ples from our experience with the Compilers course.

We run several analyses over ten DeduceIt assignments, mea-
suring the distribution of students’ time spent on assignments
and derivation steps, the success rate of students, the average
number of student errors, and the performance impact of the
DeduceIt’s proof cache.

Assignment Time Distributions
First, we analyze the amount of time students spent on each
assignment. These time distributions are approximately nor-
mal with right skew and centered upon a fixed time value
which tracks loosely with an assignment’s difficulty (Fig-
ure 5). For example, in the Rightmost Derivation assign-
ment students are clustered around 4 minutes, and in the Shift-
Reduce Parsing assignment they are clustered around 10 min-
utes; the Rightmost Derivation assignment is generally con-
sidered easier by students than Shift-Reduce Parsing. This re-
lation holds true among the remainder of the assignments. To

determine assignment difficulty in offline courses, instructors
would typically need to guess or to ask students, who may
have faulty recall. DeduceIt could easily be expanded to sup-
port knowledge-tracing [7] and provide instructors with more
detailed analytics.

Rule Time Distributions
We also observe the time distribution which governs rule ap-
plication across assignments. Supposing some rules are eas-
ier or more natural to apply than others, we can use Dedu-
ceIt to find rules associated with longer elapsed time between
steps, revealing what parts of the course material are more
likely to confuse students. On average, it takes students 163
seconds (roughly 3 minutes) between derivation steps.

Rule time distributions may also help instructors diagnose
problematic derivation paths. For example, “Nonterm Y in-
put end” is the rule associated with the longest elapsed time
(1482s). This rule comes from LL(1) Parsing and represents
an operation on a lookup table. Most students using “Non-
term Y input end” have entered a valid but misleading con-
clusion on the previous derivation step, which is an ideal can-
didate for hint annotation on the assignment proof tree (e.g.,
a hint which suggests, “While this step is correct, it doesn’t
lead to the solution.”).

For a second use-case of this data, we examine the assign-
ment Regular Expressions I. Here, the rules “Left Identity”
and “Right Identity” are used by students most quickly, at
about 100 seconds between applications. Students apply the
“Unfold” rule most slowly, at approximately 400 seconds in
its application. This suggests Unfold may be the most chal-
lenging property of regular expressions for students.

More generally, these analytics grant the instructors fine-
grained insight into students’ understanding, even on com-
plex assignments. Instructors might use such information to
better focus the emphasis of their lectures.

Student Success Rates
Next, we examine the success rates of students across assign-
ments. These results are displayed in Table 1. Success rates
are uniformly high, ranging from 93% to 99%, and these rates
track reported assignment difficulty in a manner consistent
with time distributions.

High success rates do not necessarily suggest that students
are learning from these assignments, but we have received
feedback that supports this idea. Several students told us that
they found DeduceIt’s derivation constraints (e.g., a list of
available rules and givens, and step-by-step validation) use-
ful for understanding the domain of a problem. One student
mentioned, “Being able to step through the parsing actions
and ‘be’ the parser and know immediately when I made a
mistake was incredibly helpful in coming to truly understand
how the different parsing styles work.” However, these con-
straints beget certain tradeoffs: DeduceIt trades flexibility in
assignment notation for ease of verification, and other stu-
dents told us that assignment syntax got in the way, that De-
duceIt “is difficult to use since you have to learn the syntax of
each problem before actually applying what you know.” An

7

Assignment Name Description Min Total Rules Cache Success Valid Syn. Sem.

Regular Expressions I Prove two regexes are equivalent 2 185 7 3412 96% 55% 11% 34%

Lexical Analysis II Show the sequence of moves of a lexer 6 119 4 5963 97% 63% 6% 30%

Finite Automata I Show that an automaton accepts a string 5 53 10 4589 98% 73% 3% 23%

Leftmost Derivation Perform a leftmost derivation 10 97 3 10857 95% 56% 6% 38%

Rightmost Derivation Perform a rightmost derivation 10 78 3 10857 98% 81% 1% 17%

More Derivations Parse a sequence of roman numerals 6 61 9 9042 99% 81% 1% 18%

Recursive Descent Parsing Show each state of a recursive descent parse 13 155 4 9465 96% 69% 1% 29%

LL(1) Parsing Derive string using parse table 13 69 11 4750 99% 83% 1% 15%

Shift-Reduce Parsing Show a shift-reduce parse of a string 20 151 8 6894 94% 85% 2% 12%

SLR(1) Parsing Parse string using SLR(1) action table 15 99 33 4815 93% 60% 2% 36%

Table 1: Min is the shortest observed derivation path. Total is the observed number of unique derivations paths. Rules is the
number of rules in the assignment. Cache is the size of the proof cache, e.g., the observed number of unique steps. Success is the
success rate among students who attempted the assignment. Valid is the percentage of derivation steps which are valid. Syn. and
Sym. are the percentages of observed syntax and semantic errors, respectively. (Note: Leftmost and Rightmost Derivation share
the same subset of the proof cache.) Assignments are listed in the order they were assigned.

analysis of learning is outside the scope of this paper, but on
balance we consider the feedback promising.

Student Error Rates
We next compute the rate of student mistakes, where an error
is a conclusion which doesn’t follow from the givens. Error
rates among derivation steps for all the DeduceIt assignments
are substantial—on average 29.4%, or approximately one er-
ror for every three correct steps—despite the high overall suc-
cess rates reported in Table 1. We expect this result: students
will always get some things wrong. Learning rarely takes
place without error, whether indeliberate or exploratory as
students use the system as a means of externalizing cognition
[16]. Ideally, we might distinguish between two classes of
error: errors which stem from a misunderstanding of course
material, and errors which stem from misunderstandings (or
exploratory actions) with DeduceIt.

To approximate the impact of these two classes of error, we
divide student mistakes into two categories: syntax errors,
and semantic errors (Syn. and Sem., Table 1). Syntax er-
rors arise from entering an expression which DeduceIt cannot
parse, whereas semantic errors arise from parseable deriva-
tion steps which cannot be proven. While semantic errors are
certain to contain faulty logic, this is not obviously true for
syntax errors: a student might have intended to write a cor-
rect step and simply failed to use the system properly. We use
the rates of student syntax errors as a proxy for measuring
rates of student confusion with the DeduceIt system.

Across all assignments syntax errors are low, never exceeding
11%. Notably, the highest rate of syntax errors occurred in the
first class assignment, Regular Expressions I, despite the fact
that students generally considered this assignment the easi-
est. The syntax error rates of subsequent assignments never
exceeded 6%, although these later assignments were much
more difficult. In fact, in the last 6 assignments, the average
syntax error rate was only 1.3%. This is likely a result of stu-
dents learning to use the system. Low overall rates among

Figure 6: The x-axis measures the total number of derivation
steps entered into the system. The y-axis measures the cache
hit rate as a percentage.

syntax errors suggest that DeduceIt did not confuse students
to the detriment of assignment completion and correctness.

Performance Impact of the Proof Cache
We test a hypothesis which provides the general intuition be-
hind the proof cache: most derivations contain steps that
other students have previously used or will use in the future.
Of 50,099 total derivation steps in the class, only 5,407 (10%)
of them are unique. So, 90% of derivation steps are reused,
which indicates that a proof cache may be useful.

Next, we examine our second hypothesis: it is more effi-
cient to use the proof cache than to check every derivation
step with the prover. To test this hypothesis, we measured
the overall proof cache hit rate. In Figure 6, we show the
cache hit rate plotted against time. By the 1900th student
interaction, the cache has reached a hit rate of 90%. Since
the average theorem prover call takes 810ms and the aver-
age cache lookup takes 23ms, we can compute an average

8

time of 810ms∗0.10+23ms∗0.90 = 101.7ms. This repre-
sents a cost savings of 87% and qualitatively improves usabil-
ity: running the cache allows DeduceIt to move up one level
on Nielsen’s hierarchy of responsiveness [20]. As DeduceIt
adds more attempted derivation steps to the cache, the hit rate
should continue to climb, albeit at a slower rate.

Further, the proof cache has benefits over memoization in a
single user system. The proof cache hit rate is high because
many students tend to enter the same derivation steps. A sin-
gle student is less likely to enter the same derivation step more
than once. Collectively, students reuse 90% of derivation
steps, whereas on average, individual students reuse fewer
than 17% of steps.

LIMITATIONS AND FUTURE WORK
In our Compilers course we encountered several notable lim-
itations and tradeoffs in the DeduceIt system.

First, supporting arbitrary formalisms is a challenging design
goal for a pedagogical system. DeduceIt achieves this goal
by encouraging instructors to create incomplete instead of
full formalisms. When necessary, complex rewrite rules that
are difficult to implement generally are instead handled by
assignment-specific rules, providing students with an illusion
of working in a more general theory. In this way, DeduceIt
trades completeness for expressiveness and simplicity, mak-
ing it easier for instructors to create and debug assignments
at the expense of totally covering a domain. However, other
valuable systems might approach this tradeoff differently.

Second, a DeduceIt assignment must adopt the syntax of the
default rewrite language. This works well for many kinds
of assignments (e.g., algebra, basic calculus, predicate logic,
regular expressions, and type checking), since instructors can
still define custom functions and constants. However, in some
assignments, natural notation differs more considerably from
DeduceIt’s rewrite language (and its possible extensions); this
creates unnecessary friction on the derivation interface. For
example, LL(1) Parsing uses a series of rules to define a
lookup table: one student commented that some such rules
were defined in “less than ideal notation.” This is an issue
we hope to fix in future versions of DeduceIt. Expressions
and rules in the rewrite language do not need to be rendered
as text on the student view; customizable HTML trees would
allow instructors far more latitude in defining the appearance
of assignment notation.

Third, while DeduceIt responds to students with information
about semantic errors, syntax errors, correct steps, and an-
notated hints, some students felt the system wasn’t offering
them sufficient guidance. One student mentioned, “I spent
more than half an hour trying to understand why DeduceIt
was not accepting my derivations.” Our ongoing work in hint
generation addresses this concern. In the current system, not
every incorrect step on the proof tree can be annotated by an
instructor; an improved system might generate such hints au-
tomatically or notify instructors when several students reach
in a dead end of the proof tree, encouraging them to add a
hint in real-time.

Fourth, student interactions are constrained by proof search.

Although instructors can mark rules as free, and this allows
students to elide those rules in their derivations, the system
is currently limited to two rounds of search. In future work
we might improve the efficiency of our theorem prover or dis-
tribute proof search client-side, passing a larger share of com-
putation onto the students’ machines.

Fifth, although DeduceIt’s proof cache provides a dramatic
performance benefit, there are several ways the design of the
cache can be improved. For instance, changing the cache rep-
resentation from a tree into a directed acyclic graph (DAG)
would be faster and more space efficient. Likewise, collaps-
ing semantically equivalent derivation steps would also make
lookups faster and improve the cache hit rate.

Finally, this paper does not directly address DeduceIt’s ef-
fect on teaching outcomes: that is, how the system compares
with traditional educational tools, and how it impacts student
learning. We hope to study this question in future work.

CONCLUSION
For online education to succeed, it must move beyond simple
multiple-choice problems to the kinds of open-ended assign-
ments used by real courses. Peer grading holds promise but is
difficult to apply in many domains [13, 17]. For many online
courses that use formal, structured reasoning, automated sys-
tems can provide guidance through interactive assignments.
We have presented DeduceIt, a system exploring this poten-
tial for student derivations in arbitrary formal domains.

DeduceIt enables instructors to set up reusable assignments
for any kind of formal derivation, which can be completed
by students at specifiable levels of abstraction. The system
provides students with constraints — rules that may be ap-
plied only to the set of proven or given expressions — which
provide support as the students work, and DeduceIt responds
in real-time with information about the correctness of each
derivation step: whether a mistake is due to a syntactic or
semantic error, and hint annotations.

Students and instructors are successfully engaging with De-
duceIt. Out of the 990 students who used DeduceIt in our
online Compilers class, we observe an overall assignment
completion rate of 96.5% and an average time to completion
of 12.7 minutes over 10 assignments. Similarities in student
proofs allow us to provide feedback to students at speeds that
would be impossible using standalone systems. Further, in-
structors are using DeduceIt to perform course analytics that
were quite difficult to track before. By analyzing assignment
data using structures like DeduceIt’s proof tree, instructors
can determine which parts of an assignment are most difficult
for students to complete, or which course concepts are least
well understood.

DeduceIt suggests that online education might allow for as-
signments with complex reasoning requirements and multi-
ple correct answers. Generalizing the system beyond formal
derivations, or asking students to check and approve each oth-
ers’ claims, might create opportunities for more general in-
stances of structured reasoning in domains such as chemistry,
physics, or even law. DeduceIt and the compilers course are
available at http://www.coursera.org/course/compilers.

9

http://www.coursera.org/course/compilers

ACKNOWLEDGMENTS
Special thanks to Joel Brandt and our colleagues at Stanford.
We’d also like to thank Coursera, for helping us deploy our
Compilers course; the Compilers course students, for their
hard work and feedback; and finally our reviewers for their
very useful suggestions.

REFERENCES
1. Coursera support documentation.

http://support.coursera.org.

2. Bennett, R. E., and Bejar, I. I. Validity and automated
scoring: It’s not only the scoring. Educational
Measurement: Issues and Practice 17, 4 (1998), 9–17.

3. Bennett, R. E., Steffen, M., Singley, M. K., Morley, M.,
and Jacquemin, D. Evaluating an automatically scorable,
open-ended response type for measuring mathematical
reasoning in computer-adaptive tests. Journal of
Educational Measurement 34, 2 (1997), pp. 162–176.

4. Burstall, R. Proveeasy: Helping people learn to do
proofs. In Proc. ENTCS 2000 (2000), 16 – 32.

5. Cheang, B., Kurnia, A., Lim, A., and Oon, W.-C. On
automated grading of programming assignments in an
academic institution. Comput. Educ. 41, 2 (2003),
121–131.

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet,
N., Meseguer, J., and Quesada, J. Maude as a
metalanguage. In Proc. WRLA 1998 15 (1998).

7. Corbett, A., and Anderson, J. Knowledge tracing:
Modeling the acquisition of procedural knowledge. In
Proc. UMUAI 1994 (1994), 253–278.

8. Corbett, A. T., and Anderson, J. R. Locus of feedback
control in computer-based tutoring: impact on learning
rate, achievement and attitudes. In Proc. CHI ’01 (2001).

9. Gallien, T., and Oomen-Early, J. Personalized versus
collective instructor feedback in the online courseroom:
Does type of feedback affect student satisfaction,
academic performance and perceived connectedness
with the instructor? International Journal on
E-Learning 7, 3 (2008), 463–476.

10. Hearst, M. The debate on automated essay grading.
Intelligent Systems and their Applications, IEEE 15, 5
(2000), 22–37.

11. Heffernan, N. T., Koedinger, K. R., and Razzaq, L.
Expanding the model-tracing architecture: A 3rd
generation intelligent tutor for algebra symbolization.
Int. J. Artif. Intell. Ed. (2008), 153–178.

12. Hernan-Losada, I., Pareja-Flores, C., and
Velazquez-Iturbide, A. Testing-based automatic grading:
A proposal from bloom’s taxonomy. In Proc. ICALT
2008 (2008), 847–849.

13. Huang, S.-W., and Fu, W.-T. Enhancing reliability using
peer consistency evaluation in human computation. In
Proc. CSCW 2013 (2013), 639–648.

14. Kaindl, H., and Kainz, G. Bidirectional heuristic search
reconsidered. Journal of Artificial Intelligence Research
7 (1997), 283–317.

15. Kaufmann, M., and Moore, J. S. An industrial strength
theorem prover for a logic based on common lisp. IEEE
Trans. Softw. Eng. 23, 4 (1997), 203–213.

16. Kirsh, D., and Maglio, P. P. On Distinguishing
Epistemic from Pragmatic Action. Cognitive Science 18,
4 (1994), 513–549.

17. Kulkarni, C., Pang, K., Le, H., Chia, D., Papadopoulos,
K., Cheng, J., Koller, D., and Klemmer, S. Peer and self
assessment in massive online design classes. ACM
TOCHI (2013).

18. Lapets, A., Skowyra, R., Bassem, C., Kfoury, A., and
Bestavros, A. Towards an infrastructure for integrated
accessible formal reasoning environments. In Proc.
UITP 2012.

19. Mart-Oliet, N., and Meseguer, J. Rewriting logic:
Roadmap and bibliography. J. Log. Algebr. Program. 81
(2001).

20. Nielsen, J. Usability Engineering. Morgan Kaufmann,
1993.

21. Nipkow, T., Wenzel, M., and Paulson, L. C.
Isabelle/HOL: a proof assistant for higher-order logic.
Springer-Verlag, Berlin, Heidelberg, 2002.

22. Pappano, L. Massive open online courses are
multiplying at a rapid pace.
http://www.nytimes.com/2012/11/04/education/
edlife/massive-open-online-courses-are-
multiplying-at-a-rapid-pace.html.

23. Paulin-Mohring, C. Inductive definitions in the system
coq rules and properties. TLCA 1993 (1993).

24. Paulson, L. C. The foundation of a generic theorem
prover. Journal of Automated Reasoning 5 (1989).

25. Ritter, S., Towle, B., Murray, R., Hausmann, R., and
Connelly, J. A cognitive tutor for geometric proof. In
Prof. ITS 2010 (2010), 453–453.

26. Schleimer, S., Wilkerson, D. S., and Aiken, A.
Winnowing: local algorithms for document
fingerprinting. In Proc. ACM SIGMOD 2003 (2003),
76–85.

27. Suppes, P. The next generation of interactive theorem
provers. 7th International Conference on Automated
Deduction 170 (1984), 303–315.

28. Suppes, P. Student use of an interactive theorem prover.
Contemporary Mathematics 29 (1984).

29. Tosic, M., and Nejkovic, V. Trust-based peer assessment
for virtual learning systems. In Proc. SocInfo 2010
(2010), 176–191.

30. VanLehn, K. The relative effectiveness of human
tutoring, intelligent tutoring systems, and other tutoring
systems. Educational Psychologist 46, 4 (2011),
197–221.

31. Windsteiger, W. Theorema 2.0: A graphical user
interface for a mathematical assistant system. CEUR
Workshop Proceedings (2012), 73–81.

10

http://support.coursera.org
http://www.nytimes.com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.html
http://www.nytimes.com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.html
http://www.nytimes.com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.html

	Introduction
	Related Work
	Scenario
	Constraints on the Derivation Interface
	Working at Specifiable Levels of Abstraction
	Providing Constructive and Real-time Feedback
	Displaying Analytics and Hints

	DeduceIt
	Interacting with a DeduceIt Derivation
	Assignment Analytics on the Proof Tree
	Extensions to the Derivation Interface
	Displaying the Proof Path
	Providing Automatic Hints

	Background: Term Rewriting Systems
	Assignment Creation Across Arbitrary Formalisms
	Customizing an Assignment Language
	Defining an Assignment Domain with Rulesets
	Sharing Rewrite Languages

	Implementation and Proof Cache
	Theorem Prover
	The Theorem Prover API
	Proof Search

	Proof Cache

	Evaluation
	Assignment Time Distributions
	Rule Time Distributions
	Student Success Rates
	Student Error Rates
	Performance Impact of the Proof Cache

	Limitations and Future Work
	Conclusion
	Acknowledgments
	REFERENCES

