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ABSTRACT

Large organizations emit terabytes of logs every day in their cloud
environment. Efficient data science on these logs via text search is
crucial for gleaning operational insights and debugging production
outages. Current log management systems either perform full-text
indexing on a cluster of dedicated servers to provide efficient search
at the expense of high storage cost, or store unindexed compressed
logs on object storage at the expense of high search cost.

We propose LogCloud, a new object-storage based log manage-
ment system that supports both cheap compressed log storage
and efficient search. LogCloud constructs inverted indices on com-
pressed logs using a novel FM-index implementation that supports
efficient querying from object storage directly, removing the need
for dedicated indexing servers. Experiments on five public and five
production log datasets show that LogCloud can achieve both cheap
storage and search, scaling to TB-scale datasets.
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1 INTRODUCTION

Modern organizations’ cloud infrastructure generate terabytes of
logs every day. These logs are typically stored in a log management
system like ElasticSearch, DataDog or Splunk and queried interac-
tively for troubleshooting or cybersecurity use cases [15, 19, 47].
Organizations would like to do both of the following:

o Cheap Retrieval: It must be possible to cheaply and interac-
tively search these logs with wildcard string queries (e.g. *.ama-
zon”, pod-abed-*).

o Cheap Storage: The cost of storing the logs and associated index
structures to support cheap search must also be low.

Current approaches to log management represent two extremes
in the trade-off between storage and compute costs. Traditional
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solutions like Splunk, Datadog and OpenSearch maintain dedicated
servers that are always running, coupling compute and storage.
While these systems provide fast query performance through full-
text search indices kept "hot" in memory/disk, they require orga-
nizations to continuously pay for expensive compute resources
regardless of actual query volume, making them cost inefficient in
cases where the logs are less frequently accessed [15, 39, 47, 52].

The alternative approach, adopted by systems like Grafana Loki,
Datadog Flex logs, or simply storing and querying compressed files
on object storage [16, 25, 45, 52], decouples compute and storage by
eliminating always-on servers and storing unindexed compressed
logs. However, without index structures, these systems must re-
sort to brute-force scanning, which becomes expensive at scale -
e.g. Datadog’s new Flex log offering can cost tens of thousands
in reserved compute capacity [49]. While this serverless approach
works for sporadically queried audit logs, the per-scan compute
costs quickly make it more expensive than traditional solutions for
frequently accessed logs.

We show that object storage-native full-text search indices solve
the high query cost problem in compute-storage decoupled log
management systems. Drawing on recent advances in data lake
indexing [41, 54], we build LogCloud, which maintains complete
storage-compute separation through indices optimized for efficient
cold access, eliminating always-on servers while reducing query
costs. This positions LogCloud as the most cost-effective solution
across a large range of intermediate query loads where integrated
systems’ high upfront costs are not justified and disaggregated
systems’ high per-query costs become inefficient.

LogCloud first uses a state-of-the-art log compression system,
LogGrep, to drastically reduce the amount of text that has to be
indexed by breaking logs down into template and variable compo-
nents (e.g. unique resource identifiers (URI) like kube pod names)
[52]. LogCloud then constructs inverted indices on the variables.
The main technical challenge addressed in LogCloud is designing
an inverted index that supports efficient substring search on
object storage with minimal storage overhead. We address
this challenge using an FM-index based on the Burrows Wheeler
Transform (BWT). While FM-indices have been extensively studied
for disk/RAM settings [2, 11, 23, 24, 27], their traditional implemen-
tations are poorly suited for object storage due to its high access
latency. We propose a novel implementation specifically optimized
for object storage that significantly improves search latency while
maintaining high compression ratios.

In summary, this paper makes three key contributions:
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e Propose object-storage-native indices as a solution to the high
query cost problem for compute-storage decoupled log manage-
ment systems by avoiding scanning the entire dataset.

o Address latency and size challenges in the inverted index through
a novel FM index and suffix array optimized for object storage.

e Experimentally demonstrate that LogCloud enables interactive
search over TB-scale compressed logs on object storage in under
10 seconds on a single machine, achieving comparable or better
performance than dedicated log search services like OpenSearch
UltraWarm with less than 10% of the storage footprint on five
public log datasets. This translates to a >10x total cost of owner-
ship (TCO) saving for large log datasets on over four orders of
magnitude of total query load at a 12-months operating horizon.

2 MOTIVATION

A full-text index for compressed logs that supports efficient query-
ing directly from object-storage is key to LogCloud’s goal of low-
ering query cost while maintaining compute-storage decoupling.
While attempting to adapt prior full-text indexing and log compres-
sion techniques to an object storage environment, we encountered
significant challenges due to its high read latency. These challenges
led us to develop novel adaptations of the FM-index and suffix array
specifically optimized for object storage.

2018=06=27100:00:07,771! DEBUG org.apache.hadoop.hdfs.server.datanode.DataNode:
Sending heartbeat with 1 storage reports from service actor: Block pool
BP-596011733-172.18.0.2-1528179317196 (Datanode Uuid
c3bb40ae-c869-4eal-ad0a-94£4£39bb5c6 ) service to master/172.18.0.2:8200

Figure 1: Logs are typically made up of fixed templates and
changing variables, which are highlighted in yellow. Logs
that do not fit into common templates are called outliers.

2.1 Background: Inverted Indices after Log
Compression

Recent work like CLP and LogGrep has demonstrated that logs
are highly repetitive and can be effectively compressed by exploit-
ing static and runtime patterns, as shown in Figure 1 [44, 52, 53].
Almost all logs can be decomposed into repeated templates and
variable components (e.g., request IDs or pod names, typically long
pseudo-random alphanumeric URIs). LogCloud uses LogGrep to
first decompose logs and indexes the variable components only.
The templates, typically small in size, can be brute force searched.

To build the index itself, we leverage an inverted index structure
that maps each variable to a posting list - an ordered collection
of document IDs and positions where the token appears. These
tokens are stored in a term dictionary, a collection of all unique
tokens with pointers to their posting lists. The challenge lies in
efficiently managing the secondary index needed to quickly look
up tokens in this term dictionary, which can grow to multiple GBs
when dealing with URI-style variables. Two popular approaches
for this secondary index are finite state transducers (FST), used by
ElasticSearch, OpenSearch, and M3DB [20, 34, 36, 39], and sorted
string tables (SSTables) [40], adopted by systems like Cassandra
and Quickwit [17, 32, 43].

2.2 Challenge: Substring Searches on URIs

While both FSTs and SSTables enable efficient prefix (query) and
exact-match string queries on these variable tokens, they lack sup-
port for efficient substring (xquery) searches. Some systems (Quick-
wit, Cassandra) simply do not support substring search, while oth-
ers (ElasticSearch) cannot efficiently use the secondary index and
perform expensive scans of the term dictionary [20, 32, 43].

In search engine use cases, a term dictionary scan is acceptable, as
the size of the language vocabulary does not grow linearly with the
amount of text being indexed. However, as shown in Figure 1, the
term dictionary here consists of unique resource identifiers (URIs)
whose number increases linearly with the size of logs being indexed.
We will show in Section 5.2 that scanning this term dictionary can
be very expensive for larger datasets.

Substring searches are critical for observability and cybersecurity
use cases [9, 30, 46]. For example, an engineer troubleshooting a
service outage might search for a partial URI ‘172.18.0.2’ embedded
in a larger URI, as shown in Figure 1, to correlate across log sources.
As a second example, a security analyst investigating potential
threats needs to search for partial IP addresses or domain fragments
in network logs to identify suspicious traffic patterns (e.g., searching
for "10.0.0." to find all matching IPs, or "xyz" to detect traffic to
suspicious top-level domains). In addition to these practical use
cases, users often rely on substring queries rather than prefix or
exact matches to ensure comprehensive results, particularly when
the log management framework’s tokenization scheme is unfamiliar
and missing matches is unacceptable.

In the authors’ experience operating large-scale distributed sys-
tems in industry, substring queries dominate incident response
workloads to debug failures and detect intrusions. Efficient support
for substring queries is thus a basic requirement for LogCloud.

2.3 Solution: The BWT and FM-index

What object-storage based secondary index would allow efficient
substring searches on the term dictionary? Apart from FSTs and
SSTables, two other full-text indexing approaches have been pro-
posed in literature. The first are grammar-based compression ap-
proaches like Sequitur [10, 12, 38, 55, 56] and the second are suc-
cinct data structures like the Burrows Wheeler Transform (BWT)
[2, 11, 23, 33]. We choose the second approach in LogCloud for two
reasons. First, grammar-based approaches heavily rely on repeated
subwords that occur frequently in natural language text but rarely
occurs in the URIs that we are indexing. Second, while the com-
pression costs of Sequitur-based algorithms can be prohibitively
high, efficient industrial-grade implementations for performing the
BWT exist [33, 37, 55].

LogCloud uses the FM-index based on the BWT, an example
of which is shown in Figure 2. The FM-index is a common data
structure typically used in bioinformatics to perform substring
searches in DNA read mapping. To obtain the BWT of an input text
corpus (the term dictionary in our case), generate a matrix of cyclic
permutations of the corpus, i.e. all the rotations of BANANA in
the example. Then, these permutations are sorted lexicographically.
The last column from the array of suffixes, highlighted in the red
box, is called the BWT [22].
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Each leaf node corresponds to a character in the alphabet,
where the path to the leaf node corresponds to the character's
binary encoding.
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Figure 2: Summary of BWT and FM-index on the input string
BANANA. For a more illustrated reference see [50]. We show
a simple FM Index and a wavelet tree FM-index. To compute
rank(B,4) with a wavelet tree, we first lookup B’s binary rep-
resentation 01. Since the first digit is 0, we find rank(0,4) = 2
in the bitvector at the root node. Then we go down the left
branch and find rank(1,2) = 1 as the result.

Algorithm 1 Iterative Substring Search using FM-index with BWT

1: procedure FM_SEARcH(P, BWT) » P is the substring to search
2 [ < 0,r « |BWT|

3 C « counts of each character in BWT

4 for i — |P| down to 1 do

5: | « C[P[i]] + rank(P[i],])

6 r « C[P[i]] + rank(P[i],r)

7 if [ > r then return "Pattern not found"

8 end if

9 end for

10: return Pattern found between BWT positions [ and r
11: end procedure

The BWT is used to construct the FM-index, which allows ef-
ficient substring searches. The FM-index enables efficient com-
putation of rank(c, i), defined as how many times character ¢ has
appeared up to position i in the BWT. Assuming rank(c, i) can be effi-
ciently computed for all characters in the alphabet and all positions
in the BWT, Algorithm 1 is commonly used to find all occurrences
of a substring P in the input text corpus using the rank operation
repeatedly [23]. Figure 2 shows the simplest FM-index, which just
records this number for all ¢ and all positions.

The FM-index is typically implemented with a wavelet tree in
RAM or disk-based used cases [27, 31, 35]. The wavelet tree com-
presses the BWT into a binary tree, where each node contains a
bitvector. To retrieve the rank of a character, the tree is traversed
from the root with rank operations done on the bitvectors at each
node. A tree traversal for the BWT "ABNNAA" is in Figure 2.

The result of Algorithm 1 indicates the query pattern is found
between positions [ and r of the BWT, which needs to be mapped
back to locations in the original text corpus. This can be done very
quickly with a list that records the offset in the original corpus that
corresponds to each position in the BWT, called the suffix array.
However, this is a list of integers as long as the original text corpus,
and is in general very poorly compressible. A common technique
used in literature is the sampled suffix array, which stores only

offsets for every K positions. If a position i’s offset is not stored,
the FM-index has to be repeatedly consulted to relate position i’s
offset to i — 1’s offset until a sampled location is hit [2, 23].

2.4 Challenge: Query Latency on Object Storage

To the best of our knowledge, all existing implementations of the
FM-index have targeted disk or in-memory scenarios. This is be-
cause the FM-index is typically used to map short reads against a
reference genome, which rarely exceeds several GBs in size. How-
ever, in our scenario, we would like the index to reside on object
storage, which has a higher read latency of tens of milliseconds
[18]. This raises two critical challenges for the standard wavelet
tree FM-index implementation.

The first challenge is the latency of substring search with
the wavelet tree. In a wavelet tree, each rank operation takes
O(Hc) sequential random reads, where Hc denotes the entropy of
the alphabet. Since we are constructing the index on pseudorandom
variables like URIs, the entropy is the log of the size of the alphabet.
Thus for alphanumeric variables, around six sequential reads to
object storage are required to compute one rank operation with
the wavelet tree. Algorithm 1 shows that we compute |P| rank
operations sequentially. Long queries such as ‘nginx-554b9¢67{9-
c5cv4’ can require tens of rank operations, which translates to
hundreds of sequential read requests to the object storage.

The second challenge relates to the latency of accessing
the sampled suffix array used to map BWT positions back to
locations in the input text. While accessing the FM-index up to K
times for each mapped BWT position can be acceptable when the
FM-index is in memory or on disk, it incurs unacceptable latency
for object storage. This is particularly problematic as hundreds of
positions potentially have to be mapped. Even though querying
each position can be parallelized, making thousands of small con-
current requests to object storage may run into S3 request throttling
[3]. Alternatively, one could opt to store the full suffix array, but it
has a very high storage footprint, which would annul the benefits
we obtain from log compression [23].

3 OBJECT STORE NATIVE INVERTED INDEX

LogCloud effectively tackles the two challenges by focusing on the
I0-bound and latency-bound nature of object storage, where data
retrieval is significantly more expensive compared to processing
the data and retrieving 1 byte and 1 MB have similar latency.

Based on these observations, we introduce two key innova-
tions: (1) a custom object storage-optimized FM-index that re-
duces sequential requests for substring queries from O(Hc¢|P|) to
O(|P]), and (2) a range-reduced full suffix array approach that main-
tains performance while drastically reducing storage requirements
through effective compression. Together, these innovations adapt
the FM-index and suffix array to address the challenges of efficient
log search on object storage.

3.1 Fast Search with Custom FM-Index

We tackle the first challenge through a novel object-storage-
optimized implementation of the FM-index, reducing the se-
quential requests for a substring query of length P from O(Hc|P|) to
O(|P]) versus the standard wavelet tree implementation. The BWT



is divided into fixed-size chunks, and we compress each chunk and
store the rank of every character in the BWT up to the beginning
of the chunk in each chunk. The details are in Algorithm 2. The
built chunks can be stored contiguously on object storage together
with an offsets array that contains the byte range of each chunk.
Algorithm 3 can then be used to compute rank(c, i).

Algorithm 2 Build Chunks for Custom FM Index

1: function BUiLDCHUNKS(BWT, chunk_size(cs) = 4M)
2 chunks < [], ranks « {c : 0 for c € 3}
3 for i < 0to [|[BWT|/cs]—1do
4 chunk « (compress(BWT[i-cs: (i+1) - cs]), ranks)
5 ranks[c] « ranks|c] + count(¢, BWT[i-cs: (i+1) -
cs]) for ¢ € ¥ > Update global ranks with counts in this chunk.
chunks.append(chunk)
end for
return chunks
end function

Algorithm 3 Rank Computation using Custom FM Index

1: function RANK(c, i, chunks, chunk_size (cs))

2 chunk « chunks[|i/cs]] » Locate chunk containing pos i
3: text, ranks < chunk > Chunk contains compressed BWT
and the ranks of each character up to the start of the chunk

4 local_pos < i mod cs

5 decompressed «— decompress(text)

6 local_count « 0 > Compute rank of ¢ in this chunk.
7: for j « 0 to local_pos do

8 if decompressed|j] = c then

9 local_count « local_count + 1

10: end if
11 end for
12: return ranks[c] + local_count » Final rank = rank up to

this chunk + local rank.
13: end function

This approach requires reading just one chunk to compute the
rank and is much simpler than the wavelet tree design. This im-
plementation, inspired by the original FM-index implementation
based on the occurrences matrix and Jacobson’s rank [22, 29], is
not popular for typical disk/RAM-based FM-index implementa-
tions because the rank calculation within the chunk is now done
on characters, which is much more compute-intensive than rank
calculations on bits that have hardware acceleration like popcnt
instructions. However, in our I0-bound scenario this computation
cost is easily eclipsed by the read cost.

Another reason why this approach is not typically preferred
is because uncompressed, it takes around the same space as the
input corpus. The wavelet tree representation comes with native
compression as the storage footprint of each character is the size of
its binary encoding (e.g. Huffman code). However, we can compress
each character chunk in our FM-index using generic compression
like Zstd [21] and decompress the chunk upon reading. Decompres-
sion adds too much overhead for disk/RAM-based FM-indices since

Suffix Array Term Dictionary Suffix Array Term Dictionary
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Figure 3: Range reduction to compress the suffix array.

reading is fast, but again acceptable in our IO-bound case: decom-
pressing a chunk in memory is much faster than downloading the
chunk from object storage. For example, downloading 512 300KB
Zstd compressed chunks from S3 in parallel is only 5% slower than
downloading and decompressing them concurrently, compared to
70% slower from NVMe SSD on an r6id.2xlarge instance on AWS.

3.2 Full Suffix Array with Range Reduction

We resolve the second challenge by storing a heavily com-
pressed full suffix array instead of a sampled suffix array.
The FM-index points us to positions / and r in the BWT. We rely on
the suffix array to map these positions back to offsets in the term
dictionary. As discussed in Section 2.3, the suffix array contains as
many 64 bit integers as characters in the term dictionary, whose
massive size can negate any of our log compression benefits.

Similar to the FM-index, we store the full suffix array in chunks,
and compress each chunk. To fetch positions [ to r, the chunks
containing those positions are downloaded and filtered for these
positions. However, if the chunks contain byte offsets of the posting
lists in the term dictionary (Figure 3a), they are still very poorly
compressible because they would contain a wide range of large
integers with minimal patterns or repetition, making standard com-
pression algorithms like Zstd ineffective at reducing their size.

In LogCloud, instead of storing offsets into the original term
dictionary, we break the term dictionary into chunks, and only
record the chunk number in the suffix array (Figure 3b). Even
though we still have to store the same number of integers as the
naive approach, the dynamic range of each integer is reduced by
several orders of magnitude. Subsequent positions in the suffix
array are also now more likely to be identical. This makes generic
compression like Zstd very effective on the suffix array. We call
this optimization technique range reduction.

This optimization is motivated by the observation that byte-
range GET requests on object storage up to around 1MB are all
latency bound and have roughly the same speed. As a result, it
is unnecessary for the secondary index to point us to the exact
20-byte term in the term dictionary. It is sufficient to point to the
1MB chunk that contains the term, then download and scan the
chunk exhaustively to locate the term. The scan cost is usually
insignificant compared to the download.

4 LOGCLOUD ARCHITECTURE

We now discuss how the novel object-storage native inverted index
fits in the overall architecture of LogCloud. LogCloud consists of
two key components, indexing and querying, shown in Figure 4.



Write|latest data to
§€ ] Ingestion Parquet files _
kafka Service Parquet
-% . Reads| Parquet files
Indexing
Kuberetes Service
[ LogCloud
Constructs index Index
and uploads to
object storage
LogCloud
Search

Client

Grafano Parquet

ﬁ

Grafana Server

Object Storage

Figure 4: LogCloud’s architecture.

4.1 Indexing

Similar to other compute-storage decoupled log management sys-
tems, LogCloud runs an ingestion pipeline that dumps logs in Par-
quet format on object storage. What sets LogCloud apart from
other such systems is that it also runs an indexing service. Once a
configurable amount of new logs have been collected, a LogCloud
inverted index is built on the new data. We select Parquet to store
the raw logs due to its mature support for compression and other
analytics engines like SparkSQL, which can be used to supplement
LogCloud. LogCloud can also directly index logs in Parquet ingested
by another system, e.g. AWS Security Lake [6, 13, 45].

During indexing, we first use LogGrep [52] to break down in-
gested logs into template and variable components, categorizing
variables into 64 types based on their character composition (e.g.
only numeric, alphanumeric etc) [52]. For each type, LogCloud
builds an inverted index with a term dictionary divided into 1IMB
chunks, as described in Section 3.2. The posting list points to Par-
quet pages, which are chunks of a few hundred KBs of compressed
data. We find that we can download and search hundreds of Parquet
pages in parallel in hundreds of milliseconds from an EC2 instance
with a heavily optimized custom Parquet reader in Rust.

If the compressed term dictionary exceeds 5MB, we construct
the secondary FM index and suffix array described in Section 3.1
to efficiently look up term dictionary chunk numbers from sub-
string queries. Otherwise, we simply scan the term dictionary. Alto-
gether, a LogCloud index file contains the templates, term dictionary
chunks, and optionally the FM index and suffix array.

4.2 Searching

LogCloud provides an embedded client library to search its index
and Parquet files on object storage. This offers flexible deployment
options anywhere that can access the object storage bucket con-
taining these files, such as on a Grafana server or on a serverless
function. The search functionality operates completely indepen-
dently from indexing and requires no always-on servers.

The search process for a top-K substring query is illustrated in
Figure 5. The latest unindexed data is scanned in Parquet directly.
LogCloud queries all the built LogCloud indices in parallel. To query
each index, the following steps occur:

Top K search *nginx-554b9c6 Search newest
| unindexed data directly

Common tokens, templates Index 0
Search
different
Search indices indices in
of all matching parallel
variables types

Suffix Array

Term Type 53 variables
Dictiona
Chunks i l I"I‘r"z"e'id Index 1

e [1000000CIOL]

Figure 5: Searching workflow in LogCloud. All data structures
shown in boxes are stored on object storage.

o The extracted templates are downloaded from object storage and
searched exhaustively. If the substring query matches here, the
searcher will simply abort using the index and brute force search
all the Parquet files since the target substring occurs frequently.

e URI substring searches, e.g. “#55493x”, will not match common
templates, leading the searcher to search the inverted indices for
the variables, described in Section 3. The LogGrep type of the
query is determined and the inverted indices for all “compatible”
types are searched in parallel. A compatible type is a type that
could contain the type of the query. For example, if the query
contains only numbers (type 1 in LogGrep), the type containing
all alphanumerics also must be searched (type 53).

o The search client first queries our custom FM-index to find posi-
tions [ and r in the suffix array as described in Algorithm 1, then
retrieves term dictionary chunk numbers from the suffix array
between these positions. The chunks are downloaded and regex
searched for matches, with any matches leading to retrieval and
search of the referenced Parquet file pages.

Certain parts of the index, like the templates and FM-index
metadata, are small and accessed repeatedly across queries. While
these characteristics make them ideal candidates for client-side disk
caching, we do not explore this in our evaluation to maintain a
straightforward comparison with other systems due to the high
variability in cache-hit rates across various log analytics use cases.

5 RESULTS

We compare LogCloud against two representative baseline systems:
OpenSearch UltraWarm, which exemplifies compute-storage inte-
grated indices, and LogGrep, which represents the compute-storage
disaggregated approach of downloading and scanning compressed
logs [5, 52]. For the LogGrep baseline, we compress the logs us-
ing LogGrep and store them in object storage. During search, the
compressed logs are downloaded and searched on NVMe SSD.

We use four LogHub datasets, HDFS (1.5GB), Thunderbird (30GB),
Hadoop (17GB), Windows (26GB) [52, 57], as well as a 429GB dataset
named Cluster from [44]. For each dataset, we test three search
queries: common keyword, exact-match URI, and substring URI,
returning top 1000 results. For example, on the Hadoop dataset, we
search for ‘blk_1076115144%’, ‘+1076115144+" and ERROR.
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Figure 6: Storage footprint comparisons across five datasets.

We run LogCloud and LogGrep searcher on a single réi.xlarge
EC2 instance (4 vCPUs, 32GB RAM) [51], with LogCloud indices,
Parquet files and LogGrep compressed files stored on AWS S3 in
the same region. AWS OpenSearch UltraWarm uses three r7g.large
nodes (2vCPU, 16GB RAM) and three ultrawarm1.medium instances
(2vCPUs, 15.25GB RAM). All measurements are repeated five times,
with the standard deviation shown where applicable.

5.1 Storage Footprint

First, we compare the storage footprint of the different log manage-
ment solutions in Figure 6. For LogCloud we show both the size of
just the Parquet files and the total size with the index files. Across
all five datasets, LogCloud (Parquet + index) achieves 11.8x ge-
omean lower storage footprint against OpenSearch and 2.8x larger
storage footprint compared to LogGrep. The LogCloud index it-
self achieves 93x geomean lower storage footprint compared to
OpenSearch and 2.8x lower compared to LogGrep. We make the
following observations:

e Consistent with prior findings [44, 52], OpenSearch exhibits
poor space efficiency, with its index size approaching that of
the raw uncompressed logs. Moreover, OpenSearch UltraWarm
incurs additional operational costs due to its requirement for
continuously running servers, described more in Section 5.3.

e For most log types, LogCloud storage size is dominated by the
Parquet files. As expected, LogGrep’s storage footprint is smaller
since its log-specific compression outperforms the Zstd compres-
sion used in Parquet [52].

The second observation raises the question if we can further im-
prove the storage footprint by moving away from Parquet: instead
of Parquet’s zstd compression, we could use LogGrep to compress
chunks of logs and have LogCloud’s posting lists point to those
chunks. However, this would sacrifice crucial interoperability with
external SQL engines and data lakes [1, 7, 45].

5.2 Search Latency

In Figure 7 we show the search performance of the three different
query types on the five log datasets with OpenSearch, LogGrep and
LogCloud. We break down the LogGrep runtime into the time it
takes to download the compressed logs and the time to search the
downloaded files on disk. We break down the LogCloud runtime
into searching the index on object storage and downloading and
filtering the matched Parquet pages.

On the queries on common tokens such as "ERROR" that match
log templates, LogCloud sidesteps the inverted index and directly
searches Parquet files, spending almost no time in index search.
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Figure 7: Search times for different query types across five
public log datasets with breakdowns between search and
download for LogGrep and index and Parquet for LogCloud.
Bars exceeding the y-axis are annotated.

This leads to a 2.2x geomean speedup over OpenSearch and 5.0x
over LogGrep, consistent over almost all log types.

For URI queries, LogCloud’s index search dominates query time
over Parquet page retrieval, as expected for an effective inverted
index. OpenSearch UltraWarm’s FST-based secondary index outper-
forms LogCloud on exact matches (2.5x geomean faster on average),
except for Windows. However, LogCloud is 3.6x faster on substring
queries which bypass OpenSearch’s FST index, achieving up to
7.5x speedup on the largest Cluster dataset. Most notably, Log-
Cloud matches this performance using only S3 storage instead of
OpenSearch’s disk/RAM-based indices, demonstrating competitive
serverless query performance without the costs of warm storage.

On the small dataset Hdfs, LogGrep performs better than Log-
Cloud since the compressed logs can be quickly downloaded and
scanned. However, it performs over 10x worse on the larger datasets
like Hadoop and Cluster, where the search time on disk actually
eclipses download time. Since LogGrep does not rely on indices, it
has to exhaustively scan all the variables, causing its poor scala-
bility. As a result, on URI queries, LogCloud is 22x geomean faster
than LogGrep for Hadoop and 12x for Cluster.

5.3 Total Cost of Ownership

Our analysis so far across log volumes ranging from 1.5GB to
429GB demonstrates that LogCloud consistently maintains a middle
ground between LogGrep and OpenSearch in terms of storage foot-
print and search latency. We now examine how these performance
characteristics, combined with indexing costs, influence the total
cost of ownership (TCO) of the log management system.

The precise question we seek to answer is given a log dataset
and a fixed operating horizon, say 12 months, what is the most
cost effective system for a particular total query load? To answer
this question, we estimate the TCO of OpenSearch, LogGrep and
LogCloud as follows:

e OpenSearch UltraWarm is typically operated as a longrun-
ning cluster, where the cost consists of many components such
as searcher nodes, UltraWarm nodes, EBS cost and S3 cost for
UltraWarm. While the operating cost of the smallest OpenSearch
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Figure 8: LogCloud’s TCO savings compared to the cheaper
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cluster could easily exceed $1500/month [5], we adopt a strict
lower bound of this TCO here, which is just the storage cost of
the primary shard of the index in S3 and the smallest required
UltraWarm node ($174/month), ignoring ingestion cost.

e LogGrep’s cost can be estimated as: compression cost (compres-
sion time X cost of EC2 instance) + storage cost (compressed logs
size X S3 cost) + search cost (representative search latency X cost
of EC2 searcher instance X the total number of queries).

e LogCloud’s operating cost can be computed with the same com-
ponents as LogGrep. In this case, the storage footprint contains
both the Parquet and the LogCloud index. LogCloud builds more
indices on top of LogGrep, having a 10.7x geomean higher in-
dexing cost on all the log types. However, the absolute cost is
still quite low, only $3.6 on the 429GB Cluster dataset and less
than $1 on all other datasets.

o In addition, we add another TCO comparison against Datadog
Flex logs. We use the Flex “Starter” pricing at $0.1/GB ingested
and $0.6 per million records per month. Datadog also offers Flex
pricing with $0.05 per million record per month with a fixed
compute commitment, though the smallest such commitment
would exceed the cost of all other systems considered here [49].
We also considered Grafana Loki [26], though we found LogGrep
to be more economical in all cases.

We estimate the representative search latency for LogGrep and
LogCloud here by averaging the latencies of different types of
queries in our benchmark. Based on this estimate of the representa-
tive search latency, we can then compute the TCO at different query
loads. In Figure 8, we plot LogCloud’s TCO saving over the next
best approach at different query loads for the different log types
with a 12 months operating horizon. We make two observations:

First, the plot exhibits a distinctive peak shape. OpenSearch
UltraWarm and Datadog have free search cost but high storage
cost, LogGrep is the opposite, while LogCloud is in between the
two approaches. As a result, at very low query loads LogGrep is
more cost efficient whereas at high query loads OpenSearch is more
efficient. The peak occurs where OpenSearch or Datadog surpasses
LogGrep in terms of cost efficiency: we find OpenSearch to be
more cost efficient than Datadog for Thunderbird and Cluster, with
Datadog better on the other three datasets. These systems surpass
LogCloud in cost efficiency at around 107 queries.
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Figure 9: LogCloud index search times for exact and substring
queries with custom FM-index vs wavelet tree. The solid line
denotes the TCO profile of the custom FM-index, whereas
the dashed line indicates that of the baseline wavelet tree.
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Figure 10: LogCloud component sizes with (left bars) and
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Second, for large-scale datasets like Hadoop and Cluster, Log-
Cloud achieves optimal cost-efficiency in a "sweet spot" query vol-
ume range spanning around four magnitude from 1000 to 107 total
queries, where it can be up to 15x cost-effective than alternatives.
Importantly, we note that the total range of queries where Log-
Cloud wins is consistent across the different log types, enabling
practitioners to reliably predict its effectiveness for new log sources.

5.4 Ablation Studies

LogCloud’s main technical novelty lies in the custom FM-index
described in Section 3. In Figure 9, we show LogCloud’s index
search time with an optimized wavelet tree implementation [23, 28].
The subsequent Parquet access speed is not compared as it is the
same between the two strategies, which download the same pages.
We skip this analysis for the Windows dataset as no secondary
index was constructed. Across the remaining queries, our custom
FM-index achieves a geomean 2.2x speedup over the wavelet tree
baseline, significantly increasing LogCloud’s TCO advantage.

In Section 3.2, we introduce the range reduction optimization
that compresses the suffix array by storing term dictionary chunk
numbers instead of individual term offsets. In Figure 10, we show
that for three log types, the suffix array was the largest component
before this optimization. The optimization reduces the suffix arrays’
size by geomean 8.8x, after which the Parquet files dominate the
storage footprint, marking diminishing returns for further index
size optimizations. Tuning the term dictionary chunk size provides
direct control over the suffix array size - Figure 11a shows we can
reduce it by nearly 90% (from 286MB to 30MB) simply by adjusting
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Search, LogGrep and LogCloud.

the chunk size from 10KB to 4MB, while the FM-index size remains
relatively stable. However, this reduction has a tradeoff: as shown in
Figure 11b, larger chunks require more exhaustive scanning during
searches, increasing substring query times from 1.7s to 3s.

5.5 Scalability

Our evaluation shows that LogCloud maintains both low storage
footprint and search latency scaling to datasets up to 429GB, achiev-
ing up to 10x TCO savings by avoiding OpenSearch and LogGrep’s
poor scalability at high scale due to the lack of appropriate indexing
support. In this section, we control for the variability in log content
and examine LogCloud’s scaling along two axes, dataset size and
operating horizon, by examining just the Cluster dataset.

In Figure 12a, we plot the TCO savings curve for the Cluster
dataset at different subsampled sizes. We see that the cost benefits
of LogCloud increases significantly at larger dataset sizes over a
stable range of total queries of around four orders of magnitude,
confirming LogCloud’s advantage at higher scales over OpenSearch
UltraWarm and brute-force scanning with LogGrep.

Figure 12b shows how operating horizons affect LogCloud’s TCO
curve. LogCloud’s cost advantages increase with longer durations
before converging. With longer operating times, LogCloud becomes
cost-effective at higher query volumes but maintains advantages at
high loads. This shift is beneficial since longer operations typically
involve higher query volumes.

5.6 Production Test Case

We also tested LogCloud on the real production logs generated by
a hosted service of a major public cloud provider, with the biggest
around 1.2TB in size. The logs are produced in Json format and
currently stored and queried in self-hosted ElasticSearch hot-tier
with a set retention period. We tested LogGrep and LogCloud using
the same configurations as the open source datasets.

Figure 13 shows that similar to the public log datasets, LogCloud
significantly reduces storage footprint compared to ElasticSearch,
achieving geomean 8x on the five datasets. We also show the per-
formance of nine URI substring queries on log types C, D and E. As
expected, LogGrep performs acceptably on the smaller dataset C,
but is much worse than the other two options on the larger datasets
D and E. In contrast to OpenSearch UltraWarm used on the public
log datasets, the ElasticSearch hot-tier service stores the index en-
tirely in memory/SSD, leading to even lower search latencies for
prefix and exact URI queries. However, it is still significantly slower
for substring queries, particularly for very large datasets such as
E. For these queries, we see LogCloud’s pure object-storage based
design can still outperform ElasticSearch by geomean 2x.

6 RELATED WORK AND CONCLUSION

In conclusion, LogCloud represents an emerging third category of
cloud OLAP systems: indexed disaggregated systems, which strikes
a middle ground between compute-storage integrated systems like
ElasticSearch, OpenSearch and Splunk suitable for very high query
loads [20, 39, 48] and compute-storage disaggregated systems like
BigQuery, LogGrep, and data lakehouses which excel at low query
loads [1, 4, 8, 14, 52]. Other indexed disaggregated systems include
Apache Hudi’s B-Tree indices and Hyperspace’s external indices
[41, 42, 54]. While they primarily focus on developing scalable
algorithms for key lookup using tree-based indices or materialized
views to speed up SQL operations, LogCloud explores specialized
indices optimized for log search operations. We have open-sourced
LogCloud! to enable further research.
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