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Regions Review

*+ A region is a (typed) collection

+ Regions are the cross product of
- An index space
- A field space

+ So far we've seen regions with N-dim index
spaces
- E.g., intld, int2d, int3d
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Example 19

Equal Partitioning
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+ Recall: There is a simple way to partition a
region into chunks of (approximately) equal
size

+ Example 20
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Partitioning By Field

+ A field can be used as a coloring

+ Write elements of the color space into the
field f

- Using an arbitrary computation

* Then call partition(region.f, colors)
- Example 27
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Partitioning, Digression

+ Why do we want to partition data?
- For parallelism
- We will launch many tasks over many subregions

+ A problem

- We often need to partition multiple data
structures in a consistent way

- E.g., given that we have partitioned the nodes a
particular way, that will dictate the desired
partitioning of the edges
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Dependent Partitioning

+ Distinguish two kinds of partitions

* Independent partitions

- Computed from the parent region, using, e.g.,
+ partition(equals, ... )
+ partition(region.field, ...)

 Dependent partitions
- Computed using another partition
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Dependent Partitioning Operations

* Image
- Use the image of a field in a partition to define a
new partition

* Preimage
- Use the preimage of a field in a partition

+ Set operations

- Form new partitions using the intersection, union,
and set difference of other partitions
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Example 21 Example 22

+ Partition the nodes
- Equal partitioning

*+ Then partition the edges
- Preimage of the source node of each edge

* For each node subregion r, form a subregion
of those edges where the source node is inr
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* Partition the edges
- Equal partitioning

+ Then partition the nodes
- Image of the source node of each edge

* For each edge subregion r, form a subregion
of those nodes that are source nodes inr
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Discussion

+ Note that these two examples compute almost
the same partition

+ Can derive the node partition from the edges,
or vice versa
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Example 23

+ What would the example look like if we
partitioned based on the destination node?

- Let's find out ...
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Set Operations: Set Difference

* Partition the edges
- Equal partition

+ Compute the source and destination node
partitions of the previous fwo examples

* The final node partition is the set difference
- What does this compute?
- Examples 24 & 25

Prof. Aiken CS 315B Lecture 5 15

Set Operations: Set Intersection

* Partition the edges
- Equal partition

+ Compute the source & destination node
partitions

+ Final node partition is the intersection
- What does this compute?
- Example 26
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Example 28

+ Same as the last example

+ Once the final node partition is computed,
compute a partition of the edges such that
each edge subregion has only the edges
connecting the nodes in the corresponding
node subregion
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Examples 29

+ Pointers point into a particular region
- And this is part of the pointer's type

+ Partitioning can change which region(s) a
pointer points to
- May lead to typechecking issues, depending on
which region you want to use for an operation
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Example 30

+ The right way to fix type issues is to use type
casts

+ Very analogous to downcasting from a more
general object type to a more specific object
type in an object-oriented language

+ But, this solution does not currently work!
- Casting of region types not yet implemented
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Example 31

-+ The fix/workaround is to use wild in field
space arguments when allocating regions

+ Wild effectively turns off typechecking for
those region arguments.
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Backing Up ..

+ Regent's partitioning mechanisms are very
different from other languages

+ What do those other languages provide?
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One Extreme: Simplicity

+ PGAS languages (e.g. X10, UPC, Chapel) generally
provide only Simple array-based distribation methods

- e.g. block, cyclic, blockcyclic

* Pros:
- simple for programmer to describe
- simple for compiler to verify consistency
- simple for runtime to implement

+ Cons:

- no support for irregular (or even semi-regular) data
structures

- no support for irregular partitions of structured data
- no support for aliased or multiple partitions
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Other Extreme: Expressivity

Initial Legion Ear"riﬂoning used general-purpose coloring
object for ALL partitioning operations
- Application able to color each element any way it wants

Pros:
- support for arbitrary irregularity in data and/or partitioning
- support for aliased partitions, multiple partitions

Cons:
- significant programmer effort to describe even simple partitions
- no ability for compiler to check that related regions are
partitioned consistently
- high runtime overhead for computing and querying partitions
- manipulation of coloring was serial, limited to single node
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Dependent Partitioning

A carefully chosen middle ground between these two extremes
Supports both structured and unstructured domains

Allows arbitrary independent partitions to be computed by the
application

- But uses field data to capture intent rather than a coloring

- Index-based partitions cover PGAS-like simple cases

Provides an analyzable set of operations to compute dependent
partitions from other partitions

- Based on reachability and/or set operations

- Consistency of dependent partitions can be verified at compile time

And can be executed in parallel

Prof. Aiken CS 315B Lecture 5 24




Programmer Productivity Summary

* Lines of code for computation of dependent * The built-in partitioning operations are
partitions in Regent applications: - Expressive
Dependent - Can execute in parallel
Original Partitioning - Can be analyzed by the Regent implementation
Application LOC LOC Reduction
?:}?E:XNT }23 S 325;2 * Except for explicit coloring objects
MiniAero 51 7 86% - Inherently not parallel

* Not a perfect metric
- Take with however much salt you like...
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