Regent: More on Regions

CS315B
Lecture 5

Prof. Aiken CS 315B Lecture 5

Regions Review

*+ A region is a (typed) collection

+ Regions are the cross product of
- An index space
- A field space

+ So far we've seen regions with N-dim index
spaces
- E.g., intld, int2d, int3d

Prof. Aiken CS 315B Lecture 5

Example 19

Equal Partitioning

=

source dest

Nodes

{—7—_ Edges

V| | N|o| G| »| W[N[=| O

Prof. Aiken CS 315B Lecture 5 3

+ Recall: There is a simple way to partition a
region into chunks of (approximately) equal
size

+ Example 20

Prof. Aiken CS 315B Lecture 5

Partitioning By Field

+ A field can be used as a coloring

+ Write elements of the color space into the
field f

- Using an arbitrary computation

* Then call partition(region.f, colors)
- Example 27

Prof. Aiken CS315B Lecture 5

Partitioning, Digression

+ Why do we want to partition data?
- For parallelism
- We will launch many tasks over many subregions

+ A problem

- We often need to partition multiple data
structures in a consistent way

- E.g., given that we have partitioned the nodes a
particular way, that will dictate the desired
partitioning of the edges

Prof. Aiken CS 315B Lecture 5 6

Dependent Partitioning

+ Distinguish two kinds of partitions

* Independent partitions

- Computed from the parent region, using, e.g.,
+ partition(equals, ...)
+ partition(region.field, ...)

 Dependent partitions
- Computed using another partition

Prof. Aiken CS 315B Lecture 5

Dependent Partitioning Operations

* Image
- Use the image of a field in a partition to define a
new partition

* Preimage
- Use the preimage of a field in a partition

+ Set operations

- Form new partitions using the intersection, union,
and set difference of other partitions

Prof. Aiken CS 315B Lecture 5 8

Image

Computes elements reachable

Preimage s,

Opposite of image - computes

via a field lookup N mErE—-)Em elements that reach a given N EEE—-)En
- Eq'uivalenlf To semi-joinin | =E subspace - =n
relational algebra - Preserves disjointness
L J
- Can be applied to index space or - =u = - =u -
another partition |] . . . [|] |
- Computation is distributed EE B Multiple images/preimages —
based on location of data B mEa—- can be combined |) — -
! - can capture complex tas
Regent understands relationship B access patterns N mn
between par‘ﬁ‘rions - erﬁ;ﬂgq]n; no transitive
- Cu'n check safety of region | ISt IS reachabiity Is1 152
relation assertions at compile |
time e —
do A6
Prof. Aiken CS315B Lecture 5 9 Prof. Aiken CS 315B Lecture 5 10
Example 21 Example 22

+ Partition the nodes
- Equal partitioning

*+ Then partition the edges
- Preimage of the source node of each edge

* For each node subregion r, form a subregion
of those edges where the source node is inr

Prof. Aiken CS 315B Lecture 5 11

* Partition the edges
- Equal partitioning

+ Then partition the nodes
- Image of the source node of each edge

* For each edge subregion r, form a subregion
of those nodes that are source nodes inr

Prof. Aiken CS 315B Lecture 5 12

Discussion

+ Note that these two examples compute almost
the same partition

+ Can derive the node partition from the edges,
or vice versa

Prof. Aiken CS315B Lecture 5 13

Example 23

+ What would the example look like if we
partitioned based on the destination node?

- Let's find out ...

Prof. Aiken CS 315B Lecture 5 14

Set Operations: Set Difference

* Partition the edges
- Equal partition

+ Compute the source and destination node
partitions of the previous fwo examples

* The final node partition is the set difference
- What does this compute?
- Examples 24 & 25

Prof. Aiken CS 315B Lecture 5 15

Set Operations: Set Intersection

* Partition the edges
- Equal partition

+ Compute the source & destination node
partitions

+ Final node partition is the intersection
- What does this compute?
- Example 26

Prof. Aiken CS 315B Lecture 5 16

Example 28

+ Same as the last example

+ Once the final node partition is computed,
compute a partition of the edges such that
each edge subregion has only the edges
connecting the nodes in the corresponding
node subregion

Prof. Aiken CS315B Lecture 5 17

Examples 29

+ Pointers point into a particular region
- And this is part of the pointer's type

+ Partitioning can change which region(s) a
pointer points to
- May lead to typechecking issues, depending on
which region you want to use for an operation

Prof. Aiken CS 315B Lecture 5 18

Example 30

+ The right way to fix type issues is to use type
casts

+ Very analogous to downcasting from a more
general object type to a more specific object
type in an object-oriented language

+ But, this solution does not currently work!
- Casting of region types not yet implemented

Prof. Aiken CS 315B Lecture 5 19

Example 31

-+ The fix/workaround is to use wild in field
space arguments when allocating regions

+ Wild effectively turns off typechecking for
those region arguments.

Prof. Aiken CS 315B Lecture 5 20

Backing Up ..

+ Regent's partitioning mechanisms are very
different from other languages

+ What do those other languages provide?

Prof. Aiken CS315B Lecture 5 21

One Extreme: Simplicity

+ PGAS languages (e.g. X10, UPC, Chapel) generally
provide only Simple array-based distribation methods

- e.g. block, cyclic, blockcyclic

* Pros:
- simple for programmer to describe
- simple for compiler to verify consistency
- simple for runtime to implement

+ Cons:

- no support for irregular (or even semi-regular) data
structures

- no support for irregular partitions of structured data
- no support for aliased or multiple partitions

Prof. Aiken CS 315B Lecture 5 22

Other Extreme: Expressivity

Initial Legion Ear"riﬂoning used general-purpose coloring
object for ALL partitioning operations
- Application able to color each element any way it wants

Pros:
- support for arbitrary irregularity in data and/or partitioning
- support for aliased partitions, multiple partitions

Cons:
- significant programmer effort to describe even simple partitions
- no ability for compiler to check that related regions are
partitioned consistently
- high runtime overhead for computing and querying partitions
- manipulation of coloring was serial, limited to single node

Prof. Aiken CS 315B Lecture 5 23

Dependent Partitioning

A carefully chosen middle ground between these two extremes
Supports both structured and unstructured domains

Allows arbitrary independent partitions to be computed by the
application

- But uses field data to capture intent rather than a coloring

- Index-based partitions cover PGAS-like simple cases

Provides an analyzable set of operations to compute dependent
partitions from other partitions

- Based on reachability and/or set operations

- Consistency of dependent partitions can be verified at compile time

And can be executed in parallel

Prof. Aiken CS 315B Lecture 5 24

Programmer Productivity Summary

* Lines of code for computation of dependent * The built-in partitioning operations are
partitions in Regent applications: - Expressive
Dependent - Can execute in parallel
Original Partitioning - Can be analyzed by the Regent implementation
Application LOC LOC Reduction
?:}?E:XNT }23 S 325;2 * Except for explicit coloring objects
MiniAero 51 7 86% - Inherently not parallel

* Not a perfect metric
- Take with however much salt you like...

Prof. Aiken CS315B Lecture 5 25 Prof. Aiken CS 315B Lecture 5

