
1

Prof. Aiken CS 315B Lecture 8 1

Two Topics: IO & Control Replication

CS315B
Lecture 8

I/O in Parallel Programming

• I/O tends to be an afterthought in parallel
programming systems

• Many papers ignore I/O time in reported
results!

• But in real life, I/O time is … time

Prof. Aiken CS 315B Lecture 8 2

Regent I/O

• The situation is better with Regent

• Already have the notion
– There are distinct collections of data

• regions
– That can be in different places, have different

layouts, etc.
– And the details are kept abstract

• Programmer doesn’t need to know how data is accessed

Prof. Aiken CS 315B Lecture 8 3

Regent I/O Outline

• Interpret files as regions
– Integrate I/O into the programming model

• Why?
– Want to overlap I/O with computation
– Need to define consistency semantics

• Bottom line
– I/O is (almost) like any other data movement

Prof. Aiken CS 315B Lecture 8 4

2

Attach Operation

• Attach external resource to a region
– Normal files, formatted files (HDF5), …

IndexSpace ó HDF DataSpace

Fields ó
HDF Datasets

Attach Operation
Semantics

Invalidate existing physical instance of lr
Maps lr to a new physical instance that represents external
data (no external I/O)

Application

Legion
Runtime

Region lr

Instance
1

Instance
2

Node 1

Instance
3

Node 2

Attach Operation
Semantics

Invalidate existing physical instance of lr
Maps lr to a new physical instance that represents external
data (no external I/O)

Application

Legion
Runtime

Region lr

Node 1 Node 2

Instance
4

External
Resource

AttachInstance
1

Instance
2

Instance
3

Digression: Task Coherence

Privileges
• Reads
• Reads/Writes
• Reduces (with operator)

Coherence
• Exclusive
• Atomic
• Simultaneous
• Relaxed

• Coherence declarations
are wrt sibling tasks

Prof. Aiken CS 315B Lecture 8 8

3

Attach Operation

• Attached region accessed using simultaneous
coherence
– Different tasks access the region simultaneously
– Requires that all tasks must use the only valid

physical instance

• Copy restriction
– Simultaneous coherence implies tasks cannot create

local copies
– May result in inefficient memory accesses

Acquire/Release

• For regions with simultaneous coherence

• Acquire removes the copy restriction
– Can create copies in any memory
– Up to application to know this is OK!

• Release restores the copy restriction
– Invalidates all existing local copies
– Flushes dirty data back to the file

Acquire/Release Example

Application

Legion
Runtime

Region r

Node 1 Node 2

Ext Inst

External
Resource

Local
Inst

Local
Inst

Copy

Task Task

AcquireRelease

Flush

Opaque Data Sources

• Can also attach to sources that are other
programs
– E.g., read/write in-memory data structures from

another process

• Done through a serialization/deserialization
interface
– Attach specifies the ser/des routines

Prof. Aiken CS 315B Lecture 8 12

4

S3D I/O Example

• A production combustion simulation
• Checkpoint after fixed # of time steps

30 76.5

11.5

14.8

7.1

4.6

2.1
1.1

2.7 2.7 2.9 3.3

Regent I/O Example

Prof. Aiken CS 315B Lecture 8 14

I/O Summary

• Definitely a useful feature!

• And less mature than other features
– But simple cases will work fine

• Let us know if you need/want to use I/O

Prof. Aiken CS 315B Lecture 8 15

Control Replication

Prof. Aiken CS 315B Lecture 8 16

5

Implicit Parallel Programming Template

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

Prof. Aiken CS 315B Lecture 9 17

How Do We Scale This Program?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

• Make more Parts

• Make each subregion
R smaller

Prof. Aiken CS 315B Lecture 9 18

Amdahl Strikes Back

• Recall Amdahl’s law
– Parallel speedup is limited by the sequential portion

left un-parallelized
– There is some sequential overhead to launching

tasks on a single processor

• If we double the # of subregions
– Each subregion is ½ the size, so <= ½ of the work
– Launch overhead doubles
– Useful compute/overhead ratio decreases by >= 4X

Prof. Aiken CS 315B Lecture 9 19

What Does That Mean?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

• Can scale this
program to 8 or 16
nodes
– Should be more, but…

• We want to run on
100’s or 1,000’s of
nodes

Prof. Aiken CS 315B Lecture 9 20

6

SPMD Programming Revisited

• Recall that SPMD programs
– Launch 1 task per processor at program start-up
– These tasks run for the duration of the program
– Tasks explicitly communicate to exchange data

• Notice
– SPMD programs launch the minimum # of tasks to

keep the machine busy
– These tasks run for the maximum amount of time
– Best possible launch overhead/work ratio!

Prof. Aiken CS 315B Lecture 9 21

How Do We Scale This Program?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

must_epoch
for i = 1,num_tasks do
task(part[i],phaseb[i])

end

where

tasks know which other tasks
they have to communicate with

Prof. Aiken CS 315B Lecture 9 22

The Price

• SPMD programs minimize distributed
overheads related to control

• The price is explicit parallel programming
– Tasks must communicate with each other while

they execute
– Introduces synchronization, message passing …

Prof. Aiken CS 315B Lecture 9 23

Implicit Parallelism

Traditional auto-parallelization
[Irigoin 91; Blume 95; Hall 96; …]

for step = 0, nsteps:
for i, j in grid:
out[i,j] = F(in[i,j], in[i+1, j], …)
…

Inspector/executor method
[Crowley 89; Ravishankar 12; …]

for step = 0, nsteps:
for c in mesh:
out[c] = G(in[c],in[neighbor[c]])

…

out in out in

Requires static analysis of
individual memory accesses
Limited applicability

Requires dynamic analysis of
individual memory accesses
Expensive runtime analysis

7

Task-Based Implicit Parallelism

task tF(out, in):
for i, j in out:

out[i,j] = F(in[i,j], in[i+1, j], …)

for step = 0, nsteps:
for sg in grid:

tF(out[sg], in[sg])
…

task tG(out, in):
for c in out:
out[c] = G(in[c], in[neighbor[c]])

for step = 0, nsteps:
for sm in mesh:

tG(out[sm], in[sm])
…

out
in out in

User specifies coarse-grain tasks (and data)
Analysis performed at level of tasks (instead of iterations)

Dynamic analysis is better but still expensive

Task Execution (Not Replicated)

• Sequential execution: tasks form a stream in program order
• System discovers parallelism by analyzing dependencies
• Dataflow is scheduled and copies are inserted as needed

…

stream of tasks

…

dataflow

…

execution schedule

…

node 0

node 1

dependence
analysis

scheduling

copy

analysis is
sequential

Control Replication

Technique to generate scalable SPMD code from
implicitly parallel (task-based) programs

Asymptotic reduction in steady state analysis
O(1) instead of O(N) in number of nodes

Task Execution (Replicated)

…

stream(s) of tasks

…

dataflow

…

execution schedule

…

node 0

node 1

copy

…

…

…

…

copy
sync

…

…

copy
sync

control replication

sync
copy

node 0

node 1

stream 0

stream 1

stream 0

stream 1

analysis is
now parallel

dependence
analysis

scheduling

impicitly
parallel

explicitly
parallel

8

Control Replication

• Regent can do this for you!

• __demand(_spmd)

• Takes a program in implicit parallel style, converts it
to SPMD style

• Restrictions
– Task launches must have the same index space
– Regions cannot be allocated/deallocated

Prof. Aiken CS 315B Lecture 9 29

Control Replication

• We recommend using control replication for
your project
– Write in implicit style

• Should scale to 256-512 nodes
– At least

Prof. Aiken CS 315B Lecture 9 30

