OBSTACL:
A LANGUAGE WITH OBJECTS, SUBTYPING, AND CLASSES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Amit Jayant Patel
December 2001

© Copyright 2002 by Amit Jayant Patel
All Rights Reserved

ii

I certify that I have read this dissertation and that in my opin-
ion it is fully adequate, in scope and quality, as a dissertation

for the degree of Doctor of Philosophy.

John Mitchell
(Principal Adviser)

I certify that I have read this dissertation and that in my opin-
ion it is fully adequate, in scope and quality, as a dissertation
for the degree of Doctor of Philosophy.

Kathleen Fisher

I certify that I have read this dissertation and that in my opin-
ion it is fully adequate, in scope and quality, as a dissertation

for the degree of Doctor of Philosophy.

David Dill

Approved for the University Committee on Graduate Studies:

iii

Abstract

Widely used object-oriented programming languages such as C++ and Java support soft-
ware engineering practices but do not have a clean theoretical foundation. On the other hand,
most research languages with well-developed foundations are not designed to support software
engineering practices. This thesis bridges the gap by presenting OBSTACL, an object-oriented
extension of ML with a sound theoretical basis and features that lend themselves to efficient
implementation. OBSTACL supports modular programming techniques with objects, classes,
structural subtyping, and a modular object construction system. OBSTACL’s parameterized
inheritance mechanism can be used to express both single inheritance and most common uses
of multiple inheritance. In addition, it can be used to implement designs that are difficult to
implement with conventional single or multiple inheritance.

There is a large space of possible designs for an object-oriented language. The design of OB-
STACL is driven by program design and maintenance needs rather than simplicity or elegance.
It explicitly supports both object and non-object forms of abstraction and does not attempt to
reduce everything to an object. Although simplicity was not a goal, OBSTACL’s objects and
classes are simpler than those in many object-oriented languages because many of the prob-
lems solved by complicated features in a purely object-oriented language are solved instead
by a rich set of non-object features such as modules, first class functions, abstract data types,
and parametric polymorphism (generics). In addition several fundamental questions about ab-
stractions (identity, deep vs. shallow equality, copying vs. cloning, and mutation) are answered
by supporting both objects and non-objects in the same language. The resulting language is

straightforward to implement efficiently and relatively simple to analyze mathematically.

iv

Contents

1 Introduction 1
1.1 Approach e 1
1.2 Scope e e 2
1.3 Languagedesign. @ . e e e 4
1.4 Evaluation e e 5
1.5 Theory e e e e 6
1.6 Practice e e e e e 6
1.7 Summary e e e e e e e e e e 7

2 Concepts 8
2.1 Modules. e e 9
2.2 Abstract Data Types i e 9
2.3 DataHiding e 10
2.4 Objects e e 10
2.5 Substitutivity 11
2.6 Prototypes e e e e 13
2.7 Classes v i e e 13
2.8 Inheritance e e 13
2.9 Types e e e e 15
2.10 Polymorphism e e e e e e e 15

3 Program Design and Maintenance 17
3.1 Modularity and Dependencies 17
3.2 Abstractions 19

3.2.1 Abstract Data Types e 19
3.2.2 Objects e e e 20
3.23 UnionTypes e e e 21
3.2.4 Multimethods 22

3.2.5 Comparison it e e e e e e e e e e e 24

3.3 Objectsvs.Values e e 25
3.4 Polymorphism e e e 26
3.5 Class Hierarchies i 26
3.6 DesignPatterns e 27
3.6.1 Creational 28
3.6.2 Structural 29
3.6.3 Behavioral e 30
3.7 SUMMATY o v o et e e e e e e e e e e e e e e e 30
Language Space 32
4.1 Using Objects e e e e e e 32
4.1.1 Selection 32
4.1.2 Updates. e 33
4.1.3 Equality e e 35
4.1.4 Object Types o 0 i e e e 36
4.1.5 SuperObject Type. e 38
4.1.6 AccessRights e 39
4.2 Creating Objects e e e 41
4.2.1 Extensible Objects 42
4.2.2 Prototypesvs.Classes i 42
4.2.3 SubtypingonClasses 43
4.2.4 Partial Inheritance 47
4.2.5 Run Time Inheritance 48
4.2.6 Multiple Inheritance, 48
4.3 Initializing Objects e e 52
4.3.1 Multiple Constructors 53
4.3.2 Initialization Phases 53
4.3.3 Orderof Construction 55
4.4 SUMMATY o ot e 56
Language Design 57
5.1 Objects o e e e 57
5.1.1 Fields e e 58
5.1.2 Methods e 58
5.1.3 Object Types o 0 i e e e e 59
5.1.4 Substitutivity 60
5.1.5 Operations i i e e e e 61

vi

6

5.2 Classes v i i e e e e 61
52.1 Fields e 62
5.2.2 Methods 63
5.2.3 Inheritance. 63
5.2.4 Constructors e 64
5.2.5 Instantiators 66
5.2.6 Classtypes v v i i i e e e e e e 68

5.3 MiXINS o e e e e e e e e e e e e e e e 70
5.3.1 Definition. e 71
532 Constraints e 72
5.3.3 Application e 74

5.4 SUMMATY o ot e e e e e e e e e e e e e e e e 74

Evaluation 75

6.1 Using and definingobjects 75
6.1.1 Equality e 75
6.1.2 Redefinitions 77

6.2 Object Creation Patterns 79
6.2.1 Modular Construction 79
6.2.2 Virtual Constructor 80
6.2.3 ObjectCache e 81
6.2.4 Factory e e 82
6.2.5 RemoteObject 83
6.2.6 Prototype e 83
6.2.7 Multi-stage Construction. 84

6.3 Class Creation Patterns ie... 85
6.3.1 Adapter 85
6.3.2 Decorator e e e 87

6.4 Multiple inheritance e 89
6.4.1 Possible approaches 89
6.4.2 Multiple Interfaces 91
6.4.3 Unrelated Superclasses, 94
6.4.4 Related Superclasses 95
6.4.5 Conclusions i e 99

6.5 Design Principles e e 100
6.5.1 HideDetails e 100
6.5.2 Separate Functionality 101
6.5.3 Uselnterfaces e 102

vii

6.5.4 Break Dependencies 103

6.6 SUMMArY e e e e e e e e e 104
7 Theory 105
7.1 Designofthe CoreCalculus 106
7.1.1 Design Motivations e 106
7.1.2 DesignTradeoffs, 106
7.1.3 Designofthe CoreCalculus 108
7.1.4 An Example of Mixin Inheritance 109

7.2 Syntax ofthe Core Calculus 110
7.3 Operational Semantics 113
7.4 TypeSystem e e e 115
7.5 Related Work. e 119
8 Implementation 122
8.1 Implementation Strategy 122
8.2 Layoutin Other Languages iie... 123
8.3 OBSTACL objectand classlayout 126
8.4 Operations e e e e 129
8.4.1 Operationsonobjects 129
Selection 129
Subsumption e 130

Equality e 130

8.4.2 Operationsinmethods 131
Freevariables 131

Self object reference 131
Fieldlookup e 132

Access to the redefined method 133

8.4.3 Operationsonclasses e 134
Instantiation 134

Extension. e 135

8.5 Time and Space Requirements 137
9 Extensions 140
9.1 Simple Extensions. e e 140
9.1.1 TypeNames i i e e 140
9.1.2 Public and Protected Fields 141
9.1.3 Private Methods 142

viii

9.1.4 MethodUpdate e 142

9.1.5 Hiding inherited methods 143
9.1.6 Additional Mixin Constraints 144
9.1.7 AnonymousClasses e 144
9.1.8 Objects without Classes, 145
9.1.9 Standard Instantiators 145
9.1.10 Abstract Classes o o i i i i e e e 146
9.1.11 Classesas Modules 146
9.1.12 Destructors e e e 147
9.1.13 Mixin Composition 148

9.2 Unnecessary Extensions 148
9.2.1 Class Methodsand Fields 149
9.2.2 Typecase i i e e e e e e e 149
9.2.3 BinaryMethods 149
9.2.4 Functional Update 150
9.2.5 Self Types e e e 150
9.2.6 Final Classesand Methods 151
9.2.7 RedefinableFields. 152

9.3 Programming Idioms 152
9.3.1 ConstTypes i e e e 152
9.3.2 Encoding behaviorintypes 153
9.3.3 Class-Level Protection 153
9.3.4 Changing Classes o i i i it i e 155

9.4 Alternative Designs e e e 156
9.4.1 Mixin Constructors e 156
9.4.2 Single Constructor 156
9.4.3 ClassesareFunctions 156
9.4.4 User Level Instantiators 157
9.4.5 Inherited Instantiators 157
9.4.6 Explicit Interface Hierarchy 158
9.4.7 Explicit Subsumption 158
9.4.8 Accessibility Based Protection 158
9.49 Destructuring e 159

10 Conclusions 160
10.1 Objects vs. non-objects 161
10.2 Object Definition e 162
10.3 Design and Maintenance 163

ix

10.4 Theory and Practice . e
10.5 Future Work
10.6 SUMMATY o oot e e e e e e e e e e e e e

A Calculus Rules and Definitions
A.1 Definitionof Contexts
A2 TypeRules e
A.21 SubtypingRules.
A.2.2 Type Rules for Expressions

Bibliography

List of Tables

3.1

6.1

8.1
8.2

9.1

Summary of abstractions 24
Object, class, and mixin decorators 90
Class and method tablelayout. 128
Performance characteristics of object-oriented languages 138
Mixin composition cases e e e e e e 148

xi

List of Figures

2.1 Abstraction, interfaces, and encapsulation. 8
2.2 Amodule e e 9
2.3 Anobject e e e 10
2.4 Method selectionand call 11
2.5 Removing a toy data value fromabox 12
2.6 Removing a toy object fromabox, 13
2.7 Inheritance 14
2.8 Dynamiclookup e e e 14
2.9 Kinds of polymorphism 16
3.1 Creatinganinterface e 18
3.2 Point abstract datatype 20
3.3 Who defines functionality? 23
4.1 Structural subtyping produces more subtyping relations 38
4.2 The protection mechanism affects namelookup 40
4.3 Private variable names affect program maintenance 41
4.4 Class subtypingexample 44
4.5 Scopedinheritance 46
4.6 Example code using scoped inheritancerules 46
4.7 Example of partial inheritance 47
4.8 A diamond-shaped hierarchy 50
4.9 Pizzaclassdefinitions. e 51
4.10 Parts of a C++ constructor 53
4.11 Constructor calling redefined method 55
4.12 Ordering of initialization phases 55
5.1 A function producing a pseudo-object 58
5.2 Multiple viewsof anobject 60

xii

5.3 Recursive type definitions 60

5.4 Example classes in OBSTACL i i i it i e e e e e e e et 64
5.5 Parts of an OBSTACL constructor, 64
5.6 Flexibility in field initialization 65
5.7 One instantiator, multiple constructors 68
5.8 Aclasstype. e e e 68
5.9 Class subtypingexample 69
5.10 Linear mixins vs. multiple inheritance mixins 70
5.11 Linear mixins simulated with C++ templates 71
5.12 There is no limit to the number of times a mixin can be added. 71
.13 Mixinexample e e e e e e e 72
6.1 Redefinitionsvs.newmethods 78
6.2 Avirtual constructor 80
6.3 DNSlookupclass i i e e 81
6.4 Caching DNS lookup instantiator 82
6.5 Asingleton e 82
6.6 Abstract factory 83
6.7 Dynamicclasscreation 84
6.8 Class adapters using multiple inheritance vs. mixins 86
6.9 Objectadapter e e 86
6.10 Forwarderclass 88
6.11 Ice Cream represented with multiple inheritance. 89
6.12 Ice Cream object built from a list of flavorclasses 89
6.13 Ice Cream class built from a list of flavor mixins 89
6.14 Streamable editorclass 92
6.15 Specialized streamable editorclasses, 92
6.16 Multiple inheritance hierarchy compared with mixin hierarchy 92
6.17 StreamAdapter mixin and its application 93
6.18 A set of adapters using multiple inheritance vs. using mixins 93
6.19 A class inheriting multiple unrelated implementations 94
6.20 Composition and forwarding simulates multiple inheritance 95
6.21 Cross calls provide dynamic lookup with composition and forwarding 95
6.22 Encrypted, compressed, and uuencoded streams 96
6.24 Double encryption L e e e e e 97
6.23 Stream class hierarchy expressed with mixins 98
6.25 A set of features using multiple inheritance vs. using mixins 99

xiii

7.1 A mixin and two classes in the calculus for OBSTACL 110

7.2 Syntaxofthecorecalculus, 111
7.3 Reductionrules 113
7.4 Typing rules for class-related forms 116
8.1 SELF:it’sallobjects. e 123
8.2 Python: like SELF, with an artificial distinction 124
8.3 Smalltalk: classes have methods, objects havefields 125
8.4 Java: similar to Smalltalk, but less dynamic 125
8.5 C++: class hierarchies aren’t used at run-time 126
8.6 An OBSTACLoobject e 126
8.7 Run-time class generation 127
8.8 Run-time class hierarchy generation 128
8.9 Subsumption may lead to multiple copies at the sametype 131
8.10 Layout of an OBSTACLobject 132
8.11 Pattern matching to access privatefields 133
8.12 Method table chaining 134
8.13 Steps in constructing anobject 135
8.14 Class layout example e 136
8.15 Method table construction algorithm 137
9.1 Accessor methods give public access to privatefields 141
9.2 Accessor methods returningan ML ref 141
9.3 Non-function accessors o v ittt e e e 141
9.4 Privatemethods 142
9.5 Module-level pre-methods simulate private methods 142
9.6 Methodupdate. e 143
9.7 Hiding protectedmethods, 143
9.8 Adding mixin constraints. 144
9.9 Anonymousclasses e e e e e 144
9.10 Anonymous classes introduce ambiguity, 145
9.11 A classless object e 145
9.12 Anonymous classused once e e e 145
9.13 Standard instantiator 146
9.14 Module signature foraclass 147
9.15 Class level protection using privatetypes 154
9.16 Classes asfunctions e 157
9.17 Opaque type used for destructuring 159

Xiv

Chapter 1

Introduction

In the programming language foundations community, languages are often designed around
elegant features that can express a wide variety of programming constructs. Examples include
Scheme, designed around the lambda function, and Smalltalk, designed around the object.
This dissertation shows that designing a language by examining program design and main-
tenance issues instead of reuse or mathematical elegance can lead to a clean object-oriented
language that supports code reuse, a strong mathematical foundation, and a relatively simple
type system. OBSTACL is our new approach to extending ML with objects. Focusing on design
and maintenance issues, we end up with a language that is straightforward to implement,

efficient, and relatively simple to analyze.

1.1 Approach

Architects everywhere have recognized the need of ... a tool which may be put in
the hands of creators of form, with the simple aim ... of making the bad difficult
and the good easy.

—Le Corbusier (The Modulor)

In general, we want our language to encourage good designs both by making good designs
easier to program and by making bad designs more difficult to program. It is not possible to
prevent bad design; we simply don’t want to make it difficult to write good programs. We want
a strong foundation—the language should be type safe, subject to analysis, and amenable to
a precise specification. We do not attempt to reduce everything to an object (as in Smalltalk),
maximize expressiveness, minimize features, or maximize possibilities for code reuse. The last
of these may seem surprising, given that object orientation is often associated with code reuse.
In OBSTACL, we want to promote the writing of highly reusable code. Reuse of well written,

well-tested code is preferable to reimplementing the desired functionality. However, we should

CHAPTER 1. INTRODUCTION 2

distinguish between facilitating the writing of reusable code and the reuse of code. The former
involves writing code with enough flexibility to allow it to be used in many different parts of
a program or a set of programs. The latter includes making it easier to reuse code that was
not designed to be used in a new situation. In OBSTACL we do not promote this latter goal; we
believe that such reuse is highly error prone, because it introduces a fragile dependency: the
author of the code being reused is not aware of the reuse, so he may change the code in a way
that breaks any modules using the code. To reuse code robustly, the author of the code must
know that the code will be reused, so that he can write a specification and preserve all behavior
described in the specification when he makes changes. The signature and specification serves
as a contract between the author of the code being reused and the programmer reusing the
code. Our goal is therefore to support the writing of reusable code, and not the reusing of code

that is not designed to be reused.

1.2 Scope

The focus of this work is exploring language design keeping program design and mainte-
nance in mind. In addition, a calculus and a sketch of an implementation are presented. There
are many decisions to be made in designing a language. To avoid spending time reinventing
variables, functions, control flow, and so on, we take ML as a base language. ML is a rich
language with a strong mathematical foundation. A side effect of choosing a rich but non-
object-oriented language is that it is clear what features are object-oriented and what features
are not. In languages like C++ [Str97] and Object Pascal, which are built on top of feature-poor
languages, it is difficult to distinguish between those features added to support objects and
those added for modularity and abstraction in general. It is important to note that our goal
is not to extend ML—we use ML here to avoid reinventing the wheel, and our results are not
ML-specific. Where needed, OBSTACL draws on ML, using a compatible syntax and assuming
the presence of basic types (such as integer, function, tuple, list, and record).

We design objects primarily to represent “physical” objects like files, locks, and bank ac-
counts. Abstract objects like points, strings, lists, and sets are already handled well in non-
object-oriented languages like ML and Ada-83, except when dealing with multiple representa-
tions for performance reasons. We will not address adding features for performance or conve-
nience; instead we use objects for design and maintenance reasons.

The types in ML are what we call algebraic types. Algebraic types describe an unchanging
set of values with predictable and useful properties. On these values one can build relations
(more commonly, functions). For example, the type Integerisaset {---,-3,-2,-1,0,1,2,3,---}.
On this set we can build the addition relation. OBSTACL extends ML with object types. Ob-
ject types as we use them are dynamic heterogeneous sets with variable properties. Unlike
algebraic types, object types may change over time. For example, the type Automobile will

CHAPTER 1. INTRODUCTION 3

have new elements added to it when a new car is built. An object type does not have to be
homogeneous. For example, the Automobile type may contain both a Volkswagen Beetle and
a Chevy Camaro, even though these objects have different properties. In addition, the set of
variants in the type can change over time.! For example, next year there will be new models
of automobiles in the set. In this work we treat object types as fundamentally different from
algebraic types and do not attempt to make object types fit the algebraic type model. Instead
we explore the space created by having both in the language. A List of Automobiles for in-
stance is neither purely algebraic nor purely object. Like algebraic types, List of Automobiles
is homogeneous (all its members are lists) and can have relations (I engt h, r ever se) defined
on its elements. The set of List of Automobiles is unchanging, except when the set of Automo-
biles changes.? It is the author’s experience that forcing all types to be algebraic (as in ML)
or object (as in Smalltalk [Ing78] and Java® [AG96]) is less desirable than simply allowing a
type to be either. Furthermore, unifying them by taking a union of their properties leads to a
complex system.* OBSTACL preserves algebraic types and also provides a simple object type.
Many features of other languages can be expressed as the combination of these types rather
than as new features.

Expressiveness is not the only goal in language design. We also want guarantees on data
and code. Take for example tuples® and lists®. A mutable heterogenous list is more expressive
than both tuples and lists. Why does ML have homogeneous variable-length lists and heteroge-
nous fixed-length tuples? When the data structure is restricted, we can make some guarantees
on its values. In this example, with lists we know the types of its elements are all the same,
but we do not know the number of elements. With tuples we know the number of elements,
and their types can differ. Restrictions give us more knowledge at the expense of flexibility.
Therefore we are not simply trying to make an expressive language—we are trying to make a
tradeoff between flexibility and guarantees. The tuple vs. list example shows that sometimes
we do not need a single construct that can handle all possible cases; sometimes, it is better
to have complementary structures with different properties. That is our goal with objects and
abstract algebraic data values.

IThis is what distinguishes object types from the algebraic union types, described in 3.2.3.

2Changes to the mixed type reflect changes to the object type, and do not arise on their own.

3There is a proposal for adding value objects (corresponding to our algebraic types) to Java. [Gos97]

4In C++, for instance, algebraic operations such as oper at or = do not mix well with object concepts such as inheri-
tance [Mey92].

5A tuple is a fixed-length sequence of values of different types.

6A list here is any variable-length sequence of values of the same type.

CHAPTER 1. INTRODUCTION 4

1.3 Language design

Designing programs is about space: one creates modules to separate program components
and interfaces to connect components together into a program. The goals are to divide a prob-
lem into components that one can understand more easily. Program structures with small
components and few connections between them are easier to understand. Maintaining pro-
grams is about time: one creates modules to allow smaller units of change and interfaces to
specify what is stable over time. While designing a program one must take into account the
initial structure of the system and how it may change over time. Abstractions factor multiple
program components into a more general one. To support design and maintenance, we look in
chapter 3 at forms of abstraction and characteristics of the dependencies they create. Reduc-
ing dependencies generally corresponds to better design and easier maintenance. We conclude
that simple objects are not appropriate for all situations, and resolve to allow both object and
non-object abstractions. We further explore the characteristics of objects and non-objects, in
particular, issues of identity, equality, comparison, and copying. A simple object type looks
similar to tagged union types or record types. Why can we not reuse those types for objects?
Object types and record types both can expose a set of public functions that encapsulate private
data. Objects however are the result of a distributed recursive definition that spans modules.
Records lack this recursive form of definition. Object types and union types both allow the
definition of a set of data variants and a set of functions defined on each variant. However the
grouping of these definitions into modules is different: objects have one shared definition of a
set of functions plus modular definition of data variants, while unions have one shared defi-
nition of a set of data variants, plus modular definition of functions. This difference directly
impacts extensibility over time: objects are easily extended with data variants, while unions
are easily extended with new functions. Neither is a suitable replacement for the other. It is
not sufficient to consider only how a program is written initially; the ease of making changes
over time must be taken into account. Maintainability plays a key role in the design of OBST-
ACL’s object system.

Since new data variants can be added when using objects, code that uses objects should
not depend on which variant is provided but instead only on the behavior of that object. An
illustrating consequence of this principle is that two objects with exactly the same definitions
should be usable in the same places and behave the same. As simple as this sounds, many lan-
guages do not allow these two objects to be interchanged. The ability to substitute one variant
for another is important for code reuse. A library designed for one implementation of objects
will continue to work when a new implementation is used instead—the library is reused with
a new kind of object. Since the code being reused is external to the object’s implementation, we
call this external reuse. The other form of reuse common in many object programming sys-
tems is inheritance, which we call internal reuse. With inheritance, parts of the definition of

CHAPTER 1. INTRODUCTION 5

one object can be used in defining another variant of object. Internal reuse is easy to recognize,
but because there is more code outside an object definition than inside, external reuse has the
most benefit.

In this work we focus on objects. In chapter 4 we consider tradeoffs in the design of an
object system. First we look at the capabilities of objects and choose a simple system with
message sends, comparison, imperative update, and structural types. We then examine the
process of creating an object, which at first glance is a straightforward task, but in the pres-
ence of immutable fields is actually a difficult problem that requires more analysis. While
popular object-oriented languages such as C++ and Java are overwhelmingly class-based, most
previous theoretical work for object-oriented languages was based on objects without classes
[AC96, FHM94], with classes added as an extra layer on top of the basic object system. The de-
cision to use or not use classes in OBSTACL was based on design and modularity considerations,
and not the desire to be similar to popular object-oriented languages or the theoretical work.
We choose to use classes with single inheritance. Instead of multiple inheritance we use run-
time mixin inheritance. Mixins were first introduced in the Flavors system [Moo86] and CLOS
[Kee89], although as a programming idiom rather than a formal language construct. Mixins
have become a focus of active research both in the software engineering [VN96, SB98, FF98]
and programming language design [BC90, BL92, Bra92, LM96, FKF98] communities. Mixin
inheritance has been shown to be an expressive alternative to multiple inheritance and a pow-

erful tool for implementing reusable class hierarchies.

1.4 Evaluation

Evaluating a programming language objectively is difficult. Languages are often designed
with some problem domain and some programming style in mind. Evaluation with respect
to that problem domain will naturally favor a language designed with that problem domain
in mind. A common approach is to use examples that demonstrate a language’s features.
However such examples are not convincing if there are other features or approaches that can
solve the same design problem in a better way. We do not want to evaluate our language’s
ability to express individual features, such as those illustrated by the common ColoredPoint
extends Point example. This example does not show good design—a Point represents a location,
while a ColoredPoint represents both a location and a color. It is not a specific kind of location;
it is instead a pairing of locations and colors (perhaps a mapping from locations to colors).
These two classes show structural similarity, but not similarity in behavior or intent. We
do not consider structural similarity sufficient for inheritance because it leads to problems
during program maintenance. Instead of examples of language features we will use common
design problems (including those from “design patterns” [GHJV95]) and show how they can be
expressed in OBSTACL.

CHAPTER 1. INTRODUCTION 6

1.5 Theory

We study the type system and semantics of OBSTACL by designing a calculus for the lan-
guage (see chapter 7).” As OBSTACL is an extension of ML, the calculus is an extension of a
calculus for ML. For the core features of OBSTACL, we present a calculus in which both classes
and objects are basic constructs. Many previous calculi for object-oriented languages have pro-
vided only objects, with classes encoded as objects. The decision to include classes directly in
a core calculus reflects many years of struggle with object-based calculi. There is a fundamen-
tal conflict between inheritance and subtyping of object types [CHC90, Bru94, BL95, FM95].
Encoding classes as objects is therefore troublesome. Our calculus resolves this conflict by
supporting class extension without class subtyping and object subtyping without object exten-
sion. The separation between inheritance (an operation associated with classes) and run-time
manipulation of objects allows us to represent objects by records and keep the type system for
objects simple, involving only functional, record, and reference types. Unlike many calculi, we
do not need polymorphic object types or recursive MYTYPE [AC96].

In addition to classes, mixins are represented directly in this calculus. There has been
a dearth of formal calculi to provide a theoretical foundation for mixin inheritance and few
attempts have been made to use mixins as the basic inheritance construct. Although mixin in-
heritance is easy to formalize in an untyped setting, static type checking of mixins at the time
of declaration (as opposed to the time of mixin use) is more difficult. In addition, many ap-
proaches to mixins do not address the modular construction of objects, including initialization
of fields. In our calculus, mixins and mixin inheritance are used to produce all classes.

Although chapter 5 informally covers the semantics and types associated with OBSTACL
objects, classes, and mixins, chapter 7 provides precise rules for understanding OBSTACL’s

type system and the semantics of its operations.

1.6 Practice

A language may look good on paper, but without a reasonably clean and efficient implemen-
tation it does not serve the needs of programmers. In chapter 8 we describe work on prototype
implementations as well as a proposed full implementation of OBSTACL, with analysis of size
and space efficiency issues. The two goals of the implementation are to generate efficient code
and at the same time allow for separate compilation that matches the expectations of the pro-
grammer. At times these goals conflict; we choose separate compilation over efficiency. For
example, when the implementation of one object changes, examining all uses in other modules
of that object can lead to more efficient code. However, we will only consider recompiling other

modules when an interface to the object changes—this is the only time the programmer may

"The calculus for OBSTACL is joint work with Vitaly Shmatikov and Viviana Bono, and appeared in [BPS99].

CHAPTER 1. INTRODUCTION 7

reasonably expect other modules to be recompiled. Such a restriction on compilation may lead
to lower efficiency; we will argue that because of the design of OBSTACL, many cross-module
optimizations needed in pure object-oriented languages are not necessary. It is possible to build

an OBSTACL compiler that supports separate compilation and produces fairly efficient code.

1.7 Summary

In this work we will review concepts related to modularity and abstractions (chapter 2),
examine the uses of objects with respect to program design and maintenance (chapter 3), eval-
uate language features with these goals in mind (chapter 4), and design an object system that
promotes good program design (chapter 5). To study object systems, we will rely on a base
non-object-oriented language, ML, upon which to build an object system, without relying on
ML-specific features such as type inference or ML-style polymorphism. Where chapter 4 eval-
uated individual language features, chapter 6 examines OBSTACL as a whole in the context
of expressing common design problems. To study the analysis of object systems, we will build
a calculus (chapter 7), including both an operational semantics precisely describing how pro-
grams are executed and a type system describing how values in the system are described at
compile time. The efficient implementation of object-oriented languages has been studied be-
fore; we instead will focus in chapter 8 on implementation strategies for the features of OBST-
ACL that are not present in most object-oriented languages. In chapter 9 we look at extensions
of OBSTACL as well as features that are useful in other languages but are unnecessary in the

context of this system. Finally, chapter 10 summarizes the work.

Chapter 2

Concepts

In this chapter we review the concepts that will be discussed and analyzed in the remainder
of this work. The motivation behind these constructions is modularity. By reducing one part of
a program’s dependence on another part, we can make the program more modular. The benefits
of building a program out of components are both structural and temporal. The structure of a
program can affect how easy it is to write and understand: smaller components are generally
easier to work with than larger components. In addition, each component can be assigned to
a different person, allowing larger groups of developers to work on a project. The temporal
aspect can affect how easy a program is to change and maintain. Individual components can
be updated, replaced, or used in new projects.

To make a program modular, we need encapsulation, abstraction, and interfaces. Encapsu-
lation is the grouping of tightly related parts of a program into a larger component. Abstrac-
tion is the viewing of only the important aspects of a component while ignoring its details.
Interfaces are the boundaries at which components interact. Typically, an interface is not

symmetric: instead of describing how two components interact, it takes into account what one

—-<=— encapsulation:
group related
parts together

/ ~<—1—— abstraction:

interfa_lce: hide the details
describe

interactions
with this
component

Figure 2.1: Abstraction, interfaces, and encapsulation

CHAPTER 2. CONCEPTS 9

module (the provider) is willing to export and what the other (the elient) needs to import.

2.1 Modules

A module is a program component containing smaller pieces of a program: functions, types,
and values. We can think of a module as a container into which declarations are put at compile
time. Modules allow us to divide a program into separate units, which are connected together
at well defined interfaces. In a modular program, the relationships among the pieces within a
module are stronger than those between modules. We can look at the insides of a module with-
out worrying about external relationships and we can also look at the relationships without
looking inside the modules. Modules allow us to work with a program at a higher level than

functions, types, and values.

¥~ encapsulation:
group functions,
types, and values

|v:t | o s | t=int |
interface: p abstraction:
give names, hide types, values,
types, and and function
sometimes definitions
semantics

Figure 2.2: A module

2.2 Abstract Data Types

Given modules, we can build abstractions for data. An abstract data type (ADT) is a type
describing a set of values without revealing the structure or representation of those values. An
instance of an ADT is a member of the set of values described by the ADT. Since the represen-
tation is hidden, the module’s clients cannot operate directly on values of an abstract data type.
Instead, from the module we export a set of functions that manipulate these values. Of these
public functions, “constructors” are those that create new instances of the ADT, “observers” are
those that allow us to query instances of the ADT, and “operators” are those that allow us to
manipulate instances of the ADT. With ADTs, the data (instance of an ADT) is separate from
the code (functions in the module). When we want to manipulate instances of an ADT, we go
back to the module that defined the ADT to find operators and observers.

CHAPTER 2. CONCEPTS 10

2.3 Data Hiding

Interfaces can limit access to the component in two ways: accessibility and visibility.
Accessibility determines which parts of the program can access (read or write) elements of a
structure (module, object, record, etc.). We use the C++ terminology: public means that any
part of the program can access the element; protected means that parts of the program related
to the structure through extension can access the element; private means that only other parts
of the structure can access the element. Visibility determines which parts of the program can
see elements of a structure. The same three levels (public, private, protected) can also be used
to describe visibility. Accessibility-based protection adds a description of which parts of the
program are allowed to access each item listed in the interface. The language implementation
then ensures that private items are not access by unprivileged parts of a program. Visibility-
based protection instead removes private items from the interface. Any items not listed cannot
be accessed.!

2.4 Obijects

An object is an entity combining data (a set of fields) with operations (called methods)
that can be performed on it. An object is a black box with data inside and with methods
forming an interface between the outside and inside of the box (see figure 2.3). The only form
of communication with an object is by sending it a message, which is the name of the requested
operation. The object usually responds by selecting the method of the same name. The sender
can then execute the method by calling it with arguments. Figure 2.4 shows the object receiving
a message, selecting the appropriate method, and enabling the method call.

abstraction:
A//hide private data
op 2
interface: .
public methods -«— encapsulation:

combine data and
functions that
operate on it

Figure 2.3: An object

As with modules, there is an interface between the object and other parts of the program. It

1There are two common schemes for protecting resources in an operating system. Access control lists are similar to
accessibility-based protection in that a process can see any resource, but access to that resource is checked. Capability-
based protection systems are similar to visibility-based protection in that any process that can see the “capability
object” can access the resource; security comes from not allowing processes to see the capabilities in the first place.

CHAPTER 2. CONCEPTS 11

message send method selection method call

Figure 2.4: Method selection and call

typically describes the messages the object is willing to accept, and the types of the responses
to a message. In some languages it also describes the behavior of the object when it receives a
message.

2.5 Substitutivity

When using instances of ADTs, we must go back to the module that defines the ADT to find
functions. By allowing the object (instead of its defining module) to export functions, we gain
an important property called substitutivity. Since we cannot “see” inside the black box object,
objects that look different inside but present the same interface can be used interchangeably.
Different kinds of ADT instances cannot be substituted for each other because the programmer
statically specifies the module that defines operations. Given an instance of an ADT, its module
must be known; therefore, data values from different modules cannot be put into a single
container and treated uniformly.

For example, suppose there are two kinds of toys: Dolls and ActionFigures, each repre-
sented by a data value defined by an ADT in a module (see figure 2.5). If both are put into a
toy box, and one is later taken out, then the defining module cannot be determined statically.
As a result, no operations can be performed on the toy in a statically typed language.

With objects, however, the operations are located on the toy, not on the module (see fig-
ure 2.6). When the toy is put into and later removed from the box, the operations are carried
along with it, so the programmer can call operations on the toy. When a message is sent to the
object, the object selects the appropriate method—dolls will respond by selecting Doll opera-
tions and action figures will respond by selecting ActionFigure operations. The programmer
does not have to know which kind of toy is being accessed. Substitutivity allows at run time an
object to be replaced by another object with the same interface but different implementation.

CHAPTER 2. CONCEPTS

£\
A I

Dolls Action Figures toy box

module module

container

Figure 2.5: Removing a toy data value from a box

a toy

12

CHAPTER 2. CONCEPTS 13

9 A

box

a toy

Figure 2.6: Removing a toy object from a box

2.6 Prototypes

With ADTs, the functions are defined in a module and the data is defined per value. How-
ever with objects, both functions and data are defined in each object. Data are necessarily
different per object, but describing each object’s functions in isolation is very tedious. An al-
ternative is to build one object by using another object as an example. The example is called a
prototype object. The prototype can be extended with new methods, new fields, replacement
methods, and replacement fields to build an extension. We can build a family of prototype

objects and use them to create normal objects.

2.7 Classes

An alternative to using prototype objects is to describe an entire family of objects at once.
A class is a description of a family of objects. Each object in this family is an instance of the
class. A class lists the fields and methods of each object. In addition, the class describes the
routines used for object creation, called constructors and instantiators, which are described
in sections 5.2.4 and 5.2.5.

2.8 Inheritance

Like a prototype, a class does not have to be described in isolation. it can also be described as
an extension of another class, called its superclass (sometimes called a base class or parent
class). The new class is called the subclass (sometimes called a derived class or child class).
Figure 2.7 shows the sharing relationship between subclasses and their superclass.

The subclass can inherit the definitions in the superclass. A subclass may also add new

definitions or redefine some names. When a subclass redefines a name, both the old and new

CHAPTER 2. CONCEPTS

— similar parts

— dissimilar parts

Figure 2.7: Inheritance

| ! |
m] " [mi]
<— private |
ol [i [
. L O
publi — m \i‘ protected :.' T s
]]
P | P (P[]
send a message "n" object selects new method "n"

Figure 2.8: Dynamic lookup

CHAPTER 2. CONCEPTS 15

definitions are present but the new definition is preferred when the object responds to a mes-
sage (see figure 2.8). This property is called dynamic lookup. The result is that the old
definition is no longer accessible from outside the object.

The subclass definitions may need more access to the superclass definitions than a client
needs, but not as much as the superclass definitions themselves need. With inheritance a third
level of access, protected, becomes useful. Private items are accessible only by the class that
defined them; public items are accessible by anyone; and protected items are accessible by a
class and its subclasses, but not to clients. With the distinction between protected and private,
the author of a superclass can choose which items can be accessed by a subclass.

A variant of inheritance supported by many languages is multiple inheritance. A class
can be defined in terms of the definitions of several classes. These classes may themselves

share some common implementation.

2.9 Types

A type describes a set of values with common structure and properties. We can think of a
type as a description of the “shape” of a value. One type is a subtype of another if its set of
values is a subset of the other’s set of values. Similarly, a supertype corresponds to a superset
of values. In object-oriented programming, a subclass often produces a subtype; however, the

two are distinct concepts and are not always linked.

2.10 Polymorphism

Polymorphism means “many shapes”. Parametric polymorphism allows us to define
program components with a type parameter. For example, we can define a triple of any type T,
and can then use triples of numbers, triples of files, triples of strings, and so on. Subtype poly-
morphism allows us to define program components that have variants of a common, shared
type.

Both kinds of polymorphism allow many shapes, but in different ways. With parametric
polymorphism we choose a shape when we write the program, and at run time all the values
must have that shape. In figure 2.9(a), triples can contain different shapes but all elements of
each triple must have the same shape. With subtype polymorphism we specify what the values
have in common, and at run time all the values can have different shapes, as long as they share
something. In figure 2.9(b), the shapes share a triangular section. Subtype polymorphism can-
not replace parametric polymorphism—to define containers that can accept circles, squares,
and triangles, the container must accept any kind of object, but then there are no guarantees

that objects removed from such a list support any interface.? Parametric polymorphism cannot

2Since Java does not support parametric polymorphism, objects removed from a list must be type-cast to recover

CHAPTER 2. CONCEPTS 16

QO DAG &

(a) Parametric (b) Subtype

Figure 2.9: Kinds of polymorphism

replace subtype polymorphism—if a list should contain objects of different types, then subtype
polymorphism is required. These two kinds of polymorphism are orthogonal and can be com-
bined. For example, each of the shapes in 2.9(b) could be put into a list of triangles, since the
shapes share a triangular component.

type information.

Chapter 3

Program Design and

Maintenance

How can one tell if a program is well-designed? We usually consider well-designed programs
to be modular. However, all modular programs are not well-designed—the abstractions may
be inappropriate for the problem being solved. In section 3.1 we look at the recognition and
building of modular programs by examining dependencies. In section 3.2 we look at four kinds
of abstraction and how they relate to our modularity goals. We then turn to issues with objects
in sections 3.3, 3.4, and 3.5. In section 3.6 we look at more specific types of dependencies, which

lead to design patterns.

3.1 Modularity and Dependencies

To discover modularity we look at a program’s dependencies, or ways in which one program
component may need to be modified to account for changes in another program component.
Typically a program has countless dependencies; here we look at two common forms:

e Program component A depends on program component B. If B’s names, types, values,
behavior, or structure changes, then A will have to be examined and possibly modified.
For example, the f open function in C depends on the representation of files (FI LE*). If
the FI LE structure is altered, the f open function will likely need changes.

e Program component A depends on a set S of program components. If components are
added to or removed from S, then A will have to be examined and possibly modified. For
example, the + function in Lisp depends on the set of numerical types. If a new numerical
type is added, the + function will likely need changes.

17

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 18

Note that the dependency relation is transitive: if the type of disk can affect the FI LE
structure, and the FI LE structure can affect f open’s implementation,! then the type of disk
may affect f open’s implementation. The number of dependencies in a program can tell us
something about its modularity: in general, reducing the number of dependencies makes a
program more modular.

The question is then: how can we reduce dependencies? The primary tool for reducing de-
pendencies is abstraction. If component A depends on component B, we can create an interface
By for B that describes an abstract view of B but not the details of B.

By
: AT
B B
Before Abstraction After Abstraction |

Figure 3.1: Creating an interface

Before abstraction, A depends on B, so the author of A must understand B. The author of
B has no special responsibilities. Changes can be made to A without affecting B. However,
changes to B can affect A. After abstraction, A depends on By and B depends on By, so the
authors of A and B must understand B;. Changes can be made to A or B without affecting the
other component. However, some changes to B may require changing B;. Changes to B affect
both A and B.

The original version places more burden on the author of A: he has to understand both
modules and react to any change in B. The modular version shifts responsibility to the author
of B: he has to build the interface B;, has to understand both B and B;, and should avoid
changing B in a way that requires changes to B;. The author of A has to understand only By,
not all of B.

Which version is better? The original program is smaller. It takes less effort to write if a
single person is writing both A and B. The modular program is only slightly larger, but harder
to write. It can take a lot of analysis to determine exactly which parts of B should be exported
through its interface. However, once written, the program is easier to understand—we can
understand the important aspects of B by reading B;. In addition, it is easier to change—most

changes to B do not affect By, so A does not have to be reexamined. Once we introduce other

INote that it is possible that the changes to the type of disk do not require changes to f open. We have defined
dependencies as possible changes, not actual changes. Another way to look at dependencies is to think about which
parts of the program must be examined (and possibly changed).

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 19

components that depend on B, it is clearer that the modular program is better. The cost of
creating By is borne only once, but the benefit of depending on By instead of B is gained once
for each component using B. As the program grows in size, the benefits increase while the
costs remain fixed. The abstraction B with interface B can also be reused in other programs.

We have only looked at breaking the dependency of one component on another. In the next

section we will explore abstractions that allow us to break dependencies on a set of components.

3.2 Abstractions

What form of abstraction should we use? We can reuse parts of the program that don’
change; parts that change are updated or replaced. To benefit the most from modularity, the
interfaces should rarely change. Therefore we should put what will stay the same in the in-
terface, and hide what will change in the implementation. Discovering commonalities is part
of the design process [Cop99]. We must consider what kinds of changes may be needed, how
often those changes are required, and how expensive these changes will be. In a large pro-
gramming project, it is also important to assign responsibilities. Every program component
and interaction between components should be the responsibility of some developer. If there
is an interaction for which no one is responsible, then unexpected behaviors can be produced.
One case we will consider is a base system extended in two different ways (by different people)
and combined by a fourth person; we would like the combination to work without the fourth
person examining implementation details of all three modules to ensure there are no unex-
pected interactions. In this section we examine these issues using four different abstraction

mechanisms.

3.2.1 Abstract Data Types

We start with the simple case: neither the data representation nor the set of operations
needs to change in the future. Shown in figure 3.2 is an ADT for Points:? In this example there
are two data variants (cartesian and cylindrical) and three functions. Clients depend on the
set of functions so changes to that set will affect clients. Clients depend on the defining module
but not on the set of data variants. The data variants or set of functions can be changed, but
only by the author of the ADT.

With restrictions come knowledge: if the set of data variants cannot be extended from
outside the ADT, the author of the ADT can rely on any Point being either cartesian or cyl-
indrical—it cannot be some new variant. This knowledge allows for functions like add() : all
combinations of variants can be accounted for. It also provides for security: if a client has a

Point, he can be secure in the knowledge that it came from this ADT, and is not some kind of

2For Point to be useful, we would need to make the X and Y coordinates accessible. However, to demonstrate some
issues with abstraction, we make them private.

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 20

si gnat ur e PointSig = si g

t ype Point;

val Cart : real * real * real — Point

val Cyl: real * real * real — Point

val magnitude : Point — real

val mult : Point * real — Point

val add : Point * Point — Point

(* axiom: magnitude(mult p x) = (magnitude(p) * x) *)
end

st ruct ur e PointStruct = st r uct
dat at ype Point =
Cart of real * real * real
| Cyl of real * real * real

f un magnitude(Cart(z,y,z)) = /22 + y2 + 22
| magnitude(Cyl(r,0,2)) = /72 + 22

fun mult(p,v) =...

f un add(Cart(z1,y1,21), Cart(zs,y2,22)) = Cart(z1 + 2, y1 + 2, 21 + 22)
| add(Cart(a:l ,yl,zl), Cyl(T2,02,22)) =...
| add(Cyl(rlﬂl ,Zl), Cart(xz ,y2,22)) =...
| add(Cyl(ry,61,21), Cyl(ra,02,25)) = ...

end

Figure 3.2: Point abstract data type

impostor.

In the above definition, the ADT is built on top of union types. An alternate approach is
to build the ADT on top of object types and a private class hierarchy. The ADT would wrap
a private base class, Poi nt | npl , plus two private derived classes, Cart Poi nt | npl and Cyl -
Poi nt | npl . The ADT functions would simply forward the requests to the underlying object.

The remaining three forms of abstractions we consider will give us the ability to extend the
set of data variants, the set of functions, or both. With extension however we lose knowledge—

we can no longer rely on a fixed, known set of variants.

3.2.2 Objects

When we want extensibility of data variants, we turn to object-oriented programming. Like
ADTs, we would like to have several data variants and several functions. Clients can depend on
the set of functions. Unlike ADTs, clients of objects do not depend on the defining module. As a
result, we have substitutivity (see section 2.5): it is possible for clients to transparently use new
variants defined in a different module. With this sort of flexibility we lose knowledge of where

an object was defined. Such knowledge is crucial for defining functions like Poi nt . add, which

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 21

needs to know the data variants of both arguments. Standard forms of object-oriented pro-
gramming let us know one variant only, so “binary” methods like Poi nt . add cannot be writ-
ten properly. There have been many attempts to solve the binary method problem [BCC195].
Binary methods, in which the data variants must be known, are fundamentally incompatible
with substitutivity, for which the data variant must not be known. Therefore it is not surpris-
ing that none of the solutions to this problem are satisfactory [BCCt95]. One must choose
whether binary methods or substitutivity is more important; one cannot have both.

Having seen that Points (the most common ex- Thought Experiment
ample in object-theory literature) are better as Suppose we are using Point objects in a
ADTs than as objects, we should naturally ask program. If we create a class MyPoint that
for what situations objects are better than ADTs. goked exactly like Point, would we be able
An object abstraction works best when we want {4 yge MyPoint objects in place of some of
substitutivity—we want clients to be independent the Point objects without changing the pro-
of the set of data variants. The Unix file system gram (j.e., does substitutivity hold)?
is a good example: the set of operations is fixed
(open, cl ose, read, wite) and clients are not dependent on the data variant being used.
Substitutivity is easy to demonstrate: if a program uses standard input (keyboard) and stan-
dard output (screen), we can use Unix redirection to make the program read from a file and
write to the printer. We have replaced the keyboard and screen objects with file and printer
objects without changing the program. Clients can work with files, pipes, network sockets,
printers, tape drives, keyboards, screens, modems, and other devices. We also have extensibil-
ity: a new kind of object (such as an infrared receiver) can be added to the system, and as long
as it uses the same interface, the object can be used without changing the program.

3.2.3 Union Types

Objects give us extensibility of data variants while essentially keeping the set of functions
fixed.?> Union types instead give us extensibility of functions while keeping the set of data
variants fixed. We used a union type inside the Point ADT to give us two variants, cartesian
and cylindrical. The Point ADT encapsulated a union type with a fixed set of functions, but we
could instead use the union type directly to avoid fixing the set of functions.

When should we use union types? A union type abstraction works best when the set of
data variants does not change and we want to add functions in a modular fashion. Clients can
depend on the set of data variants but are dependent only on the functions they want to use,
and are not dependent on the set of functions available. A good example of union types is the

internal data structures of a compiler. A compiler stores an abstract syntax tree to represent

3Subtyping makes it possible to have more functions in some data variants. However here we are more concerned
with adding functions to work on all variants.

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 22

the program. The nodes in the tree represent different kinds of constructs in the language,
such as if/then/else, function calls, and variable declarations. The union type can contain one
data variant for each language construct. One function can be created for each phase—parsing,
debugging, profiling, visualizing, optimizing, and generating code. Adding a new optimization
phase involves creating a new module and defining the optimization functions. It does not
require changes to the existing modules. In contrast, had the parse tree been structured in an
object-oriented fashion, a new optimization phase would involve modifying each of the existing
modules to add a new method.

Union types make it difficult to extend the set of data variants but easy to extend the set
of functions. In contrast, objects make it easy to extend the set of data variants but difficult
to extend the set of functions, and ADTs make it difficult to extend either. In addition, union
types allow code to inspect the variants being used. For example, Poi nt . add invokes different
code depending on a pair of arguments. Such functionality is also needed for optimization
passes—a constant folder for example needs to know that both the left and right children of a
tree are constants, and that the node at the top is an arithmetic type.

3.2.4 Multimethods

If we want both the set of data variants and the set of functions to be extensible, we can
turn to an alternate object-oriented model used in CLOS [Kee89], Dylan [Com92], and Cecil
[CDGI97]. Multimethods are methods that are not encapsulated with data, but still enjoy the
dynamic-lookup property—when a message is sent to an object, the most appropriate method
is called. The “multi” in the name “multimethods” refers to methods being chosen based on
more than one object. The technique is also called multiple dispatch: messages are sent to a
group of objects, and the system chooses the most appropriate method for the group.

There are two aspects of multimethods that make them interesting here. First, they can
distinguish data variants of more than one argument. Second, they do not encapsulate data

with functions.*

e Like union types, the multimethod paradigm gives up substitutivity by allowing any func-
tion to determine which data variant is being used. With this ability we can write binary

methods like Poi nt . add, which look at the data variants of two arguments.

e Like union types, the multimethod paradigm gives up encapsulation by separating the
data from the functions. With this separation we gain the ability to extend the set of
functions without modifying the definition of data variants.

e Like objects, we can define the functions for each data variant separately, so we can
extend the set of data variants without modifying existing functions.

4Instead, as with ADTs, data and functions are encapsulated in modules.

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 23

Cyl Cart Spher instr A instr B instr C
Cyl | Bob Bob ? phase 1 (orig) (orig) Bob
Cart | Bob | (orig) | Carol phase 2 (orig) (orig) Bob
Spher ? | Carol Carol phase 3 | Carol Carol ?
(a) (b)

Figure 3.3: Who defines functionality?

e Like objects, the multimethod paradigm gives up a central list of data variants. A decen-
tralized definition of variants is more difficult to reason about than a centralized defini-

tion.

With multimethods we give up some encapsulation and substitutivity, but we gain the abil-
ity to extend both the set of data variants and the set of functions. Unfortunately it can
be difficult to combine separately developed extensions into a single program. For instance,
suppose in the Point example, Bob extends the system with cylindrical points, along with func-
tions add (Cart, Cyl),add (Cyl, Cart),and add (Cyl, Cyl). Carol extends the sys-
tem with spherical points, along with functions add(Cart, Spher), add (Spher, Cart),
and add(Spher, Spher). The chart in figure 3.3(a) shows the code that is defined originally
(marked (orig)) and which cases are defined by Bob and Carol. With either extension alone, add
can handle all four cases, but when we combine the two extensions, there are nine cases, and
two of them, add (Spher, Cyl) and add (Cyl, Spher), are left undefined. Extensions
involving binary methods cannot be combined easily. It is not the fault of multimethods in par-
ticular. This is an inherent limitation: the goal of modular extension (cylindrical points mod-
ule defines addition involving cylindrical points) and the goal of completeness (binary methods
such as addition are properly defined for all cases) are in conflict.

There are also limitations when combining a data extension with a function extension.
Suppose to our compiler data structures example from the previous section, Bob adds a new
kind of instruction. Independently, Carol has developed a new optimization phase. Combining
these extensions is problematic: neither Bob nor Carol has described how the optimizer should
treat the new instruction. Again, we see in the chart in figure 3.3(b) that each extension covers
all six cases needed to deal with the original four plus the extension, but the combination
of two extensions leads to nine cases, leaving one case undefined. Modular extension and
completeness are at odds.

There is a case for which the entire matrix for add does not have to be defined. If the
function’s semantics are the same regardless of the data variants of the arguments, and if a
single definition can be written to handle any arguments, then that definition can be used
when more specific definitions have not been written. In the case of add, there would be a
definition add(Any, Any) that could handle any types of points, and more specific definitions

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 24

Client depends on. .. Implementors can...
set of set of combine extend extend
functions data variants | extensions functions data variants
ADT Yes Yes n/a No No
Objects Yes No Yes No Yes
Union types No Yes Yes Yes No
Multimethods No No No Yes Yes

Table 3.1: Summary of abstractions

add(Cart, Cart),add(Cyl, Cyl),and add(Spher, Spher) provided by the authors of Car t,
Cyl , and Spher , but no one is required to provide functions such as add(Cyl , Spher) because
the generic add(Any, Any) can handle that case. One may wonder, if add(Any, Any) can
deal with any kind of point, why write specific versions like add(Cyl, Cyl)? To preserve
substitutivity, add(Cyl, Cyl) should do the same thing as add(Any, Any). However, it is
possible that add(Cyl , Cyl) can be implemented more efficiently than add(Any, Any) . This
is especially true for container classes, where access to the container class internals can lead
to more efficient code. In this work however we are concerned primarily with features for

program design, rather than for efficiency.

3.2.5 Comparison

The above sections described four forms of abstraction. Table 3.1 summarizes the key prop-
erties of these four. Which one(s) should a language support?

There is evidence that all four of these abstractions are useful in practice. When the ap-
propriate abstraction is not available in the language, programmers often create it through
discipline and unusual program structure. For example, the Xt toolkit for The X Window Sys-
tem [You89] and the Presentation Manager library from IBM [Pet94] both introduce the notion
of classes and subclassing to create object-oriented hierarchies in C. The eXene library for
SML/NJ has a structure similar to a class hierarchy. For ML-like languages, Philip Wadler
has proposed views [Wad87], a way to make union types more like objects while at the same
time preserving the extensibility of the set of functions. For object-oriented languages, the Vis-
itor design pattern [GHJV95] transforms object-oriented language constructs into a union-like
structure, allowing for the extension of the set of functions (“visitors”) while restricting the
set of data variants. Type query constructs such as dynam c¢_cast in C++ and i nst anceof
in Java also give some of the flavor of union types. The “double dispatch” technique is a way
of implementing multimethods on top of conventional objects. In languages with multimeth-
ods, we see the opposite—it is more common to program in the union type or conventional
object-oriented styles than to take full advantage of multiple dispatch.

Given any of these four abstraction techniques, programmers try to emulate another. This

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 25

is evidence that all four forms are needed in practice, and that no one form is the best choice for
every problem. ML already supports ADTs and union types. Multimethods are incompatible
with our goal of minimizing dependencies and preserving substitutivity. OBSTACL adds objects

but not multimethods.

3.3 Objects vs. Values

More evidence that objects are not universal comes from the differing treatment of objects
and values of algebraic types (see section 1.2). Objects have state and identity.> An object’s
state can change over time while its identity stays the same. For example, an automobile’s
state may be {loc = “Princeton, NJ”} at one time and {loc = “Pittsburgh, PA”} at a later time,
but it is still the same automobile.® Two automobiles may have the same state but different
identities. Values of algebraic types on the other hand have neither state nor identity. They
can be treated as the names of objects. Names can be copied to create a new name for the
same object, and compared to ask whether two names refer to the same object. For example,
{1,5,3} and {3,1,5} are two names for the same set, and 3/5 and 0.6 are two names for the
same number. Copying an object such as an automobile is a non-trivial operation, and is often
called cloning. Unlike copying of values, a clone of an object has its own identity distinct
from the original object. Two objects can look the same but be different. Two values can look
different but be the same. Sections 4.1.3 and 6.1.1 examine this issue of “sameness” (equality)
in more depth.

We might want to say that values are immutable and objects are mutable. However, con-
ceptual immutability and implementation constraints are sometimes at odds, so values may
have a mutable implementation for efficiency. For example, sets are conceptually immutable,
but most implementations offer mutable sets for better efficiency. Although an object may be
immutable in implementation, it is conceptually potentially mutable. For example, a student
may be represented as an object with an immutable “name” field. Although changing the name
is not supported in the program, a student conceptually could change his or her name in real
life: the field is conceptually mutable but immutable in the implementation. The value/object
distinction also affects distributed systems, multithreading, and serialization [BRS+98].

Objects and values are complementary and can be used together in the same program. Fun-
damental properties such as identity, copying/cloning, mutation, and comparison are different
for objects and values. In OBSTACL we keep them distinct instead of choosing one over the
other.

5]dentity is the more fundamental aspect of objects [Pit93], but identity leads to objects having state, even if that
state is not directly mutable in the language.
6Philosophers may argue this view of the world.

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 26

3.4 Polymorphism

The abstractions discussed in section 3.2 are sometimes called “polymorphic”. Subtype poly-
morphism, which is associated with object-oriented programming, has been show insufficient
to express parametric polymorphism [Str97]—more evidence that the object-oriented approach
is not universal. At the same time, parametric polymorphism allows only compile-time vari-
ance of types and cannot express the run-time variance provided by subtype polymorphism.
Both are required to express common programming structures. Consider for example a muta-
ble array of objects. We can write this array’s type as Array[o], where o is the type of the object
contained in the array. Suppose B is a subtype of another object type, A. Should Array[B] be a
subtype of Array[A]? No. One operation on Array[A] arrays is to insert an A object into it. But
Array[B] does not support insertion of A objects; it contains only B objects. We cannot say that
Array[B] and Array[A] are related by subtyping polymorphism (in particular, one cannot say
that Array[B] is a subtype of Array or of Array[Object]); they are instead related by parametric
polymorphism. In dynamically typed languages, the two forms of polymorphism (parameteric,
often used in containers, and subtype, used for object types) are not distinguished.” In a stati-

cally typed language, both are necessary to express programs.

3.5 Class Hierarchies

Section 3.2 included analysis of dependencies involving objects: the users of an object de-
pend on the set of public functions it contains, but not on the set of data variants. As a result,
new data variants can be defined without affecting program components that use objects. How-
ever, components that create objects are dependent on the mechanism used to create objects.
In OBSTACL classes are used to create objects. (Section 4.2 explains why we chose classes over
prototypes.) In addition, classes can be used to create subclasses. Thus there are three kinds

of audiences:

1. Components that define subclasses depend on the superclass. They depend on the su-
perclass’s constructor, protected definitions, and public definitions. However they should
not depend on the superclass’s private definitions. For OBSTACL we impose stricter con-
ditions: components that define subclasses should not depend on the set of ancestors of
the superclass, nor should they depend on whether definition was inherited directly from
the superclass or indirectly from one of its ancestors. Given these restrictions one can
consider the ancestor graph to be an implementation detail that can be changed without

affecting subclasses.

7Such a distinction of types is not unique to object-oriented programming. Lists (a varying number of elements of
a fixed type) and tuples (a fixed number of elements of varying types) are the same in a dynamically typed language,
but distinct in a statically typed language.

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 27

2. Components that instantiate a class depend on that class’s object creation policy (see
section 3.6.1) and public definitions. They should not depend on the protected or private
definitions, nor should they depend on the class’s ancestors.

3. Components that use instances of a class depend on the public interface defined by that
class.

In each case the component should depend on what the class or object provides, not on how
it is defined. For each audience there is a dependency in most object-oriented languages that
we attempt to break in OBSTACL:

e Subclasses depend on superclasses. We introduce parameterized inheritance (see sec-
tion 5.3) to allow subclasses to be independent of the superclass and its ancestor graph.

However, they still depend on the interface exported by the superclass.

e Object creators depend on the creation policy. We introduce instantiators (see section
5.2.5) to allow object creation to be independent of the creation policy. However, they may
still depend on properties of the creation policy.

e Object users depend on the class: We use structural object types (see section 5.1.3) to
make object users independent of the class of the object. However, they may still depend
on the behavior of the object.

As dependencies are broken, a program can be made more modular. For example, if a
class is not dependent on the exact implementation of its ancestors, the class can be placed
in an application and the ancestors can be placed into a dynamically loaded library (DLL). If
the class does not depend on the implementation of the ancestors, the DLL can be upgraded
(changing some implementation data structures to more efficient ones, without changing the
interface) without causing link incompatibilities. Run-time dependencies, such as DLLs, are

further discussed in chapter 8.

3.6 Design Patterns

In section 3.1 we saw the general pattern of increasing modularity by creating an abstrac-
tion and depending on an interface but not the implementation. If we refine “A depends on B”
to “A depends on some aspect of B” then we can look at more specific ways of breaking these
dependencies. In the popular literature these are often called Design Patterns. (Note however
that not all design patterns are about breaking dependencies.) In our discussion of design pat-
terns, we will mostly use well-known design patterns [GHJV95]. Creational patterns address
the ways in which objects can be created. Structural patterns address the ways in which ob-
jects are related to each other. Behavioral patterns address the ways in which objects respond
to messages.

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 28

3.6.1

Creational

Some classes have a policy on how and when objects are created. As mentioned in section

3.5, object creators may not need to depend on the creation policy. Many creational design

patterns address this dependency by answering questions about object creation:

1.

Singleton: (How many objects to create) Only one instance of the class should be created,
no matter how many components want an instance of the object. Without this pattern,
program modules that want to create an instance must communicate to decide which
module will create the instance; then that module must give an object reference to the
other modules. All modules creating objects of this class unnecessarily depend on each
other.

. Remote Creation: (Where an object should exist) An object may reside on another ma-

chine or in a separate process. Without this pattern, program components depend on
whether the object should be created locally (and accessed through method calls) or re-
motely (and accessed through a network interface such as remote procedure call). Access
to the object can be done with the Remote Proxy pattern (see section 3.6.2), as long as all

access to the object is through an interface and no direct access is allowed.

. Delayed Creation: (When an object should be created) When an object is expensive to

build and may not be needed immediately, return a reference to the object but delay the
actual creation of it. Without this pattern, the program may create objects to build a
larger structure (e.g., a graph) but those objects may not actually be needed, so resources
are wasted. The object can be constructed using the Virtual Proxy pattern (see section
3.6.2).

. Object Cache: (Whether an object should be created) When possible, an existing ob-

ject is used instead of creating a new one. Without this pattern, a program component
may make unnecessary instances that behave the same as those that been already been
created. The object can be designed using the Flyweight pattern [GHJV95].

. Prototype: (How an object is initialized) An object can be initialized with the state of

another object (through cloning), similar to the approach used in prototype-based lan-
guages. Without this pattern, program components need to share initial values for new
objects. The pattern encapsulates these initial values into an object.

. Virtual Constructor: (Which kind of object to create) Based on arguments to the construc-

tor, choose a class to instantiate. Without this pattern, each object creator would need to
know the rules for choosing a class and would depend directly on the set of classes that

could be chosen.

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 29

In addition to patterns in which the class sets a creation policy for its instances, there are

patterns in which a third party contains a creation policy:

1. Factory Method: A superclass leaves to its subclasses the decision of which classes to
instantiate for sub-objects. Without this pattern, the superclass chooses how to create its

sub-objects, and the subclass has no influence over the choice.

2. Abstract Factory: Entire class hierarchies are chosen to create a set of objects. With-
out this pattern, the choice of class hierarchy is fixed and cannot be changed without

modifying all components that create instances of classes in the hierarchy.

When the class defines an object creation policy, it must provide functions that implement
the policy. The user must call those functions instead of creating objects directly. OBSTACL
uses instantiators (described in section 5.2.5) to encapsulate object construction and the cre-
ation policy. Users must call an instantiator to request a new object; otherwise they might
bypass the object creation policy. Instantiators can also be used as ordinary functions, so pat-
terns like Abstract Factory can be built by collecting instantiators from classes in a hierarchy.

Instantiators are a good tool for expressing many creational design patterns.

3.6.2 Structural

Objects are rarely used alone; they usually exist in relationships with other objects. Struc-

tural design patterns address dependencies between objects.

1. Adapter: Use objects from one class hierarchy H; when objects from a different class
hierarchy H> are expected. Without this pattern, program components that expect objects
from H> would have to be modified to use objects from H;. With adapters, those program
components can use objects from H, without depending on H>. (Note however that if
the component needs to create objects from H,, the Abstract Factory pattern from section
3.6.1 is needed to break the dependency.)

2. Decorator: Add or modify functionality to a set of objects without creating new sub-
classes. Without this pattern, new subclasses must be created for each class being ex-
tended.

These two patterns have another advantage: they allow choices to be made or changed at
run time. In chapter 6 we will see how parameterized inheritance (mixins) help us implement
these patterns and also allow us to choose to make decisions at compile time (by building new

classes) or at run time (by building new objects).

1. Remote Proxy: Use an object without knowing whether it is local or remote. Without
this pattern, the program component must know whether an object is local or remote,

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 30

and access the object in different ways (message sends vs. a networking interface such as

remote procedure call).

2. Virtual Proxy: Use an object that may not have been fully built yet. Without this pattern,
the program component must know whether an object has been fully built, and build the
object before it needs all of its services. It must also notify other program components
that use this object that the object has been built and that it should not be built again.

3. Composite: Treat objects and groups of objects uniformly. Without this pattern, an object
and a group of objects are treated differently, so there may be places where a single object
can be used but a group cannot, because the component using objects depends on there

being just one object.

These three patterns are about treating one structure (a remote object, a placeholder object,
or a group of objects) just like an “ordinary” object. Structural subtyping can help us express
these patterns without using inheritance and can also allow us to add these patterns to an

system without modifying the existing classes.

3.6.3 Behavioral

Once an object is created and its relationships set up, we still may want to look at its
behavior. Many design patterns address the behavior of objects.

1. Iterator: Provide an object to traverse a sequential container. Without this pattern, pro-
gram components access a container directly. By depending on the container, code cannot

be reused for other containers or for sequences that are not a container.

2. Memento: Encapsulate internal data that must be saved and restored. Without this
pattern, a program component must be able to query and set the object’s state, including

private data. Both of these abilities reduce abstraction.
3. Visitor: Provide a way to extend the set of functions that can query the data.

The dependencies eliminated by these patterns are not specific to object-oriented program-
ming. Iterators can be written in non-object-oriented libraries [Cop99, Aus98]. Mementos can
be written using opaque types [MTHMO90]. The extensibility provided by the Visitor pattern is
available in union types. We will not address directly these forms of dependencies in our study

of objects.

3.7 Summary

Programs can be made more modular by dividing them into components and defining inter-
faces between components. Reducing the number of dependencies makes the program easier to

CHAPTER 3. PROGRAM DESIGN AND MAINTENANCE 31

understand and change. OBSTACL offers both non-object abstractions (ADTs, union types) and
object abstractions; each has advantages. Design patterns express common structures that
are found in real systems, and thus are useful for studying dependencies that arise in these
systems. In OBSTACL, interface types, instantiators, and parameterized inheritance reduce
dependencies when using objects. In chapter 6 we will examine the use of these features with

respect to design patterns.

Chapter 4
Language Space

Our goal is to add objects to ML while supporting modular programming techniques and
remaining consistent with the flavor of ML. In this chapter we examine design alternatives and
our choices for OBSTACL. First we consider how objects are used: message sends, updates, and
comparison. Then we consider how objects are created, and choose classes as a base construct
for creating objects. Next we look at ways of creating classes using inheritance. Finally we

examine the object initialization process, using constructors and instantiators.

4.1 Using Objects

4.1.1 Selection

Given an object, the most important operation one can perform is to send it a message. How
should it respond? There are several options:

e Select: The object can select a method and return it.

e Select and Execute: The object can select and execute a method.

e Asynchronous Execute: The object can add the message to a queue and return. Messages

in the queue are processed in a separate thread of execution.
e User-Defined: The object can execute user-defined code to respond to the message.

“Pure” object-oriented languages (i.e., those in which everything is an object) usually do not
return unexecuted methods, which are essentially functions, not objects. Most languages do
not address concurrency of objects, or at least do not make each object a separate thread by
default. Strongly typed languages do not offer user-defined message response because of typing
issues. OBSTACL is a strongly typed language that does not address concurrency issues, so the

options are to select and execute a method or to only select a method.

32

CHAPTER 4. LANGUAGE SPACE 33

Selecting and executing methods is appealing because it gives the object the option to re-
spond to all message sends. Field access and method call are given the same syntax—a. x for
object a and field or method x—so it is easy to turn a field into a method or vice versa. How-
ever if the method takes parameters the syntax is a. X(. ..). The use of X to invoke functions
with no parameters and X(. . .) to invoke functions with parameters is used in languages like
Pascal. ML and C however use x() to invoke functions with no parameters, so that x alone
refers to the function itself and not a call to it. To be consistent with ML, we chose to make
a. X refer to the method selection alone, and use a. x() to call the method.! Keeping the two
operations (selection and invocation) separate allows for more flexibility. For example, the Xt
library for The X Window System uses the notion of “callbacks”, which are essentially func-
tions; the InterViews library [LCIt92] is object-oriented and goes farther, by making callbacks
an (object, method) pair—exactly what selection without invocation provides. The Command
design pattern from [GHJV95] is intended to provide something similar. In addition to the
program design issues, there is a language design issue—treating selection and invocation
separately allows us to use the existing ML function call mechanism instead of introducing a
new feature for method calls. Thus separating the two both increases flexibility and simplifies

the language.

4.1.2 Updates

It is a great mistake to think that an object can be purely functional.

—The Last Neanderthal (Discovery Channel)

The second most important operation on objects is the update of fields or methods. There

are three choices to be made:

1. Are updates imperative or functional? Imperative updates alter the object’s state with-
out changing its identity. For example an automobile’s location may be changed from
“Pittsburgh, PA” to “Boston, MA” without making a new automobile object. Functional
updates create a new object with all fields and methods copied except one, which receives
anew value. For example, an automobile in “Pittsburgh, PA” could be updated by creating
a new automobile object that carries the fields (such as color, size, model) and methods
of the old object except its location would be “Boston, MA”. Any objects that refer to the
automobile must be updated as well to refer to the new automobile. Any objects that refer
to those object must also be updated, and so on.

Functional updates are conceptually more complicated than imperative updates. Since
other objects must be updated, the fact that an object is being updated must be reflected

1Python [Lut96] also makes this distinction, and calls the selected method a bound method.

CHAPTER 4. LANGUAGE SPACE 34

in the object’s interface, reducing abstraction and sometimes destroying substitutivity. In
addition, creating new objects via updates bypasses the object creation policy set by the
class (see section 3.6.1). Imperative update can be hidden from the object users, and more
closely corresponds to real-world objects. Furthermore, evidence from object calculi and
implementation of object-oriented languages suggest that functional updates are more
expensive. For OBSTACL we chose imperative updates because they are simpler, better
for modularity, and more closely correspond to the update of physical objects.

2. Can updates be made from outside the object? Updates made directly by the user
of an object can lead to more flexibility and convenience. However, those updates may
not preserve object invariants. For example, an object representing a finite state machine
may require its state to be one of (false, 0), (true,0), or (true,1). The user may update the
state to (false, 1), putting the object into an invalid state. In OBSTACL, the state is gen-
erally hidden from the user, and updates must be made through method calls. However,
an object may export to the user the ability to make updates, allowing for user updates

in cases that require it.

3. Can all fields be updated, or only some?

In “mostly functional” languages such as ML and Scheme, assignment of new values to
existing variables is discouraged. In ML, variables are immutable by default, and can
be made mutable by using reference cells (“refs”). A ref is a box into which a value
can be placed, and from which a value can be extracted. ML refs are first class values,
and can be placed into data structures such as objects. C++ also distinguishes between
mutable and immutable with the “const” qualifier, but makes mutability the default. In
these languages, initialization must be a separate operation from assignment; the latter
works only on mutable variables. For consistency with ML, we extend ML’s treatment
of variables and record fields to apply to object fields as well: each field is immutable by

default, and can be made mutable by using a ref.

4. Can methods be updated, or only fields? Many object calculi support updates of both
fields and methods. Most method updates are made to build objects, but there are also
cases where updates to existing objects make sense. (See for example Cardelli’s calcu-
lator object in [AC96] or the State pattern from [GHJV95].) However, method updates
are more difficult to support in the presence of subtyping [AC96]. In OBSTACL, we use
classes (which support method override) to build objects, so method updates in objects
are uncommon. We chose not to support method update; instead, we can use updatable

fields with function values to achieve a similar effect (see section 9.1.4).

In OBSTACL we support imperative updates of fields but not methods. We do so by utilizing
ML reference cells (“refs”). Thus we can support field update without additional machinery.

CHAPTER 4. LANGUAGE SPACE 35

4.1.3 Equality

Given two objects or values, one may want to ask are they the same (i.e., are they equal)?
What does this mean? We say a equals b if replacing one by the other has no effect on any
program. This view suggests that equality and substitutivity are the same notion. However,
substitutivity tells us that we can replace a by b and the program may work differently but will
still work correctly. Equality is a stronger relation—it tells us the program will behave iden-
tically after the replacement. The equality relation from mathematics is reflexive, symmetric,
and transitive, so we would prefer to preserve those properties in our programming language.

We consider four forms of equality:

1. Shallow Equality. Also called pointer equality, shallow equality compares only whether
two expressions yield the same object in memory, not whether the objects have the same
structure and contents. This form is fastest and simplest to implement, but is not always

appropriate. It is also reflexive, symmetric, and transitive.

2. Deep Equality. Equality that takes into account a value’s references to other values is
called deep equality. For example, the list [1,2,5] is equal to the list [1,2, 5] because the
lists have the same length and the corresponding elements are equal. Deep equality can
be significantly slower than shallow equality, and can be complicated by cycles in data
structures. It is reflexive and symmetric but may not be transitive in the presence of

subtyping (see below).

3. User Defined Equality. Since it is not always clear which form of equality is better, some
languages allow the programmer to define a comparison function. User defined equality
is typically slower than shallow equality but faster than deep equality, and can lead to
anomalous behavior if the programmer is not careful (e.g., the user’s function may not
be symmetric). User defined equality appears to be essential to handle cases where the
same conceptual value may be represented in many ways. For example, the sets {1, 2,5}
and {5,1,2} should be considered equal but are not equal using either shallow or deep

equality.

4. Equality At A Type. In the presence of subtyping, we may need a variant of deep or
user-defined equality: compare objects at a common supertype of a and b. For example,
{z = 3,y =5} and {w = 7,z = 3} have a common supertype {z : int} so we compare only
the z field. However, it is not clear how to compare private data in objects. At any one
type, equality is reflexive, symmetric, and transitive, but that one type is the user-visible

type and does not include private and protected data items.

Of these four forms of equality, only shallow equality is compatible with our substitutivity
and data hiding goals. ML provides shallow equality for mutable values (refs), deep equality for

CHAPTER 4. LANGUAGE SPACE 36

most immutable values, and no equality for functions and certain other types. Deep equality is
more appropriate for immutable values; shallow equality seems better for potentially mutable
objects. In section 6.1.1 we will consider the implications of object comparison on substitutivity.
Since shallow equality is useful and easy to implement, we support shallow equality rather
than no equality for OBSTACL objects.

4.1.4 Object Types

In a strongly typed language, an object should have a type, and we should also be able to
manipulate objects through less specific types (supertypes). What should these types look like?

e Classes: Languages like C++ link types to classes. There is a subtype hierarchy that

mirrors the class hierarchy.? Each object type has a name and is associated with behavior.

e Explicit Interface Hierarchy: Languages like Java allow the definition of a hierarchy of
object interfaces. These interfaces are independent of classes so subtyping can exist with-

out inheritance.? Each object type has a name and can be given a specification.

e Structural Subtyping: Many research systems use structural object types, which describe
the interface to objects. Object types do not have a name, nor are they associated with
a specification. Subtyping relations are inferred, not given explicitly. A structural type

corresponding to the ar r ay interface type would be {|get : int — 7,set : int x 7 — unitl}.

Using classes for object types is in conflict with our goal of substitutivity, because we cannot
substitute an equivalent object instantiated from an unrelated class. In languages that treat
classes as types (C++, Java), the use of types with no associated implementation (abstract
classes in C++, interface types in Java) is evidence that tying classes and types together is too
restrictive. Hence we only consider explicit type hierarchies (specified by the programmer) and
implicit typing relations (inferred by the compiler). It is also possible to use structural types
explicitly specified by the programmer, but it is somewhat cumbersome, so we shall not explore
it.

The advantage of a programmer-specified subtyping hierarchy is that types are given names
and meanings. A name such as Dat aSt r eamis more meaningful than a structural type such
as {read : int — string, write : string — unit[}. Furthermore, the declaration of Dat aSt r eam
can include a description of data streams and a specification of how they work. Classes must

explicitly state that they satisfy some interface.

21t is possible to define a C++ subclass that is not a subtype, so, strictly speaking, the subtype hierarchy is a subset
of the class hierarchy.

3In Java, all subclasses are also subtypes, so the class hierarchy is a subset of the subtype hierarchy. This is the
reverse of the relationship in C++.

CHAPTER 4. LANGUAGE SPACE 37

However there’s no reason structural types cannot be given names. The more meaningful
difference is how types are compared. Types are name equivalent if they refer to the same def-
inition (where a name was given to it). Types are structurally equivalent if they have the same
shape (record, tuple, object, function, etc.) and their components are structurally equivalent.
Structural equivalence is more flexible but more error prone than name equivalence. As a re-
sult, many languages have both. In C and C++, record types are compared by name but most
types are compared structurally [Str94, section 2.5]. In ML, abstract data types are compared
by name but most types (including records) are compared structurally. The decision between
an explicit subtyping hierarchy and structural object types is tied to type comparison—types
from an explicit hierarchy are typically compared by name and explicit subtyping relation-
ships, while structural types are necessarily compared structurally.

With structural object types there is a chance of “accidental subtypes”, where two types
are related through structural subtyping but weren’t meant by the programmer to be related
[BHJL86]. An example is Poi nt 3D= {z : int,y : int,z : int}} appearing to be a subtype of
Vect or 2D= {|x : int, y : int[}, even though they should not be. Points and vectors have the same
structural type but are not interchangeable. For instance, vectors can be added to vectors, but
points should not be added to points. Another danger of structural types is that as interfaces
evolve over time, subtyping relationships may be created or destroyed, through no fault of the
programmer. For example, if two types are related in an earlier version of the program, then
some parts of the program may rely on the subtyping relationship. If in a later version of the
program, the two types are no longer related, the parts that relied on the relationship will
break. Inferring structural types also reveals implementation information. For example, if
a function f takes an object as its argument, then the inferred type of f includes the list of
methods that f calls. Not only does this leak information, it is another form of brittleness—as
the implementation of f changes over time, it may need to call another method, and the type
(interface to f) must change.

Explicit subtyping helps verify the programmer’s assumptions about the types of objects
and the subtyping relations in the program. In addition, named object types support evolution
of interfaces over time without accidental loss of subtyping relationships.

The main advantage of structural subtyping is its flexibility. There are many more sub-
typing relations than a programmer will specify, so explicitly listing subtyping relations will
result in most relations being omitted. For example, suppose Array[r] = {/get : int — 7,set :
T X int — unit[} is a polymorphic array type, including objects which include a “get” method to
read an element from the array and a “set” method to write to the array. When B is a subtype
of A, Array[B] is not a subtype of Array[A] because putting an A object into Array[A] objects is
allowed, but we do not want the A object in a B array. Java allows this unsound subtyping

relation for built-in arrays (but not for user-defined arrays) because it is quite useful to pass

CHAPTER 4. LANGUAGE SPACE 38

arrays of B objects to functions that expect arrays of A objects, especially when those functions
only read from the array. With structural subtyping, there is no subtyping between the array
types but there is a relation on the read-only subset of them: {get : int — BJ} is a subtype of
{lget : int — A[}. Thus the function could accept read-only arrays of A, and a read-write array
of B can be passed in as an argument. Figure 4.1 shows the rich set of subtyping relations
resulting from just these two array types (RO indicates the read-only array; WO indicates a
write-only array), and how they compare to the array class in C++ (vect or <T>) and in Java
(T[]).* Structural subtyping gives us the flexibility we want without tempting us to add un-

sound subtyping relations.

fEmpty Obje‘it Array[A] Array[B] Array[A]
RO Array[A] WO Array[B] (no relations) \
Array[B]
RO Array[B] WO Array[A] \
Array[A] Array[B]
Implicit Subtyping Explicit Subtyping, C++ Explicit Subtyping, Java
(correct, flexible) (correct, inflexible) (incorrect, flexible)

Figure 4.1: Structural subtyping produces more subtyping relations

Structural object types also replace “multiple interface inheritance” (the use of multiple
inheritance to create additional subtyping relations). In OBSTACL, structural object types are
useful with parameterized inheritance, which can produce objects with new types that have
not been declared. ML uses structural types for most values. For consistency with ML and
also for flexibility, especially with parameterized inheritance, we chose structural object types
with structural subtyping for OBSTACL objects. In section 9.3.2 we show how to regain the
advantages of an explicit type hierarchy—associating names and specifications with types to

avoiding accidental subtyping.

4.1.5 Super Object Type

Given a hierarchy structure for both interfaces (subtyping) and implementations (inheri-
tance), we must decide if there is to be a single root or multiple roots. Languages such as
Smalltalk and Java have a class from which all others are derived. This class (often called

Object) has two uses:

4Note that in C++, for each type T there is a supertype const T which is a read-only interface to T objects. The
use of const can produce richer subtyping relationships than those produced only by inheritance. However, like
C++ assignment and equality, const is shallow, only affecting contained objects and not objects referred to through
pointers. Structural subtyping in OBSTACL can provide the equivalent of a const supertype, either shallow or deep,
depending on the programmer’s needs.

CHAPTER 4. LANGUAGE SPACE 39

e Implementation. It allows for the definition of code that should exist in all objects in
the system. Common code can include debugging, inspection, cloning, synchronization,
serialization, comparison, and visualization. For example, Java defines methods such
as equal s() (comparison), hashCode() (hash tables), t oStri ng() (output), and no-
tify() (synchronization) for all objects. OBSTACL does not have built-in cloning, serial-
ization, synchronization, or visualization. Furthermore we do not assume that all objects
can be placed into hash tables or formatted for textual output. More importantly, if we
want to define operations such as output, hashing, debugging or comparison, we want
them to extend to non-objects as well; implementing these operations in Object would
limit their usefulness. Implementing common code in Object is often convenient but it
tends to be domain specific and not flexible enough for programmers to adapt it to their
own domains. In OBSTACL, there is no code that all objects must share. Each library can

define its own domain-specific base class with common code.

e Interface. It allows for a single type representing the set of all objects. This type is com-
monly used for containers and other uses of genericity. ML already provides parametric
polymorphism for genericity that extends to all types, not only object types. Structural
object types provide a generic object type: {| [} is a supertype of all other object types.

In OBSTACL, there is no need for an Object class at the root of a single class hierarchy.
However, it does no harm, and having an empty class as the ancestor of all others is equivalent
to having multiple class hierarchy roots. We will add an Object class to simplify the type theory
(see chapter 7), but we will not add one to the language.

4.1.6 Access Rights

Protection of object data allows only some parts of the program to access private or protected
fields. Where and how the line is drawn between privileged and unprivileged code varies from
language to language.

We first consider where protection boundaries are set. Compile-time boundaries (modules,
classes, functions) grant access rights to code based on where in the program it was defined.
Run-time boundaries (processes, objects) grant access based on whether the code and data
occur in the same unit of abstraction at run time. Often there is no practical difference between
the two forms of boundaries, as many compile-time boundaries have but one instance at run
time. In the case of objects, there is. Just as multiple invocations of a process cannot access the
data of the others, with object-based protection, multiple instances of a class may not be able to
access the data of the others. In contrast, with class-based protection, methods invoked on one
object can access private data of different object instances from the same class. Such access

breaks substitutivity. Consider the thought experiment in section 3.2.2. If a Point object were

CHAPTER 4. LANGUAGE SPACE 40

cl ass Base {
private: int numel enents;

i
const int numelenments = 5; // some global variable

cl ass Derived: public Base {
voi d some_function() { ... numelenents+1l ... }

}s

Figure 4.2: The protection mechanism affects name lookup

replaced by a MyPoint object, then all code that has access to Point internals will break. Also,
to check access rights at compile time requires that the compiler can determine the class of an
object. Our object types do not include the class name (see section 4.1.4) so this access scheme
is not statically checkable in OBSTACL. Instead OBSTACL uses object-based protection.

The other dimension of access rights is how the line is drawn between privileged and un-
privileged code. C++ and Java use accessibility-based protection, in which all information about
the class is available but some of it is inaccessible. Access rights are granted by the class to
other parts of the program, such as subclasses, object users, modules, or “friend” classes. Ob-
ject creators can see the private and protected definitions, as well as the ancestors of a class,
but they are not allowed to access these definitions.

In the example code shown in figure 4.2, the derived class references numel enent s. Using
visibility-based protection, sorme_f unct i on would use the global variable; using accessibility-
based protection, it would see the private field, and thus cause a compile-time error. A disad-
vantage of visibility-based protection is that if the private field is changed to public or protected
in a new version of the Base class, then the Derived class suddenly gets a different value for
numel enent s. The change is silent and therefore extremely likely to cause bugs that are
difficult to track down. Therefore it may seem advantageous to use accessibility-based pro-
tection. However, the example shown in figure 4.3 shows an error that can occur when using
accessibility-based protection instead of visibility-based protection. If the Base class is revised
from the “Before” version to the “After” version, then the Derived class no longer compiles be-
cause it sees the private field from the Base class but cannot access it. It can be argued that
this error is a compile-time error, and can therefore be detected, while the previous example
leads to a logic error, which cannot be detected by the compiler; therefore the first situation is
more important to avoid than the second. In the context of C++ and Java, accessibility-based
protection is safer than visibility-based protection.

If we consider the change involved in each example, the former is a change to the interface,

while the latter is a change to the hidden implementation. We should expect that changes to

CHAPTER 4. LANGUAGE SPACE 41

Before:

cl ass Base {
private: vector<int> representation

b
const int numelements = 5;

cl ass Derived: public Base {
void sone_function() { ... numelenents+l ... }

i

After:

cl ass Base {
private: int representation[];
private: int numel enents;

1
Figure 4.3: Private variable names affect program maintenance

the interface affect subclasses. We should not expect that changes to the hidden implementa-
tion affect subclasses. Visibility-based protection offers better hiding of implementation while
introducing potential errors when changing interfaces.

OBSTACL uses visibility-based protection because names of private fields should never af-
fect subclasses: the maintainer of the superclass cannot be expected to know what names all
future subclasses rely on, and the subclasses should not be expected to know what names the
superclass author used for local fields.5 In the presence of run-time inheritance, mixins, and
dynamic linking, private fields of the superclass may not be known at compile time, making
static checks impossible. To avoid situations such as shown in the first example, OBSTACL
does not provide direct access to names inherited from superclasses. Instead, they are ac-
cessed through “self”, avoiding scoping confusion from new names being exported from the
superclass. OBSTACL therefore supports visibility-based protection without the potential for

error had visibility-based protection been used in C++ or Java.

4.2 Creating Objects

Now that we have chosen what sort of objects to use, we must decide how to create them.
First we examine hierarchies and how to represent them. We explain why we chose to use

classes to create objects and then look at ways to create classes.

5Dynamic scoping in early versions of Lisp and in current versions of Emacs-Lisp cause a similar problem: the local
variable names used by the caller can affect the behavior of the function being called. The result is extremely error
prone situations in which seemingly harmless changes to local variables in one function can affect the behavior of
functions in other modules. Later versions of Lisp use static scoping, in which local variables can be renamed without
fear of affecting the rest of the program.

CHAPTER 4. LANGUAGE SPACE 42

4.2.1 Extensible Objects

Hierarchies are a natural way to organize information. Books (part, chapter, section, para-
graph), outlines, businesses (CEO, vice president, manager, ordinary employee), and biological
classification (kingdom, phylum, class, order, family, subfamily, genus, species) use hierarchies
to organize information. However, with hierarchal definition of objects there are additional
complications. For example, changes to definitions must be propagated to extensions, and the
extensions should have some abstract view of entities they extend. Despite these complica-
tions, we chose to have hierarchal object definitions to increase modularity and promote code
reuse.

Evidence from languages with extensible objects (SELF [US87], LambdaMOO [Cur97], Ce-
cil) suggests that programmers distinguish between “generic” objects meant for extension and
“proper” objects meant for ordinary use, including subtyping and method calls. Furthermore,
extension and subtyping appear to be incompatible in a strongly typed language [Fis96] (see
section 4.2.3). Languages with extensible objects are usually dynamically typed and therefore
not concerned with detecting type errors in extension at compile time. One language that does
combine static type checking with extensible objects is Cecil [Cha92]. In Cecil, one must dis-
tinguish between prototype (“template”) and regular objects. Prototype objects are used for
organizing a static inheritance hierarchy, while regular objects are created at run time and
cannot be used for inheritance. Thus even in languages with extensible objects, the require-
ment of compile-time type checking leads to distinguishing between compile-time extensible
objects and run-time subtypable objects. Since OBSTACL is statically typed, we chose to have

two kinds of entities: those supporting extension and those supporting subtyping.

4.2.2 Prototypes vs. Classes

We now consider prototype objects and classes as potential extensible entities for OBSTACL.
Class-based models are well known and widely used (C++, Smalltalk, Java). Recently, there has
been a lot of interest in purely object-based models (also known as prototype-based models).
The language most known for using a prototype-based model is SELF; the most widely used is
JavaScript [F1la98]. The main advantage of these models is the conceptual simplicity of having
only one kind of object, in comparison with class-based models, in which there are both objects
and classes. How do prototypes and classes differ? Both are used to create proper objects. Both
allow new definitions of fields and methods and redefinitions of methods. Prototypes however
are like objects—their fields are given values and their methods can be called.

e Fields are given values. When a proper object is created, it inherits the field value from
the prototype. For each object to have a different field value, fields must be mutable
or there must be a mechanism to specify new field values when converting a prototype
to a proper object. Forcing all fields to be mutable may be acceptable in an imperative

CHAPTER 4. LANGUAGE SPACE 43

language like Java or C++ 8 but undesirable in a mostly functional language like ML.
Furthermore, there may not be any field values that make sense for the prototype. For
example, we may be building a set of objects with the invariant “each object corresponds
to exactly one open network connection.” The prototype however is an object that may
be created before any network connections are opened. It therefore violates the invari-
ant. Instead, we must add special case values and code to all the methods to handle the
exceptional case (the prototype).

e Methods can be called. If methods defined in the prototype can be called before a proper
object is created, methods must be written to accept either a prototype or a proper object
as its host. This complicates the type system, requiring the maintenance of negative
information. To see why, consider a prototype A and an extension B. A method defined
in A must work in A and also in B. B’s type however is not a subtype of A’s because
prototypes do not enjoy subtyping. Therefore the method must be polymorphic over all
possible extensions of A. In addition to working in a family of prototypes, the method
must work in proper objects. Even more complicated is when the method invoked on a
prototype attempts to extend it. A more complicated form of object extension is needed to

extend objects with imprecise type information.

Neither giving values to prototype fields nor calling methods in prototypes seems to be
very useful, and both make the language more complex. In addition, defining and maintain-
ing invariants can be more difficult when there is an additional prototype object that does not
correspond to an entity being modeled. Prototype-based systems are also more difficult to stat-
ically type [Cha92]. We chose classes and class inheritance as a simple mechanism enabling

extension without the full complexity of prototype objects and prototype extension.

4.2.3 Subtyping on Classes

As mentioned in section 4.2.1, subtyping and extension appear to be incompatible: if we do
not have precise type information about an object (or class), it is difficult to extend it. In this
section we show an illustrating example for which we want to inherit everything from a class
for which we do not have precise type information.

Assume we allowed subtyping on classes.” In the example shown in figure 4.4, Encr ypt -
edFi | e’s signature would be a subtype of Fi | €’s signature. The Encr ypt edFi | e class should

6Note that even in C++, all fields are not mutable. Like ML, C++ distinguishes between mutable and immutable
variables and treats initialization separately from assignment.

"The same issues arise if we allow extension (inheritance or delegation) of objects. We use an example with classes
to avoid any problems with the combination of extension and object features (method calls, fields, etc.).

CHAPTER 4. LANGUAGE SPACE 44

I et FileC assType = cl asstype
nmet hod read : int->string;
end;

class File
met hod read(nbytes) = ..
end;

class EncryptedFile extends File
met hod read(nbytes) = sel f.decode(key, next(nbytes));
met hod decode(key, string) = ..

end;

fun UUEncode(F: Fil ed assType) =
class UUFi |l e extends F
met hod read(nbytes) = sel f.decode(next(nbytes));
nmet hod decode(string) = (* uu-decoding of the string *)
end;
UUFile (* return value *)

I et uu = new(UUEncode(File)) (* create a new object *)
Figure 4.4: Class subtyping example

be usable in place of the Fi | e class. Let us consider what happens if we attempt to call UJEn-
code(Encrypt edFi |). By assumption, Encr ypt edFi | e’s signature is a subtype of Fi | e-
Cl assType, so the function call is type correct. Function UUEncode creates a new class with
a decode method. Statically, this function is type correct: it adds a decode method to a class
that does not have a decode method. At run time, we see that it adds a decode method to
Encrypt edFi | e, which has a decode method already. What should be done?

e Error: An error can be signalled. This means that Encr ypt edFi | e cannot be used in

place of Fi | e, and our subtyping relation is unsound.

e Replace: The new method should replace the old method. Essentially, we inherit only
what is visible in the class signature. This approach is motivated by a similar approach
in MLs module system: when importing a module, a client can restrict the structure
to some signature, and items that are not in the signature are not imported. If we do
this for classes, the resulting object (uu) has a single decode method that takes a string
and returns a string. What happens to the r ead method? UUFi | e’s r ead method calls
next _met hod(), which is Encr ypt edFi | e’sr ead. Encrypt edFi | e. read in turn calls

sel f. decode with two arguments, resulting in a type error. Therefore this solution is

CHAPTER 4. LANGUAGE SPACE 45

unsound as well. One could argue that the subtyping could be allowed only if Encr ypt -
edFi | e’s methods do not call sel f.read or call any function that calls sel f. r ead.
However, this introduces an unnecessary and unexpected dependency: the users of the
class do not know how the class is implemented, but the subtyping relationship depends
on the implementation details. In addition, determining whether sel f. r ead will be
called somewhere requires extensive program analysis and cannot be computed in the
general case.

e Add: The new method should coexist with the old method. Encr ypt edFi | €’s methods
will call Encr ypt edFi | e’s decode while UUf i | e’s method and object users will call UU-
Fi | e’s decode. This scope-sensitive method lookup preserves type safety but leads to

anomalies and an expensive implementation.

With “scoped” inheritance, the object responds to a message by returning a method that
can be seen. The definition of a new method introduces a new scope, while the redefi-
nition of a method does not. The hiding of a method via subtyping ends the scope. The
diagram in figure 4.5 records the scopes for our example. We can see that users of object
uu see scopes A and C. The definition of Encr ypt edFi | e. r ead and the definition of UU-
Fi | e occur in scopes A and B, so it should call decode from B. Method lookup therefore
depends not only on the object but what “view” the caller has of that object. This can lead
to unexpected behavior when we use interface types.

Consider the code in figure 4.6. Under the rules for scoped inheritance, sel f . decode
should be Encrypt edFi | e. decode. At compile time we do not know that x is an en-
crypted file object, so Xx. decode should be the most recent definition of decode in object
X; in this example it would be UUFi | e. decode. Intuitively, sel f. decode and w. de-
code should be the same since sel f and w are the same. Furthermore, w. decode and
x. decode should be the same since wand x have the same type and point to the same ob-
ject. Thus we have a dilemma—intuition tells us all three should be the same but scoped
inheritance tells us they are not. The problem is that in scoped inheritance, method
lookup depends on whether we view the object as an encrypted file or as a uuencoded
file. The structural type does not distinguish between these two. Scoped inheritance
requires more precise object types, and is at odds with our goal of using interface types
to maximize substitutivity. In addition, an implementation using flexible interface types

requires two pointers per object, one for the object itself and one for the “view” [FKF98].

Inheritance works best when precise type information is known. Subtyping gives us impre-
cise type information. As we have seen, subtyping and extension are incompatible unless we
preserve context: the object and name of a method are not sufficient to select a method; we
must also know how the caller views the object. The “scope” information (which can be large)

CHAPTER 4. LANGUAGE SPACE

Fi | e declared A newnameread
(new scope)

redefine r ead B new name decode

Encrypt edFi | e declared
(same scope) (new scope)

Encrypt edFi | e passed decode hidden
(no change) —
to UUEncode & (end of scope)

redefine r ead C new name decode

UUFi | e declared
(same scope) (new scope)

new object bound to uu — S

Figure 4.5: Scoped inheritance

class File

met hod read(nbytes) = ..

nmet hod test(x:{|decode:string->string|}) = raise Exn;
end;

class EncryptedFile extends File
met hod read(nbytes) = sel f.decode(key, next(nbytes));
met hod decode(key, string) = ..
nmet hod test(x:{|decode:string->string|}) =
| et w {|decode:string->string|} = self in
sel f. decode;
w. decode;
x. decode
end;
end;

| et ef = new EncryptedFile();
ef . test(ef)

Figure 4.6: Example code using scoped inheritance rules

46

CHAPTER 4. LANGUAGE SPACE 47

Original code:

class File
met hod read(nbytes) = ...
nmet hod name() = ...

end

class EncryptedFile inherits read fromFile (* partial inheritance *)
met hod read(nbytes) = sel f.decode(key, next(nbytes))
met hod decode(key, string) = ...

end

After blank filenames are treated specially:

class File
nmet hod read(nbytes) = if self.nane()="" then stdout.read()
el se Fil e.read(handl e)
met hod name() = ...
end;

Figure 4.7: Example of partial inheritance

must be passed along with the object at run time or it must be encoded in to the object type,
so that it can be used to perform method lookup. Although extension and subtyping might
be combined in this way, scoped inheritance can lead to an expensive implementation if we
use structural object types, and also results in unexpected behavior of programs, so we do not

support inheritance with partial type information.

4.2.4 Partial Inheritance

We also consider partial inheritance with full type information. Like method replacement
in section 4.2.3, partial inheritance is either unsound or reveals implementation information.
Consider a variant of the Encr ypt edFi | e example shown in figure 4.7. Encr ypt edFi | e in-
herits the r ead method but not the nane method from Fi | e. When Fi | e. r ead is invoked,
it receives a reference to sel f, but sel f should not have nane in it. Suppose Fi | e is then
modified to treat blank filenames specially. Now inheriting r ead without nane does not work:
r ead needs nane to be in sel f. Encrypt edFi | e no longer compiles! Encrypt edFi | e now
depends on the implementation details of Fi | e. We do not want subclasses to depend on the
implementation of a superclass; they should only depend on the set of protected and public
definitions, the constructor, and the instantiator (see section 3.5). We therefore do not support
partial inheritance in OBSTACL. However, in section 9.1.5 we consider the possibility of in-
heriting a definition and then hiding it; such a feature would serve approximately the same

purpose as partial inheritance.

CHAPTER 4. LANGUAGE SPACE 48

4.2.5 Run Time Inheritance

Classes are extended through inheritance. Should inheritance be a compile-time operation,
as in C++ and Java, or a run-time operation, as in SELF and Smalltalk? Run-time inheritance
would allow for more flexibility, but what are its costs in performance, language complexity,

and ease of implementation?

e Performance: Compile-time inheritance may allow some optimization such as inlining
of method calls and knowledge of object layout. In OBSTACL, parameterized inheritance
and user-defined instantiators already keep us from applying these optimizations, so for

run-time inheritance we may not pay any additional costs in terms of lost optimizations.

e Language Complexity: Run time inheritance implies classes can be created and passed
around at run time. We therefore have to give class values a class type (or signature).
Classes are extensible but not subtypable, so we do not need to define the subtyping
relation on class types. A form of class types is already needed for parameterized inheri-
tance (see class constraints in section 5.3.2), so supporting class types in the user-visible
language may not be a significant addition.

e Implementation: Since classes can be created at run time, we have to store in memory
any class information needed for inheritance and instantiation. It must include the size
and layout of objects, a list of methods, a list of constructors and instantiators, and values
of free variables.® Even with compile-time inheritance, the size and layout of objects
is needed for parameterized inheritance; the list of methods is needed given structural
object types; and values of free variables are needed if we allow nested class definitions

as in Java.

Given the language features we would like to support in OBSTACL, it does not appear that
run-time inheritance would incur much additional cost. We therefore support run-time inheri-
tance. However, since classes do not support subtyping (see section 4.2.3), run-time inheritance
is less useful than in languages such as SELF and Smalltalk, which do not have static type sys-
tems. We will use parameterized inheritance (section 5.3) to relax the constraints for run-time

inheritance.

4.2.6 Multiple Inheritance

Inheritance allows a subclass to reuse code from a superclass. Multiple inheritance allows
a subclass to reuse code from multiple superclasses. Multiple inheritance is more flexible than
single inheritance, and seems essential to solving certain problems. We consider two forms of

multiple inheritance:

81f a class definition occurred within the scope of a local variable definition, the method bodies may access the local
variable, so that variable’s value must be stored along with the class.

CHAPTER 4. LANGUAGE SPACE 49

e Unrelated superclasses: The superclasses share no ancestors, and the resulting subclass
supports more than one interface. There are two cases of unrelated superclasses we

consider:

- Interfaces: At most one superclass provides a non-trivial implementation, and the
other superclasses are used to provide alternate interfaces. For example, an Edi-
tor could support a Stream interface so that the contents of the edit buffer can be
accessed as a stream of characters. This idea is formalized as the Adapter pattern
[GHJV95], and is explored in section 6.3.1.

- Implementations: More than one superclass provides an implementation, and the
subclass provides any necessary communication between components. For example,
an edit dialog window may inherit from either XWindow or CursesWindow (system-
specific implementations of an abstract Window class), and also from Editor (imple-
mentation of basic editing functionality); we will explore this example in 6.4.3. A
more detailed example of this nature can be found in [Cop92]. Another example is
provided by Smalltalk, where multiple inheritance would better express the struc-

ture of the collection hierarchy [Co092].

In languages that link subtyping to inheritance (such as C++), multiple inheritance is
the only way to produce an object that supports more than one interface. Java allows
a class to implement multiple interfaces but does not support inheritance of multiple
implementations [GJS96].

A problem that can occur when combining unrelated classes is that a name may be used
in more than one superclass. These ambiguities must be resolved, either explicitly by the
programmer (as in C++ and Eiffel [Mey87]) or automatically by the language implementa-
tion (as in CLOS [Kee89], Dylan [Com92], and Python [Lut96]). In C++, the programmer
must write a new method that explicitly calls one of the superclass methods. In Eiffel,
the programmer must rename one or more superclass methods when they are inherited.
Automatic ambiguity resolution is error prone [BCH196], as it is sensitive to slight re-
arrangements in the class hierarchy, and introduces a dependency on the entire ancestor

graph instead of only one the immediate superclass [Sny86].

e Related superclasses: The superclasses share some ancestor, and the resulting sub-
class combines implementations that support the same interface. For example, if Pep-
peroniPizza and SausagePizza each inherit from Pizza, we can create a PepperoniAnd-
SausagePizza (see the class graph in figure 4.8 and code in figure 4.9). To support this
“diamond” shaped inheritance structure, the language must support sharing of the Pizza
ancestor. In C++, the shared class is called a virtual base class.

CHAPTER 4. LANGUAGE SPACE 50

Pizza

(Pepperoni Pizza) (Sausage Pizza)
< Combo Pizza >

Figure 4.8: A diamond-shaped hierarchy

In addition to ambiguity resolution, diamond shaped inheritance structures introduce a
subtle problem: methods that are correct in the superclass may not behave properly in
the superclasses. Consider the Pizza example, in which we use the abbreviations Z, P, S,
and C to refer to Pi zza, Pepper oni Pi zza, SausagePi zza, and ConboPi zza.

The code of C.prepare() is perfectly reasonable from the C’s implementor’s viewpoint: it
simply calls the methods inherited from C’s parents and adds some behavior of its own.
However, the result is that Z.prepare() is called twice which, most likely, was not intended
by the programmer. We do not want our pizza to have crust, sauce, cheese, pepperoni,
another crust, more sauce, more cheese, and sausage. There is no way for C.prepare() to
know that it should call a sibling instead of a parent method. There is a similar problem
with object construction. The constructor of C' should call a constructor of P and one of S.
However, both P and S call a constructor of Z. The invariants of P or S may be violated

if Z is not constructed properly.

C++ does not provide a good solution to either problem. In C++ the author of C must also
call the constructor for Z with values that satisfy both the requirements for P and those
for S. As aresult, the internal invariants of P and S must be exposed to all subclasses. For
ordinary methods, the language provides no such support. The approach suggested by the
designer of the language [Str97, section 15.2.4.1] requires the implementor of C.prepare()
to call special “helper” methods of all ancestor classes explicitly without relying on parent
calls. Although this works initially, as the program is changed, it can lead to errors. Let
us consider that prepare in each method calls one or more p methods, each of which does

not call the parent version, but instead requires prepare to call p in each parent.

— Suppose S did not have p originally. The original version of C.prepare would call Z.p,

then P.p. Now if in a later version of S, there is a p method, C.prepare is wrong.

— Suppose Z is factored into two classes, Z (Pizza) and H (CheesePizza). Both Z and H

CHAPTER 4. LANGUAGE SPACE 51

class Pi zza (* Z %)
net hod prepare() = ... place crust, sauce, and cheese .. .;
end;

cl ass Pepperoni Pi zza (* P *)

ext ends Pizza

nmet hod prepare() = Pizza.prepare(); . .. place pepperoni ... ;
end;

cl ass SausagePi zza (¥ § #)

ext ends Pizza

met hod prepare() = Pizza.prepare(); ... place sausage . ..;
end;

cl ass ConmboPi zza (* C *)

ext ends PepperoniPizza, SausagePizza

nmet hod prepare() = PepperoniPizza.prepare(); SausagePizza.prepare(); ...;
end;

Figure 4.9: Pizza class definitions

have a p method. However, C.prepare does not call H.p, and we are left with a pizza

without cheese.

The problem here is that subclass C must change even though the interface to the super-
class did not change. Only the implementation details of the superclasses changed. In
situations like these, the subclass is dependent on the implementation of superclasses
instead of only their interface. Even worse, the error is silent—there is no easy way for

the programmer to know that there may be a problem.

To solve this problem, we need the language implementation to provide some sort of
mechanism to call the ancestor methods in some order. CLOS provides “before” and “af-
ter” methods for some access patterns but not others. For example, we may want to call
the superclass method in the middle of the subclass method, or we may want to call the
superclass method conditionally. The stream example in section 6.4 has ar ead() method
that fits neither the “before” nor “after” pattern. For these patterns, CLOS provides the
cal | - next - met hod function to traverse the ancestor graph, or the def i ne- net hod-
conbi nat i on macro to define new patterns of combining methods. However, with this
approach, local changes to the class hierarchy can affect the global linearization order
used to traverse the ancestor graph. Even seemingly harmless changes to the class hi-
erarchy such as refactoring or inheriting superclasses at different levels in the hierarchy
can lead to silent errors [BCHT96]. As a result, superclass changes that appear to be

correct and invariant preserving can invalidate subclass code.

CHAPTER 4. LANGUAGE SPACE 52

C++ supports multiple inheritance both for unrelated classes and for related classes (using
virtual base classes [Str97]). C++ and Eiffel also support multiply inheriting the same class
without sharing, and the Eiffel data structure libraries use this technique often [Mey94]. In-
heritance typically expresses the is-a relationship instead of the has-a relationship. Multiple
inheritance of unrelated classes usually indicates inheritance is being used for a has-a rela-
tionship. Both inheritance of unrelated superclasses and of related but unshared classes are
often misused for convenience, and they can be expressed in languages without multiple in-
heritance by using composition and forwarding [VRTB98]. However, related shared classes
cannot be combined in this way—multiple implementation inheritance is needed to express
diamond-shaped hierarchies.

Multiple inheritance is useful for writing certain kinds of programs. However it is a com-
plex and controversial language feature [Car93] that introduces new problems. In OBSTACL
we chose not to support multiple inheritance, because we believe a combination of language
features can be used instead. In section 6.4 we show how to combine single inheritance, struc-
tural object types, object composition, and parameterized inheritance to replace most uses of

multiple inheritance.

4.3 Initializing Objects

Having chosen classes to produce objects, we now look at ways to initialize objects. From our
experience with non-objects (such as records, lists, and unions), we might expect initialization
to be easy and not worth thinking about. For these types, the initial values provided by the
user are exactly the ones that are stored in the larger structure. Given an abstract data type
or a very simple object system such as the “record of functions” approach, initialization is still
fairly simple: the user provides initial values, which are used to compute values to go into the
larger structure. However, objects are built in a distributed way: each ancestor class defines
fields that must be initialized, and there is no single program component that knows how to
initialize all the fields properly. One approach would be for initial values to be provided when
the class is defined, but we would then have to update any fields that are different for each
object. (Most fields fall into this category.) In addition there may not be any initial values that
make sense before an object is initialized (see section 4.1.2). We instead want to provide initial
values when a class is instantiated. Each class should provide values for the fields it defines so
that subclasses do not have to depend on the private fields of the superclass (see section 3.5);
each class therefore provides a constructor to initialize fields. Sections 4.3.1 and 4.3.2 cover
issues with constructors. In section 4.3.3 we look at how to package various stages of object

construction into constructors and instantiators.

CHAPTER 4. LANGUAGE SPACE 53

4.3.1 Multiple Constructors

Should a class be able to provide more than one constructor? Many objects can start their
existence in more than one state. For example, a Unix network socket object may start listening
on a port, connect to a port on another machine, or remain unconnected. It is more elegant to
start the object in the correct state than to start it in an incorrect state and later change it.
Furthermore, it does not greatly complicate the language to support multiple constructors, so
we support them in OBSTACL.

C++ and Java support multiple constructors through overloading. A class may have con-
structors with different types for their parameters, and a constructor is chosen by examining
the types of the arguments passed at instantiation time. For example, new Socket (3333),
new Socket (" st anford. edu”, 80), and new Socket () could create a socket listening
on port 3333, a socket connected to port 80 on st anf ord. edu, and an unconnected socket,
respectively. However, overloading does not handle all cases. For example, if we want to
build both cartesian and polar points, both constructors would take two real numbers, so new
Poi nt (90. 0, 45. 0) does not tell us or the compiler whether a cartesian or polar point is de-
sired. An alternative, used in Smalltalk, is to give each constructor a name. We can then call
Poi nt. cart or Poi nt. pol ar to create the right kind of point. ML does not support function
overloading, and it uses named constructors for union types and abstract data types. In OB-
STACL we provide named constructors, both because they are consistent with ML and because
they are more general and easier to understand than overloaded constructors.

4.3.2 Initialization Phases

The main role of a constructor is to provide initial values for the fields of the object being
built. Since the author of the subclass does not know what private fields are defined by the su-
perclass, the subclass constructor should also call a superclass constructor. Figure 4.10 shows

a C++ constructor, in which local fields are initialized and then a parent constructor is called.

Class::Class(parameters)

A field initialization { : fi(e1), fale2), ..., fn(en),
B base class initialization { BaseClass(arguments)
C object initialization // code

}

Figure 4.10: Parts of a C++ constructor

One disadvantage of this form is that it is not possible to perform some computation that

is used to initialize two or more fields. The workaround is to leave some fields uninitialized in

CHAPTER 4. LANGUAGE SPACE 54

part A and then assign values to them in part C. We would like to avoid this problem in OBST-
ACL without resorting to using uninitialized mutable fields. All fields should be initialized in
part A before part C is executed.

The other role of a constructor is to establish invariants associated with the object’s ex-
istence. For example, a window object may bring up and draw the contents of a window, a
database object may establish a connection with a database, or a background task object may
start a new thread of execution. In part C, the constructor can invoke arbitrary code, including
methods of the newly created object.

For type safety, the two phases of construction (field initialization and object setup) should
be separate. During field initialization, it is unsafe to call the object’s methods, since they
may access uninitialized fields. During object setup, the constructor must be allowed to call
methods that set up the object’s invariants. C++ allows fields to be initialized in either part A
or C so it is possible for methods to be called before all fields are initialized. For example, in the
program fragment shown in figure 4.11, the constructor of X correctly initializes fields before
calling method m but does not take into account the redefinition of min a subclass. The result
of constructing a Y would be access to an uninitialized field (I or e). To avoid this problem,
C++ specifies that the constructor call the superclass method, not the subclass method (i.e.,
the redefinition is ignored). Not only is it expensive to implement this behavior,? it violates
the meaning of method redefinition: that the new method is always called instead of the old
one. In addition this behavior is a frequent source of confusion for a new C++ programmers,
and also eliminates a useful pattern: the constructor might request that the subclass perform
some action during execution of the superclass constructor. We therefore seek a solution in
which the correct methods are called during object setup.

In addition to the phases that occur during object construction, we may want to perform
actions before and after object construction. The beginning of construction is already too late
to make decisions required to implement creational design patterns in [GHJV95]. These sorts
of decisions can instead be made in the instantiator. Languages that force the use of an inst-
antiator give control of creation policy to the author of a class, while languages that offer public
access to the constructor give more control to the user. There are advantages to both, but in
OBSTACL we generally favor giving control to the class, and allow the class to export abilities
such as field update or object construction to the user if desired. Additionally, having instant-
iators in the language allows us to simplify the treatment of protected methods (see chapters 7
and 8) and eliminate the object creator’s dependency on the class’s creation policy (see section
3.6.1). We therefore chose to have both instantiators and constructors in OBSTACL.

9C++ compilers typically implement this by switching method dictionaries at run time; see chapter 8 for a descrip-
tion of how method lookup is implemented. This switch needs to be thread safe in a higher level language, and thus
would introduce locking for all method calls, even though all method calls after the construction phase do not need it.

CHAPTER 4. LANGUAGE SPACE 55

class X {
i nt data;
X(int i) {
data = i;
m);
}
virtual void m() { cout << data; }
}s
class Y: public X {
int |ore;
Y(int j): X(j) |
lore =j;
}
virtual void m() { cout << lore; }
}s

Figure 4.11: Constructor calling redefined method

Fyn SN Fn SN

! ! ; !
% % i %

F So Fy So
R S1 F S1
(a) Two Pass Ordering (b) One Pass Ordering

Figure 4.12: Ordering of initialization phases

4.3.3 Order of Construction

In OBSTACL, the user calls an instantiator, which may call a constructor. Alternatively, it
can return an existing object (Singleton and Object Cache patterns), call a different instant-
iator (Virtual Constructor and Private Class patterns), or clone an existing object (Prototype
pattern). A constructor has three duties: initialize fields, call a superclass constructor, and
execute any additional code required to set up the object. To fully construct an object from a
class with N — 1 ancestors requires calling N constructors. Suppose for class i we label field
initialization F; and object setup S;. In what order should these steps be performed? The most
important constraint is that all fields should be initialized before any methods are called, so all
the F steps should be performed before any S step. Second, if public and protected fields of a
superclass (F; ... F;_;) are needed to compute the initial value of a subclass field (F;) then su-

perclass fields should be initialized before subclass fields. Third, superclass invariants should

CHAPTER 4. LANGUAGE SPACE 56

be set up before subclass invariants, so that the subclass can rely at least on the subclass por-
tion of the object being set up properly. Thus the ideal order in which these steps are performed
is for fields to be initialized first (superclass before subclass) and then all object setup code ex-
ecuted (superclass before subclass), as shown in figure 4.12(a). However, a two pass system is
harder to understand than a one pass system because we cannot view the subclass constructor
as “calling” the superclass constructor. The two pass system is also less efficient both because
of the overhead of a second set of calls and because the temporary values generated during the
first set of constructor calls must be stored or recomputed in order to be used in the second part
of the constructor. Since all fields in OBSTACL are private, we are not constrained to initialize
superclass fields before subclass fields. We therefore chose the simpler, more efficient one pass
ordering shown in figure 4.12(b).

4.4 Summary

OBSTACL’s design supports modular programming while maintaining consistency with ML.
Objects and classes are simpler in OBSTACL than in many object-oriented languages because
they reuse rather than replace non-object language construct. Objects are similar to records of
methods, and support message sends, imperative field updates, and shallow (identity-based)
equality tests. Methods are ML functions with access to the host object (self) and private
fields. Updates to fields are supported with ML references. Object types are similar to ML
record types, but support subtyping. Classes are used primarily to create objects. Classes
do not support subtyping, and can be extended with single inheritance. Multiple inheritance,
partial inheritance, scoped inheritance, and method renaming are not supported, but classes
can be parameterized over their superclasses, and inheritance is allowed at run time. Objects
are created by calling a class’s instantiator, which usually responds by creating an object and
calling a constructor. The constructor initializes fields, calls a superclass constructor, and then
sets up object invariants. OBSTACL objects and classes remain simple because they work with

rather than replace existing ML features such as functions, abstract data types, and modules.

Chapter 5
Language Design

The reasonable man adapts himself to the world; the unreasonable one persists in
trying to adapt the world to himself. Therefore all progress depends on the unrea-

sonable man.

—George Bernard Shaw

In chapter 3 we looked at how modular programs can be built by reducing dependencies
between program components. In chapter 4 we looked at language features and how they
relate to our modularity goals and how consistent they are with the design of ML. In this
chapter we turn to the design of OBSTACL. In general, we do not consider language features
that are primarily local in nature. If a programmer must perform extra work that only involves
local changes (e.g., within a class or module), then a language feature to reduce that work is
primarily for convenience. We consider such features useful but not for the core language; they
will be considered in chapter 9. Instead we consider features that would otherwise require the

programmer to perform non-local work (e.g., throughout the program).

5.1 Obijects

An OBSTACL object combines data (fields) and code (methods). Operations are message
sends, field updates (only from within the object), and comparisons. We treat objects as being
similar to records produced by functions, as shown in figure 5.1. The record returned by this
function is not a real OBSTACL object, but rather an ML record that looks somewhat like an
object. The | et at the beginning declares identifiers that are similar to private fields in an
object; the record (marked by {...}) contains fields that are similar to public methods in an
object. The open function is an “instantiator”, a function that creates objects. The behavior of

objects that contain only private fields and public methods is similar to that of ML records of

57

CHAPTER 5. LANGUAGE DESIGN 58

fun open(filenane) =
let fd = ref NONE
buffer = ref "Erase before readi ng"

in
{
open = fn() => (fd := SOVE(I O open_in(filenane))),
read = fn() => (case !fd of
NONE => raise 1Qio0
| SOME(f) => (buffer := 10Qinput(f,1); !buffer)),
close = fn() => (case !fd of
NONE => raise 1Qio
| SOVE(f) => (IQclose_in(f); fd := NONE))
}
end

Figure 5.1: A function producing a pseudo-object

public functions with the private fields defined in the enclosing scope.

In OBSTACL, one may not define a stand-alone object like the one above. Instead, a class
must be defined, describing the state and behavior of a family of objects. When the class is
instantiated (see section 5.2.5 for details), a new object is created. The distinction between
classes and objects is similar to that between an ADT definition, a description of an abstract
type in terms of operations that are applicable to it, and ADT values, specific instances of the
abstract type. Unlike ADT values, OBSTACL objects do not keep any ties to the class from

which they were instantiated.!

5.1.1 Fields

As in the pseudo-object above, an OBSTACL object may have private fields that are acces-
sible in the method bodies but not from outside the object. Support for public and protected
fields is examined in section 9.1.2. Each object has its own fields, but they are immutable by
default. The fields above are mutable because they are bound to ML references, which provide

imperative assignment with the : = operator.

5.1.2 Methods

The stream pseudo-object shown above exports methods in the record. OBSTACL supports
both public and protected methods in objects. Support for private methods is explored in sec-
tion 9.1.3. The methods can be thought of as being defined in the “scope” of the fields, so they
have access to private fields. OBSTACL does not support binary methods or multimethods. In
the OBSTACL object model, the methods are part of the object, not part of the class.

1In chapter 8 we shall see that an efficient implementation may maintain a connection between the object and the
class. However this connection is not seen by the user of the object.

CHAPTER 5. LANGUAGE DESIGN 59

5.1.3 Object Types

Since objects are similar to records of methods, we expect object types to be similar to record
types. OBSTACL object types are structural: they list the names and types of methods in the
object. To distinguish object types from record types, which are written {z; : 7;} in ML, we
write object types {z; : 7:[}, where z; are names of methods and 7; are the function types
associated with those methods. As with ML record types, the order in which names are listed
in object types is insignificant. Thus, {read : int — string, write : string — unit]} is equivalent to
{/write : string — unit,read : int — string[}. An object type serves as an abstract interface that
describes the messages the object is willing to receive.

Object types support subtyping: one type o; can be considered a subtype of another type o2
(written o1 < : 09) if objects of type o1 can be used in place of objects of type o2 without causing
a type error. There are two kinds of subtyping supported by objects:

o Width subtyping allows o; to contain at least all the components of o2. More precisely, if
o2 = {z; : 7} for 1 < i < N, then the subtype o1 can be {{z; : 7;[} for 1 < i < M (where
M > N). For example, {m : a,n : [} < :{m : af}, but {m : af}£:{n : f[}. Width subtyping
allows all object types to be a subtype of {| [}.

e Depth subtyping allows the components of o; to be subtypes of the corresponding compo-
nents of 0. More precisely, if 02 = {z; : 7;[} then o1 can be {|z; : 7/} where for each i,
7; < :7;. For example, if a < : 8 but ag:y, then {m : af} < : {m: B[} but {m : aff£:{m : v]}.

The two forms of subtyping can be combined. Components that ¢; and os share are com-
pared with depth subtyping and components that are not shared are compared with width sub-
typing. Combining width and depth subtyping is a consequence of the transitivity of subtyping.
In addition to transitivity, the subtyping operator is antisymmetric and reflexive, making it a
partial ordering on types.

With subtyping the static type of an identifier may not match the actual type of the object.
The type system ensures that the object supports at least the methods listed in the static type.
Each client can have its own view of the object.? In figure 5.2, the only restriction on the
interface types 7, and 7 is that 7 <:7; and 7 <: 73, where 7 is the true type of the object.

Object types, unlike record types, tend to be used in ways that lead to mutually recursive
types. We therefore allow object types to be declared as recursive, illustrated in figure 5.3.
Subtyping on recursive types is potentially uncheckable. However for common cases we can
use a simple algorithm to test if o < : 8. First, assume that a < : 8. Then, check if a < : 8 by the
usual subtyping rules, except if the usual rules require checking of a < : § at some deeper level,

2Factoid: With subtyping on structural object types, there are an infinite number of subtypes of any given object
type, as expected. However, with subtyping on function types, there are also an infinite number of supertypes of any
given object type.

CHAPTER 5. LANGUAGE DESIGN 60

client 1 client 2
1 T2
Figure 5.2: Multiple views of an object

obj type Autonpbile = {]
get tires : unit -> Tire list

| }
and Tire = {]

get _autompbile : unit -> Autonobile option

|}
Figure 5.3: Recursive type definitions

we assume a < : 3 already. If a<£:8, we will discover it in some way other than by assuming
ag:[. Although this algorithm is sound, it is not complete. Subtyping on recursive types is
not addressed in our work on OBSTACL; it is an independent problem that has been studied in
other work [HM95, Pot98].

Depth subtyping extends naturally to non-object types such as tuples and record. Functions
are an odd case: a —» < :y — diff §<:§ and a>:v. Note that the requirement on the
argument to a function is opposite of what one might expect [Fis96, AC96]. Refs too are an
odd case. A 7 ref can be thought of as a pair of functions, get : unit — 7 and set : 7 — unit.
For 7 ref < : o ref, we need unit — 7 < :unit — o, which simplifies to 7 < : . But we also need
T — unit < : ¢ — unit, which requires 7> :0. If 7< :0 and 7> : 0, then 7 = 0. Another view
of refs is as single element arrays; see section 4.1.4 for an example showing the subtyping
relationships for arrays.

5.1.4 Substitutivity

Since object types do not include the class from which the object was instantiated, objects
from unrelated classes can share an object type. As a result, we have substitutivity: we can
replace one object by another object, which may be implemented differently but presents the
same interface. In chapter 8 we will see the underlying machinery that makes substitutivity

possible.

CHAPTER 5. LANGUAGE DESIGN 61

5.1.5 Operations

OBSTACL objects support two operations: message sends and comparison for equality. A
message consisting of only a name (which must be known statically for type checking reasons?)
is sent to an object; it responds by selecting and returning a method with that name. For
example, given object x of type {{m : int — string[}, X. msends the “m” message to x, which
responds by returning a function of type int — string. To then call the method with an argument
5, one would write x. m(5) . (It could also be saved and used just like any other function value
in ML.) Note that in OBSTACL the arguments are not part of the message.

The other operation supported by objects is comparison. Two objects X and y can be com-
pared with x=y. The result is t r ue only if X and y are the same object. Each use of the new
operation on a class results in an object that is unequal to all existing objects. If x and y refer
to different objects but have the same values for fields, they compare unequal. (See section
4.1.3 for a discussion of why OBSTACL objects use this form of equality.) Another operation
we would expect on objects is field update. OBSTACL objects do not support update directly;
instead, fields can be bound to ML references, which support imperative update. OBSTACL
objects remain simple, supporting only message sends and comparisons.

5.2 Classes

Objects in OBSTACL are not defined in isolation. Like abstract data type definitions, a single
definition can be used to create an entire class of objects. This class definition describes both
the representation and behavior of objects. A class may be defined to be an extension of another
class, containing all the definitions of the other, plus additional definitions and redefinitions of
inherited methods.* OBSTACL classes do not provide modularity or encapsulation; ML modules
provide these at compile time and the objects produced from classes provide these at run time.
OBSTACL classes do not serve as object types, although an object type can be derived from a
class definition. OBSTACL classes do not form a layer of protection (access control). Compared
to classes in other languages, the classes in OBSTACL play a lesser role.

The primary purpose of a class in OBSTACL is to create objects. The components of a class

are:
e Fields describe data that goes into each object.
e Methods describe behavior that goes into each object.
e Constructors initialize objects as they are being built.

e |nstantiators respond to requests for new objects.

3Dependent types [Aug98] may relax this restriction, but static type checking still requires that we know which
message is being sent, since the type of the result depends on the message name.
4However, unlike classes in some languages, classes in OBSTACL may not omit or rename definitions.

CHAPTER 5. LANGUAGE DESIGN 62

Most object languages have constructors but not instantiators. In these languages, a class
user may create an object directly, and then the class is given a chance to initialize it. By
the time the constructor is called it is too late to influence the process, other than to abort
it altogether. An instantiator is a form of encapsulation of the object construction step. Just
as hiding data behind accessor methods increases flexibility for the class author, hiding object
creation behind instantiators increases flexibility of construction. OBSTACL requires that an
instantiator for class C' return an object of the proper type (including all public items of C)
but does not ensure that the returned value is actually a new instance of C. It may return an
existing instance of C, corresponding to the Singleton and Object Cache patterns (see section
3.6.1), or an instance of a different class, corresponding to the Virtual Class and Remote Proxy
patterns. However the usual case is to create a new instance of C. If a new object is created,
the system invokes a constructor to initialize it.

A constructor initializes an object in two phases. The first phase initializes fields of the new
object. Since a class may be an extension of another, the new object may contain fields from
multiple class definitions. A constructor from each class definition is invoked to initialize the
fields from that class. The second phase is used to set up invariants for the object. Again, each
class definition involved can contribute to the second phase. Fields are initialized in the first
phase of initialization; methods can only be invoked in the second phase.

Classes in OBSTACL are run-time values. Like other values, classes have a type. Class types
include the components of the class used to create the object (constructors and instantiators)
and the components used to define the contents of the object (fields and methods). Sections
5.2.1 and 5.2.2 describe fields and methods; section 5.2.3 deals with class extension; sections

5.2.4 and 5.2.5 describe constructors and instantiators; and section 5.2.6 describes class types.

5.2.1 Fields

Each class can define private fields, which are initialized in a constructor and accessible to
only the methods defined by this class. In figure 5.4, handl e is an immutable field and count
is a “mutable” field. Field values are defined per object, so the constructors bind initial values
for handl e and count ; note that count is initialized to a ref value. All fields in OBSTACL are
immutable; we build “mutable” fields by using ML refs. As a result the language is simpler—
there are no new operators for field updates. The methods in each class can access the fields
defined in that class simply by naming them. The r ead method in | nput Fi | e uses the handl e
field, and the r ead method in Count i ngFi | e uses the count field. Since count is bound to a

ref, access to it uses the ML ref operations: ! for dereferencing and : = for assignment.

CHAPTER 5. LANGUAGE DESIGN 63

5.2.2 Methods

Each class can define new methods and redefine methods inherited from the superclass.
New methods are defined with the met hod keyword; redefinitions use the r edef i ne keyword.
The two are distinguished in OBSTACL for type safety and to avoid coding errors (see section
6.1.2). Although methods are defined in a class, they can be invoked only in objects. Given an
object x and a method m x. n{) invokes the method. Within m the identifier sel f is bound
to the object, x.> In figure 5.4, the r ead method in Count edFi | e uses sel f to call the i n-
crenent method. The type of sel f is an object type with all public and protected methods;
this type is longer than the type exported to the user, which includes only public methods. In
I nput Fi | e, the type of sel f is {read : int — string|}. In Count edFi | e, the type of sel f is
{read : int — string,increment : int — unitf}. Private fields are not accessed through sel f,
nor are they listed in the type of sel f. Instead, all private fields are bound to identifiers
within method bodies. For example, the r ead method in | nput Fi | e can access the field han-
dl e simply by naming it. If the method is a redefinition, its signature must be a subtype
of the signature of the old definition, and the new definition can access the old definition by
referring to the identifier next . The r ead method of Count edFi | e invokes the old method
by calling next (nbyt es) . In addition to the distinction between new and redefined methods,
each method can be public (available to object users) or protected (available only to subclasses).
Protected methods such as Count edFi | e. i ncrement are typically helper functions, and are
marked with the pr ot ect ed keyword.

5.2.3 Inheritance

OBSTACL classes can be extended using single or parameterized inheritance. Parameter-
ized inheritance is performed with linear mixins, which will be described in section 5.3. A class
declared as extending another class will inherit the definitions in the superclass. The new class
(the subclass) may add new methods, redefine inherited methods, and add new private fields.
Inherited methods cannot be renamed or removed. If a method is redefined, the redefinition
must have a subtype of the type of the inherited method. Since all fields are private, the sub-
class definitions cannot see the fields defined in the superclass or its ancestors. However, those
fields are present in objects instantiated from the subclass, and may be accessed by methods
inherited from the ancestors. To initialize these fields, the subclass constructor must call a
superclass constructor. Like fields, all methods from the superclass are present in instances of
the subclass. Therefore, at some level, inheritance implies subtyping: the actual types of the
subclass objects will be subtypes of the actual types of the superclass objects. However, the
user is presented with a smaller type than the actual type (in particular, protected methods

are hidden), so the user may not see a subtyping relationship where there is inheritance.

5There is nothing special about the identifier sel f , other than that it is automatically bound to the host object in
the method body. In particular, it is not a new keyword and therefore is not treated specially by the parser.

CHAPTER 5. LANGUAGE DESIGN 64

class InputFile
field handle: FileDescriptor;

met hod read(nbytes) = 1 Qi nput(handle, nbytes);
constructor make(fil enane)
fields {handle = IO open_in(fil enane)};

i nstanti ator nake(filename) = new I nputFile nake(fil enane);
i nstanti ator makeTenp() = new InputFile make(l O gettenpnane()):;
end;

class CountedFile extends InputFile
field count: int ref;
redefine read(nbytes) = (self.increnent(nbytes); next(nbytes));
protected nethod i ncrenment (nbytes) = count := !count + nbytes;
constructor make(fil enane)
fields {count = ref 0};
i nstanti ator nake(fil enanme) = new CountedFil e make(fil enane);
end;

Figure 5.4: Example classes in OBSTACL

5.2.4 Constructors

An OBSTACL constructor is shown in figure 5.5. Each constructor has a name, which is used
to distinguish it from other constructors for the same class.® The body consists of three parts:
field initialization, a call to the parent constructor (if the class has a parent), and optional

initialization code.

const ruct or name(parameters)

A field initialization { fields {fi=ei,fo=es....fn=en}
B base class initialization { par ent ctrname(arguments)
C object initialization initialization((* code*))

Figure 5.5: Parts of an OBSTACL constructor

Constructors are responsible for initializing the fields and setting up invariants for each ob-
ject. Constructors in OBSTACL are given names, in contrast to C++ constructors. A constructor

definition consists of the following three parts:

fields This clause must contain an expression that evaluates to a record containing a value
for each field defined in the class. More formally, if fields f,..., f, are defined in class C,

8C++ uses overloading for this purpose, but it can be confusing and it makes it difficult to have multiple constructors
with the same types of arguments.

CHAPTER 5. LANGUAGE DESIGN 65

f un init_calc(i:int)
: {index:int, prime:int} =
{index =i,
prime = (* i** prime *)}

construct or fraction(num:int,div:int) construct or fifth()
fields fiel ds init_cale(5)
|l et (q,r) =
IntInf.divMod(num,div) construct or thirteenth()
in fi el ds init_cale(13)
{ units=q,
num=r, const ruct or it*(i:int)
div=div } fi el ds init_cale(i)
end
(a) (b)

Figure 5.6: Flexibility in field initialization

then every constructor defined in C' should include
fields expr

where ezpr has the type {f1 : 71,..., fn : 7o }. Note that this is an ordinary record and not

an object.

Values for fields fi, fo,..., fn are given in a field record {f; = e1, f2 = e2,..., fn = en}.
By using this form instead of field assignment syntax (e.g., f 1. =el), it is clear to the
programmer that we are not providing access to an uninitialized object—from the pro-
grammer’s perspective, the object does not yet exist. We use ML record syntax instead of
some special field syntax for simplicity and flexibility. For example, without side effects a
single computation can be used to compute values for more than one field.” For example,
in figure 5.6 (a) both the quotient and remainder are computed in a single call, and the
values are stored in two fields. Another benefit is that multiple constructors can share
code that computes initial values.® Figure 5.6 (b) shows an example of sharing initial-
value code. If one goes further and views an object as being a set of these field records, it
remains consistent with our modularity goals, such as allowing different classes to pro-
vide fields with the same name and having only private fields (see chapter 6). OBSTACL’s
approach to field initialization uses existing ML constructs to provide flexibility without

complicated language extensions.

7A criticism of C++ is that this is not possible. A C++ programmer has to resort to side effects or repeated compu-
tation to initialize multiple fields with the results of a single computation.
8Again, the C++ programmer cannot do this directly, and must resort to side effects or code duplication.

CHAPTER 5. LANGUAGE DESIGN 66

parent If C inherits from another class P, the constructor must call one of P’s constructors
to initialize the inherited fields. This clause gives the parent constructor name and the
arguments to be passed to it. The arguments are evaluated in a scope that includes the
object’s fields but not a reference to “self”. We can therefore use the initial field values
but not call methods in this object. The restriction is necessary because we cannot safely

call methods until all of the object’s fields are initialized.

initialization This optional clause contains the code that is to be executed after the object
has been fully constructed but before it is returned to the instantiator. The i ni t clause
is commonly used to set up invariants. For example, a network file server object may be
registered in a global filesystem registry; a tree node may notify its parents and children
of its existence; a window object may establish a connection to the windowing system; and
a file object may set up a finalizer® to flush and close the file. The scoping rules are the
same as for methods: the self keyword and the private field identifiers are bound in an
enclosing “scope”, and therefore are available to the initialization expression. The code is
treated as the body of a special method, so there are no restrictions on what it may do.
Unlike C++, any methods called by the initialization code are looked up using the object’s

true class, not the class defining the constructor.

Notice that constructors do not create objects—they only provide the initial values for the
object’s fields and define the initialization code.

Any class which is intended to be instantiated must have at least one constructor and can
possibly have more than one (each with a different name). Some of the constructors may
provide default values for certain fields or accept arguments in different formats and convert
them to the internal representation that can be stored in the object’s fields. For example, a
Fi | eSt r eamclass may have a constructor to create a closed stream and another to create an

open stream.

5.2.5 Instantiators

Constructors are a way for a class to set up an object being created. Instantiators are
invoked by a class user to request a new object. How the class responds to this request is
described by the class and is not controlled by the user.

An instantiator is an ordinary function, except that it resides in the class definition and has
access to object creation. Instantiators are the only functions in a class; constructors describe

object initialization but are not functions, and methods are described in a class but actually

9C++ has destructors, which are run before the object is destroyed. In OBSTACL, objects are destroyed by the
garbage collector. A finalizer can be used to perform clean-up operations just before the object is destroyed.

CHAPTER 5. LANGUAGE DESIGN 67

reside in instances of that class. Instantiators can evaluate instantiation expressions, in-
troduced by the newkeyword:!°

new C ctr-name args
Such an expression can only occur within an instantiator and is used to create and initialize
an object of the surrounding class.

The following operations are performed by the run-time system before a value is returned:

1. The constructor named ctr-name is invoked in class C. If C is derived from another class,
the constructor will then invoke one of its parent’s constructors, and that will invoke one
of its parent’s constructors, and so on. As a result, a constructor will be invoked for C and

each of its ancestor classes so that all the fields are initialized.

2. An object is put together by combining the records containing initial values of the fields
(provided by the constructors) with a class pointer, which points to the run-time data
structures of class C.

At no point can the class writer access an object that is not fully formed, so type safety
is ensured. It is possible, however, for the class writer to access the object before it is fully
initialized by the initialization clause in constructors.

An instantiator does not have to call new. If the design of the system requires that only
one copy of the object is created (the Singleton pattern), the instantiator can instantiate a new
object the first time it’s called, and return a reference to the existing instance in response to all
subsequent calls. An instantiator I may also call another instantiator, possibly creating objects
of a different class, as long as the type of the object eventually returned to the user is a subtype
of the object type associated with the class in which I is defined. This approach is useful for
abstract classes whose instantiators return objects of concrete subclasses. In general, the goal
of instantiators is to encapsulate the process of object creation.

One may need multiple instantiators, so that clients have a choice of which instantiator to
call when creating a new object. Some of the instantiators may provide default values for the
object’s fields, others may accept values in a format different from the object’s internal repre-
sentation (for example, a point object may have an instantiator that accepts polar coordinates
from the user and converts them into rectangular coordinates when constructing an object).
Different instantiators may be used to create an object in different modes (a file descriptor
object may be created in a “read” or “write” mode). In general, multiple instantiators provide
flexibility for the clients of the class.

Notice an important difference between the motivation for multiple constructors and the

motivation for multiple instantiators. Every class has two kinds of clients: derived classes and

10Tt is not necessary for newto be a keyword. In an alternate syntax, new could be a predefined identifier bound to
a record containing functions corresponding to constructors. In such a syntax, the user would write new. ct r instead
of new C ctr.

CHAPTER 5. LANGUAGE DESIGN 68

instantiator Point.polar(r, t) =

if r=0 then
new Point origin ()
el se

new Point rect (r * cost, r * sint);

Figure 5.7: One instantiator, multiple constructors

type I nputFileType = cl asstype
field handle: FileDescriptor;
method read : int -> string;
constructor nmake : string;
instantiator nake : string -> InputFile object;
instanti ator nakeTenp : unit -> InputFile object;
end;

Figure 5.8: A class type

users of the objects instantiated from the class. Multiple constructors are needed to enable
flexible object construction by the derived classes. Multiple instantiators are needed to enable
flexible object creation by the class users. For example, a file object may be created in “open” or
“closed” mode. Alternatively, a single instantiator may invoke one of several constructors. In
the code fragment shown in figure 5.7, the arguments to the instantiator are used to determine
which constructor to call. If r is zero, a point at the origin is created. If it is non-zero, the polar
coordinated is converted to rectangular, and the constructor for rectangular coordinate points
is called. A more sophisticated instantiator might call other instantiators. For example, if there
is another Point class that is optimized for polar coordinates, this instantiator could “forward”
the object creation request to the other class’s instantiator. Section 6.2 explores more uses of

instantiators; section 9.4.4 considers the possibility of not having instantiators in the language.

5.2.6 Class types

Each class has two types, one for public methods and instantiators and another also includ-
ing protected methods and constructors. A class type looks similar to a class definition, except
that in place of constructor, instantiator, and method definitions are constructor, instantiator,
and method types. As an example, the class | nput Fi | e from section 5.2.2 can be described by
the type shown in figure 5.8.

Structurally similar object types are related by subtyping. Width subtyping allows some
definitions to be omitted to create a supertype. Classes in OBSTACL do not support width sub-
typing, for reasons explained in section 4.2.3. Depth subtyping allows subtyping on the types
of components. Although depth subtyping on class types seem reasonable, it is not compatible

CHAPTER 5. LANGUAGE DESIGN 69

class B
met hod nm() = self.n().catMethod();
met hod n() = Cat.new();

end;

type A = cl asstype
nethod m: unit -> unit;
nethod n : unit -> Aninal;
end;

let a° : A= B
class C extends a

redefine n() = Animal.new();
end;

Figure 5.9: Class subtyping example

with class extension, as the example in figure 5.9 shows. If depth subtyping is allowed, class B
can have type A. Extensions of classes with type A are allowed to redefine n as long as it returns
an Ani mal . But class C now contains an inherited method m which requires that n return a
Cat . Resolving this conflict requires some way to allow A. n and C. n to coexist. Such a solution
introduces much complexity (see section 4.2.4). OBSTACL class types do not support subtyping
in general. However, contexts in which class types are used (extension, mixin application) have
rules in which some limited subtyping is allowed.

Class types are similar to object types. Since objects are created from classes, we expect
the types to be related. With each class type we can associate two object types, pub(C) and
prot(C). All public object-level items are included in pub(C). In the core version of OBST-
ACL, this includes only public methods. However, given extensions to support public fields (see
section 9.1.2), public fields would be included as well. Public and protected fields and methods
are included in prot(C). Note that pub(C) is the maximal type that an instantiator may return;
one can use the object with smaller types. The type prot(C) is the “self type”, the type of the
object as seen by itself, and is a subtype of pub(C). Private fields are not included in any object
type.

Given a definition of class C, the type checker computes the corresponding maximal public
and protected object types pub(C) and prot(C). The public type pub(C) is accessible in a pro-
gram with the syntax C obj ect, and is used as the default return type of instantiators of C.
For example, the above class uses | nput Type obj ect to refer to the inferred public type of
objects instantiated from | nput Type. The protected type prot(C) is used as the type of the
sel f identifier in methods.

CHAPTER 5. LANGUAGE DESIGN 70

; M ()

linear mixin

C linear mixins
added to a class

multiple inheritance
mixins added to a class

Figure 5.10: Linear mixins vs. multiple inheritance mixins

5.3 Mixins

A mixin is a set of definitions added to another class. It differs from definitions intro-
duced by subclassing in that a mixin is not attached to a specific superclass; it can be added
to any number of classes. Mixins are usually “mixed in” to a class with multiple inheritance
or similar facility. OBSTACL supports a variant of mixins we call /inear mixins (but we will
drop the “linear” modifier when it is clear we are referring to OBSTACL’s mixins), which are
essentially subclasses parameterized over a set of superclasses. The advantage of linear mix-
ins over multiple-inheritance-based mixins include multiple application, control over ordering,
and a way to statically describe and check constraints on their combination. The advantage
of linear mixins over conventional inheritance is that they leave both the superclass and sub-
class open for modification, instead of only the subclass. The decomposition of ordinary inher-
itance into linear mixins plus mixin application is similar to the decomposition of let binding
in lambda calculus into functions plus function application. A linear mixin can also be viewed
as a function that takes a class and derives a new subclass from it.!! The same mixin can be
applied to many classes, obtaining a family of subclasses with the same set of methods added
and/or replaced. By providing an abstraction mechanism for inheritance, linear mixins re-
move the dependency of the subclass on the superclass, enabling modular development of class
hierarchies—e.g., a subclass can be implemented before its superclass has been implemented.
Linear mixin inheritance can be used to model single inheritance and many common forms of
multiple inheritance [BC90, BLS94].

The general idea of a linear mixin can be made clear by an example (in C++ syntax) shown

11Tn ML, functions take values and produce values; functors take modules and produce modules; OBSTACL mixins
take classes and produce classes. The three are not unified because they have different forms of type relationships
between input and output types.

CHAPTER 5. LANGUAGE DESIGN 71

tenplate <class I>// | must be IceCreanCode or a subcl ass
cl ass chocolate: public I {
public: void eat() {
if (anpbunt _left <= 0) l::eat();
el se --amount _| eft;

}

private: int amount_|eft;

H

Figure 5.11: Linear mixins simulated with C++ templates

Figure 5.12: There is no limit to the number of times a mixin can be added.

in figure 5.11. If we are given any class that represents an ice cream cone, we can produce a
new class that has an extra scoop of chocolate ice cream on top (see figure 5.12).

Unlike multiple inheritance mixins in C++ and Python, where the chocol at e mixin can be
added only once, we can add the same linear mixin as often as we want, as long as the class
interface matches. We can do this because the subclass chocol at e has a name for what it’s
extending (I), so methods like eat () have a clear path up the inheritance chain. Having an
arbitrary number of additions of a mixin makes them much more useful than mixins that can
be added only once. With our example, how good would our ice cream class be if we could not

add two scoops of chocolate?

5.3.1 Definition

A mixin definition lists the definitions that will be mixed into a class. It follows the same
syntax as class extension except that the supertype is a parameter with a constraint. The
constraint, which we will describe in section 5.3.2, is essentially a class type. The example in
figure 5.13 shows a constraint definition and two mixin definitions. Encrypt is a mixin that
takes any class whose type conforms to Wi t abl eSt r eanType (i.e., any class that has r ead
and wr i t e methods of an appropriate type) and derives a new class from it that implements
encryption on top of the basic stream functionality. Similarly, UUEncode creates a uuencoded

stream from any stream class that implements r ead and wri t e.

CHAPTER 5. LANGUAGE DESIGN 72

| et classtype Witabl eStreanType
nmet hod read: unit->string;
met hod wite: string->unit;
end;

m xin Encrypt extends S with Witabl eStreaniype
/'l Private cryptographic methods: encrypt and decrypt
redefine read() = decrypt(next());
redefine wite(data) = next(encrypt(data));
end;

m xi n UUEncode extends S with Witabl eStreanType
/1 Private encoding algorithm encode and decode
redefine read() = decode(next());
redefine wite(data) = next(encode(data));
end;

Figure 5.13: Mixin example

5.3.2 Constraints

Looking at the type checking of ordinary inheritance (described in detail in section 7.4),
it is clear that the rules depend on checking the existence, non-existence, and types of meth-
ods and constructors in both the subclass and superclass. Mixins do not have the superclass
available. Instead, we abstract the superclass out of the type checking rules for ordinary inher-
itance, resulting in rules for mixin application, plus a set of constraints that restrict the set of
superclasses to exactly those that would pass the type checking rules for ordinary inheritance.

The constraint should be given by the programmer as a pair of clauses. The positive clause
(following the wi t h keyword) should be a set of typed method and constructor signatures. It
specifies which methods and constructors a class must have in order for the mixin application
to be type correct. The negative clause (following the wi t hout keyword) should be a list of
untyped method names. It specifies which methods a class must not have in order for the

mixin application to be type correct.

Positive clause. The positive clause is a list of typed method and constructor signatures.

classtypemethod my: 71; ...method my: 7;; constructorc;: 01; ...constructor ¢,: oy;end

To ensure that all method calls and field references can be resolved correctly, the posi-
tive clause must include all of the parameter’s methods and constructors that are used in the
mixin’s body. The three kinds of uses are method calls, method redefinitions, and constructor

invocations. A subclass does not use private fields or instantiators defined in the superclass,

CHAPTER 5. LANGUAGE DESIGN 73

so these are not needed in the positive clause. For each method call sel f. min the subclass, if
m is not defined in the subclass, then it must be defined in the parameter, and thus appear in
the positive constraint.

For each call site i, let 7; be the type of m. Then the positive clause must include method m: 7
where for all uses i, 7 <: 7. The type 7 should be the most general type that satisfies the
requirements, but may be more specific to further constrain mixin application.

The positive clause must also include the names and types of all methods that are redefined
in the mixin using the r edef i ne keyword. Redefining a method implies that the superclass
has a method with the same name and a compatible type. This is ensured by including the
signature of the redefined method in the positive clause of the constraint. In addition, the type
may be further constrained by uses of next within the method.

The subclass also uses constructors of the superclass. Thus constructors must be included
in the constraint. Recall from section 5.2.6 that the type associated with a constructor is the
type of the argument only, and from section 5.1.3 that subtyping on arguments is contrary to
what one might expect. For that reason the type 7 is a supertype of each 7; instead of a subtype,
as in the case of methods.

An example of a mixin parameter constraint can be found in the streams example above.
The parameter of UUEncode mixin is constrained by Wi t abl eSt r eaniType. Any class that
hasread and w i t e methods can be used to subclass a UUEncoded stream from it.

The programmer who implements the mixin may require that the parameter have certain
methods even though they are not called in the mixin’s body. The appropriate signatures can
be added to the constraint list by hand. Additional constraints may be useful for stating future
needs. For example, if the programmer knows the mixin will require a method in the future,
adding the method to the constraint prevents the client from using the mixin on a class without

the method, and then later complaining that a library upgrade broke the program.

Negative clause. The negative clause lists all methods that the parameter may not have.
It should include the names of all new methods defined in the mixin (those defined with the
nmet hod keyword as opposed to r edef i ne). This is necessary to avoid type incompatibility
problems arising when the superclass and the subclass contain unrelated methods with the
same name. The type checker signals an error if a method is included both in the positive and
the negative clauses.

Although using a negative clause instead of providing for method renaming reduces flexi-
bility of mixins, the cases it prohibits are those that lead to type safety violations or to coding

errors (see section 6.1.2).

CHAPTER 5. LANGUAGE DESIGN 74

5.3.3 Application

The type checker rejects any attempt to create a new class by applying a mixin to a class
whose class type does not conform to the mixin’s constraint. When mixin M is applied to class
C, for each method signature m; : 7; in P’s positive clause C’s class type must contain a method
m; with type 7/, where 7/ <: 7;. If the method is public in the constraint it must also be public
in C. The reverse is not true—a method may be protected in the constraint but public in C. For
each constructor ¢; : 7; listed in the positive clause, C’s class type must include a constructor ¢;
with type 7{ where 7; <: 7].

Also, C’s class type must not include any methods with names listed in M’s negative clause.
It is important that C’s class type lists all of C’s protected and public methods without hiding
any of them. If a method m is hidden in C’s class type, then a subclass derived from C may
define a new method m with an incompatible type (see section 4.2.3). This will lead to run-
time type errors when m is called from other methods defined in C, but the type checker won’t
be able to detect these errors at compile time since it does not have access to the type of the
original m when compiling C’s subclasses.

The key rule of subtyping is that if a context requires a value of type a and the value
used in that context has type 5, then 8 must be a subtype of a. For mixins, the contexts
appear in the mixin body. As described in the previous section, the type of methods in the
positive constraint is a subtype of all the types required in the mixin body. Class C must
contain a method with a type that is a subtype of the types listed in the positive constraint.
Since subtyping is transitive, the type in the class (which is the value) is a subtype of the types
required in the mixin body (which is the context). An additional context is C’s definition, which
can call methods redefined in M. For this context the type of methods in M must be a subtype
of the type of the method in C.

The rules for mixin constraints and the rules for mixin application jointly ensure type safety

for mixins.

5.4 Summary

OBSTACL objects are fairly simple, providing only selection and comparison. Object types
are also simple, consisting of a set of name/value pairs. Object types may be related through
subtyping, which comes in two flavors, width and depth. Objects are produced by instantiating
classes, which contain all the definitions necessary to initialize and populate an object with
fields and methods. Instantiators encapsulate the construction process; constructors define
modular initialization. Classes can be built by extending another class or by applying a mixin
to a class. Mixins are an abstraction for inheritance and allow the same extension to be applied

to a family of classes. Objects, classes, and mixins form the core of OBSTACL.

Chapter 6

Evaluation

In this chapter we will look at how programmers can express designs in OBSTACL. In sec-
tions 6.1 and 6.2 we look at how objects can be used and created. In sections 6.3 and 6.4 we look
at how classes can be used and created, including how systems using multiple inheritance can
instead be expressed with parameterized inheritance, composition, and interface types. Along
the way we will look at design decisions in OBSTACL that encourage good programming prac-
tices and make more difficult certain kinds of errors. In section 6.5 we summarize guidelines

for using OBSTACL’s features to help write maintainable, well-designed programs.

6.1 Using and defining objects

6.1.1 Equality

Which form of equality is best for objects? Section 4.1 lists four types of equality. Shallow
equality considers only object identity, and seems inappropriate for many situations. Why
does OBSTACL support only this form of equality for objects? Equality in mathematics is a
reflexive, symmetric, transitive relation. We would like to preserve these properties when
defining equality in our language. In the presence of subtyping, data hiding, and substitutivity,
some of these properties no longer hold when using forms of comparison other than shallow
equality.

An equality relation that automatically takes into account the structure and values inside
an object may seem to be ideal. Deep equality is the form of equality used for immutable ML
values, and it is intuitively what one would expect from an equality relation.

However in the presence of data hiding, deep equality faces some oddities. Are only public
items of two objects compared, or also private fields? If only public items are compared, then
the compiler would have to compare methods (functions), which cannot be compared in a finite

amount of time.! Thus we must compare only the private fields.

1To say f = g, we must show that f(z) = g(z) for all values of z. Since there may be an infinite set of values of z,

75

CHAPTER 6. EVALUATION 76

How to compare private fields of objects of different classes is not clear in the presence of
substitutivity. Suppose there are two classes Poi nt 2d and DebugPoi nt 2d ext ends Poi nt -
2d, where DebugPoi nt 2d has no additional definitions. We require that if an instance of
Poi nt 2d is replaced with an instance of DebugPoi nt 2d, where all the methods and fields
remain the same, there be no change in the program’s behavior. In other words, the implemen-
tation detail (which class was used to instantiate the object) should not dictate behavior; only
the fields and methods can change behavior.

The consequence of the above requirement is that object comparison must allow compar-
isons between objects instantiated from related classes. Suppose for example that Poi nt 3dis a
subtype of Poi nt 2d, and that there are objectsa = Poi nt 3d(1, 2, 31),b = Poi nt2d(1, 2),
and ¢ = Poi nt3d(1, 2, 42) . By the requirement for substitutivity, a=b and b=c. However
a#c. Thus transitivity is violated.

We may wish to define an equality relation at each type. In such a system, a=p,in;24C but
aZpoint3dC, and transitivity is restored, at least for a single equality relation.

A more serious problem with deep equality (whether a single relation or one for each type)
is that examining private fields invades the privacy of a class. Suppose instead of being a
subclass, DebugPoi nt 2d is a copy (i.e., has the same definition). The classes DebugPoi nt 2d
and Poi nt 2d are no longer related by subclassing. Can instances of one be equal to instances
of another? If instances of one can be equal to Poi nt 2d objects and instances of the other
cannot, then these two classes with exactly the same definition do not produce objects that are
comparable. Thus we require that instances of exactly the same class definition behave the
same.

The consequence of the above requirement is that object comparison must allow compar-
isons between objects instantiated from unrelated classes. The x and y fields of Poi nt 2d and
the corresponding fields from DebugPoi nt 2d are compared when an instance of Poi nt 2d and
an instance of DebugPoi nt 2d are compared. However, how can the compiler determine what
is an equivalent field? If it looks at fields with the same name, then the names of private fields
have an effect on the behavior of the object! Thus the principle of data hiding is violated.

Deep equality, which must involve inspecting private fields of multiple objects of different
classes, runs into trouble with subtyping, substitutivity, and data hiding. One approach taken
by many languages (including C++ and Java) is to push the problem of equality to the user.
Each class can define an equality relation. Java offers an . equal s() method on objects that
breaks symmetry. C++ offers an oper at or == function, which is dispatched at compile time
and does not take into account the true dynamic type of an object. To handle both symmetry
and dynamic dispatch requires some form of binary methods or multiple dispatch. However,
when the two objects are instantiated from unrelated classes, neither class’s equality relation

function equality cannot be determined in a finite amount of time.

CHAPTER 6. EVALUATION 77

is suitable, even in the presence of binary methods. Allowing binary methods leads to violating
our requirement of identical class definitions producing identical results. Suppose for exam-
ple that DebugPoi nt 2d defined an equality test with other DebugPoi nt 2d objects, and that
Poi nt 2d defined an equality test with other Poi nt 2d objects. When a Poi nt 2d instance and
a DebugPoi nt 2d instance are compared, neither class’s user-defined method will be invoked,
and either an error will be signaled or the objects will compare f al se.

From the above examples it is clear that shallow equality must be used to preserve substi-
tutivity and transitivity. Yet, for two Poi nt 2d objects at the same coordinates not to compare
equal seems rather undesirable. What seems like a serious problem is not much of an issue in
OBSTACL because not everything must be represented as an object. Points for example, as well
as other algebraic types (see section 3.3) are best represented as ADTs. For “physical” entities
like automobiles, bank accounts, and files, shallow equality is generally preferable. For exam-
ple, two bank accounts may have equal balances but that does not make the accounts equal (the
same). Two files may have the same contents without being the same file. In general, “values”
are equal when their contents are equal. In OBSTACL these are represented with ML types
like lists, tuples, and records, which use deep equality. The equality of “objects” depends not
on the contents, but on identity. In OBSTACL, these are OBSTACL objects, which use shallow
equality. Forcing all abstractions to be values or to be objects leads to the anomalies described
above. OBSTACL keeps these separate and avoids the associated problems.?

6.1.2 Redefinitions

In OBSTACL, new method definitions are distinguished from redefinitions. Early version of
C++ had the distinction but later versions dropped it. This distinction seems unnecessary, and
sometimes reduces the potential for reuse. The code in figure 6.1 shows a mixin Mthat could
be applied to both classes A and B if only the distinction between new and redefined methods
(and correspondingly, the negative constraint on the mixin parameter) were dropped. In this
case, maximizing reuse is at odds with other traits of the language.

In a statically typed language, the type of a redefinition should conform to the type of the
method being redefined. In contrast, a new method is unconstrained in its type. If M mhas a
type compatible with (i.e., a subtype of) the type of A. m then it can be considered a redefinition.
But what if it does not? The types of M mand A. mare known at compile time (at the time of
inheritance—mixin application), so the compiler could reject the code with a compile-time error.
Or it could accept the code but treat M mas a new method, hiding the old definition of A. m
(Note that A. mmust still be part of the object, so that A. g works properly.) Hiding complicates

2Copying and equality are interlinked. Generally, when a copy is made, the copy should be equal to the original.
Objects using shallow equality (like bank accounts) tend to be those for which casual copying does not make sense.
Objects using deep equality (like matrices, sets, points, and strings) tend to be those for which casual copying is
reasonable.

CHAPTER 6. EVALUATION 78

mxin M
protected nmethod m() B
end;

class A
protected nmethod nm() = ...
public method q() = self.m);
end;

class B
public nmethod q() = ...;
end;

Figure 6.1: Redefinitions vs. new methods

the language but is a possible solution; see section 4.2.4. Either solution is reasonable when
the program is considered a static system. However, it is when the program is changed that
there can be trouble.

Suppose M mand A. mhave the same type at first but a later version of A changes the type of
mslightly, so that M mis no longer a redefinition. Either the compiler rejects M m which means
the program no longer compiles, or it accepts M mand hides A. m in which case the behavior
of A. q has silently changed. The change is to the interface of A. mso any code that refers to
A. mmust be checked and possibly modified. We should expect that the program may break
when an interface changes. However we should also expect that some programmer should be
responsible for fixing it.> The author of A does not know about M but can announce to all users
of A. mthat things may need to change. The author of Mdoes not know about A, and has no
reason to change anything. The programmer who applied Mto A is the only remaining party,
and sees nothing in Ms constraint suggesting that Mdepends on A. m Each programmer did
the right thing, yet the program broke.

Although in this example the compiler could warn that the type is incompatible, the same
situation can arise when the semantics of A. mchanged without changing the type. In this sce-
nario, the compiler cannot detect a problem, and the program will break at run time (possibly
returning erroneous results instead of signalling an error). The program is that the author of
Mhas not stated whether M mshould redefine A. m Any guess by the compiler will be wrong
some of the time.

The reason for distinguishing new methods from redefinitions boils down to expressing in-
tent. Associated with a new method is a meaning—a description of current behavior (“this

method draws a shape in the current window”), expected behavior (“redefinitions may draw

3We saw this issue come up with multimethods. Code could be extended in a way where no one was responsible to
fix things that went wrong.

CHAPTER 6. EVALUATION 79

any shape in the current window in the default color and pen width”), and restrictions* (“redef-
initions should not close the window, open new windows, change the font, reboot the machine,
...7).5 A redefinition on the other hand must conform to an existing type and meaning.
Defining a new method and redefining an existing method are fundamentally different.
Making them use the same syntax prevents the language system from catching errors. In the
presence of mixins the distinction is more valuable, as it helps avoid improper application of

mixins.

6.2 Object Creation Patterns

In this section we explore how constructors and instantiators can be used to hide the de-
tails of object construction from users of an object. Instantiators can be used to hide additional
initialization and bookkeeping code from users, but they also hide exactly which class is inst-
antiated. With this flexibility we can substitute an equivalent object with a more efficient
implementation, return an existing object instead of creating a new one, or return a set of ob-
jects that work together to act as one. Instantiators are “first-class” functions, so we can also
export them from the class to build collections of instantiators in a larger data structure.

Many creational design patterns allow a class to control the object creation policy [GHJV95].
In OBSTACL, these patterns are implemented using instantiators. Since instantiators are al-
ways called by object creators, it is easier to add a creational design pattern to a class without
affecting object creators. Other creational patterns put object creation somewhere other than
the class being instantiated. For these, OBSTACL allows instantiators to be manipulated at run
time and put into data structures, including builder and factory objects. Using instantiators in
every class and allowing them to be used as first class functions facilitates the implementation

of common creational design patterns.

6.2.1 Modular Construction

The author of a subclass is in some sense a user of the superclass, albeit with more access
and knowledge of the class workings. The subclass author does not know all the details of the
superclass. Minimizing the level of detail that he must know helps improve maintenance—the
superclass author can change some details without affecting the subclasses. Private fields can
be changed in this way. This hiding is only possible if object creation is modular. A subclass
implementation should not be responsible for initializing inherited fields when a new object is
created, since some of the inherited fields may be private and thus invisible to the subclass.

Also, the definitions of inherited fields may change when the class hierarchy changes, making

4These are usually implied but not explicitly stated.
50ne reason for non-virtual methods in C++ is that the program is easier to reason about if one has to consider only
current behavior and not an infinite variety of possible future definitions.

CHAPTER 6. EVALUATION 80

class File

constructor make(filenane) ...;
i nstanti ator nake(fil enane) =
if substring(filename, 0, 1) = "|"
t hen Pi pe.open(substring(filenanme, 1, length(filenane)))
el se new Fil e open(fil enane);
end;

Figure 6.2: A virtual constructor

the subclass implementation invalid. In OBSTACL, each class’s constructor is responsible only
for initializing the definitions new to that class. It then invokes a constructor of the super-
class. This approach is used in many object-oriented programming languages, including C++
and Java. When superclass implementations can be changed without requiring changes to
the subclass, changes remain local to the superclass, making maintenance easier. In OBST-
ACL, this form of constructor is essential for mixins. The mixin definition does not have any
knowledge of the (private) fields provided by the subclass, which may not even be written yet.
Thus the mixin constructor cannot initialize these fields. Modular construction is desired for
ease of maintenance with conventional inheritance, and is necessary for implementing mixin

inheritance.

6.2.2 Virtual Constructor

A virtual constructor is not a constructor in the language, but a function that chooses a class
to instantiate based on its arguments [Cop92, sections 5.5 and 8.2]. It then either creates an
object directly, calls another function to create an object, or raises an exception if no object is to
be created. For example, the Perl open function opens a file unless the filename begins or ends
with “| ”, in which case it sets up a subprocess and returns the stream used to communicate
with that subprocess. Figure 6.2 shows how such a rule might be written in OBSTACL. If the
filename begins with “| 7, the instantiator calls another instantiator; otherwise, it creates a
File object.

Virtual constructors are also useful for persistent or network objects. When writing the
object to disk or network, a “tag” representing the object’s class is written and then the object’s
fields are written. A superclass instantiator can read the tag and call an instantiator for
one of its children, which reads data from the stream and calls an appropriate constructor to
create the object. Another use of virtual constructors is in implementing parameterized factory
methods as described in [GHJV95].

Similar in structure to virtual constructors, private classes are classes that can be inst-

antiated but are never seen by the object creator. In Dylan [Com92], a class can be abstract

CHAPTER 6. EVALUATION 81

cl ass Backgr oundDNS
field working : CondVar;
field answer : string ref;
met hod is_ready() = not working. bl ocked();
met hod answer () =
wor ki ng. wai t () ;
lanswer;
constructor start(hostnane: string)
fields {
wor ki ng = CondVar . nake(),
answer = ref " "

}
inititialization
Thr ead. make(
fn() =>(
answer : = DNS. resol ve(hostnane);
wor ki ng. si gnal ()
)
)
i nstanti ator | ookup(hostnane:string) = new start (host nane)
end;

Figure 6.3: DNS lookup class

(meaning it cannot be instantiated) but still have an instantiator, which creates an instance of
a private class that is not exported from the module. The object creator can create instances
of the private class without being able to see it. In OBSTACL, this pattern is straightforward
to implement. An alternative approach is to dispense with the abstract class and to export the

instantiator alone.

6.2.3 Object Cache

An instantiator is not required to create an object—only to return one. Particularly useful
with objects that do not keep state, an object cache keeps a set of commonly requested objects
and allows reusing them instead of creating new objects.

An example where an object cache may be useful is DNS lookups, which can be very slow,
and may be run in a separate thread (see figure 6.3). A typical user would create a Back-
gr oundDNS object to spawn a lookup, then later call answer () to get the answer. Later, the
author of Backgr oundDNS may notice that users often look up the same host multiple times.
Instead of spawning a new thread, the instantiator can return an existing lookup object (see
figure 6.4). Users need not change their code.

Instantiators are useful for other creational design patterns as well. An object cache is a

generalization of a singleton. Instead of creating only one instance, an object cache creates one

CHAPTER 6. EVALUATION 82

instanti ator | ookup =
| et cache = Cache.new() in
fn(hostnane : string) =>
i f cache. has_key(host nane)
t hen cache. get (host nane)

el se
| et obj = new start (hostnane)
i n (cache. put (hostnane, obj); obj)
end

Figure 6.4: Caching DNS lookup instantiator

cl ass Singl eton

i nstanti ator nake =
let val r =ref (fn() => new Singleton nake())
in
fn () =>
l et val x
(r :=
end
end
end;

Figure 6.5: A singleton

instance for each “key” (which often is the set of arguments to the instantiator). For example,
an object cache may create at most one network connection to each database machine, and
then return existing connections for reuse. The returned objects typically have no mutable
state (see the Flyweight pattern [GHJV95]) so that they can be shared among many clients.

A class that should have at most one instance is a singleton class [GHJV95]. A singleton
class is a special case of an object cache, where the one object is always reused. The instantiator
for the class will create a new object the first time it is called, but each subsequent call to the
instantiator will return the same object. Figure 6.5 shows a singleton instantiator that makes a
local function to create objects, and replaces it with a function that returns an existing object.
The local ref r is created once, when the class is declared, so it can be used to store shared

values shared from one call of the instantiator to the next.

6.2.4 Factory

A collection of factory methods can be placed in a separate object, called an Abstract Fac-
tory. The factory object can be shared by many program components that need a shared set of

classes. For example, a windowing toolkit might offer more than one look and feel (Java metal

CHAPTER 6. EVALUATION 83

cl ass AWFactory
met hod button = AWIBuUtt on. nake;
met hod scrol |l abl eEditor() =
| et scroll barPos = Subject.nake(0) in
AWTRow(AWEdi t or (scrol | bar Pos), AWScrol | bar (scrol | bar Pos))
end

end;
Figure 6.6: Abstract factory

[Zuk97], Tcl/Tk [Ous94], and Motif [OSF91]). A factory class for each appearance can direct
each window creation request (dialog box, menu, button, etc.) to the appropriate windowing
library. In figure 6.6 the methods of AWIFact ory direct requests to instantiators. Object
creators no longer depend on the entire set of classes (AWIBut t on, etc.) but only on AWIFac-
t ory. In addition, some methods may create objects by combining other objects—for example,
Scrol | abl eEdi t or combines a scroll bar object and an editor object. Object creators are

insulated from the details of creating related objects, so different factories can be used instead.

6.2.5 Remote Object

In the remote proxy pattern, an object is created in a separate address space and communi-
cates with a proxy object created in the original address space. The communication is hidden
from the user of the object. In OBSTACL, the instantiator can choose whether a service should
be local or remote, and instantiate the appropriate object. This decision can be made by the
class implementor without changing the interface to the rest of the program.

6.2.6 Prototype

In the prototype pattern, each new instance of a class is not initialized directly, but instead
initialized to be a copy of an existing object. One aspect of prototypes is to be able to encapsu-
late a class and initial values for objects. OBSTACL supports two alternatives to express this
aspect of prototypes:

e At run time, create functions to encapsulate a call to a class’s instantiator and the argu-

ments to the instantiator.

e At run time, create classes that use the local environment for field values. Figure 6.7
shows an example of creating classes dynamically. Each time nkcl ass is called, a new

class is returned. Instances of that class can access the arguments passed to nkcl ass.

These alternatives use OBSTACL’s support for creating functions and classes at run time to
play the role of a prototype object. However, neither alternative matches the second aspect of

CHAPTER 6. EVALUATION 84

fun nkcl ass(x,y, z) =
class C
met hod get _x() = X
instanti ator make() = new C nmake();
end;

Figure 6.7: Dynamic class creation

prototypes: to be able to use the prototype as an object, and then create another object from
it. (See section 9.4.9 for issues related to cloning.) OBSTACL directly supports some aspects of
prototypes but requires the programmer to write a cl one() method for the full power of the
Prototype pattern.

6.2.7 Multi-stage Construction

In some windowing libraries, a widget requiring extensive customization is constructed us-
ing a two-step process [Int94, OSF91]. First, its constructor is called. Then it is customized by
allowing the client to set fields such as x, y, fg (foreground), and bg (background). Finally, a
method such as Real i zeW dget or Set upW ndowis called to complete the construction pro-
cess. Since the constructor and setup functions must occur in pairs (i.e., an object construction
without calling the setup function or calling the setup function more than once is an error), it
makes sense to abstract these into one unit. However, between the two calls is user code. C++
has no convenient way to pass code to a function, so the construction process must be split into
several methods. In contrast, in a language with first class functions, we can pass in a function
that maps a record (e.g., {x, ¥, fg, bg}) with default values to a record with new values. The
function is able to customize the widget during the construction process without exposing a
partially initialized object to the client.

In the Subject/Observer design pattern [GHJV95], the observer must register itself with the
subject at the time of construction. Even if we can guarantee that the observer’s constructor
does not call any virtual functions, we don’t know anything about the subject. It may try to
call a virtual function before the construction process completes. Even if we can guarantee
that Subj ect . r egi st er () does not call any virtual functions, a multithreaded program may
have another thread that calls a virtual function on the unfinished object.

An object that is constructed in stages (alternating between class code and user code) is
typically partially constructed in the constructor, leaving the object in a “partial birth” state
that may not satisfy the object invariants. Alternatively, the object invariants must be loosened
to deal with the extra partial construction state. In a language with first class functions, the
user stages of construction can be passed in as arguments to the constructor or instantiator.
When the instantiator returns an object, it is in a fully constructed state with all its invariants
satisfied.

CHAPTER 6. EVALUATION 85

6.3 Class Creation Patterns

Structural design patterns describe relationships between objects or between classes. In
OBSTACL, interfaces between objects are expressed in structural object types, which allow the
use of new objects with implementations unrelated to the original implementation being used.
Substitutivity makes easier the addition of design patterns to existing systems. In particular,
adapters, composites, decorators, and proxies require program components to use an interface
instead of a specific class. Using interface types by default lowers the resistance to using
object-based structural patterns.

Class-based structural patterns use inheritance as the relation between classes. In OBST-
ACL, mixins can be used to make these patterns more flexible. The class-based version of the
Adapter pattern is used to adapt a class from one type hierarchy for use in a different type hier-
archy. The object-based version of Adapter is preferred over the class-based version when “you
need to use several existing subclasses, but it’s impractical to adapt their interface by subclass-
ing every one” [GHJV95]. The class-based version offers two advantages: subclassing allows
one to override behavior for self calls properly, and there is less overhead (the object-based
version introduces a new object and extra levels of indirection). As described in [GHJV95],
object-based Decorator pattern has three main advantages and two disadvantages when com-
pared to the alternative, subclassing. Mixins give us two of these advantages without either
disadvantage. In addition, mixins can be combined with forwarders to produce the object ver-
sions of the class-based patterns. The programmer can easily choose the most appropriate
form. In section 6.3.1 we look at adapters and in section 6.3.2 we look at decorators.

6.3.1 Adapter

The Adapter pattern is used to allow objects with a type in one type hierarchy to be used
in a different type hierarchy. The class-based adapter takes a class and modifies it to present
a different interface. The resulting class can typically be used in either hierarchy. In C++,
multiple inheritance is used to combine an adapter class with a class from one hierarchy (see
figure 6.8). For each class X, the programmer must create a new class Adapt X that inherits
both X and Adapt . The adapter belongs to the new hierarchy and can translate calls using the
new interface into calls using the old interface. The disadvantage of this pattern is that the
user has to create a new adapter class for each class in the old class hierarchy.

OBSTACL allows mixin adapters, which are implemented with parameterized inheritance
instead of multiple inheritance (see figure 6.8). For each class X, the programmer applies the
mixin Adapt to class Xto produce a new class Adapt (X) . Although a new class is created, there
is no class declaration, along with constructors and any necessary ambiguity resolution. Thus
mixin adapters in OBSTACL do not suffer from the same disadvantage (relative to object-based

adapters) as their multiple-inheritance-based counterparts.

CHAPTER 6. EVALUATION

| X | | Adapt |

/1 Adapter code
cl ass Adapt {

b

/1 User code
cl ass Adapt X ext ends

AdaptX

Multiple Inheritance

Adapt, X {

[/l Create new constructors
Adapt X(a, b, c): Adapt(a), X(b, c) {}
Adapt X(a, d): Adapt(a), X(d) {}

1
new Adapt X(1, 2, 3)

Adapt
Mixins

/'l Adapter code
m xi n Adapt (X) extends X {

b

/1l User code

Adapt (X) (1, (2, 3))

Figure 6.8: Class adapters using multiple inheritance vs. mixins

cl ass Adapter
field target
{|] get:int->"a,
nmet hod get El enent

set:’a*int->unit,
= target.get; (* r

hi ghest | ndex: unit->int |};
ename *)

met hod setEl enent(a,b) = target.set(b,a); (* swap argunents *)

met hod count () =

1 + target. hi ghestlndex();

constructor make(dest)

fields { target
i nstanti at or nake;
end;

= dest }

(* derived information *)

(* standard instantiator *)

Figure 6.9: Object adapter

86

CHAPTER 6. EVALUATION 87

Still, in some situations an object-based adapter may be desired. The object-based version
uses an object compatible with one hierarchy to translate and forward messages to a second
object compatible with a different hierarchy. Figure 6.9 shows an object adapter: each method
translates the message and forwards it to another object. Unlike the C++ class adapter, the
object adapter works for all classes in the original class hierarchy, é so no additional work
is needed if the class hierarchy grows. Although the mixin adapters do not suffer from this
problem, the object adapter still offers one advantage: it works on existing objects, while the
mixin adapters work only for newly created objects. Since there are many more object users
than object creators, the object adapter is useful in more situations than the mixin adapter.

However, it is subject to several drawbacks:

e Object adapters introduce additional objects, which pose problems with object identity.
Lists of objects may have one object or another, but not both, so the programmer must

add code to keep containers consistent.

e Object adapters introduce an extra level of indirection. When multiple adapters are

needed, the overhead increases linearly.

e Object adapters cannot override methods in the target. Although the object adapter can
provide its own version of a method, it isn’t called by other methods in the original object.

Since neither mixin nor object adapter is always better than the other, the programmer
must choose which form of adapter is more appropriate in each case.

In OBSTACL, object adapters can be created from mixin adapters. A mixin adapter can be
applied to a forwarder class to produce an object adapter. A forwarder class has one field,
which points to another object (see figure 6.10). The methods of the forwarder class pass the
message to the second object, without performing any translation. The adapter mixin performs
translation and calls the superclass methods. The combination is an object adapter, which
performs translation and then passes the message to another object.

In OBSTACL, mixin adapters can be used instead of class adapters. Object adapters are
mixin adapters applied to forwarder classes. The programmer can easily choose between mixin
and object adapters. In addition, the adapter can be used with other variants of forwarders,
such as remote forwarding proxies (see 6.2.5), and the forwarders can be used with other pat-

terns, such as Decorator, to transform a class-based pattern into an object-based one.

6.3.2 Decorator

In traditional class-based programming, capabilities are added to objects by subclassing.

However, in most object-oriented languages, subclassing is too static and cumbersome to use

8For this discussion we assume the classes implement the same interface. In practice, one adapter is needed per
interface.

CHAPTER 6. EVALUATION 88

cl ass Forwar der
field target : {| draw unit->unit, resize:int*int->unit |};
met hod draw = target. draw,
met hod resize = target.resize;
constructor nake(dest)
fields { target = dest }
i nstanti ator make; (* standard instantiator *)
end;

Figure 6.10: Forwarder class

in situations in which many combinations of features are needed. An object-based decorator
can add behavior to a set of classes without subclassing each one, can be added or removed at
run time, allows the programmer to control the order in which modifications are performed,
and allows modifications to be applied any number of times. The implementation of object
based decorators is similar to that of object-based adapters: a decorator object points to an-
other object, and methods of the decorator perform additional actions before and after passing
the message to the target object. However, where adapters perform the same task with a dif-
ferent interface, decorators perform a different task with the same interface. Decorators suffer
the same disadvantages as object adapters: multiple objects are more difficult to work with,
forwarding imposes an overhead even for methods that are not modified, and calls from the
target object to itself do not go through the decorator. The object-based decorator is a good
alternative to class-based extension (subclassing) but neither is always better than the other.

To illustrate the use of decorators, we present an example using scoops of ice cream. Sup-
pose we would like to represent an ice cream cone with any number of scoops of ice cream on
top. Using class decorators (subclasses), we might write a hierarchy like that in figure 6.11.
The empty ice cream cone is represented by the Cone class, and its subclasses represent an ice
cream cone with a scoop of chocolate or vanilla ice cream. To have one scoop of each, we could
use multiple inheritance. However, all possible combinations must be created at compile time
and most forms of multiple inheritance do not allow repetition of classes (for example, to create
an object representing two scoops of chocolate ice cream).

With object decorators, we can choose at run time what combination of ice cream scoops to
put on a cone. For example, given a list [Vani |l a, Vanilla, Chocol ate], we can use a
loop such as the one shown in figure 6.12 to build an ice cream object with the desired flavors.

With mixin decorators, we can write the same loop, but the result for N flavors will be a
single object instead of N + 1 objects. Figure 6.13 contains pseudocode for building a class from
a list of mixins and then instantiating that class.

OBSTACL’s mixins provide a solution between object decorators and static inheritance.

Mixin-based decorators add behavior to a set of classes, allow control of the order and number

CHAPTER 6. EVALUATION

Cone

/

| ChocolatelceCream | | VanillalceCream |

%

N\

| ChocolateAndVanillalceCream |

Figure 6.11: Ice Cream represented with multiple inheritance

obj := new Cone;
for each flavorClass in list:
obj := new flavord ass(obj);

Figure 6.12: Ice Cream object built from a list of flavor classes

89

of times decorators are added, result in one efficient object instead of a chain of object pointers,
and route calls from the object through the modifications made by the decorators. However,

like class decorators, they cannot be added or removed after the object is created. Summarized

in table 6.1, mixin decorators share all the advantages of class decorators and most of the ad-

vantages of object decorators. As with adapters, using a mixin decorator with a forwarder class

produces an object decorator.

6.4 Multiple inheritance

In many languages, classes can be built by inheriting from more than one class. Multiple

inheritance introduces many complexities and remains a controversial feature. In this section

we look at structures built with multiple inheritance and how they might be represented in

OBSTACL.

6.4.1 Possible approaches

First we will look at what other languages provide in the way of multiple inheritance.

cl ass : = Cone;

for each flavorMxin in list:
class := flavorM xi n(cl ass);

obj := new cl ass;

Figure 6.13: Ice Cream class built from a list of flavor mixins

CHAPTER 6. EVALUATION 90

Object Class Mixin
added after object created | Yes No No

removed after object created | Yes No No

control order of application Yes No Yes

apply more than once Yes No Yes

avoid combinatorial explosion of declarations | Yes No Yes

single object (easy to work with) No Yes Yes
self calls routed through decorators No Yes Yes
low overhead for unaffected methods No Yes Yes

Table 6.1: Object, class, and mixin decorators

Rely on the programmer. In general, C++ relies on the programmer to specify the semantics
of multiple inheritance. The programmer can refer to any inherited method using base class
name as a prefix to bypass normal inheritance rules or to resolve ambiguities [ES90]. C++
takes the view that name conflicts between inherited methods are program design flaws that
have to be addressed explicitly by the programmer [Cop92]. Therefore, C++ does not provide a
rule for resolving ambiguities. Attempts to call an ambiguous method are signaled as errors
at compile time. The standard solution is to define a new method with the same name in the
derived class and in the body of this method call the conflicting inherited methods in some
order. This puts the burden of specifying the order on the programmer. A similar but more
general approach in Eiffel requires renaming in the case of ambiguous methods. Note that in
C++, if conflicting methods are inherited from base classes but not called by the derived class’s
clients, no error is signaled [ES90].”

C++ does not provide a good solution to the problem of redundant method calls in diamond
inheritance, as shown in figure 6.11. The approach suggested by the designer of the language
[Str97] essentially requires the implementor of Chocol at eAndVani | | al ceCr eam eat to ex-
plicitly call special “helper” methods of all ancestor classes without relying on calls to inherited
eat methods. This approach in some sense violates the modularity of class extension, since a
class implementor has to know the class hierarchy beyond his class’s immediate parents and
refer directly to methods implemented in ancestors. This kind of design is sensitive to changes
in the class hierarchy and makes class libraries fragile. The code that uses the library depends
not only on the terminal classes, but also on the entire class hierarchy, which makes it difficult

to change the implementation without affecting some user of the hierarchy.

7In C++, the ambiguity is not in the class definition but in the method call. The caller can resolve the ambiguity by
specifying which base class’s definition should be used.

CHAPTER 6. EVALUATION 91

Linearize the hierarchy. CLOS [Ste90] and other object-oriented descendants of Lisp solve
the ambiguous methods problem by linearization. The listing order of base classes is consid-
ered significant, and methods from the classes that are listed earlier take precedence over
methods with the same name from the classes that are listed later. This approach is also sen-
sitive to changes in the class hierarchy [Sny86] and sometimes leads to unexpected results.
Some of the problems with the CLOS linearization algorithm are fixed in Dylan [BCH196].
Imposing an arbitrary ordering on base classes (CLOS-style) is not a very good approach
because it is sensitive to rearrangements of the class hierarchy [Sny86, VRTB98] and intro-
duces non-local errors—local changes to one part of a class hierarchy can affect distant parts
of the hierarchy. Any ordering should be made explicit by the programmer to avoid unexpected
behavior. The tradeoff between automatic ordering and explicit ordering is one of initial imple-
mentation vs. maintenance: explicit ordering has a cost up front but avoids fragility and subtle

errors while maintaining the program.

Avoid multiple inheritance. Early object-oriented languages such as Simula67 [DMN70] and
Smalltalk-76 [Ing78] had only single inheritance. Since the experience with multiple inheri-
tance accumulated by C++ users does not lead to any definite conclusions, the designers of Java
decided that the complications introduced by multiple inheritance outweigh the benefits and
did not include it in the language [AG96].

It is worth noting, however, that Java does provide a mechanism for multiple interface
subtyping. In this section, we intend to demonstrate that common multiple inheritance designs
can be expressed using single inheritance, interface subtyping, and parameterization. Java
currently does not provide any form of parametric polymorphism, although this may change in
the near future [BLM97, OW97].

6.4.2 Multiple Interfaces

Multiple inheritance is often used when a single class must support more than one inter-
face. Some languages, such as Java and OBSTACL, support this use but not other uses of
multiple inheritance. Multiple interfaces in Java allow the programmer to declare that a class
satisfies one or more interfaces. Structural subtyping in OBSTACL allows a type to have several
potentially unrelated supertypes. For example, a class might implement both the Edi t or and
St r eaminterfaces, so that its instances can serve both as an editor window and as a stream
of characters (see figure 6.14). To do this, it can can inherit from an Edi t or window class
(E) and then add any code required to support the St r eaminterface. This class is declared
to implement St r eam so objects of St r eanabl eEdi t or can be used in functions that require
St r eans. When those functions call a St r eammethod, it will be redirected to the appropriate
Edi t or method by the forwarding functions.

CHAPTER 6. EVALUATION 92

cl ass StreamableEditor ext ends Editor /* SE */
i mpl enent s Stream; /* second supertype */
met hod read() = getText();
net hod open() = lockEditBuffer();
net hod close() = unlockEditBuffer();
end;

Figure 6.14: Streamable editor class

cl ass StreamableHTMLEditor (* SH *) cl ass StreamableLaTeXEditor (* SL *)

ext ends HTMLEditor; ext ends LaTeXEditor;

i mpl enent s Stream; i mpl enent s Stream;

net hod read() =...; net hod read() =...;

met hod open() =...; met hod open() =...;

nmet hod close() =...; nmet hod close() =...;
end; end;

Figure 6.15: Specialized streamable editor classes

We may want to do the same for subclasses of Edi t or such as HTMLEdi t or (H) and La-
TeXEdi t or (L). Without multiple inheritance, it is not possible to inherit the forwarding func-
tions from Streamabl eEdi t or, so these methods must be reimplemented (see figure 6.15).
If multiple inheritance is available, St r eamabl eHTMLEdi t or can inherit from both St r eam
abl eEdi t or and HTMLEdi t or . It inherits the forwarding functions from St r eanabl eEdi t or
and the HTML editing extensions from HTM_Edi t or . Similarly, St r eamabl eLaTeXEdi t or
can be implemented without reimplementing the forwarding functions. A class that requires
a different interface can inherit its implementation from one class and also inherit from an
class-based adapter (see section 6.3.1). Alternatively, we could use mixins. The adapter code is

put into a mixin adapter and then added whenever needed, as shown in figure 6.17.

(E)

g @ ® O
@ 6B (D /3\

(i) L)
69 6D /8\ /8\

Figure 6.16: Multiple inheritance hierarchy compared with mixin hierarchy

CHAPTER 6. EVALUATION 93

m Xi n StreamAdapter ext ends W wi t h Editor /* S */
met hod read() = getText();
met hod open() = lockBuffer();
net hod close() = unlockBuffer();

end;

cl ass StreamableEditor =
StreamAdapter(Editor);

cl ass StreamableHTMLEditor =
StreamAdapter(HTMLEditor);

cl ass StreamableLaTeXEditor =
StreamAdapter(LaTeXEditor);

Figure 6.17: StreamAdapter mixin and its application

The multiple inheritance hierarchy and the mixin hierarchy are shown in figure 6.16.
Classes are shown as circles and mixins are shown as triangles. A mixin application is shown
as a mixin attached to either a class or to another mixin application.

Even in the case where a class needs only to support multiple interfaces but not to in-
herit code from more than one parent class, multiple inheritance can be useful to inherit
the code needed to forward messages. Using mixins is more convenient than multiple inheri-
tance in this case because a new class does not have to be defined—classes such as St ream
Adapt er (HTMLEdi t or) and St r eamAdapt er (LaTeXEdi t or) can be used directly.

(B)
S]
/ 5

Figure 6.18: A set of adapters using multiple inheritance vs. using mixins

In general, whenever a class C must support multiple interfaces A;, A4,, ..., A, and inherit
code from base class E, multiple inheritance is used with adapter classes A that translate
the interface of some class B to the interface A; (see figure 6.18). Class C inherits from E
and A}, A},..., Al. Given this hierarchy, mixins can be used instead to create adapters A} to

take any class supporting the interface of B and produce a class that also supports interface

CHAPTER 6. EVALUATION 94

cl ass Z (* multiple inheritance *)
extends X,V
redefine nmet hod m() = X.m();
end;

Figure 6.19: A class inheriting multiple unrelated implementations

A;. Then class C is written as A} (A45(... AL(E)...)). Mixins A} can also be reused with other
classes that support B’s interface.

An alternative to adding interfaces to class C is creating a separate object with one or
more interfaces. The object-based adapter can forward all requests to the original object, after
translating from the A; interface to the B interface (see section 6.3.1). Whenever a translation
object is needed for some class B, a forwarding class F' can be written for B’s interface. This
class has one private field, a pointer to an instance of C. It also defines methods to forward
requests to that instance.® The mixins A} are applied to the forwarding class, producing F' =
AL (AL(.. AL (F)...)). All messages sent to instances of F” are translated from the A; interface
to the B interface, then forwarded to a B-interface satisfying object, which in this case is an
instance of class E.

Structural subtyping can be used whenever objects from one hierarchy (A) need to be used
as if they belonged to a different hierarchy (B). Any method that has to be supported by objects
from B can be added to a class in A with a body that simply redirects the call to another method
in A. The new class will satisfy both the interface specified by A and the one specified by B. The
type of the new class is a subtype of both A and B, but the class does not inherit from both A
and B. Structural subtyping can be viewed as providing multiple interface inheritance without

multiple implementation inheritance.

6.4.3 Unrelated Superclasses

The inheritance of multiple unrelated implementations is often used as a convenient form
of aggregation instead of for good design purposes [VRTB98]. Nevertheless, there may be
situations in which it is needed, so we look for an alternative in OBSTACL. Multiple implemen-
tation inheritance can be simulated with composition and exporting of interfaces. Let X and
Y be classes from which we would like to inherit. Let = be a method of X that does not occur in
Y'; similarly, let y be a method of Y that does not occur in X. Furthermore, let m be a method
present in both X and Y. Consider a class Z (shown in figure 6.19) that inherits from both X
and Y. We can instead use a class Z’' (shown in figure 6.20) that contains an X and a Y. The
interface of Z' is the same as that of Z, so clients need not know whether multiple inheritance

is being used. This technique is similar to multiple interface inheritance.

8A forwarding class may perform additional functions, such as sending messages to another address space, provid-
ing protection for the original object, or handling reference counting. See the Proxy pattern for details [GHJV95].

CHAPTER 6. EVALUATION 95

cl ass Z' (* composition *)
private fieldpx: X;
private fieldpy:Y;
publ i c net hod x() = px.x();
public method y(= py.y0;
publ i c nmet hod m() = px.x();
end;

Figure 6.20: Composition and forwarding simulates multiple inheritance

cl ass Y' (* Y with cross-calls *)
extends Y
private fieldz: Z ref;
redefi ne net hod m() = (1z).m();
end;

Figure 6.21: Cross calls provide dynamic lookup with composition and forwarding

One problem remains. If a method of Y calls m, it sees Y’s m, not X’s m, as would be
the case with Z. Here we introduce a cross-call. The class Y has to make a call across its
implementation boundary, into X’s side. Now Z must contain an X and a Y’ (see figure 6.21).
If X needs cross calls, an X' would have to be created as well. Cross-calls are inconvenient,
but in the rare case that multiple implementation inheritance of this flavor is needed, it can
be simulated in this way.

6.4.4 Related Superclasses

A common use of multiple inheritance is to combine classes related by sharing a common
ancestor. Each of the classes extends the ancestor with some feature. The goal is to create a
new class with several features. With multiple inheritance, that class extends each of several
classes, which each extend a common ancestor. The resulting class graph looks like a diamond,
so it is sometimes called “diamond-shaped multiple inheritance”.

For example, a stream class may be extended with features such as compression or en-
cryption. Less obvious features include object locking and logging capabilities.® The class
implementing the feature (a “mixin”) and its methods either replace or add functionality to the
code in the parent class. For example, the r ead method in the Encr ypt edSt r eamclass would
read from the stream by calling the parent’s r ead method, and then decrypt the data. The
wr i t e method would encrypt the data and then pass it on to the wri t € method in the parent
stream class.

To use more than one feature, multiple inheritance can be used to inherit from the classes

9For example, a mixin could override each method to write information to a log file and then call the original method.
This mixin could be added during the debugging process to and removed once the debugging phase is complete.

CHAPTER 6. EVALUATION 96

cl ass EncryptedStream ext ends Stream /* E */
net hod read() =
data = super .read();
/* decrypt data */
[* return data */
net hod write(data) =
/* encrypt data * /
super :write(data);

end;

cl ass CompressedStream /* C */ cl ass UUEncodedStream /* U */
ext ends Stream ext ends Stream
/* Similar to EncryptedStream */ /* Similar to EncryptedStream */
net hod read() =... nmet hod read() = ...
met hod write(data) = ... net hod write(data) = ...

end; end;

cl ass EncryptedCompressedStream /* EC */
ext ends EncryptedStream, CompressedStream
end;

Figure 6.22: Encrypted, compressed, and uuencoded streams

CHAPTER 6. EVALUATION 97

that have implemented the feature. The code and class hierarchy in figure 6.22 shows the
“diamond” shape that results. The class on top (Stream in this case) is inherited by the class
on the bottom (Encr ypt edConpr essedSt r eanm) through more than one path.

Even if the language provides a suitable “super” call mechanism, the methods may not
be called in the desired order. Some languages, such as CLOS and Dylan, provide automatic
linearization; in those, the programmer must be aware of the algorithm used for linearization
so that he or she can ensure that compression occurs before encryption, and encryption occurs
before uuencoding. Other languages, such as C++, do not provide linearization, and instead,
each method that requires linearization has to be written again in the class that inherited
several mixins. Languages with multiple inheritance offer many different ways of handling
the situation with multiple mixins, but they either require extra code to be written for every
combination of mixins or are error-prone in the sense that changes to the class hierarchy may
lead to unexpected changes in behavior.

With mixins, each extension of the common base class becomes a mixin that can be applied
to one of the non-mixin classes. In our example, Encr ypt, Conpr ess, and UUEncode would
be mixins that could be applied to any St r eamclass. Figure 6.23 shows the code and class
hierarchy that results.

Instead of writing code for each combination of extensions,
the mixin approach allows us to name each combination without
writing any code. It also allows us to use a combination of exten-
sions without naming it, such as for ueKSt r eamabove. Mixins
give us control over the order in which the extensions are assem-
bled. We can make sure that the user uuencodes an encrypted Figure 6.24: Double en-
version of a compressed stream, rather than a compressed en- Cryption
crypted uuencoded stream.'® In addition, mixins are not limited to being applied once. A
stream could be encrypted twice by using Encrypt (Encrypt (Stream) (see figure 6.24).
This would not be possible with most multiple inheritance systems because classes (such as
Encr ypt edSt r eam cannot have copies of themselves as siblings. The advantages of mixins
over multiple inheritance illustrated in this example are the ability to control the exact order
of feature addition, the ability to use a combination of features without writing any additional
code, and the ability to apply a feature more than once.

In general, whenever features A;, As, ..., Ay are needed to add functionality to class that
inherits B, they can be implemented as mixins that take as input any class that satisfies the
interface of class B. Any class E that had C, A;,, A;,, ..., A;, as parents and added new fields
and methods is first split into two classes F and E’ (see figure 6.25). Class E’ inherits from
C,A;, A, .., A;, but adds no fields or methods. Class E inherits from E' and adds the fields
and methods. With mixins, class E' is replaced by the mixin application A4;, (A, (... 4;, (C)...)),

10UUencoding is needed when we need to transmit a file in ASCII. Encrypting an ASCII stream would lose its
7-bit property, so it is pointless to encrypt after uuencoding. Similarly, compression can be used well when there
are patterns in the file. Encrypting the file destroys any patterns, so compression should be done before encryption.
However, encrypting a compressed file may make it easier to decrypt, since many compression programs add a known
byte sequence header that can be used in the decryption process.

CHAPTER 6. EVALUATION 98

t ype AnyStreamType = cl asst ype
nmet hod read: unit — array of «;
net hod write: array of @ — unit;
net hod eof: unit — boolean

end

m xi n Encrypt extends S with AnyStreamType /* E */
net hod read() =
data = super :read();
/* decrypt data */
[* return data */
net hod write(data) =
/* encrypt data */

super :write(data); @ @

m xi n Compress extends S with AnyStreamType /* C */
net hod read() =...
net hod write(data) = ... @

end; A
/B\

UEFS ECFS

end;

m xi n UUEncode extends S with AnyStreamType /* U */
net hod read() =...
net hod write(data) = ...

end;

cl ass FileStream; /* FS */

cl ass KeyboardStream; /* KS */

cl ass UUEncodedEncryptedFStream = UUEncode(Encrypt(FileStream)); /* UEFS */
cl ass EncryptedCompressedFStream = Encrypt(Compress(FileStream)); /* ECFS */
val ueKStream = UUEncode(Encrypt(KeyboardStream)).new()

Figure 6.23: Stream class hierarchy expressed with mixins

CHAPTER 6. EVALUATION 99

and class E inherits from it. A simpler case is when all the additions are symmetric, and there

is no special C class; in this case, C = B.

(B)
NN AT
AN

Figure 6.25: A set of features using multiple inheritance vs. using mixins

The Decorator design pattern [GHJV95] is similar to mixins, but applies to features that can
be added or removed dynamically. Decorator classes can be created with mixins A1, Ao, ..., Ay
and the forwarding class F' described in section 6.3.2. A decorator class for a single feature
i would be A;(F). With mixins one can also combine multiple features statically to produce
a new decorator class by applying a mixin A4; to a decorator class.!! For example, 4;(4;(F))
forms a decorator from the composition of A; and A4;. The use of forwarding classes makes it

possible to produce both static extensions and dynamic decorators from the same mixins.

6.4.5 Conclusions

Most cases where multiple inheritance would be used by a C++ programmer can instead be
expressed using two simpler concepts: structural subtyping and parametric inheritance (mix-
ins).

The examples above show how common designs employing multiple inheritance can be
implemented using only mixins and single inheritance (assuming that interface subtyping is
available in the language). In general, the most fruitful approach is to design class hierarchies
with mixins in mind rather than trying to convert an existing multiple inheritance hierarchy
into the mixin form. The main reason is that the order of mixin application should be deter-
mined by design requirements (e.g., compression should be applied before encryption) rather
than an algorithm that considers only the listing order of base classes.

However, if the need should arise, an arbitrary class hierarchy using multiple inheritance
can be converted into a sequence of mixin applications using a monotonic superclass lineariza-
tion algorithm such Dylan’s proposed C3 algorithm [BCH196]. For any leaf class 4, all of its
ancestors Aj,..., A, are linearized from the most specific to the least specific. Then for all ¢,

11With mixin composition (see 9.1.13), one would be able to produce not only new decorator classes (which produce
object decorators) but also new decorator mixins (which produce class decorators).

CHAPTER 6. EVALUATION 100

class A; is turned into a mixin whose parameter constraint is inferred as specified in section
5.3.2 based on how the inherited methods are used in the class body. Finally, A is defined to be
the result of a sequence of mixin application A;(As(...A,(E)...)) where E is the empty class
or the root of the class hierarchy.

Many problems that seem to require multiple inheritance can be solved with an appropriate
use of object composition, single inheritance, and mixins (consider, for instance, most design
patterns in [GHJV95]). A diamond-shaped hierarchy can (usually) be expressed as a single
inheritance hierarchy and mixins. A V-shaped hierarchy can be expressed as a single composite
object with cross-calls or as an object from one hierarchy with extra interface added to make
it appear as if it belonged to another hierarchy. The process of adding the necessary interface

can be automated using mixins.

6.5 Design Principles

Having seen examples of design and maintenance problems that can arise in object-oriented

programming, we now describe some general guidelines for programming in OBSTACL.

6.5.1 Hide Details

A user of an object should be insulated from the details of how the object is implemented.

The first rule is well accepted in the object-oriented programming community [Inc94, Boo94]:

Keep the object’s “physical” state hidden;

provide accessors for the “logical” state.

For example, an object representing a file may be implemented with a pair (block, off-
set_in_block) representing the current file position, but exports an accessor that returns an
integer offset into the file. The concept and implementation of “block” is hidden.

The same principle applies to creating objects:

‘Keep details of object construction hidden in instantiators and constructors.

For example, an object representing a TCP connection may have to determine an IP address
and compute a route to the destination. Using a separate method to compute the IP and route
introduces a new state—“route not computed” (i.e., object not fully ready to use)—which adds
complexity to the interface. Each regular method (e.g., send, r ecei ve) is valid only in the
fully constructed state. Both the user of the object and the author of the class must keep the
state in mind before calling a method. When the added state is not useful to the user, move
it into the constructor. The new state is then never seen by the user, and the interface is

consequently simpler. The partially initialized state is not merely a hypothetical situation; it

CHAPTER 6. EVALUATION 101

is seen in commercially available libraries. The OWL toolkit from Borland [Int94] uses two
steps for some types of window components: first, the constructor is called to initialize the
object in an unusable state; then, the Set upW ndowmethod is called to perform the remainder
of initialization. Another example is the Motif widget set [OSF91] for the X Window system,
in which widget objects are first constructed, then “realized” in a separate step. The reason
these libraries do not provide the simpler interface is that it is rather difficult to automatically
provide the second construction step in C++. The designers of the Taligent framework for C++
compiled a list of workarounds [Inc94, chapter 4], including an initialization flag that is tested
in every method, multiple levels of constructors, and virtual inheritance tricks. There are two

reasons why the constructor cannot handle all of the initialization:

e In C++, a constructor cannot call methods redefined in a subclass. Therefore the subclass

cannot customize the construction process.

e The object creator needs to customize the construction process by setting attributes or by
creating related objects (such as child windows).

In OBSTACL, constructors can call subclass methods after all fields are initialized. In ad-
dition, since ML supports first class functions, the user can customize the process by passing
arbitrary code for the constructor or instantiator to execute. Therefore it is likely that many

multistep construction processes will not require separate steps in OBSTACL (see section 6.2.7).

6.5.2 Separate Functionality

A unit of abstraction such as a class may implement more than one set of operations because
those sets are to be used together. For example, a text-editing widget may handle scrolling, text
display, text entry, and cut/paste operations. An emailing program may handle encryption,

MIME encoding, and PGP signing of messages.

Keep logical concepts in separate abstractions.

For example, break the text-editing widget into classes for display, modification, cut/paste,
and scrolling. The disadvantage of this approach is that creating text widgets is inconve-
nient for users, but we can simply combine these components together in a wrapper class that

presents a single interface to object users. The advantages of smaller components are:

e Variation. The components can be replaced to create new variations of the combined
object. For example the scrolling aspect of text-editing widgets might be replaced with a

slider or panning widget.

e Reuse. The components can be reused outside the object for which they were originally
written. For example the scrolling functionality from a text widget is useful for list boxes
as well.

CHAPTER 6. EVALUATION 102

Some aggregates, such as a text-editing widget, have a fixed set of dissimilar components.

Others, such as the email encoding class, have a variable number of similar components.'2

Use aggregation and interface types to combine components with different interfaces.

Use mixins to combine components with similar interfaces.

6.5.3 Use Interfaces

‘ Use interface types, not classes ‘

Parts of a program that use existing objects do not need to depend on the object’s class at all.
Since object types in OBSTACL only list the public methods (except for the type of sel f, which
also lists protected methods), there is no dependency on the class of an object. In contrast,
C++ and Java use classes as types by default, so object users know some superclass of the
object. Since tying the object user to a particular implementation is not always desired, C++
programmers use “abstract classes” to define interfaces that have no implementation; Java
supports this style directly. However, neither language uses interfaces by default; it takes
extra work for programmers to use them. In OBSTACL, the situation is reversed: by default,
objects are accessed through interface types and implementation types require additional work
(see section 9.3.3).

Accessing objects through interfaces that are independent of classes maximizes substituti-
vity, a key goal of OBSTACL’s design. As a result of using pure interfaces, objects can not have
binary methods (see section 9.2.3), methods that use self types (see section 9.2.5), or a form of
equality that compares the internals of an object (see section 4.1.3). Each of these requires that
the type of the object is linked to the implementation of the object. Substitutivity facilitates
the use of design patterns such as Proxy, Composite, Adapter, and Decorator, since these new

kinds of objects can be added to the system without changing existing code.

Use instantiators, not constructors

Without instantiators, the object creator depends on the object creation policy. To break
this dependency, programmers use virtual methods, global functions, class methods, or object
wrappers. Instantiators in OBSTACL provide a consistent way to encapsulate object-creation
policy with the class; without them, object creators are affected when policies are changed (e.g.,
the default new C(ar g) must be changed to C. : nake(ar g) when the class adds a nontrivial
policy). Thus, unless changes in policy were planned from the beginning, the author of a class
is prevented from changing the policy without affecting object creators. OBSTACL requires the

use of instantiators to allow policies to be changed in the future.

12A fixed set of dissimilar components corresponds to a record or tuple. A variable sized set of similar components
corresponds to a list. In a typed language, lists and records are the basic data structures needed to create all others.
For example, C provides only arrays and structs.

CHAPTER 6. EVALUATION 103

Use mixin constraints, not superclasses

A class inheriting another class makes a specific dependency between classes. Often, the
link is too specific. To break the dependency, inherit from a parameter by using a mixin.
Determine what is provided by the superclass and write that in the mixin constraint. Any in-
heritance between classes is still possible by using mixins; the mixins both break a dependency
and allow for more reuse of the subclass.

6.5.4 Break Dependencies

As programs evolve, changes must be propagated to all affected parts of the program. The
least disruptive change to an existing module is a change in its implementation that does not
affect its interactions with the rest of the system. We want to maximize the ability to make
such local changes. OBSTACL’s abstractions (see section 6.5.3) provide three forms of local
changes that can be made without affecting other modules. Ideally the compiler should not
need to recompile parts of the program that are not affected logically. However even though
the program source may not depend on the implementation of some module, the program’s
compiled code may exhibit such a dependency. When this happens, the program may require
recompilation even though from the programmer’s point of view there is no logical need to
recompile. An example of this situation is most C++ compilers—a change to the implementation
details of a class requires recompilation of modules that use that class, because the modules
are compiled with knowledge of the class implementation and layout.!® In chapter 8 we will
look at how OBSTACL avoids mismatches between logical changes and physical (compiled code)
changes.

A compiler adding new dependencies to the compiled code is a nuisance but not harmful.
At worst it slows development. A more troublesome problem is implementation changes in one
module causing silent errors in another module. These are the most dangerous, as they typi-
cally lead to neither run-time nor compile-time error—only to changed behavior. An example
is automatic linearization of multiple inheritance. A slight reorganization of one part of the
hierarchy can change the order in which methods are linearized, which changes the behavior
of the program. Without automatic linearization, the programmer resolves conflicts, but the
same problem occurs when the hierarchy changes—the resolutions must be reverified. A simi-
lar problem occurs any time the programmer explicitly bypasses the normal change of method
redefinitions (accessed via next in OBSTACL). Consider for example a class calling a method
from its ancestor, bypassing the immediate superclass definition. If the ancestor A is refac-

tored into two classes A and A" then the subclass should now call A”’s method. Such changes

13 Actually most C++ compilers, with the notable exception of IBM Visual Age C++, merely look for changes to the
header file rather than changes to the class layout. As a result, even changes to the text in comments will lead to a
recompile.

CHAPTER 6. EVALUATION 104

would be even more difficult in OBSTACL, where the subclass is built at run time, and both
hierarchies could coexist. (In general, the presence of mixins makes it unwise to depend on
a fixed class hierarchy.) The real danger here is that the programmer who split A may have
correctly notified the immediate descendants to extend A’ instead of A, but may not be aware
of further derived classes. The change in behavior may not even occur immediately; it may

only be triggered by a later (seemingly harmless) change.

Changes to implementations should not break programs at run time.

To avoid errors like the above, we avoided adding features to OBSTACL that bypass the
normal chain of events. We hide implementation details (such as private fields and constructor
code) whenever possible. We also propose an implementation (in chapter 8) that makes physi-
cal dependencies as close as possible to logical dependencies. Local changes are kept local.

Although in an ideal world, all changes would be local, it is too optimistic to believe that
only local changes will ever be needed. When non-local changes may be needed, it is preferable
to err on the side of caution, so that any potential problem is flagged. Unfortunately a compiler
cannot detect all potential problems. To help the compiler, the programmer should be precise
about interfaces. Sloppy interfaces (see section 5.1.3) tend to increase reuse in the short term

but lead to failures during program maintenance.!4

‘ Changes to interfaces should break programs at compile time.

6.6 Summary

OBSTACL includes language features not for the sake of expressiveness but to solve design
problems such as those expressed as design patterns. Substitutivity of objects allows for objects
to be replaced by new objects with similar behavior but different implementation. Private
fields and modular object construction allow each module to hide its implementation from
other modules contributing to a class hierarchy. Instantiators allow class authors to change
the details of how objects are produced without affecting the users of the objects. Mixin provide
abstraction for classes, allowing classes to be built by combining parts. Mixins and structural
types satisfy the same needs that led to multiple inheritance but in a more structured, less
fragile, and more flexible way. At times there are tradeoffs between ease of programming and
good design. OBSTACL supports good program design in part by making powerful abstractions
accessible and easy to use, and at the same time avoiding or at least discouraging the use of

features that lead to subtle errors during program maintenance.

14GQ]oppy interfaces (accidental subtyping) discourage refactoring improvements. For example, if points and vectors
initially both use a generic {z,y, z[} interface, and lots of code for points is reused for manipulating vectors, then it is
difficult to later change points without breaking the code using vectors. The programmer is left thinking, “I'd like to
improve this code but can’t because it will break unrelated code.”

Chapter 7

Theory

I don’t believe in mathematics.

—Albert Einstein

One of our goals with OBSTACL is to have a strong theoretical foundation. Formal semantics
provide a precise description of the language, avoiding the ambiguities that are present when
describing the system in prose. Since OBSTACL is an extension of ML, our semantics should
be an extension of semantics for ML. However, a formal description of ML would overwhelm
any extension describing objects. To focus on objects, classes, and mixins, we will extend a
simple subset of ML. Most notably, we will leave out a treatment of parametric polymorphism
and the ML module system. The “core calculus” presented here! includes the key constructs of
OBSTACL—objects, method selection, data hiding with private fields, object types, subtyping,
classes, run-time inheritance, method redefinition, constructors, public and protected visibility
levels, mixins, and mixin constraints. We omit instantiators, named constructors, and named
private fields. These features are not any more “interesting” than similar features in the core
calculus (functions, unnamed constructors, unnamed private fields) and would only distract
from the main features.

We discuss design motivations and tradeoffs and give a brief overview of the core calculus in
section 7.1. We then present the syntax of the calculus (section 7.2), its operational semantics
(section 7.3), and the type system (section 7.4). Finally, we compare our calculus with other

object-oriented calculi and indicate directions for future research.

1An earlier version of this work appeared in A Core Calculus of Objects and Mixins, published in proceedings of
ECOOP "99.

105

CHAPTER 7. THEORY 106

7.1 Design of the Core Calculus

In this section, we present our design motivations, discuss tradeoffs involved in designing
calculi for object-oriented languages, give a short overview of our calculus, and present an

example illustrating mixin usage.

7.1.1 Design Motivations

Our goal is to design a simple class-based calculus that correctly models the basic features of
popular class-based languages and reflects modular programming techniques commonly em-
ployed by working programmers. Modular program development in a class-based language
involves minimizing code dependencies such as those between a superclass and its subclasses
and between a class implementation and object users. Our calculus minimizes dependencies by
directly supporting data encapsulation, mixin inheritance, structural subtyping, and modular
object creation.

We chose to model many of OBSTACL’s features directly in the calculus. Our calculus di-
rectly supports classes, data hiding, and modular object construction. Mixin applications are
reduced to “generator functions” which call all constructors in the inheritance chain in the

correct order, producing a fully initialized object (see section 7.3).

7.1.2 Design Tradeoffs

In this section, we explain the design decisions and tradeoffs chosen in our calculus. Our
goal was to sacrifice as little expressive power as possible while keeping the type system simple
and free of complicated types such as polymorphic object types and recursive MYTYPE.

Classes. Although OBSTACL is a class based language, we could have chosen to represent
classes as objects [AC96]. However, even in purely object-based calculi, the conflict between
inheritance and subtyping usually requires that two sorts of objects be distinguished [FM95].
“Prototype objects” do not support full subtyping but can be extended with new methods and
fields and/or have their methods redefined. “Proper objects” support both depth and width sub-
typing but are not extensible. Without this distinction, special types with extra information
are required to avoid adding a method to an object in which a method with the same name is
hidden as a consequence of subtyping (e.g., labeled types of [BL95]). In our calculus, OBSTACL
classes are modeled directly. The class construct in the calculus plays the role of a “proto-
type” (extensible but not subtypable) in other calculi, while objects—represented by records of
methods—are subtypable but not extensible.

Objects. Records are an intuitive way to model objects since both are collections of name-va-

lue pairs (see section 5.1). The records-as-objects approach was developed in the pioneering

CHAPTER 7. THEORY 107

work on object-oriented calculi [CW85], in which inheritance was modeled by record subtyp-
ing. Unlike records, however, object methods should be able to modify fields and invoke sibling
methods [Co089]. To be capable of updating the object’s internal state, methods must be func-
tions of the host object (self). Therefore, objects must be recursive records. Moreover, self must
be appropriately updated when a method is inherited, since new methods and fields may have
been added and/or old ones redefined in the new host object. In our calculus, reduction rules
produce class generators that are designed carefully so that methods are given a (recursive)
reference to self only after inheritance has been resolved and all methods and fields contained

in the host object are known.

Object updates. If all object updates are imperative, self can be bound to the host object
when the object is instantiated from the class. We refer to this approach as early SELF binding.
The name self then always refers to the same record, which is modified imperatively in place
by the object’s methods. The main advantage of early binding is that the fixed-point operator
(which gives the object’s methods reference to self) has to be applied only once, at the time of
object instantiation.

If functional updates must be supported — which is, obviously, the case for purely functional
object calculi — early binding does not work (see, for example, [AC96], where early binding is
called recursive semantics). With functional updates, each change in the object’s state creates a
new object. If selfin methods is bound just once, at the time of object instantiation, it will refer
to the old, incorrect object and not to the new, updated one. Therefore, self has to be bound

each time a method is invoked. We refer to this approach as late self binding.

Object extension. Object extension in an object-based calculus is typically modeled by an
operation that extends objects by adding new methods to them. There are two constraints on
such an operation: (i) the type system must prevent addition of a method to an object which
already contains a method with the same name (unless we resolve these methods with scoped
inheritance, as described in section 4.2.3), and (ii) since an object may be extended again after
method addition, the actual host object may be larger than the object to which the method
was added originally. The method body must behave correctly in any extension of the original
host object. Therefore, it must have a polymorphic type with respect to self. The fulfillment of
the two constraints can be achieved, for instance, via polymorphic types built on row schemes
[Fis96] that use kinds to keep track of methods’ presence.

Even more complicated is the case when object extension must be supported in a functional
calculus. In the functional case, all methods modifying an object have the type of self as their
return type. Whenever an object is extended or has its methods redefined (overridden), the type
given to selfin all inherited methods must be updated to take into account new and/or redefined
methods. Therefore, the type system should include the notion of MYTYPE (or “self type”) so
that the inherited methods can be specialized properly. Support for MYTYPE generally leads to

CHAPTER 7. THEORY 108

more complicated type systems, in which forms of recursive types are required. Support can be
provided by using row variables combined with recursive types [FHM94, Fis96, FM95], match-
bound type variables [BSvG95, BB98], or by means of special forms of second-order quantifiers
such as the Sel f quantifier of [AC96].

Tradeoffs. Our goals are to achieve a reasonable tradeoff between expressivity and simplicity,
and to model the features of OBSTACL directly when possible. We do not support functional
updates because we believe that imperative updates combined with early selfbinding keep the
calculus simpler and closer to OBSTACL. Without functional updates, we can use early binding
of self. Early binding eliminates the main need for recursive object types. There is also no
need for polymorphic object types in our calculus since inheritance is modeled entirely at the
class level and there are no object extension operations. This choice allows us to have a simple
type system and a straightforward form of structural subtyping, in contrast to the calculi that
support MYTYPE specialization [FM95, BSvG95].

There are at least two possible drawbacks to our approach. Although methods that return a
modified self can be modeled in our calculus as imperative methods that modify the object and
return nothing, methods that accept a MYTYPE argument cannot be simulated in our system
without support for MYTYPE. We therefore have no support for binary methods of the form
described in [BCC*95], either in the calculus or in OBSTACL. Also, the type system of our
calculus does not directly support implementation types (i.e., types that include information
about the class from which the object was instantiated and not just the object’s interface). We
believe that a form of implementation types can be provided by extending our type system with

existential types (see section 9.3.3).

7.1.3 Design of the Core Calculus

The two new run time structures in OBSTACL are objects and classes. In our calculus, ob-
jects are records of methods. Methods are represented as functions with a binding for self (the
host record) and field (the private field). Since records, functions, and A-binding are standard,
we need not introduce new operational semantics or type rules for objects. Instead, we in-
troduce new constructs and rules for mixins and classes only. The new constructs are: class
values (representing complete classes obtained as a result of mixin application), mixin expres-
sions (containing definitions of methods, fields, and constructors), and instantiation expressions
(representing creation of objects from classes). The calculus does not directly support class dec-
larations. A class declaration in OBSTACL is represented as a mixin expression immediately
followed by a mixin application.

A class value is a tuple containing a generator function, the set of all method names, and
the set of method names that are protected. The generator produces a function from selfto a
record of methods. When the class is instantiated, the fixed-point operator is applied to the
generator’s result to bind self'in the methods’ bodies, creating a full-fledged object.

CHAPTER 7. THEORY 109

Mixins are represented by mixin expressions. Inheritance is modeled by the evaluation rule
that applies a mixin to a class value representing the superclass, producing a new class value.
The generator of the new class takes the record of superclass methods built by the superclass
generator and modifies it by adding and/or replacing methods as specified by the mixin. Only
class values can be instantiated; mixins are used solely for building class hierarchies.

Like OBSTACL, the core calculus supports only private fields and public and protected meth-
ods. Private methods can be modeled by private fields with a function type; public or protected
fields can be modeled by combining private fields with accessor methods (see section 9.1.2 and
section 9.1.3). Instead of putting encapsulation levels into object types, we express them us-
ing subtyping and binding. Protected methods are treated in the same way as public methods
except that they are excluded from the type of the object returned to the user. Private fields
are not listed in the object type at all but are instead bound in each method body. In the core
calculus each class has exactly one private field.2 Each method body takes the class’s private

field as a parameter.

7.1.4 An Example of Mixin Inheritance

Mixin inheritance can be a powerful tool for constructing class hierarchies. In this section,
we give a simple example that demonstrates how a mixin can be implemented in our calcu-
lus and explain some of the uses of mixins. For readability, the example uses functions with
multiple arguments even though they are not formalized explicitly in the calculus.

Mixin definition. Figure 7.1 shows the definition of an Encrypted mixin that implements
encryption functionality on top of any stream class. Note that the class to which the mixin
is applied may have more methods than expected by the mixin. For example, Encrypted can
be applied to Socket applied to Object where Object is the root of all class hierarchies, even
though Socket applied to Object has other methods besides read and write.

Mixin expressions contain new methods (marked by the method keyword), redefined meth-
ods (redefine keyword), and a constructor.> The names of protected methods should be listed
following the protect keyword. Instead of introducing a special field construct, every mixin
contains a single private field which is A-bound in each method body (A key. - - -).

Methods can access the host object through the self parameter, which is A-bound in each
method body to avoid introducing special keywords. The A self. is implicit in OBSTACL, but
explicit in the calculus to simplify the treatment. Redefined methods can access the old method
body inherited from the superclass via the next parameter. Constructors are simply functions
returning a record of two components. The fieldinit value is used to initialize the private field.

The superinit value is passed as an argument to the superclass constructor.

2To model OBSTACL’s multiple fields per class in the calculus, we simply set the field to be a record type.

30BSTACL supports multiple named constructors, while the calculus has only one unnamed constructor. Another
difference is that OBSTACL supports instantiators, but the calculus allows direct access to new. OBSTACL instantiators
can be modeled in the calculus as ordinary functions.

CHAPTER 7. THEORY 110

let File = let Socket =
mixin mixin
method write = ... method write = ...
method read = . .. method read = . ..
- method hostname = ...
end in method portnumber = ...
end in

let Encrypted =

mixin
redefine write = A next. A key. A self. Adata. next (encrypt(data, key));
redefine read = Anext. Akey. Aself. _. decrypt(next (), key);
constructor A (key, arg). {fieldinit=key, superinit=arg};
protect [];

endin...

Figure 7.1: A mixin and two classes in the calculus for OBSTACL

From the definition of Encrypted, the type system infers the constraint that must be satis-
fied by any class to which Encrypted is applied. The class must contain write and read methods
whose types must be supertypes of those given to write and read, respectively, in the definition
of Encrypted.

7.2 Syntax of the Core Calculus

The syntax of our calculus is fundamentally class-based. There are four expressions involv-
ing classes: classval, mixin, o (mixin application?), and new. Class-related expressions and values
are treated as any other expression or value in the calculus. They can be passed as arguments,
put into data structures, etc. However, class values and object values are not intended to be
written directly; instead, these expression forms are used only to define the semantics of pro-
grams. Class values are created by mixin application,® and object values are created by class
instantiation.

Let Var be an enumerable set of variables (otherwise referred to as identifiers), and Const
be a set of constants. Expressions E and values V (with V' C E) of the core calculus are as
in figure 7.2, where const € Const; x,x;, m;,m; € Var; fix is the fixed-point operator; ref, !,

:= are operators;® {z; = ¢;}?€! is a record; e.r is the record selection operation; h is a set of

4The calculus uses a different syntax than OBSTACL to distinguish function call from mixin application without
examining the types of the expressions.

5Class definitions in OBSTACL can be represented here as mixins applied to Object. Regular class inheritance in
OBSTACL is a mixin definition immediately followed by mixin application.

8Introducing ref, !, : = as operators rather than standard forms such as refe, le, : =ej ea, simplifies the definition of
evaluation contexts and proofs of properties. As noted in [WF94], this is just a syntactic convenience, as is the curried

CHAPTER 7. THEORY 111

Expressions: e::= const|z|Az.e|erex|fir|ref|!]:=
| {z;=¢€;}€|ex |Hhe|newe
| classval(v,, [m;]i€Meth [p,]¢€Prot)
| mixin
method m; = vp,;; (j€New)
redefine my = vy, ; (FERedeS)
protect [pg]; (¢€Pmt)
constructor vg;
end
| €1 © €3
Values: vii= const|x|Az.e|fix|ref|!l|:=]:=v|{z;= v; YT
| classval{vgy, [m;]i€Meth [p,]teProt)
| mixin
method mj; = Um]-; (jENew)
(k€ Redef)

redefine my, = v, ;
protect [pe]; (¢€Pmot)
constructor v.;

end

Figure 7.2: Syntax of the core calculus

pairs h:: = {(z,v)*} where z € Var and v is a value (first components of the pairs are all
distinct); H(z1,v1) ... {z,,v,).e associates reference variables z1,...,z, with values vy,...,v,;
[m;], [pe] are sets of identifiers; and I, J, K, L, Meth, Prot, New, Redef C IN. The expression H
binds z1,...,2z, in v1,...,v, and in e; The set of pairs h in the expression Hh.e represents the
heap, where the results of evaluating imperative subexpressions of e are stored.

Our calculus takes a standard calculus of functions, records, and imperative features and
adds new constructs to support classes and mixins. We chose to extend Reference ML [WF94],
in which Wright and Felleisen analyze the operational soundness of a version of ML with
imperative features.” Our calculus does not include let expressions as primitives since we do
not need polymorphism to model our objects. We do rely on the Wright-Felleisen idea of store,
which we call a heap, in order to evaluate imperative side effects.

The intuitive meaning of the class-related expressions is as follows:

o classval(vg, [m;]"€Meth [p,]¢€Pt) is a class value, i.e., the result of mixin application. Itis a
triple, containing one function and two sets of variables. The function v, is the generator
for the class. The [m;] set contains the names of all methods defined in the class, and the
[p¢] set contains the names of protected methods.

version of : =.
"This choice mirrors our choice to extend ML to define OBSTACL. It is not essential to express the constructs we
wish to analyze, but it is clean and convenient.

CHAPTER 7. THEORY 112

e mixin
method m; = vy,,; ENew)
redefine my, = v,,,; (FE€fedel)
protect [Pl]; (€ Prot)
constructor v,;
end
is a mixin, in which m; = v,,; are definitions of new methods, and m; = v,,, are method
redefinitions that will replace methods with the same name in any class to which the
mixin is applied. Each method body v,,; , is a function of self, which will be bound to the
newly created object at instantiation time, and of the private field. In method redefini-
tions, vy, is also a function of next, which will be bound to the old, redefined method from
the superclass. The v, value in the constructor clause is a function that returns a record of
two components. When evaluating a mixin application, v, is used to build the generator

as described in section 7.3.

e e; ¢ e is an application of mixin e; to class value es. It produces a new class value. Mixin

application is the basic inheritance mechanism in our calculus.

e new e uses generator v, of the class value to which e evaluates to create a function that

returns a new object, as described in section 7.3.

Programs and answers are defined as follows:

i= e where e is a closed expression
a::= v|Hhwo

Finally, we define the root of the class hierarchy, class Object, as a predefined class value:
Object £ classval{ _A—.{}, [1, [1)
The root class is necessary so that all other classes can be treated uniformly. Intuitively, Object
is the class whose object instances are empty objects. It is the only class value that is not
obtained as a result of mixin application. The calculus can then be simplified by assuming
that any user-defined class that does not need a superclass is obtained by applying a mixin
containing all of the class’s method definitions to Object.

Throughout this chapter, we will use let z = e; in e; in terms and examples as a more
readable equivalent of (Az.e2)e;. Also, we use unit as an abbreviation for the empty record
or type {}, instead of having a new unit value and type® We will use the word “object” when
the record in question represents an object. To avoid name capture, we apply a-conversion to
binders A\ and H.

8The unit type is used in a similar way to C’s voi d construct. A function i nt f(voi d) in C is written f: uni t -
>i nt in ML. A function voi d f (i nt) in Cis written f : i nt - >uni t in ML. Although unit can occur in more contexts
than voi d, it plays the same role: a type name indicating the lack of a value.

CHAPTER 7. THEORY 113

constv — d&(const,v) if 6(const,v) is defined (0)
Az.e)v — [v/x]e (Bv)
fit A\z.e) — [fizx(\z.€)/z]e (fix)
{.,z=v,...}.2 — v (select)
refv — H(z,v).z (ref)
H{z,v)h.R[lz] — H{z,v)h.R[v] (deref)
H(z,v)h.R[:=zv'] — H(z,v)h.R[V'] (assign)
R[H h.e] — HhR[e], R#]] {1ift)
HhHAW.e — HhHW.e (merge)
new classval{g, M,P) — Av.Sub i pm\p(fiz(g v)) (new)
j € New,
mixin e bt
method m; = vp,; (mixin)
rii::':te[;n]k_ = Umes | classval{g, M, P) —
(F:)onstructér,c; classval{Gen, [m;] U M, [p;] U P)
end

if [m;]N M =0, [my] C M,and [p,] C [m;]UM; Gen is defined below
Figure 7.3: Reduction rules

7.3 Operational Semantics

The operational semantics for our calculus extends that of Reference ML [WF94]. Reduction
rules are given in figure 7.3, where R are reduction contexts [CF91, FH92, MT89]. Expression
Gen is defined below. Relation —» is the reflexive, transitive, contextual closure of —, with

respect to contexts C, as defined (in a standard way) in appendix A.1.

Reduction contexts are necessary to provide a minimal relative linear order among the cre-
ation, dereferencing and updating of heap locations, since side effects need to be evaluated in
a deterministic order. Reduction contexts R are defined as follows:

R::= []|Re|vR|Rz|newR|Roe|vo R

1<i<
| {m1 =V1y...,Mj—1 = Vij—1,M; = R,mH_l =€i41y..., My = en} Sian

To abstract from a precise set of constants, we only assume the existence of a partial function
6 : Const x ClosedVal — ClosedVal that interprets the application of functional constants to

closed values and yields closed values. See section 7.4 for the §-typability condition.
Rules (3,), (fix), and (select) are standard.

Rules (ref), (deref), and (assign) evaluate imperative expressions following the linear order
given by the reduction context R and acting on the heap. They are formulated after [WF94]:
(ref) generates a new heap location where the value v is stored, (deref) retrieves the contents

of the location z, (assign) changes the value stored in a heap location.

CHAPTER 7. THEORY 114

Rules (lift) and (merge) combine inner local heaps with outer ones whenever a dereference

operator or an assignment operator cannot find the needed location in the closest local heap.

Rule (new) builds a function that can create a new object. The resulting function can be thought
of as the composition of three functions: Sub o fiz o g. Given an argument v, it will apply
generator g to v, creating a function from self to a record of methods. Then the fixed-point
operator fiz (following [Co089]) is applied to bind self in method bodies and create a recursive
record. Finally, we apply Suba(_,aq\p, @ coercion function from records to records that hides
all components belonging to the protected set P. The resulting record contains only public

methods and can be returned to the user as a fully formed object.

Rule (mixin) evaluates mixin application expressions. A mixin is applied to a superclass value
classval{g, M,P). M is a set of all method names defined in the superclass; P is an annota-
tion listing the names of protected methods in the superclass. The resulting class value is
classval{Gen,[m;] U M, [p¢] UP) where Gen is the generator function defined below, [m;] U M
is the set of all method names, and [p;] U P is an annotation listing protected method names.
Using generators delays full inheritance resolution until object instantiation time when self
becomes available.

Gen is the class generator. It takes a single argument z which is used by the constructor
subexpression ¢ to compute the initial value for the private field of the new object and the
argument for the superclass generator. Gen returns a function from self to a record of methods.
When the fixed-point operator is applied to the function returned by the generator, it produces
a recursive record of methods representing a new object (see the (new) rule).

Gen 2 Az.
lett =c(z) in
let supergen = g(t.superinit) in
Aself.

m; € M\ [my]

mj = AY.Um; t.fieldinit self y
mE = A\Y.Um, (supergen self).m; t.fieldinit self y

m; = Ay. (supergen self).m; Yy

In the mixin expression, the constructor subexpression ¢ is a function of one argument which
returns a record of two components: one is the initialization expression for the field (fieldinit),
and the other is the superclass generator’s argument (superinit). Gen first calls ¢(x) to compute
the initial value of the field and the value to be passed to the superclass generator g. Gen then
calls the superclass generator g, passing argument ¢.superinit, to obtain a function supergen
from self to a record of superclass methods.

Finally, Gen builds a function from self that returns a record containing all methods —
from both the mixin and the superclass. To understand how the record is created, recall that

CHAPTER 7. THEORY 115

method bodies take parameters field, self, and, if a redefinition, next. Methods m; are the
new mixin methods: they appear for the first time in the current mixin expression. Gen must
bind field and self for them. Methods m; € M \ [m;] are the inherited superclass methods:
they are taken intact from the superclass’s object (supergen self). Methods m; are redefined
in the mixin. Their bodies can refer to the old methods through the next parameter, which
is bound to (supergen self).m; by Gen. They also receive a binding for field and self. For all
three sorts of methods, the method bodies are wrapped inside Ay.---y to delay evaluation in

our call-by-value calculus.

7.4 Type System

Our types are standard and the typing rules are fairly straightforward. The complexity
of typing object-oriented programs in our system is limited exclusively to classes and mixins.
Method selection, which is the only operation on objects in our calculus, is typed as ordinary
record component selection. Since methods are typed as ordinary functions, method invocation
is simply a function application.

Types are as follows:

Tii= u|m = 1| Tref | {z;: 7}
| class(r, {m;:7;}, [pe]) €L tEL

| mixin{ri, 7o, {m;:7; }, {my:1i }, [pe])T € REKAEL

where ¢ is a constant type; — is the functional type operator; 7 ref is the type of locations con-
taining a value of type 7; {z;:7;}*¢! is arecord type; and I, J, K, L C IN. In class types, {m;:7;} is
arecord type and [p;] is a set of names, where [p¢] C [m;]. In mixin types, {m;:7;}, {my: 7} are
record types and [p,] is a set of names, where [p;] C ([m;] U [my]). Although record expressions
and values are ordered so that we can fix an order of evaluation, record types are unordered.
We also assume we have a function typeof from constant terms to types that respects the fol-
lowing typability condition [WF94]: for const € Const and value v, if typeof(const) = 7 — 1
and 0 F v : 7', then §(const,v) is defined and @ I §(const, v) : 7.

Our type system supports structural subtyping (the <: relation) along with the subsump-
tion rule (subd). The subtyping rules were informally introduced in section 5.1.3 and are shown
in full in appendix A.2. Since subtyping on references is unsound and we wish to keep subtyp-
ing and inheritance completely separate, we have only the basic subtyping rules for function
and record types. Subtyping only exists at the object level and is not supported for class or

mixin types.

CHAPTER 7. THEORY

Lk og:y— {m;:m} €44 o {m,; : r;}€A0

T b classval(g, [mali€A%, [p]€Po%) : class(y, {my:ri}iEAU, [py]t€Prot)

(class val)

T b e: class(y, {m;:m; }i€AU [py] €% . |
(instantiate)

T F new e:y — {mj:r; }J€AU\Prot

.
y n—0 — Tm;
Uy : Tme = 11 = T = Ting
¢ :vq — {fieldinit : 5, superinit : v, }

(New) Forj € New: T
(Redef) For k € Redef: T
(Constr) r

Ui ©

T T T

(mixin)

j € New
.. k € Redef
mixin £ € Prot
method m; = vp,,;
redefine my, = vy, ;

Lk mixin Myt Ty, Mg = THy
protect [pq]; Wbﬁd’{{riz- _?1: r];z _r;z_,j},})
constructor c; g - Tmgs Mk 2 Tmy, 55 |Pe
end

o = {m; : Thy, My : Ty, Mg = Ty, }
where [p] C [m;]U [m;] U [my]
M, Tm;, Tm,, are inferred from method bodies

T F ey : mixin{yp,Yd, 001d, ONew, Pa)

T F es:class(y.,op, P)

Tk og<:op<:0014

T'F yp<ive

(mixin app)

[e ¢oey:class(vyg,oq, Py U Py)

Op = Mk Tong s 0 Ty s M = Ty }
_ Lot Lot
h oold = {mi:Th;, Mg :Tm,}
where _ o o
ONew — {m]‘ .ij,mk .ka}

. e e .
g4 {mi.Tmi,mj.ij,mk.ka,ml.Tm,}

Figure 7.4: Typing rules for class-related forms

116

CHAPTER 7. THEORY 117

Typing environments are defined as follows:
IFit=e | Tyz:7m | T,u<:ito

where z € Var, 7 is a well-formed type, ¢1, 12 are constant types, and z,:1 ¢ dom(T).

Typing judgments are as follows:

T'Fr<im 71 is a subtype of

'kFe:r e has type 7

The set of typing rules for class-related forms is shown in figure 7.4. The remaining rules

are standard and can be found in appendix A.2.

Rule (class val) types class values. A class value is composed of an expression and two sets
of method names. The expression g is the generator (see section 7.3) which produces a func-
tion that will later, at the time of new application, return a real object. The type of g can be
determined by examining the type of the class value, class{~y, {m;:7;}, [p¢]). Generator g takes
an argument of type v and returns a function that will return an object once the fixed-point
operator is applied. The return type of g is therefore ¢ — o, where o represents the type of self,
{m; :7;}. This record type includes all methods, not only public methods. When the fixed-point
operator is applied, fiz(g v) will have type o when v has type ~.

Rule (mixin) types mixin declarations. We describe it following the order of its premises. Note
that mixin methods make typing assumptions about methods of the superclass to which the
mixin will be applied. We refer to these types as expected types since the actual superclass
methods may have different types. The exact relationship between the types expected by the
mixin and the actual types of the superclass methods is formalized in rule (mixin app). We
mark types that come from the superclass with * and those that will be changed or added in

the subclass with +.

¢ (New) The bodies of the new methods v,; are typed with a function type. The argument
types are the type of the private field () and the type of self (¢). We do not lose generality
by assuming only one field per class since 7 can be a tuple or record type. The return type

is 'r,%j.

o (Redef) The bodies of the redefined methods v,,, are also typed with a function type. The
first argument type 7, is that of next, i.e., the superclass method with the same name
(recall that the new body can refer to the old body via next). The meaning of n and o is
the same as for the new methods. It is not known at the time of mixin definition to which
class the mixin will be applied, so the actual type of the method replaced by m; may be
different from the expected type 7}, .

CHAPTER 7. THEORY 118

e (Constr) The constructor expression c is a function that takes an argument of type v4 and
returns a record with two components. The component labelled fieldinit is the initial-
ization expression for the private field. It has to have the same type 1 as that assumed
for the field when typing method bodies. The component labeled superinit is the expres-
sion passed as the parameter to the superclass generator. Its type v, is inferred from the

constructor definition since the superclass is not available at the time of mixin definition.

Both new and redefined methods in the mixin may call superclass methods (i.e., methods
that are expected to be supported by any class to which the mixin is applied). We refer to these
methods as m;. Their types 7%, are inferred from the mixin definition.

The mixin is typed with a mixin{...) type, which encodes the following information about

the mixin:
e 7, is the expected argument type of the superclass generator.
e 7, is the exact argument type of the mixin generator.

o {m;:7h,,mp : Th, } are the expected types of the methods that must be supported by any
class to which the mixin is applied. Recall that m; are the methods that are not redefined
by the mixin but still expected to be supported by the superclass since they are called by
other mixin methods, and 7}, are the types assumed for the old bodies of the methods

redefined in the mixin.
o {mj:Th;, my T, } are the exact types of mixin methods (new and redefined, respectively).

¢ [p/] is an annotation listing the names of all methods to be protected, both new and rede-
fined.

Type information contained in the mixin{...) type is used when typing mixin application in rule

(mixin app).

Rule (mixin app) types mixin-based inheritance. In the rule definition, o, contains the type sig-
natures of all methods supported by the superclass to which the mixin is applied. In particular,
my, are the superclass methods redefined by the mixin, m; are the superclass methods called
by the mixin methods but not redefined, and m,; are the superclass methods not mentioned in
the mixin definition at all. Note that the superclass may have more methods than required by
the mixin constraint.

Type o4 contains the signatures of all methods supported by the subclass created as a result
of mixin application. Methods m;,; are inherited directly from the superclass, methods m;, are
redefined by the mixin, and methods m; are the new methods added by the mixin. We are
guaranteed that methods m; are not present in the superclass by the construction of o}, and oy:
04 is defined so that it contains all the labels of o}, plus labels m;. Type coiq lists the (expected)

CHAPTER 7. THEORY 119

types of the superclass methods assumed when typing the mixin definition. Type onew lists the
exact types of the methods newly defined or redefined in the mixin.
The premises of the rule are as follows:

e mixin(...) and class{...) are the types of the mixin and the superclass, respectively.

e The o4 <: 0} constraint requires that the types of the methods redefined by the mixin (my)
be subtypes of the superclass methods with the same name. This ensures that all calls
to the redefined methods in m; and m; (methods inherited intact from the superclass) are

type-safe.

e The o} <: 0014 constraint requires that the actual types of the superclass methods m; and

my, be subtypes of the expected types assumed when typing the mixin definition.

e The v, <: . constraint requires that the actual argument type of the superclass generator
be a supertype of the type assumed when typing the mixin definition.

In the type of the class value created as a result of mixin application, o is the argument type
of the generator, and o4 (see above) is the type of objects that will be instantiated from the
class (except for the protected methods which are included in o4 but hidden in the instantiated
objects). In the resulting subclass we protect all methods that are protected either in the
superclass or in the mixin.

Rule (mixin app) also determines how name clashes between the mixin and the superclass
are handled. Suppose the superclass and the mixin contain a method with the same name m.
If m is a redefined method in the mixin (i.e., m € [my]), then it will replace the method from
the superclass as long as its type 7, is a subtype of the replaced method’s type 7,,,. This
requirement is checked by the o4 <:0; premise. If m is a new method (i.e., m € [m;]), then
the rule’s premises will fail since a method that is considered new by the mixin appears in the

superclass (m = m; € g3), and the type system will signal an error.

Rule (instantiate) types the creation of a new object. The new e term is typed as a function that
takes the generator’s argument and returns a fully initialized object. The object’s type contains
only the public methods; the protected methods are hidden.

The proof of soundness can be found in [BPSM99].

7.5 Related Work

In the literature, there exists an extensive body of work on calculi for object-oriented lan-
guages. The calculus for OBSTACL presented in this chapter can be compared directly with the
following class-oriented calculi:

CHAPTER 7. THEORY 120

e In the simplest of Cook’s calculi [Co089], objects are represented by records of methods
and created by taking the fixed-point of the function representing the class (constructor
in Cook’s terminology). Inheritance is modeled by generating the subclass constructor
from the superclass constructor, and self is bound early. However, classes are not a ba-
sic construct. The calculus relies on record concatenation operators, but typing issues

associated with them are not addressed.

e The closure semantics version of the “dynamic inheritance” language analyzed by Kamin
and Reddy [KR94] is similar to our calculus. The language is class-based, and the se-
mantics of inheritance is similar to our generators. They also compare late and early self
binding (fixed-point model and self-application model in their terminology). However,
no type system is provided and there is no discussion of object construction or method

encapsulation.

e The calculus of Wand [Wan94] is class-based and strongly typed. Classes are modeled as
extensible records, inheritance is record concatenation plus self update so that inherited
methods refer to the correct object. As in our calculus, objects are records, self is bound
early, and the new operation (called constructor) is an application of the fixed-point oper-
ator. There is also no support for parameterized inheritance with flexible constraints.

OBSTACL includes classes and imperative updates. By modeling these directly in the cal-
culus, we can omit MYTYPE, simplifying the calculus and the type system for the language.
Other approaches to modeling classes can be found in object-based calculi, where classes

are not first-class expressions and have to be constructed from more primitive building blocks:

e Abadi and Cardelli use a record of pre-methods plus a constructor function to model
classes [AC96]. Pre-methods are functions from self to method bodies or functions that
are written as methods but not yet installed in any object. The difference between the
result of Gen (see section 7.3 above) and a record of pre-methods is that the former is a
function from self to a record of methods while the latter is a record of functions from self
to methods. However, their approach provides no language support for classes, instead
accepting only some subset of objects (which satisfy a complicated set of constraints) to
be used in place of classes [FM98].

e Fisher uses extensible objects to model classes [Fis96]. Extensible objects support method
addition but not subtyping, while “proper” object support subtyping but not extension
[FM95]. Extensible objects, or “prototypes”, roughly correspond to classes in OBSTACL,
and the operation to turn prototypes into proper objects roughly corresponds to class inst-
antiation in OBSTACL. The main difference is that methods may be called on prototypes,

while methods in classes may not be called until they are placed into a (proper) object.

CHAPTER 7. THEORY 121

While in the prototype state, methods must have a partially abstract view of its host
object. While the system of [BF98] can model a form of mixins, our calculus is simpler,
more intuitive, and has encapsulation and object creation semantics closer to those used
in OBSTACL.

To the best of our knowledge, there are not many formal settings in which mixin-based

inheritance is analyzed:

e Flatt et al. implement mixins in the MZSCHEME language [FF98] and formalize an ex-
tension of a subset of JAVA with mixins in [FKF98]. Their system supports higher-order
mixin composition, a hierarchy of named interface types, and resolution of accidental
name collisions. The collision resolution system allows old and new method definitions to
coexist. The two are distinguished using the “view” of an object, which is carried with the
object at run-time and altered at each subsumption step (see section 4.2.3). As a result,
method lookup is sensitive to the object’s history of subsumptions. Our mixins are created
and manipulated as run-time values as opposed to static top-level declarations. Mixin
constraints prevent objects from having incompatible methods with the same name, so
method lookup is straightforward and does not depend on the object’s subsumption his-

tory. Proper object initialization is guaranteed.

e BETA [MMPNO93] replaces classes, procedures, functions, and types by a single abstrac-
tion mechanism called the pattern. Objects are created from the patterns, and in addition
to traditional objects as found in conventional object-oriented languages, objects in BETA
may also represent function activations, exception occurrences, or concurrent processes.
Patterns may be used as superpatterns to other patterns in a manner similar to conven-
tional inheritance. Since patterns are a general concept, inheritance is available also for
procedures, functions, exceptions, coroutines, and processes. Virtual patterns are similar
to generic templates or parameterized classes with the additional benefit that the pa-
rameter may be restricted without actually instantiating the template (this is similar to
computing the mixin constraint without actually applying the mixin to a class). Mixin in-
heritance is a partial case of the very general pattern inheritance mechanism developed
in BETA.

e OCAML [LRVD99] supports a very limited form of parameterized inheritance by combin-
ing a module abstraction mechanism with classes that can inherit across module bound-
aries. Because the exact module containing the superclass may not be known when the
subclass is defined, the same subclass can be used with multiple superclass definitions.
However, methods not mentioned in the superclass type become inaccessible. In the ex-
ample of section 7.1.4, this would mean that all methods that are present in the Socket o

Object class besides read and write are forgotten once Encrypted mixin is applied to it.

Chapter 8

Implementation

A language may look good on paper, but without a reasonably clean and efficient implemen-
tation it cannot serve the needs of programmers. At this time there are no complete imple-
mentations of OBSTACL, but we have implemented prototypes that indicate that an efficient
implementation would be feasible, except for type inference, which is known to be difficult in
the presence of subtyping. In this chapter we describe a proposed implementation, parts of
which have been implemented in two prototypes.

Since OBSTACL is an extension of ML, we will not discuss here the implementation of ML
features used in OBSTACL, such as records, functions, control constructs, and arrays, except
where their implementation affects the representation of objects or classes. There are several
good implementations of ML [LRVD99, AM91] and there has been work on highly efficient
implementations [TMC*96]. Instead we focus on representation (objects, classes, and mixins)
and operations (selection, comparison, inheritance, and instantiation) of our extensions to ML.
Most ML implementations, like implementations of other high level languages, put all struc-
tured data on the heap by default and use the stack only for primitive types, so we put objects,
classes, and mixins on the heap and access them through pointers.

8.1 Implementation Strategy

In the proposed implementation described here, separate compilation is a key restriction
on the kinds of techniques we allow. An important goal is to require recompiling a module only
when that module is changed in some programmer-visible way. Recompilation should not be
caused by some artifact of the implementation.! In particular, private fields should be able

1Recompilation is not an issue that is independent of the language design. Note that excessive recompilation is a
common complaint of C++ users, but not a complaint of Smalltalk users. This is because the “header file” paradigm
in C++ encourages programmers to include implementation details in files that should contain only interfaces. Most
C++ systems trigger recompilation on change to the file. Thus a change to the implementation or even the comments

122

CHAPTER 8. IMPLEMENTATION 123

to change without subclasses needing recompilation. Separate compilation rules out whole-
program analysis, which enables cross-module optimizations. On the other hand, it allows for
dynamically linked (shared) libraries. For example, as long as interfaces are compatible, a su-
perclass in a dynamically linked library can be upgraded (possibly changing the layout of the
objects) without breaking subclasses defined in the main application. Separate compilation of
mixins is related to dynamically linked libraries in that when the mixin is compiled, the def-
inition of the superclass is not available. The implementation is necessarily prohibited from
relying on the layout of private data in the superclass. Such a challenge is not normally an
issue in most statically typed object-oriented languages, where subclasses are typically com-
piled after the superclass definition is available. In dynamically typed languages, knowledge of
layout is often deferred until run time, at the cost of performance. The proposal described here
preserves the efficiency of static languages while maintaining separate compilation of mixins.

In a class-based language, the representation of objects can differ from the representation
of classes. Typically object representations are optimized for space, since in most situations
there are many more objects than classes. We expect relatively few classes so we focus on
speed instead of space. We first examine object layout in other languages and then describe

the format used in OBSTACL, and well as how the various operations are implemented.

8.2 Layout in Other Languages

An object’s representation must allow us to find its fields and methods. Much of the varia-
tion in object representation is a tradeoff between flexibility of the language and optimization
of space or time. The key operations are selection and extension. In statically typed languages
we also want subtyping. We consider here three dynamically typed languages (SELF, Python,
and Smalltalk) and two statically typed languages (Java and C++).

object| fields, methods

object| fields, methods

object| fields, methods

Figure 8.1: SELF: it’s all objects

SELF SELF is a classless language, so the objects must support not only selection and com-

parison but also extension. An object contains both fields and methods, implemented as a

in an interface can lead to recompilation of all code that refers to that interface.

CHAPTER 8. IMPLEMENTATION 124

class | fields, methods

class | fields, methods

/

object| fields, methods

Figure 8.2: Python: like SELF, with an artificial distinction

map from names to either data or code. In addition, each object has a “parent” (see figure
8.1). If a message is not understood by the object, the message is delegated to the parent
object. Delegation continues until either some ancestor processes the message, or a “root”
object is found. JavaScript [Fla98] and MOO [Cur97] use a similar object model.

Python Unlike SELF, Python is a class-based language, with both classes and objects. How-
ever, Python allows both classes and objects to define new fields and methods, and also
define or modify classes at run time, so the run-time structures are similar to those used
in SELF (see figure 8.2). To find a method, the system first looks in the object; if the
method is not defined there, the system proceeds to search in the object’s class, then the
class’s ancestors. Although the language is class-based, the implementation is similar to
that of an object-based language. In fact it is possible to build an object-based system in
Python.?

Smalltalk Like Python, Smalltalk is a class-based language. However, unlike Python each
instance object cannot have new fields or methods (see figure 8.3); instead, fields and
methods are added as extensions to classes. As a result, the implementation need not
perform lookup in the object; it instead starts with the class, then looks in each of the
class’s ancestors until the method is found. Like Python, Smalltalk allows classes to be
defined and modified at run time; however, objects cannot be modified in this way. An
object’s representation is simpler: since all instances of a class have the same fields, the
mapping from names to locations within the object can be stored in the class. An object
requires minimal space, containing only its fields and a pointer to the class. A class
contains a mapping from field names to offsets within the object, a mapping from method

names to method implementations, and a pointer to the parent class.

Java Java’s object layout [LY96] (see figure 8.4) is similar to that of Smalltalk, but Java’s
class layout can take advantage of an additional restriction: once classes are loaded, new

methods and fields cannot be added to them. The method lookup table of a superclass can

2See, for example, Pythonic MOO [Str], extension classes [Ful96], and Python metaclasses [VR99].

CHAPTER 8. IMPLEMENTATION 125

C++

class | methods

class | methods

/

object| fields

Figure 8.3: Smalltalk: classes have methods, objects have fields

be merged into the table of the subclass at link time. Method lookup is performed in one
table only; if the method is not there, it cannot be defined in a superclass. In addition,
Java is statically typed, so most method lookup failures are detected at compile time.

Modula-3 and Eiffel can be implemented with a similar model.

class | methods

b

class | methods

/

object| fields

Figure 8.4: Java: similar to Smalltalk, but less dynamic

Java is statically typed, so we need a way to pass objects instantiated from subclasses to
functions expecting a superclass instance. Java uses only single inheritance, so it is pos-
sible to lay out the fields of a subclass object so that it contains a superclass object layout
as a prefix. When the subclass object is passed to a function expecting only a superclass
instance, it can ignore the subclass-specific fields at the end. Java also provides inter-
faces. When a subclass object is passed to a function expecting an object implementing
some interface, that function looks up names at run time in a map. One supertype (the

type of the superclass) is treated differently from other supertypes (interfaces).

C++ is even more restrictive than Java in that the ancestors of a class must be compiled
in order to compile a subclass. The method lookup tables can be merged at compile time,
so the location of methods within the table is known statically. Although a class may
container a pointer to its parent class at run time (see figure 8.5), such a pointer is not
necessary. In addition, the placement of fields is known statically, so methods can be
compiled with precise knowledge of where fields are to be found. Like Java, C++ uses
the prefix implementation for single inheritance. For multiple inheritance and virtual

inheritance, common C++ compilers use a “pointer offset” implementation, where some

CHAPTER 8. IMPLEMENTATION 126

offset from the beginning of an object contains a prefix that matches each superclass. For
example, if class Cextends A and B, then objects of class Cmight contain a prefix matching
A at offset 0 and a prefix matching B at offset 3. When passing objects statically known to
match class C to a function expecting an object of class B, the compiler passes the object
pointer minus 3. With virtual inheritance, the offset is not known statically, and is found
inside the object itself. The details are complex; see [Str94] for details. The complexity
(relative to Java) is needed to avoid all run-time name lookups and for uniform treatment

of supertypes.

, class ' methods

class | methods

object| fields

Figure 8.5: C++: class hierarchies aren’t used at run-time

8.3 OBsTACL object and class layout

OBSTACL is a class-based language in which methods are defined in classes and fields are
per object. A good starting point would be to consider the layout of objects in Smalltalk, Java,
or C++. Like Java and C++, OBSTACL classes cannot be modified at run time. Like Java, OB-
STACL supports interface types, and implementation details of a class may change without
recompiling code that uses the class. (However, the implementation details may not change
after linking the program modules together.) We therefore expect an object/class layout most

similar to that of Java.

/
class |

X

Yy
z

Figure 8.6: An OBSTACL object

Object layout is fairly straightforward in most class-based object-oriented languages. OB-

STACL can use this format, shown in figure 8.6. All values in ML? use one word of storage to

31 write “in ML even though I mean “in most implementations of ML.” The former is shorter.

CHAPTER 8. IMPLEMENTATION 127

either hold all of the value or a pointer to additional data [App98].* We therefore expect an
object with F fields to use F' + 1 words (with one word pointing to the class structure). Note
that neither field names nor methods are stored in the object; since they are the same for all
instances of the class, they can be stored in the class instead of once per object.

Run-time class structures are where the interesting information is stored. Since there are
far fewer classes than objects, and because languages offer so many different features that
require run-time support, there is greater variation in class layout than in object layout. For
OBSTACL, the key features we must support are instantiation of objects, with the two-step
initialization system described in section 4.3.2, and subclassing at run time to support run time
inheritance (see section 4.2.5), including mixins (see section 5.3). In addition, since methods
are stored in classes instead of in objects, we must be able to find the class of an object in order
to select a method. Depending on the separate compilation system used, we may also need
a description of the class signature so that we can verify type safety at link time. Of these,
supporting run-time inheritance the most challenging.

In most object-oriented languages, a single class declaration becomes a single class at run
time, but in OBSTACL, each class declaration can expand into an unlimited number of classes
at run time.® Figure 8.7 demonstrates the need for run-time class structures. The run-time
system must provide a way for instances of f(5) to access the class returned by f(5), which
in turn must have access to the environment present at the time the class declaration C' was
executed, which provides access to the mapping & — 5.

fun f(k) =
class C

method m() = k;
end;

Figure 8.7: Run-time class generation

A more demanding example, shown in figure 8.8, defies any attempt to use only one envi-
ronment pointer in a class. The result of f(n) is a class with n ancestors (f(n—1), f(n—2), ...,
f(0)) and n + 1 entries in its method table. The class produces objects with n + 1 fields. Each of
the n + 1 methods has its own sense of what 7 and j are, so we must keep in mind the need for
multiple environment pointers when designing the run-time class structures. In addition, this
example shows that the compiler cannot determine the object size from the class definition; the

object size is not available until run time.

4The TIL compiler can inline values of known type, such as records, into their containers [TMC196]. We expect the
same optimization to apply when structured values are fields of an object. The object itself, however, cannot be inlined
into its container because of substitutivity—there remains the possibility that the instantiator or other function has
given us an object with the same type but different internal structure and size.

5In C++, a single template class declaration can expand into multiple classes, but this expansion is performed at
compile or link time, and in most compilers the expanded classes are individually compiled. In OBSTACL, the class is
compiled only once, and expanded at run time.

CHAPTER 8. IMPLEMENTATION 128

fun f(0) =
(class C
field j;
method m() = j;
end;
C)
| f(k) =
(class C extends f(k — 1)
field j;
method m() = z * next() + k;
end;
8))

Figure 8.8: Run-time class hierarchy generation

superclass

#fields .

ML module structure

. —
static content
methods ¢
Method Name Environment Code Field Offset Super
B.n “n” envp code offsetp -
B.m - envp code offsetp -
D.p “p” envp code offsetp -
D.m “m” envp code offsetp 1

Table 8.1: Class and method table layout

Table 8.1 shows a class layout that supports the key features of OBSTACL classes. A class
points to its superclass so that we can chain instantiators and constructors and also for run-
time tools such as debuggers, but the superclass link is not followed for method lookup. Inst-
antiators and constructors, used to create objects, are parts of classes, not of objects they create.
We can represent them in the same way as we represent module functions [App98]. Methods
however are conceptually part of an object and require some mechanism for finding object data.
It would be straightforward to create a closure per method to include in each object, but that
increases the size of the object significantly. Our design of method tables allows them to be
stored once, in the class, yet includes just enough information to recover the per-object data.

In section 8.4 we describe how operations are implemented using these object and class
layouts.

CHAPTER 8. IMPLEMENTATION 129

8.4 Operations

The operations on an OBSTACL object are selection, subsumption, and comparison. Within
a method, the operations are field lookup, access to the “self” object, and access to the redefined
method. For a class, the operations are instantiation, subclassing, and mixin application.

8.4.1 Operations on objects
Selection

To select a public method on an object involves looking at the method table of the object’s
class. The method table is a hash table with additional entries for chaining to implement

method redefinition. Selection does not involve looking at the chained entries.

sel ect (obj ect, nethod):

obj ect. cl ass

tabl e = cl ass. net hodt abl e

entry hasht abl e_fi nd(tabl e, hash(nethod), nethod)
entry. code(object, entry)

cl ass

In section 8.4.2, we discuss what the method does with the entry. Note that this operation
does not call the method. It simply sets up the necessary bindings for the method, such as
“self”. Also note that this implementation also works for public fields, if we choose to add them
(see section 9.1.2).

In C++, methods can be found at a known position in the method dictionary. This optimiza-
tion relies on subtyping requiring inheritance—the dictionary layout is known for all subtypes
because they must also share implementation. With structural subtyping, classes that are
not related by inheritance can produce types that are related through subtyping. We cannot
guarantee that subtypes share a dictionary layout, so the optimization cannot be made. For
this reason, the name of the method is used for method lookup instead of an index into the
dictionary, and we expect OBSTACL method lookup to be slower than C++’s. However, we can
use two optimizations to make lookup faster than simple hash table lookups of method names.

The only operation needed on the method names is equality. The first optimization is to
replace each string with a unique value, different for each method name.® During module
initialization, each name is looked up in a global mapping and its number is found. Method
tables are built with the numbers instead of the strings, and method calls perform lookup using
the number. Searching the dictionary is still needed, but cheap integer comparisons are used
instead of relatively expensive string comparisons.

The other optimization is to cache the result of the last lookup at each call site. At each

call site, we store an integer Aint to the method lookup code. After each successful method

81In Lisp, these are called interned symbols.

CHAPTER 8. IMPLEMENTATION 130

lookup, we store the index of the found method entry. At the next method lookup, we use this
hint to check that entry in the method table first, and only if the needed value is not there
do we perform the hash table lookup. When successive method calls (from the same call site)
are to objects of the same class or to classes that have the same method table layout, the hint
will give fast access to the method without going through the cost of hash table lookup. The
optimization is particularly useful when the classes being used share implementation through
inheritance, and the method tables are constructed appropriately (see section 8.4.3). We pay
the full cost of the hash table only when the flexibility of structural subtyping is required; if
only traditional inheritance-based subtyping is needed, method lookup is nearly as fast as in
C++.

We do not expect as much benefit from whole program analysis [CDG97, DDG196] as in
pure object-oriented languages because these optimizations work better for objects that do not
get used in “polymorphic” ways (multiple implementations of a method); in OBSTACL many of

these classes are written as regular ML data structures, and are optimized already.

Subsumption

Our object layout does not depend directly on the static type of the object. Since fields are
private, access to data must go through methods, which are looked up in a table. Therefore,
a pointer to an object viewed as a subtype can be used when viewed as a supertype, and sub-
sumption is free. In Thorup’s encoding of objects in ML, subsumption involves a record copy
(and change in format). On the other hand, copying the record to a new format for each su-
pertype allows the compiler to know the exact layout of fields and methods, so access is faster
(through indirection instead of lookup). C++ takes a middle ground by restricting the subtyp-
ing relationship. With only a few supertypes, the compiler can build all the records at compile
time. C++ subsumption is free with single inheritance, because fields and methods are kept
in a particular order, but with multiple inheritance, subsumption involves adjusting offsets to

pointers.

Equality

Two objects are equal if they are produced by the same constructor call (see section 4.1.3).
To compare two objects for equality is trivial: we simply compare their pointers. We are free
to do this because an object has only one address. If subsumption were implemented as a
record copy (as in Thorup’s encoding of objects in ML), an object may have multiple addresses.
In figure 8.9, 02 and 03 may have different addresses and thus are not equal using pointer
equality. Under our proposed implementation, subsumption does not allocate a new record,
and the pointers for 01, 02, and 03 all point to the same place. Therefore, equality checking is

trivial.

CHAPTER 8. IMPLEMENTATION 131

| et val ol:Cat = nmake_object()
val 02: Animal = ol
val 03: Animal = ol

Figure 8.9: Subsumption may lead to multiple copies at the same type

8.4.2 Operations in methods

Once a method is called, it needs access to free variables, the “self” object, the object’s fields,

and the previously defined method (if there is one). We will consider each of these.

Free variables

Free variables of a method are found in the environment of the class definition. Follow-
ing the standard implementation techniques for closures [App98], we can store in the class a
pointer to the environment record for the class. We can find this pointer by using the “env”
column of the method lookup table (see section 8.3). Since ML variables are immutable, one
optimization we can make is to copy the values of the free variables” to the class structure at
class definition time; if we were to add this object system to a different language, we could copy
pointers to mutable values instead of the values themselves. A further optimization used for
closures is also applicable here: the compiler can copy only those variables that actually occur
free in the class definition. Although we are compiling a class with multiple methods instead

of a single function, we can use the same techniques for storing and looking up free variables.

Self object reference

Since methods are compiled once per class definition, 8 the code does not have a pointer to
the object. Each method m : a — § can be compiled as a curried function (“pre-method”?) with
extra arguments: mP™ : (¢ X v) = a — [where o is the type of the self object and ~ is the
type of a pointer or index to a row in the method table.!® At selection time, the self object is
known and the method table row is discovered, so we apply these to the pre-method, resulting
in a function of type @ — 3. In the general case we build a closure here, but ML compilers
can optimize applications of curried functions, and can avoid building the closure when the
function is called immediately. The code obj . mresults in a closure, but the more common
obj . m() does not. Thus we get the flexibility of separating selection from method call without
paying a performance penalty in the common case.

"Note that we only copy a word per variable, since most values are represented as a pointer to data on the heap.

8Given run-time inheritance, there are actually two “class definition” times we can speak of, instead of one. Free
variables are copied at run time, each time the class definition is executed. Method bodies are compiled at compile
time, and are shared among all classes using the class definition.

9A pre-method is a function that takes sel f and pri vat e fields as parameters. Identifiers that are bound in the
method body are passed as parameters to a pre-method. The pre-method takes an object and object state and then
returns a function which can be thought of as a method belonging to that object.

10There need not be a real ML type for method table rows. The “type” of a method table row is for explanatory
purposes.

CHAPTER 8. IMPLEMENTATION 132

Field lookup

Given an object, a method must be able to find the fields that method can access. In some
languages, field locations within an object are known at compile time (in C++) or link time (in
Java). The compiled method can find the field at a fixed offset from the pointer to self. In
more dynamic systems, such as Smalltalk and Python, fields are found through a lookup in
a table. OBSTACL falls somewhere in between. Modularity constraints (see section 3.1), run-
time inheritance (see section 4.2.5), and mixins (see section 5.3) make it impossible to know
field offsets at compile time. Yet, because all fields are private (see section 5.2.1), a full field
lookup is unnecessary.

In C++, a field’s location in an object is known at compile time.!! To ensure that this is
possible with separate compilation, a class header file must list private fields, and a class’s
field offsets must remain the same in subclasses. Having field offsets at compile time makes
field access very fast. However, the disadvantages are that private fields are exposed to users,

and subclasses must be recompiled when the superclass’s implementation details change.!?

0
class pointer 1
M superclass
fields
1+M
3 fields in 2+M
class C block 3+M
4+M
N subclass
fields
4+M+N

Figure 8.10: Layout of an OBSTACL object

In OBSTACL, private fields are not visible to subclasses. In addition, one of our goals is the
ability to change implementation details without recompiling subclasses. With run-time inher-
itance and mixins, it is possible to compile subclasses before the superclass has been written.
For these reasons field offsets cannot be known at compile (or even link) time. Consider for

example an instance of a class N which inherits class C, which in turn inherits class M Since

HExcept in the case of virtual inheritance, which we will not describe here. For implementation details, see [Str94,
section 15.2.4]

12Both of these are common complaints about C++. Had C++ been designed differently, the same users would
complain about performance of field lookup. There are no easy answers.

CHAPTER 8. IMPLEMENTATION 133

l et val private Unsafe.cast(self + entry. offset)
val {x,vy, z} private in

(* method body, which can use x, y, z *)

end

Figure 8.11: Pattern matching to access private fields

all fields are private, a method defined in class C can access only fields also defined in class C
and not those defined in class Mor class N. The fields of class C can be stored contiguously in
the object, as depicted in figure 8.10. Although the offset from the beginning of the object is
unknown, the offset from class C’s block of fields is known statically. Thus we need only a way
to find the beginning of class Cs block. In the method table, the “offset” column stores the off-
set of class Cs block from the beginning of the object. Since the method receives sel f and the
method table row ent ry, its private field block pri vat e begins at sel f + entry. of fset.
Fields z, y, z are at private, private+1, private+2.13 Another way to think of field ac-
cess is to use pattern matching, as shown in figure 8.11. (We used this approach in one of our
prototype implementations of OBSTACL.) Field access in OBSTACL therefore involves a small
computation of pri vat e once for each invocation of a method that accesses fields. After this
privat e is computed, field access in the method is as fast as field access in C++. We there-
fore maintain our modularity goals as well as the flexibility of run-time and mixin inheritance

without a significant performance hit.

Access to the redefined method

If a method body is a redefinition of a method in the superclass (i.e., it has the same name),
the redefinition in the subclass may need to call the redefined method in the superclass. In
Smalltalk and Python, the redefined method is looked up at run time, at each invocation.
In C++, the redefined method is known at compile time, so no lookup is needed. Given run-
time inheritance in OBSTACL (including mixins), a reference to the redefined method is not
available at compile time. However, OBSTACL’s next construct gives access to the one method
being redefined, not to arbitrary definitions in any ancestor class, and a single method can be
found without lookup.

Recall from figure 8.1 the method table includes entries for all redefined methods. These
entries are not found during lookup because their “name” column is blank. However, other
entries can refer to them through the index in the “super” column. Consider as an example
class D inherits from C inherits from B inherits from A. Classes A, B, and D define method m
Method D. mredefined B. m which redefined A. m All three are in the method table, shown
in figure 8.12, but only D. mhas “m” in the name column, so only it is found during method

13For clarity, these numbers refer to words, not bytes.

CHAPTER 8. IMPLEMENTATION 134

=
—

Figure 8.12: Method table chaining

lookup. Hoewver, D. mmay call B. mthrough next . If that happens, the compiled code finds
B. nis method table entry by following the pointer in the “super” column of D. nis entry. With
the self object and the method table entry, we can call a method (see section 8.4.1). If B. mneeds
access to A. m it can follow the same procedure, using the “super” column in its method table
entry. With this scheme, access to redefined methods is fast (requiring no lookup), yet flexible

enough to allow for run-time inheritance and mixins.

8.4.3 Operations on classes

The main operations on classes are instantiation and extension. For instantiation, we want
a distributed initialization (see section 4.3.2). For extension, we must support run-time inher-

itance (see section 4.2.5) and mixins.

Instantiation

Instantiation would be a straightforward process but for modular initialization. Each class
initializes its own fields and sets up any necessary invariants, and it should also allow its
ancestors to do the same (see section 5.2.4). The sequence of operations is shown in figure
8.13. When the instantiator invokes new, the run-time system allocates a new object and sets
its class pointer. We know the size of the object, since it is stored with the class structure
(see section 8.3). We then call a constructor of C, which initializes the fields defined in C.
The constructor has a pointer to the object, and a pointer to its class—a constructor C : «
is compiled as a function C: ¢ x v X a x unit, which takes as an extra parameter a pointer

to the new object and a pointer to the class structure. Using the object size from the class

CHAPTER 8. IMPLEMENTATION 135

structure, the constructor can determine where fields are placed.!* After initializing fields,
the constructor calls a superclass constructor with a pointer to the object and a pointer to
the superclass structure. When the superclass constructor returns, the constructor sets up
any invariants that are not expressed in field values alone. Finally, the constructor function

returns.

/\

calls A’s constructor,

A set up invariants for A)
initializes A fields P N A’s constructor
T (]

calls B’s constructor, set up invariants for B

initializei\B fields /
/
calls C’s constructor,

B’s constructor

O ———m@

AY
set up invariants for C

initializes C fields \ C’s constructor
.4
[—F
allocate block return complete object to instantiator new C
i
invoke new further initigization C’s instantiator
|\
user

Figure 8.13: Steps in constructing an object

To illustrate this process, we show an example in figure 8.14 of a three class hierarchy as
well as the expected resulting object structure. The constructor for Cinitializes fields at offset
C.objsize - Cnunfields = 7—3 = 4. It then calls B’s constructor, with a pointer to the
object and a pointer to class B.!® The constructor for B initializes its field at 4 — 1 = 3, and calls
A’s constructor. The constructor for Ainitializes fields at 3 — 2 = 1.

Extension

In OBSTACL, we must build class structures at run time. At compile time, the compiler
knows the static types of the superclass and subclass, but not until run time is the exact su-
perclass known. To build the subclass, the run-time library examines the superclass, using the

14Fjelds are placed at an offset cl ass. obj si ze - cl ass. nunfi el ds from the beginning of the object. This is the
same offset put into the “offset” column of the method table.
15Recall that each class stores a pointer to its superclass.

CHAPTER 8. IMPLEMENTATION 136

A
fields x,y
objsize=3
new C
I 0
class
1 B

X 2 field z

y 3 objsize=4

Z 4

[5 C

] 6 fields i,j,k

K ; objsize=7

Figure 8.14: Class layout example

object size, method table, and constructor list. The new subclass contains an object size equal
to the superclass object size plus the size of the new subclass fields. Recall from section 5.2.5
that constructors invoke superclass constructors but instantiators do not invoke superclass
instantiators. Consequently, the subclass contains an instantiator list that does not depend
on the superclass instantiator list, and a constructor list that does depend on the superclass
constructor list, but only those that are invoked by subclass constructors. The constructor list
can be compiled in the same way as ML modules. What requires more care is building the
method table—the heart of the run-time class structure.

A method table in OBSTACL contains both methods found during selection and redefined
methods invoked through the next construct (see section 8.3). Creating a subclass method
table from a superclass method table involves copying entries for methods not redefined in the
subclass, altering entries for methods redefined in the subclass, and creating entries for each
new method definition in the subclass.

Suppose a superclass method table contains M entries and the deriving class adds N new
entries and redefines R entries. The new method table has M + N + R entries. Given an old
method table super (array of (name, env, code, offset, super:int)), a list of new methods new (array
of (name, code)), and a list of redefinitions redefined (array of (name, code)), we can construct
a new method table for class C' using the algorithm shown in figure 8.15. This algorithm
preserves array positions of each name to enhance the effectiveness of caching (see section
8.4.1). For example, if “m” occurs in position 3 in the superclass table, and there is a redefinition
of “m” in the subclass, then the subclass table will contain “m” at position 3 pointing to the new
definition, with a link to the old definition, moved to the end of the table.

CHAPTER 8. IMPLEMENTATION 137

(* Create a new method table *)
sub: = allocate (M + N + R) entries
(* Initially set it to the same as the old table *)
foriin 0..M — 1:
set sub; := super;
(* Add new methods *)
foriin 0..N — 1:
set subysy; := (new;.name, enve, new;.code, offseto, —1)
(* Deal with redefined methods *)
foriin 0..R — 1:
look up j such that redefined;.name = sub;.name
(* Move the method being redefined down to the end *)
set subarynyi == sub;
set subpr4 N 4.name :=
look up k such that suby.super = j
if such a k exists:
set subg.super := M+N+i
(* Create a new entry in its place that points to the old one *)
set sub; := (redefined;.name, enve, redefined;.code, offsetc, M + N + i)

“»

Figure 8.15: Method table construction algorithm

Run-time inheritance In many class-based languages, classes are produced at compile time
through declarations. At the time a class declaration is compiled, the compiler can determine
the superclass, its layout, and its methods. In OBSTACL, the superclass methods are known at
compile time, but the actual pointers to these methods, and the object layout, are not known
until run time. Method pointers are stored in the “code” column of the method table; informa-
tion about the object layout are stored in the “offset” column. In addition, since a single class
declaration may spawn multiple classes, methods cannot be compiled to use a single environ-
ment to find values of identifiers. A pointer to the environment is kept in the “environment”

column of the method table.

Mixins With mixins, the set of methods is unknown at compile time. To construct method
tables of mixins, our algorithm must not rely on a fixed set of methods and method types; it

should copy unknown methods from the superclass to the subclass.

8.5 Time and Space Requirements

Table 8.2 compares the space and speed for object representations in different systems.
“Objs in ML” refers to an encoding of objects in Standard ML, suggested by Lars Thorup [TT94].
We use this encoding for comparison to illustrate that directly implementing object-oriented
programming in the system has advantages over an encoding, which could be provided by

a “pre-processor”’, such as the one used for early C++. In the table, the variables are: v for

CHAPTER 8. IMPLEMENTATION 138

Space Time
object size (words) | subsumption | method lookup | field lookup
Smalltalk | v+ f +1 0 1 (em)* | 1 (ef)*
Cr+ v+ f+1(..+p1 |0 Nzl 1 (p)?
ObjsinML [v+f4+m (0 |0 {m+f)?> |1 1
OBSTACL | v+ f+1 0 1 (em)* |1 (ef)*

Table 8.2: Performance characteristics of object-oriented languages

allocation overhead, f for the number of fields, m for the number of methods, and p for the
number of ancestors. The values in angle brackets ({...)) represent infrequently occurring

worst-case conditions:

1. Using virtual base classes in C++ usually forces the compiler to include additional point-
ers in the object layout (up to one per ancestor). Field lookup in this case is also slower,
since these pointers must be followed to find fields defined in virtual base classes.

2. Using multiple inheritance can make subsumption a non-zero-cost operation. Pointers
have to be adjusted by an offset when converting from a subclass pointer to a superclass

pointer.

3. The Objects in ML format requires a new object to be created when changing from a
subclass pointer to a superclass pointer. This makes subsumption a non-zero operation;

it also means that there may be an unlimited number of “converted” objects in memory.

4. Method (and field) lookup speed depends on the data structure being used for the method
dictionary. Assuming a hash table, most methods will be found in the first step of the
hash table search. In the worst case, a hash table conflict will force a longer search time,
but this time can be minimized by using multiple sparse hash tables for different sets of
method names. If 1/¢ tables are used, only me entries are in a table, so the longest search

(involving all the method names having the same hash value) will take O(me) time.

Note in particular that both of our object layouts lead to zero overhead for subsumption, an
object size that does not depend on m, and fast method/field lookup.

In C++, the efficiency of accessing an item depends on whether it’s a field or method. Field
access depends on the inheritance hierarchy (virtual base classes in particular), and method
access depends on whether it is declared vi rt ual . In our language, the efficiency depends
on the access specifier, not whether it is a field or method. Private items are fast while public
items are slower. Protected items are represented as public items that are hidden to the clients,
so they are as efficient as public items.

The syntax of our language reflects this difference. Private items can be accessed by naming
the item. In ML, referring to an identifier is a fast operation. Public and protected items are

CHAPTER 8. IMPLEMENTATION 139

accessed with the dot syntax. Access using dot is expected to be roughly as fast as record field
access for a system which allows structural subtyping on records.

A difference not expressed in the above chart is that mixin compilation is different from
template compilation in C++. In nearly all C++ compilers, each instance of a template leads to
recompiling that template. In contrast, an OBSTACL mixin is compiled only once. The code for
constructors, instantiators, and methods is generated once. The associated data (the method
table) is generated once per instance, and provides the link between the instance-independent
portion of the resulting mixin and the instance-dependent portion of the mixin.

The design of OBSTACL imposes unusual demands on an implementation. Dynamic lan-
guages like Smalltalk and Python allow for run-time inheritance but also defer name and type
checking until run time. Static languages like C++ check names and types at compile time but
do not offer run-time inheritance or mixins. Java is more dynamic, allowing for run-time load-
ing of classes, but these classes must be compiled individually. OBSTACL is between the static
and the dynamic languages, with static name and type checking and creation of new classes at
run time. The implementation proposed in this chapter preserves the efficiency of a statically
type checked language in the presence of new classes generated at run time with an unknown
number of fields and methods. In addition, it allows for separate recompilation that matches

the expectations of the programmer.

Chapter 9

Extensions

In chapter 6 we analyzed OBSTACL’s language features; in this chapter we look at possible
extensions to OBSTACL. Section 9.1 describes extensions that involve syntactic changes and
simple changes that do not affect the characteristics of the language. Section 9.2 describes
features that could be added but have costs that outweigh the benefits in a language like OB-
STACL. Section 9.3 describes features that could either be supported directly or expressed as a

combination of features. Section 9.4 includes alternative designs for parts of the language.

9.1 Simple Extensions

The core language described in chapter 5 includes constructs necessary for expressing pro-
gram components with desired modularity constraints, but not constructs that exist primarily
for convenience. In this section we look at language features that may be useful to program-

mers, and how they map to combinations of features already in OBSTACL.

9.1.1 Type Names

Object types in C++ and Java are simple names. OBSTACL types are structural (see section
4.1.4) so they list the names and types of all methods in the object. Unfortunately writing out
structural object types can be cumbersome. We therefore use these forms as abbreviations for

the longer structural types:
C obj ect public interface of class C

Sel f public and protected interface of the current class
(used as the type of the “self” object)
71@Q75 union of two object types
7\t difference

(where ¢ is a list of names)
In mixins, Sel f refers to the supertype statically known through the mixin constraints.

140

CHAPTER 9. EXTENSIONS 141

class C
(* private *) field x:int ref;
(* public *) nethod get x():int = !x;
(* public *) nethod set x(x':int):unit = (x := x');
end;
Figure 9.1: Accessor methods give public access to private fields
class C

(* private *) field x:int ref;
(* public *) nethod x():int ref = x;

end;
Figure 9.2: Accessor methods returning an ML ref

9.1.2 Public and Protected Fields
Although public fields are generally discouraged in object-oriented designs, their effect can

be simulated by creating a private field along with public “accessor” methods (see figure 9.1).
Since ML allows the direct export of the reference value, a single method can return z, allowing
the object user to either use ! to read the value or : = to write a value (see figure 9.2). Note that
we can use the same name for both the field and the method, because private names (fields)
and public names (methods) are in separate namespaces. Field names are visible in method
bodies, but method names are seen only in the “self” object. Given the above arrangement,
there remains but one small step to make x truly look like a public field (see figure 9.3). If we
extend OBSTACL to support methods that are not functions, public fields are easy to add. The
syntax “public field z : 7” would be converted into (private) “field z : 7’ followed by (public)
“method z:7 = z”. Protected fields are similarly decomposed into private fields with a protected
accessor. Both public and protected fields can be supported with only minor changes to OBST-
ACL.
class C

(* private *) field x:int ref;

(* public *) nethod x:int ref = x;

end;

Figure 9.3: Non-function accessors

CHAPTER 9. EXTENSIONS 142

class C
field f1;
field f2;

field fn;
private nethod p(args) = ...;
public method m() = p(3,5);

end;
Figure 9.4: Private methods

fun p(self, f1, f2, ..., fn)(args) = ...;
class C

field f1;

field f2;

field fn;

met hod m() = p(self, f1, f2, ..., fn)(3,5);
end;

Figure 9.5: Module-level pre-methods simulate private methods

9.1.3 Private Methods

Having seen public and protected methods to simulate public and protected fields, we may
ask if private fields can be used to simulate private methods. Since methods are shared among
all instances of a class, there is no need to make a private method into a field. We do use the
binding approach used for private fields to build a private “pre-method”. The code in figure 9.4
can be simulated by writing pre-methods, as shown in figure 9.5. A method has implicit bind-
ings for the host object (“self”) and the private fields; in a pre-method we make these bindings
explicit. Each call to the method is replaced by a call to the pre-method function with extra ar-
guments. This transformation is possible because the method is private and therefore all calls
to it are seen in the class declaration and can be changed, and methods are merely functions
with additional bindings so they can be moved outside the class declaration. If methods and
classes had been subject to different rules than functions and scopes, implementing private

methods in this way may not have been straightforward.

9.1.4 Method Update

In OBSTACL a method body is shared among all instances of a class. In some situations
it may be useful for each instance to have a different method. Many dynamic object-oriented

CHAPTER 9. EXTENSIONS 143

class C
field f1 : "t1;
field f2 : "t2;

field fn: "tn;
field m((Cself * "t1 * 't2* ... * 'tn) ->"a ->"h) ref;
method m(a:’a):'b = (!m(self, f1, f2, ..., fn)(a);

end;

Figure 9.6: Method update

class C extends B
redefine protected m = next;

end;
Figure 9.7: Hiding protected methods

languages support method update, in which a method is replaced by another. In a strongly
typed language, we may expect the new method to have the same type as (or a subtype of)
the original method. Since OBSTACL supports updatable fields and ML supports first class
functions, we can build an object with an updatable field that contains a function (pre-method).
In the example code shown in figure 9.6, updating minvolves assigning a suitable pre-method
to the field m Calls to mgo through the mmethod, which dereferences the mfield and then calls
the resulting function. With support for imperative update and first class functions, method

update is a simple extension of OBSTACL.

9.1.5 Hiding inherited methods

Although inheritance in OBSTACL naturally leads to subtyping, the two are separate con-
cepts. At times it may be useful to build a subclass without having a subtyping relationship.
In OBSTACL, all fields and methods are inherited (see section 4.2.4), so subtyping results by
default, but the relationship can be broken by hiding some of the inherited methods. We can
hide public methods by redefining them to be protected. The method which is public in the su-
perclass is marked protected in the subclass, so the user will not see it. In the example shown
in figure 9.7, C objects will not be subtypes of B objects. The problems described in sections
4.2.3 and 4.2.4 are avoided because inside the class the full type can be seen to be a subtype.
It is only through standard subtyping rules that the subtyping relationship is hidden for the

user (see the array example in section 5.1.3).

CHAPTER 9. EXTENSIONS 144

mxin M

redefine f = next;

end;
Figure 9.8: Adding mixin constraints
f(class
field f:int;
met hod m(x:int) = f+x;
constructor nake(f0) fields {f=f0};
i nstanti ator nake(f0) = new make(fO0);
end)

Figure 9.9: Anonymous classes

9.1.6 Additional Mixin Constraints

The technique of redefining a method to be the same as the inherited method can also be
used to create additional constraints for mixins. To state that a mixin requires some method
to be present in the superclass, simply redefine the method to match the inherited method. In
figure 9.8, the mixin Mrequires its superclass to contain a method f . To require the method to
have a particular type, a type can be given explicitly in the redefinition.!

9.1.7 Anonymous Classes

ML supports both function declarations and anonymous functions. Anonymous classes (and
mixins) could be added to OBSTACL as well, with minor changes to syntax; they are already
supported by the calculus. The code in figure 9.9 would create a local class and pass it to a

function. The two changes to the syntax are:
e A class name does not follow the “class” keyword.
e A class name does not follow the “new” keyword (in the instantiator).

The second change does not pose a problem except in the case where the instantiator de-
clares a local class, as illustrated in figure 9.10. If the class names are omitted, the inner
instantiator would not work as written. However, this kind of program structure does not ap-
pear to be common. The calculus for core OBSTACL (see chapter 7) goes one step further, and

treats all classes and mixins as anonymous.

IThere are actually two subtyping relationships that can be given, one for the upper bound and one for the lower
bound. See chapter 7 for a description of mixin constraint inference.

CHAPTER 9. EXTENSIONS 145

class A

instantiator nmake() =
let class B

i nstanti ator make() =
new B make(new A make());
end;

end;
end;

Figure 9.10: Anonymous classes introduce ambiguity

9.1.8 Objects without Classes

Given OBSTACL’s object system, all objects are instances of some class. Occasionally it may
be useful to create an object directly. Given anonymous local classes, there is no advantage of
direct object construction other than syntax, so we may transform the object definition shown
in figure 9.11 into an equivalent definition using anonymous classes, shown in figure 9.12.
let f =ref 3in

obj ect

met hod i nc()

met hod get ()
end;

(f :=1f+1);
L

Figure 9.11: A classless object

let f =ref 3 in
(cl ass
met hod i nc() (f :=1f+1);
nmet hod get () N
constructor make() fields {};
i nstanti ator nmake() = new nake();
) . make();

Figure 9.12: Anonymous class used once

9.1.9 Standard Instantiators

Many examples we have presented do not use the full power of instantiators. For these

classes, the instantiator simply creates an object and returns it. Since this usage (shown in

CHAPTER 9. EXTENSIONS 146

class C

constructor nake(args) ... ;
i nstanti ator nake(args) = new C nmake(args);
end;

Figure 9.13: Standard instantiator

figure 9.13) is so common, it can be abbreviated as “i nst ant i at or make;”, which generates
a standard instantiator, which returns a new object generated by calling the constructor with

the same name, passing to it the same arguments passed to the instantiator.

9.1.10 Abstract Classes

Many languages support the notion of an abstract class: a class which is missing some of
its implementation and cannot be instantiated. In OBSTACL any class that lacks an instant-
iator cannot be instantiated. However, classes must have a complete implementation, in the
sense that all methods listed in the type of “self” must be defined in the class. To support unim-
plemented methods, new syntax should be introduced that simply adds method signatures to
the self type. A class with unimplemented methods cannot be instantiated with the new opera-
tor, but it may still contain an instantiator. For an example of how this could be useful, see the

virtual constructor pattern (section 6.2.2).

9.1.11 Classes as Modules

Object creators do not need to see individual method and constructor declarations in a
class. Object creators need only to see the object type and the instantiators. If instead of using
C object as an abbreviation for the type of objects produced by class C, we use C.object,
then classes look much like ML modules. One simple extension of OBSTACL would be to allow
module signatures to match classes, so that classes can be used as functor arguments. Figure
9.14 shows a class and its corresponding module signature. Class signatures would be used by
subclasses, while module signatures would be used by object creators.

The advantage of this approach is that the object creator can create objects without knowing
whether they are instances of a class or some combination of objects. For example, a windowing
toolkit might provide a tabbed dialog “class” with an “instantiator” that is an ordinary function
that composes tab objects with a dialog object. The object creator can consider the resulting
object to be an instance of a class without realizing that it is implemented in terms of simpler
objects.

Another important use of this extension is in object versioning. If an interface has been

changed from version 1 of a library to version 2, then for backwards compatibility both versions

CHAPTER 9. EXTENSIONS 147

class C
field f:int;
met hod m() = f+3;
constructor nk _one() fields {f=1};
instantiator nk() = new C nk_one();
end;

sig
type object = {|munit->int|};
val nk: unit->o0bject;

end;

Figure 9.14: Module signature for a class

may need to be supported. To support both versions, the vendor can provide a version 2 object
in addition to an adapter object (see section 6.3.1) that uses a version 2 object internally but
presents a version 1 interface to old code. The version 1 “class” is actually a module with an

“instantiator” that creates the version 2 object and an adapter to it, and returns the adapter.

9.1.12 Destructors

OBSTACL does not directly support destructors, functions that are called at the end of
an object’s lifetime. In C++, most destructors are used to deallocate memory. In a garbage
collected language, such a step is unnecessary. However, destructors may also free resources
not managed by the garbage collector, such as network connections, dialog boxes, and shared
memory regions. To free these sorts of resources, Java provides finalizers, which are func-
tions called before the garbage collector deallocates an object. For OBSTACL, we believe that
finalizers are not specific to objects, and instead could be provided for all ML values. If such a
feature were available, any objects that require finalization could register a finalizer function
during object construction. For convenience, it may be useful to provide syntax for declaring
and automatically registering the finalizer.

One problem with finalizers is the “resurrection” of the object which no longer has refer-
ences to it. The execution of the finalization function can introduce a new reference to it, and
the object is now “undead” [Cha99]. In OBSTACL we can instead register a finalizer to run
when an object is no longer accessible, but instead of giving the object to the finalizer function,
we can close the finalizer function over the private fields by defining it as a local function in-
side the “initialization” section of the constructor. If we use this form of finalizer, we can avoid

object resurrection issues.

CHAPTER 9. EXTENSIONS 148

9.1.13 Mixin Composition

OBSTACL includes mixin definition and application of a mixin to a class, producing a class.
A natural extension would be application of a mixin to a mixin, producing a mixin. We can
define a mixin compose operator o, such that (¥ o G)(C) = F(G(C)). A type rule for mixin com-
position is straightforward, but tedious. Table 9.1 shows the constraints arising from different
combinations of method definitions. A new method in C could be redefined in F, G, both, or
neither. A new method in F' may or may not be redefined in G. A method defined in F or G
must not be present in C. A redefinition must have a subtype of the redefined method. From
the constraints and types for F' and G, we can build a constraint for F' o G. The negative con-
straint for F' o G is the union of the negative constraints for F and G. F' and G’s new methods
must not be newly defined in the other mixin. The positive constraints for F' o G is the union
of the positive constraints in F' and G, where the constraint types in F' take precedence over
those in G. F’s definitions must satisfy G’s positive constraints. The distinction between new
methods and redefinitions in OBSTACL’s syntax (see section 6.1.2) enables us to generate the

constraints for mixin composition.

Class Definition of method m
C - - - m:T m:T m:T m:T
new new redef redef
G m' 7 m T - m' 7’ - m' 7 -
redef new redef redef
F _ m! - _ m! " m! _
Constraint | nom nom nom 7t<:m'.next 7<:m"next 7<:m'next (none)

Table 9.1: Mixin composition cases

9.2 Unnecessary Extensions

OBSTACL is a hybrid language supporting functional, imperative (procedural), and object-
oriented programming. Many features in pure object-oriented languages are less compelling
in a hybrid language because there are equivalent non-object constructs available. In this
section we explain why OBSTACL does not contain certain features that may be expected in

other languages.

CHAPTER 9. EXTENSIONS 149

9.2.1 Class Methods and Fields

Some information and functionality should be placed at the module level rather than at the
object level. In a language with classes but no modules, they are placed in a class. Smalltalk
and Java call them “class methods” and “class fields”, while C++ uses the terms “static member
functions” and “static member data”. OBSTACL includes ML modules, so we can place data and
functions in a module instead of a class. However, class methods typically have privileged ac-
cess to objects in languages with class-based protection. OBSTACL uses object-based protection,
in which only an object’s methods can access the private fields of the object. A class method
would have no special access to objects, so they offer no benefit over module level functions.
However, instantiators might be considered a special form of class method, as in Smalltalk.

Class-level protection can be simulated using opaque types (see section 9.3.3).

9.2.2 Typecase
With subtyping, an object’s static type may be a supertype of its actual type. The type-

case construct allows the programmer to recover the actual type of the object. In Java, the
i nst anceof keyword allows the programmer to ask whether an object is an instance of a
particular class, and casts allow the programmer to assert the relationship. In C++, the
dynam c_cast mechanism serves as both a query and an assertion mechanism. Typecase
is generally discouraged in object-oriented design because it decreases substitutivity: if a func-
tion states that it expects one type of object but then uses typecase to assert that it has a
different kind of object, then a different kind of object cannot be used instead because the func-
tion makes additional assumptions that are not stated in the interface. Typecase is used in
Java most commonly because the type system cannot express parametric polymorphism (see
section 2.10). For example, a program must use a list of Obj ect instead of a list of St r eam
so typecase is needed to turn objects back into streams. C++ templates serve as a form of
parametric polymorphism, and as a result the use of dynam c_cast is rare, except when C++
classes are being used as a substitute for “union” types. Since OBSTACL supports parametric

polymorphism and union types directly, we do not expect typecase to be a needed feature.

9.2.3 Binary Methods

A binary method can be chosen as a result of looking at the classes of fwo objects instead of
only one. Common examples of binary methods are set union, addition, and equality. Unfortu-
nately, binary methods break substitutivity. Consider a binary method defined on a set class.
If we write another set class with the same definition (see the thought experiment on page
21), it should be substitutable for one of the original sets. In the presence of binary methods,
a. uni on(b) will do something different if b is an instance of the original set class than if it is

an instance of the new set class, even if the set classes are exactly the same. Binary methods are

CHAPTER 9. EXTENSIONS 150

thought to be necessary to implement certain kinds of objects. In OBSTACL, these objects would
be better represented as non-objects (such as instances of abstract data types), since they do
not enjoy substitutivity and therefore do not gain much from object-oriented programming. In
Java and C++, binary methods can be simulated using typecase (see section 9.2.2).2 Binary
methods are needed in pure object languages but when non-object alternatives are available,

we prefer to use them rather than give up substitutivity.

9.2.4 Functional Update

As described in section 4.1.2, we chose to support imperative rather than functional update
in OBSTACL. “Objects” that benefit from functional update tend to also be better represented
as values. To support functional update in OBSTACL would require extensive changes, such
as a re-examination of object invariants, the type system, the use of references for fields, the

binding model for fields and self, and implementation.

9.2.5 Self Types

Some languages support the notion of self types, or MYTYPE, which is a name that can be
used in an object type to refer to the type of the containing object. Unlike OBSTACL’s recursive
type names (see section 5.1.3), MYTYPE is specialized in subclasses to refer to the new object

type. MYTYPE has three uses:

1. As Argument Types for Methods. For example, a method C. equal s(x: C obj ect)
would continue to take only Cobjects if it were inherited into a subclass D. With MYTYPE,
C. equal s(x: MyType) would take Cobjects, but when inherited by D, would take only D
objects. Unfortunately the type of D objects are no longer subtypes of the type of Cobjects,
so it is not clear that C. equal s, a method written assuming “self” is a C object, works
when “self” is a D object. To support this use of MYTYPE, OBSTACL would need proper
support for binary methods and a different way to type the “self” object.

2. As Return Types for Methods. For example, a method C. cl one() would return a C
object, but the same method in a subclass D should return a D object. In OBSTACL, this
behavior is allowed if D redefines cl one; the inherited cl one method however would

return a Cobject. How could a method be written to return a value of MyType?

o If “self” has type MYTYPE, the method could return itself.

e If an argument to the method has type MYTYPE, the method could return that ar-

gument.

2In Java, using typecase for binary methods is quite common, especially for the equal s method. In C++, the use of
binary methods is rare because classes can be used to define non-object-oriented data structures.

CHAPTER 9. EXTENSIONS 151

e Ifthe language has a built-in clone operation, the method could clone an object with
type MYTYPE and then return the clone.

e If the language supports functional update, the method could update an object with
type MYTYPE and then return the new object.

Since OBSTACL does not include binary methods, built-in cloning, or functional update,
the only object that can be returned is “self”. Whenever we create objects without full

type information, we need MYTYPE.

3. For Convenience. A common idiom in Smalltalk programs is for a method to perform a
side effect and then return the self object so that further method calls can be chained.
In C++, streams return themselves so that output or input operators can be chained
together (e.g., cout << "hell 0" << nane; instead of cout << "hello"; cout <<
nane;). This use of MYTYPE is not necessary for expressiveness. Any chain of calls
Xx.f().g().h() can bereplaced by x. f(); x.g(); x.h().

OBSTACL does not need MYTYPE. Without binary methods, cloning, or functional update, the
only use for MYTYPE is convenience. Given the difficulty of supporting MYTYPE in the type

system, we could not justify supporting them.

9.2.6 Final Classes and Methods

Final classes in Java are classes that cannot have subclasses. The primary purpose is
for security, to ensure that no subtypes are allowed. In addition, final classes may be more
efficient than normal classes, since methods can be found statically. Dylan supports a similar
feature, called sealed classes, which are used primarily for efficiency rather than to prevent
subtyping. In OBSTACL, object types are structural rather than named, so preventing sub-
classing does not prevent subtyping. To prevent subtyping in OBSTACL would require the use
of opaque types (see section 9.3.2). To prevent subclassing, a class can be defined in a module
but not exported; only the instantiators need to be exported to allow the object creator to create
instances. Without access to the class, subclasses cannot be defined.

Final methods in Java are methods that cannot be redefined in subclasses. Like final
classes, the final methods are used both for security and efficiency. For example, in a stream
hierarchy, if the r ead method is marked f i nal in the File class, then subclasses of File may
not redefine r ead. Dylan supports the sealing of methods, but the semantics are different
from Java’s final methods. Dylan supports multimethods (see section 3.2.4) so methods are not
encapsulated with classes. When a method is sealed, it affects all definitions of the method,
not only the definitions in subclasses. Continuing the stream example, if after the definition
of a File class, the r ead method is sealed, then no subclass of St r eamcan redefine r ead.
Java’s fi nal modifier is spatial in the sense that it affects classes based on their location in

CHAPTER 9. EXTENSIONS 152

the class hierarchy. Dylan’s sealing is temporal in the sense that it affects classes based on
when they were defined. OBSTACL supports neither form of preventing method redefinition.
As with final classes, the security and efficiency advantages of final methods are incompatible
with structural object types. Instead, module-level functions or abstract data types can often

be used to guarantee that specific code is being executed.

9.2.7 Redefinable Fields

In OBSTACL, methods can be redefined but fields cannot. Although this appears to be an
arbitrary rule, the rule actually is that public and protected items can be redefined but private
items cannot. Since all methods are public or protected, and fields are private, we end up with
redefinable methods and no redefinable fields. Given public fields (see section 9.1.2), fields can
be overridden.

9.3 Programming Idioms

Within the language framework described in chapters 5 and 7, many features are possible.
In section 9.2 we described extensions that we would not want in OBSTACL; in this section
we describe constructs that fit into the system, and can either be extensions provided by the

language or idioms used by the programmer.

9.3.1 Const Types

C++ supports the “const” qualifier on a type to restrict operations to those that do not modify
the logical state of the object.? Const helps document interfaces and prevent certain errors. A
type const X can be considered to be a supertype of X: an X can be used where a const Xis

required. There are two problems with the const qualifier in C++:

e Preserving constness: there are some functions for which we want both X — X and
const X — const X. The “solution” in C++ is to overload the function name for both X
and const X arguments. We would instead write V7 <: const X.7 — 7.

e Shallow vs. Deep constness: the subobjects accessible through a const X are not
const by default; to make them const requires overloading every accessor function.

In OBSTACL we can define a structural type const X as a supertype of X. Any Xis automat-
ically a const _X. The programmer can define a spectrum of restricted versions of X to provide

a more precise level of control over operations allowed by each client.

3The logical state is what would be part of the interface; the physical state is what would be part of the implemen-
tation. Splay trees demonstrate the difference: tree traversal preserves logical state but not physical state because it
involves rotation of nodes.

CHAPTER 9. EXTENSIONS 153

9.3.2 Encoding behavior in types

ML does not associate behavior with types. There are no promises made in the language
when you receive a value of some type. However, we can use modules and simple opaque
types to create abstract data types. Similarly, we can use modules and opaque types to create
promises about behavior for objects. A contract is a special marker represented by an opaque

type. Programmers can use contracts to help associate behaviors with types:

e Writing a contact. A programmer creates a new opaque type, gives it a name, and
writes documentation describing the contract. For example, there may be a comment
“Declare a public method pr oni se of type | sDi st anceMet ri c if for any object d of type
{Im:Point x Point — real, promise:IsDistanceMetric[}, and any object z, y, z of type Poi nt,
we have d.m(z,y) + d.m(y,z) >=d.m(z, z).”

e Signing a contract. A programmer creates a distance metric class and includes an
empty method prom se of type | sDi st anceMetri c to declare that the terms of the
contract are satisfied.

¢ Requiring a contract. A programmer creates code that only accepts with the contract
in the type. In this example, a function takes an argument of type {{m : Point x Point —

real, promise : IsDistanceMetric[} even though it never invokes the pr om se method.

One may ask why this idiom is useful, when the terms of the contract are but a comment and
therefore not compiler enforcible. The key benefit is in better static checking. If a programmer
requiring a distance metric accepts objects of type {{m : Point x Point — real[}, which is all that
is required by the type system, it is possible to get accidental subtyping (see section 4.1.4). If
something goes wrong it is more clear who is at fault.* In this case, one programmer requires
an object with a particular property. A second programmer has an object with the right type
but does not know the implementation details, and therefore does not know whether the object
has the needed property. There is a risk of an object without the needed property being passed
to the function.

9.3.3 Class-Level Protection

OBSTACL uses object-level protection, in which only an object’s methods have access to its
private and protected data. Opaque types can be used to simulate class-level protection, in
which a class can access data in any of its instances. Data which should be accessible to the
class is marked public but is given a type known only to the module. Figure 9.15 shows an
example of this technique. Since we are simulating accessibility-based protection, we expect

to see the same disadvantage (it is not possible to create a properly functioning object with

4See also the Design by Contract discussions in [Mey94].

CHAPTER 9. EXTENSIONS 154

struct X : Xsig = structure sig Xsig = signature
type hidden = {x:int, y:int} type hi dden;
cl ass Xcl ass

public field h:hidden;
met hod m() = h. x; (* access *)
constructor make(x',y’) (* init *)
fields {h={x=x",y=y’'}}
i nstanti at or nake;
end

(* export these fromthe class *)

type obj = Xcl ass object; type obj={|...,h:hidden,...|}
val make = Xcl ass. nake; val make: int*int->obj;
fun add(a: obj, b:obj):obj = val add: obj *obj - >obj ;

make(a. h. x+b. h. x, a.h.y+b. h.y);
(* access to private data of two objects *)
end

Figure 9.15: Class level protection using private types

the same type but unrelated implementation because the object would not have a field of type
X. hi dden) and advantage (it is possible to write functions such as add that operate on hidden
data of two objects).

However, it is still possible to write an improperly functioning object with the correct in-
terface. Although the definition of hi dden is not known outside of module X, it is possible to
declare variables of this type, put values of this type into data structures such as lists, and so
on.? To create a value of type hi dden one may first create an X object, then extract its h field.
Accessibility-based protection cannot be simulated exactly in OBSTACL; a determined user can
create an object of a class other than X and pass it to the X. add function. For more restrictive
abstractions, abstract data types (see section 3.2.1) are available.

Barring abuse by users, the type with implementation-specific data (an “implementation
type”) restricts one to using objects of a particular class. In some contexts we would also like
to use objects of other classes with a similar interface. With structural subtyping, the type
with the X. hi dden field is a subtype of the type without the X. hi dden field. As in [Fis96],

implementation types are subtypes of pure interface types.

5ML allows one to manipulate values of opaque types, as long as the representation of the value are not accessed.

CHAPTER 9. EXTENSIONS 155

9.3.4 Changing Classes

Some dynamic languages (like Self and LambdaMOQO) allow an object to change its class (or
parent object) at any time. In contrast, most object-oriented languages tie an object to a class
at instantiation time. Between these two is an approach called predicate classes [Cha93], in
which an object cannot change its class arbitrarily but can switch among a fixed set of “states”.
Changing an object’s class can be useful to represent different “phases” an object goes through.
For example, a file object may be “open” or “closed”. A conventional implementation of such an
object would involve a flag indicating whether the file was open or closed, along with methods
that check the flag and behave in one of two different ways.

Using class-changing, files could instead be an instance of an OpenFi | e class or a Cl osed-
Fi | e class. The open() and cl ose() methods simply change the class of the object. The
advantage of this approach is that methods do not check a flag; instead, OpenFi | e. r ead can
assume the file is open and C osedFi | e. r ead can be omitted, leading to a nessage not
under st ood error if the client attempts to read from a closed file.

To work in a statically typed language, the classes representing the phases of the object
must have the same type, so that the object’s type does not change when it transitions into a
different phase. Even with this restriction, it is not clear how the change-class operation should
be implemented, especially in the presence of subclassing. A subclass OpenEncrypt edFil e
will inherit a cl ose method from the superclass OpenFi | e. This method will change the
object’s class to Cl osedFi | e, which has an open method that changes the object’s class to
OpenFi | e. To preserve the encryption, there must be an Cl osedEncr ypt edFi | e class and
the open and cl ose methods must be redefined. On the other hand, perhaps the new file is
compressed rather than encrypted, and OpenConpr essedFi | e should be used. The language
implementation cannot always deal automatically with both switching an object’s class and
subclassing; the programmer must choose the policy.

If the programmer writes the policy, Cl osedFi | €’s open method may not be the ideal place
for its implementation, since it is difficult to change the policy.® A solution that scales better in
the presence of subclassing is the Envelope/Letter pattern [Cop92]. A phase shifting object is
split into two object: an envelope, which encapsulates the phase transition logic, and a letter,
which represents the phase. In this design, the switching policy resides in the envelope, so a
different policy can be used by creating a different envelope class—none of the letter classes
have to be subclassed. For objects with multiple phases, the Envelope/Letter pattern provides

a more flexible solution than changing classes.

6Changing the policy would require creating a subclass of Cl osedFi | e with a new open method. It would also
require new versions of OpenFi | e, QpenEncrypt edFi | e, OpenConpr essedFi | e, etc., with a new cl ose method
that uses the new subclass of Cl osedFi | e. Thus a new policy requires subclassing every class involved, making it an
undesirable solution.

CHAPTER 9. EXTENSIONS 156

The Envelope/Letter pattern uses an envelope to change the letter (phase) and also to for-
ward messages to the letter. The envelope therefore should support the full interface of the
object. For example, for files it should support open, cl ose, read, w i t e. The letters however
need support only those methods that do not change the object’s phase: read and wite in
this example. The envelope can be implemented as a subclass of a forwarder (see section 6.3.2)
to letters. Since OBSTACL uses interface types, object users need not be aware that an object
is implemented with envelopes and letters. A file object implemented with this pattern can
be used interchangeably with a file object implemented in a different way. The envelope/letter
pattern is a reasonable and flexible alternative to changing an object’s class, and does not

require additional language support from OBSTACL.

9.4 Alternative Designs

There are many decisions we made that could have been made differently without substan-

tially altering the language. In this section we explore some of those decisions.

9.4.1 Mixin Constructors

One oddity in the language is that a mixin must include in its constraint not only meth-
ods but the constructors, so that the mixin constructor can call the superclass constructor. An
alternative would be for mixins to define a “delta constructor”, which is mixed into the super-
class constructor. A delta constructor taking type = and a superclass constructor taking type
o would be merged into a subclass constructor taking the pair 7 x o. Under this scheme, the

mixin constraint does not have to list the constructors at all.

9.4.2 Single Constructor

Given that we have to list constructors in the mixin constraint, there may be times that
a mixin would applicable if only the constructor had the proper name. Different names may
be used for style reasons and not for meaning (e.g., nake_obj ect vs. makeQbj ect). An al-
ternative would be to not name constructors, and have only one. Multiple constructors can
be simulated using union types. The user would still be able to use multiple instantiators. A
mixin then would contain a constructor that takes a pair (a, b), uses b to initialize its own fields,
and passes a to the superclass. The type of a is generic () so the mixin can be applied to a

superclass without knowing what type the superclass constructor accepts.

9.4.3 Classes are Functions

An alternative to treating classes as extensions of other classes is to treat classes as func-

tions producing objects. Extension is then represented as the class “calling” another class and

CHAPTER 9. EXTENSIONS 157

class (x) = extend B(x) with
field y=3
met hod m() = x+y

end

Figure 9.16: Classes as functions

extending the returned object (see figure 9.16). However, the semantics and implementation
would continue to be class extension, not object extension. It is not clear how to represent
protection levels and instantiators with this syntax in a way that makes sense for the pro-
grammer. Sometimes a new syntax is to be preferred over a familiar syntax with slightly

different semantics.

9.4.4 User Level Instantiators

Instantiators are rare in object-oriented languages; why do we need them in OBSTACL?
Instantiators are the only functions allowed to create instances of the class, but this ability
could be exported to the containing module without compromising the ability to encapsulate
the construction process. The module can export an ordinary function that serves the same
purpose as the instantiator. However, in OBSTACL the instantiator serves a second purpose.
Constructors produce objects in which the protected and public methods are visible; instant-
iators hide the protected methods so that the object user sees only public methods. Demoting
instantiators to module level functions is feasible as long as we have an alternative for dealing

with protected methods.”

9.4.5 Inherited Instantiators

Subclasses do not inherit instantiators from their parents. To inherit instantiators would
require a limited form of “Self” types. An instantiator must be written to return subtypes of

its own class.
[ForAll t <: {]...|}] instantiator nk(x):t

Such instantiators are not only more difficult to reason about, but they also restrict some
uses of instantiators. For example, we cannot store objects of the self type in an object cache.

If code sharing is needed between instantiators, one can pass the raw instantiation code (a
lambda function invoking the new operation) to a function that handles instantiation.

7Asking the author of the subclass to deal with protected methods of superclasses is not desirable because it intro-
duces a dependency. If the superclass adds a public or protected method that does not affect the subclass, the subclass
should not have to change. This is especially true for mixins, which may have superclasses with additional methods
not listed in the mixin constraint.

CHAPTER 9. EXTENSIONS 158

9.4.6 Explicit Interface Hierarchy

It may be easier to deal with object types if each was given a name along with associated
behavior. Classes would explicitly state that they implemented some particular object type, as
in Java. Recursive object types would be easier with names. Type inference may be easier, and
explicit types are less cumbersome. It may be difficult to reconcile named object types with
mixins, because mixins create new class types by adding and replacing components in existing
class types. From these new class types one gets new unnamed object types.

An explicit type hierarchy may result in slightly more efficient code. It is possible to support
efficient method lookup by introducing a separate hierarchy of mixin interfaces similar to the
one analyzed by Flatt et al. [FKF98] and requiring that the order of methods in a mixin’s
dictionary match that given in the interface implemented by the mixin. However, a separate
interface hierarchy would make the language and calculus significantly more complicated.

There are still good reasons to use structural types (see section 4.1.4). In addition to the
flexibility they offer, in OBSTACL the protected visibility specifier is expressed using structural
types. Using explicit types instead of structural types will require some reworking of mixins,
and the addition of new rules to handle protected visibility.

9.4.7 Explicit Subsumption

Subsumption in OBSTACL is implicit: a function expecting a Stream object can be passed a
File Stream object. Implicit subsumption is not a requirement for an object-oriented language.
An alternative is to require an explicit conversion from a subtype to a supertype. Evidence
from OCAML and also from design patterns suggests that subsumption is not a common op-
eration. Objects tend to be constructed with a specific type, then placed in a data structure
requiring a more general type. Further operations are performed with the general type. Since
subsumption tends to be uncommon, it may be reasonable to require explicit subsumption by

the programmer.

9.4.8 Accessibility Based Protection

With visibility-based protection, an object can pass from a privileged function to an unpriv-
ileged function. However, the object cannot pass the other way because in the unprivileged
function, the longer type (with privileged access functions to the implementation) is “forgot-

»

ten”. With accessibility-based protection, this isn’t a problem. However, widespread use of
types describing implementation details (even though these details are marked inaccessible)

reduces the opportunities for reuse through substitutivity.

CHAPTER 9. EXTENSIONS 159

struct X
type nement o;
val make: 'a -> {| ..., destructure:unit->nmenento,
restore: nenento->unit, ... |}
end;

Figure 9.17: Opaque type used for destructuring

9.4.9 Destructuring

We may want to provide a way to de-structure an object into its state and to create an object
from the state. A programmer can write these operations explicitly, as shown in figure 9.17, but
the code is often repetitive and error-prone. Destructuring allows for cloning (a de-structure
immediately followed by a recreation), network pickling (a de-structure, transmission of the
state across a network, and a recreation on the other side), object persistence (a de-structure,
saving of the state to disk, and later recreation from state read from the disk), and the Memento
Pattern (a de-structure, storage of the state to a token, and a restoration of the object from the
token). Destructuring is a more generally useful operation than cloning, and can be used to

provide cloning as well.

Chapter 10

Conclusions

Object-oriented programming is an exceptionally bad idea which could only have
originated in California.

—E. Dijkstra

Object-oriented programming techniques are not simply hype. Objects offer advantages
in program design and maintenance. However objects are not appropriate for every design
problem. OBSTACL is a language designed to allow and even encourage multiple kinds of ab-
stractions to be used together. To focus on objects, we adopted ML, a rich language without
objects, to provide the basics of a language (variables, expressions, branching, loops, func-
tions, and so on) as well as non-object abstractions (such as integers, strings, lists, tuples, and
records). There is one fundamental goal for OBSTACL objects: it should be possible to replace
an object by another, with the changes to the program arising only from the difference in be-
havior of those objects as exposed through the public interface. In particular, if the new object
is implemented differently but behaves the same, the program should behave the same. This
requirement is not met by languages like C++, Java, and Eiffel. There is one fundamental goal
for OBSTACL classes, which are used to define families of objects: a class should be able to
define fields and methods which cannot be seen by extensions of the class or users of objects
instantiated from the class, so that the class author may change these implementation details
while preserving the correctness of existing programs. These two goals restrict the features
that can be in the language. For example, binary methods and class-based protection are in-
compatible with substitutivity for objects, so OBSTACL does not offer these features. Given the
constraints imposed by the goals of OBSTACL, some things we thought would be easy turned
out to be hard (object construction, for instance), and some things we thought would be hard

turned out to be non-problems (deep equality, for instance).

160

CHAPTER 10. CONCLUSIONS 161

10.1 Objects vs. non-objects

OBSTACL supports but does not mandate the use of objects. OBSTACL’s objects are de-
signed to complement, not replace, non-object abstractions. Objects occupy a different place
in the tradeoff between guarantees and extensibility of data and functions. Object types sup-
port a different sort of polymorphism than non-object types. Objects behave differently than
non-objects for equality, assignment, copying, and mutation. We consider these differences im-
portant in simplifying the language. In each of these cases, two simple forms of abstraction
are simpler than one complex form that encompasses properties of both.

e Variance in data. The non-object abstractions with data variants define those variants
in a central location, then allow functions to examine the variants. The set of functions
is extensible but the set of data variants is not. Objects provide instead the extensibility
of the set of data variants while defining the set of functions in a central location. Ex-
tensibility in two dimensions at once is provided by objects with multimethods, but the

combination of two or more variants is necessarily incomplete (see section 3.2.4).

OBSTACL provides objects with extensibility of data variants and ML unions with exten-
sibility of functions. During initial program design, the extensibility provided by unions,
objects, and multimethods is beneficial. During subsequent maintenance, a programmer
needs the ability to add and remove libraries easily. Unions and objects continue to work

well, while multimethods typically do not.

e Polymorphic types. Non-object abstractions with polymorphism provided parametric
polymorphism, which allows the definition of type structures with placeholders that al-
low any type (or any type with some restriction). Objects provide subtype polymorphism,
which allows the definition of type structures that allow extension. In OBSTACL these

forms of polymorphism can be combined cleanly and are orthogonal.

e Values vs. objects. All abstractions can be considered to represent objects. However
those objects are stored in a computer in two distinct ways. Objects like files and bank
accounts are represented directly in the computer’s memory. Objects like the number
three or the set of prime numbers less than ten are represented differently—their names
(or descriptions) are stored in memory. We call these latter form values. There may
be many memory locations that store the value 3. These all refer to the same abstract
number three. Multiple descriptions in memory, such as {2,3,5,7} and {5,3,7,2}, may
refer to the same underlying object, and are therefore equal. Objects on the other hand

are typically represented in memory just once.

Values are references to abstract objects that may not themselves be represented on the

computer. Several locations in memory may contain the same value. The consequences

CHAPTER 10. CONCLUSIONS 162

of this difference between values and objects involve identity, comparison, copying, and
mutation. Values have no identity of their own; only the underlying abstract objects do.
Objects have identity—each object created by the new operator is brand new and distinct
from all other objects. Comparing values for equality is asking whether their underly-
ing objects are the same; thus we need deep equality on the structures describing those
underlying objects. Comparing objects in contrast involves shallow equality. Copying a
value is a common operation—a new location in memory now contains a value that refers
to the same object. Copying an object is not the same kind of operation—a new location
in memory does not compare equal to the old.! Mutating a value means changing it to
refer to a different object. The new value is not equal to what it was before the mutation.
Mutating an object preserves its identity but changes its state. The object is equal to the

object before mutation.

Values and objects behave differently under the fundamental operations of comparison,
copying, and mutation. Some languages (like C++) attempt to unify them into one compli-
cated language construct.? Other languages (like ML and Java?) provide only one of the
two. OBSTACL directly supports both values and objects, keeping the semantics of both

simple and consistent.

10.2 Object Definition

Objects are a run-time structure combining data and functions operating on that data. The
functions and data definitions can be shared between objects by enclosing them in a class,
which serves as a blueprint for creating objects. OBSTACL uses classes over prototype objects
as a mechanism for shared definitions because classes and objects are different enough that
it is simpler to have two straightforward constructs rather than one that handles everything.
Objects support substitutivity, enabling interchanging of objects with the same interface but
different implementations. Object types support subtyping, where objects of one type can be
used in contexts requiring objects with fewer operations. OBSTACL uses structural subtyping,
which is based on the structure of a type instead of the name of the type or the class of the ob-

ject. Structural subtyping is more flexible than name-based subtyping, and produces a much

1Instead, objects may provide cloning, which creates an object with a new identity but the same state as the original
object.

2Value types in C++ are typically used with pass by value or pass by reference, support oper at or =, support
oper at or ==, have a copy constructor, and use deep equality. Object types in C++ are typically used with pass by
pointer, inheritance, don’t have an oper at or =, don’t have an oper at or ==, and use shallow equality (comparison
of pointers).

3In Java, a few built in types (bool ean, char, i nt, etc.) have value semantics while all other types have object
semantics. For i nt, x=y is used for copying, x==y is used for equality, and x=3 is used for assignment. For object
classes like | nt eger, x=y. cl one() is used for copying, x. equal s(y) is used for equality, and X. set (3) is used
for assignment. (Note however that | nt eger produces immutable objects and thus does not have the cl one or set
methods.) The use of cl one and equal s is a sign of a value type forced into object semantics (where = and == have
different meaning).

CHAPTER 10. CONCLUSIONS 163

richer set of relationships without explicitly being listed by the programmer. Complementing
subtyping is class extension, which allows a class to be defined in terms of its differences (new
fields, new methods, and redefined methods) from another class. What distinguishes inheri-
tance from sharing between modules is the distributed recursive nature of a class. Functions in
a base module call other functions in the base module, even when using a derived module. In
contrast, methods in a base class can call methods in the derived class when using an object of
the derived class. Dynamic lookup of methods allows reuse relationships between classes not
possible with modules. In OBSTACL, substitutivity provides external reuse, the reuse of code
that uses objects, while inheritance provides internal reuse, the reuse of code defining objects.

Just as common parts of code can be abstracted into functions, common parts of classes can
be abstracted into linear mixins. If A and A’ are related by inheritance in the same way as B
and B’', a mixin M can be created such that A’ = M(A) and B' = M(B). An alternate form of
abstraction over classes is multiple inheritance, with which the shared definitions are placed
into class C, and A’ extends A and C, and B’ extends B and C. OBSTACL provides mixins
but not multiple inheritance. Multiple inheritance offers a less structured but more flexible
approach to building classes. Uses of multiple inheritance can be replaced by a combination of
mixins and structural subtyping. Mixins form an asymmetric (parent/child) relationship with
the classes they extend, allowing the programmer to control the order and number of (including
repeated) applications. OBSTACL offers classes to build sets of objects and mixins to build sets
of classes.

Defining an object’s contents is easy compared to the process of building an object. Since the
components of a class are defined in multiple modules, the components of an object produced
from that class are initialized by the corresponding modules. Modular initialization is more
complex than centralized initialization but is desired for maintainability. In the presence of
mixins, which do not have access to the implementation details of the parent class, modular
initialization becomes necessary. In OBSTACL, each class provides one or more constructors
to initialize objects. A constructor initializes fields, calls a constructor of the parent class, and
sets up any invariants maintained by the object. Just as methods encapsulate access to fields,
in OBSTACL instantiators encapsulate access to constructors. Instantiators choose whether
and when to create objects, and invoke constructors to initialize new objects. The instantiators
and constructors ensure both type safety and proper initialization of objects as defined by the
class.

10.3 Design and Maintenance

Programs are divided into modules to make them easier to work with. The program accesses
a module through its interface, which is expected to change infrequently relative to the mod-
ule’s implementation. Determining what is expected to change and what is expected to remain

CHAPTER 10. CONCLUSIONS 164

relatively constant is an important aspect of program design. Also important is determining
the granularity at which module boundaries lie. Smaller modules are easier to understand,
replace, and reuse. However, fine grained module division generally leads to more modules,
with more dependencies between them. Abstractions reduce the number of modules by re-
placing several specialized program components with a more general one. OBSTACL provides
substitutivity, subtyping, mixins, and inheritance to aid in the process of abstraction.

The programmer’s goal is to choose abstractions that minimize the need for interface changes
and maximize the possibility of implementation changes that do not affect the rest of the pro-
gram. Dependencies between program components trigger changes to one when another is
changed. Therefore minimizing dependencies is a goal of program design. Three basic forms of
dependencies exist in object-oriented programming. The user of an object depends on the type
of the object. OBSTACL uses interface types that do not mention the class from which the object
was instantiated, so that the user of the object does not depend on the class. The user creating
an object depends on the class and its construction policy. OBSTACL provides instantiators so
that the policy is encapsulated within the class and not seen by the user. A subclass depends
on the class it extends and what that superclass provides. OBSTACL provides mixins, so that
the subclass can depend on what is provided by the superclass but not on the superclass itself.

In addition OBSTACL provides visibility control to specify who can see (and therefore may
depend on) each component of an object. Private items are seen only by the class defining
them. Protected items are seen by the class and its extensions. Public items are seen by
the class, its extensions, and users of the object. Visibility control provides stronger hiding
than access control (used in C++ and Java), which allows private names to be seen (and cause
name conflicts) even though they cannot be used. OBSTACL constructors allow classes to define
initialization and object invariants without causing subclasses to depend on them. OBSTACL
instantiators allow classes to define creation policies without causing users to depend on them.
Dependencies are also respected at compile time—an unmodified module is recompiled only
if it depends on something that needs recompilation. In OBSTACL the class author has the
ability to specify interfaces precisely and therefore determine how other parts of the program
may depend on that class.

Programmers make decisions based on costs and benefits. Costs can include the time to
learn a new language or language feature, development time, compilation time, execution time
and space, convenience, and monetary cost. Maintenance costs are often underestimated com-
pared to costs during initial design and implementation. At times a “good” design carries a
higher initial cost. In OBSTACL several of these costs are lowered, so that the programmer
does not have to trade maintainability for efficiency or ease of initial implementation. Private
fields in OBSTACL are faster than public fields, and public accessor functions are just as fast

CHAPTER 10. CONCLUSIONS 165

as public fields. This cost structure encourages the use of private fields and accessor func-
tions (considered good design) instead of public fields (considered bad design). The features
of OBSTACL are fairly simple and orthogonal so that the programmer can use some without
learning them all. Recompilation directly matches the programmer’s expectations—changes to
private implementation details do not trigger recompilation, lowering the barrier to improving
the implementation of a class. Interface types and instantiators are used by default, and the
less flexible alternatives take more work, not less, to use. Virtual functions are fairly efficient,
and are used only where substitutivity is offered, so that the cost is not paid when there is no
possibility of benefit. In the proposed implementation there are no global optimizations turn-
ing objects into non-objects when there is only one data variant. Such optimizations are less
applicable in a language where abstractions with only one variant are expressed as ADTs, not
objects. These optimizations also create a disincentive to create more data variants, because
the second variant imposes a cost disproportionate to the features it uses. The costs of OBST-
ACL features are locally predictable by the programmer and do not depend on the global state
of the system.

At times there is a tradeoff between ease of initial implementation and ease of mainte-
nance. Supporting maintenance is the motivator behind many OBSTACL design decisions:
object-based protection, visibility control instead of access control, no binary methods or mul-
timethods, shallow equality, superclass method access restricted to immediate ancestor, no
subtyping on classes, no partial inheritance. These decisions may seem restrictive but actually
avoid dependencies that lead to maintenance problems. Another set of restrictions (no class
fields or methods, no const types, no behavioral or implementation types) are not problematic,
yet not supported directly by OBSTACL. Instead these are considered idioms that can be imple-
mented by the programmer using existing features (module variables, structured subtyping, or
opaque types, respectively). Python relies on programmer enforcement of access control; C++
relies on the programmer to provide instantiators. Yet OBSTACL directly supports these, along
with other features that could be idioms. To balance language simplicity and maintenance
needs, OBSTACL directly supports those features that involve cooperation across modules (be-
tween programmers) and relies on the programmer when the idiom can be implemented and

enforced locally within a module.

10.4 Theory and Practice

The semantics of OBSTACL are explained more precisely by a calculus than by prose. The
core calculus for OBSTACL focuses on objects, classes, and mixins, and not on the basic features
inherited from ML, which have been explored in other calculi. It uses standard constructs—
variables, records, functions, assignable locations, and scoping—to represent objects. Object
types are record types with standard subtyping. The new constructs are classes, mixins, class

CHAPTER 10. CONCLUSIONS 166

types, and mixin constraints. The core calculus directly represents these parts of OBSTACL,
as well as the modular construction system and visibility control. It omits several straightfor-
ward constructs: instantiators, naming of constructors, and multiple private fields per class.
A full calculus for OBSTACL would include these plus all of ML’s features, such as parametric
polymorphism and a module system.

An implementation of OBSTACL objects is straightforward and would be similiar to an im-
plementation of a conventional object-oriented language like Java. Classes and mixins however
are trickier to implement efficiently. The main challenge is incomplete information at compile
time, both because of run-time class inheritance and the desire to compile mixins only once in-
stead of once per application. The run-time structures proposed for OBSTACL classes preserve
both separate compilation and efficiency similar to that of languages with only compile-time

inheritance.

10.5 Future Work

In addition to the extensions described in chapter 9, there are several open areas of research
regarding OBSTACL. The choice of structural types in preference to named types occasionally
leads to accidental subtyping relationships not expected by the programmer. Behavioral types
are possible but take extra work by the programmer. A more flexible and convenient, yet error
prone, construct is contrary to the general philosophy behind other design choices made for the
language. However our formulation of mixins in the core calculus requires structural types.
Studying mixins with named types would thus be of interest.

The scope of this work has been to use only generic features of ML. In particular, the object
type system does not rely on parametric or bounded polymorphism. If OBSTACL were to be fully
implemented as an extension of ML (or another language), a study of the interactions between
OBSTACL’s constructs and ML’s (or another language’s) unique features would be needed. For
ML, the three primary areas to study are parametric polymorphism (genericity), the module

system, and type inference.

10.6 Summary

OBSTACL is a language designed to support good program design and maintenance. To
minimize dependencies between modules and also to allow abstraction of common components,
we added objects, structural subtyping, classes, run-time inheritance, mixins, and mixin con-
straints to a foundational language, ML. OBSTACL’s features work well together to express
common problems in program design and can be analyzed by a simple calculus and imple-

mented efficiently.

Appendix A

Calculus Rules and Definitions

A.1 Definition of Contexts

The definition of contexts is standard but lengthy because of the number of subexpressions

in the mixin expression:

C::= []|CeleC|Xz.C|Cx]|Coe|eoC
| {m1 =€1y---,Mj—1 = €j—1,M; = C, miy1 = €i41,---,Mp = €n}lsz§n
| Hh.C|H{z,C)h.e|new C | classval(C, M, P)
j € New j € New\ [4] j € New
k € Redef k € Redef k € Redef \ [4]
| mixin £ & Prot mixin £ € Prot | mixin L& Prot

method m; = vp,;;
redefine my = vy, ;
protect [pg];
constructor C;

end

A.2 Type Rules

The type rules for class-related forms were presented in section 7.4. The remaining type

rules are presented here.

A.2.1 Subtyping Rules

The subtyping rules are standard. Objects support both depth and width subtyping.

method m; = vy,;;
method m; = C;
redefine my = vy, ;
protect [pg];
constructor v,;

end

167

method m; = vp,;;
redefine my = vy, ;
redefine m; = C;
protect [pg];
constructor v,;

end

APPENDIX A. CALCULUS RULES AND DEFINITIONS 168

(<: proj) — (refl)
Tovu<itg b 11 <tug 'k r<:7r
T'Fra<n TER<LT '7<:t TFo<:o
(trans) (arrow)
T'Frm<ims T'Fr—oo<:7 =0

'trn<io; i€l JCI

: : (<: record)
L+ {m;:n} € <:{m;:0;}77

A.2.2 Type Rules for Expressions

The type rules for expressions other than class-related forms are simple, except for heaps,
which have to be typed globally.

typeof (const) = 1 Nox:tke:o

(const) — (proj) \)
'+ const:1 z:7hkx:7 'k AXge:7—o0

'Fet:7T=0 TT'key:T

(app)) (fix)
T'Feey:o Ttk fiz:(c »0)—>o0
The:r THr<io I'kEoe:m
(sub) - (record)
'kte:o I‘I—{xi:ei}zg:{wi:n}
F'ke:{z:0}
—— (lookup) (ref) M
'tex:o Tk ref:7— 7ref T'kliTref > 71
:=)
'k:= t7ref 57> 71
I'=T,zy:mref,...,op:mpref T"Fwj:my T'Ee:r
(heap)

'k H{zy,v1)...{Tn,vp).€: T

Bibliography

[AC96]

[AG96]

[AM91]

[App98]

[Aug98]

[Aus98]

[BB98]

[BCI0]

[BCC+95]

[BCH*96]

[BF98]

M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

A. Appel and D. MacQueen. Standard ML of New Jersey. In Third Int’l Symp.
on Prog. Lang. Implementation and Logic Programming, pages 1-13. Springer-
Verlag, August 1991.

A. Appel. Modern Compiler Implementation in ML. Cambridge University Press,
1998.

L. Augustsson. Cayenne—a language with dependent types. In Proc. ICFP ’98,
pages 239-250, 1998.

M. Austern. Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley, 1998.

V. Bono and M. Bugliesi. Matching for the lambda calculus of objects. Theoretical
Computer Science, 1998.

G. Bracha and W. Cook. Mixin-based inheritance. In Proc. OOPSLA 90, pages
303-311, 1990.

K. B. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens, and
B. C. Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221—
242, 1995.

K. Barrett, B. Cassels, P. Haahr, et al. A monotonic superclass linearization for
Dylan. In Proc. OOPSLA *96, 1996.

V. Bono and K. Fisher. An imperative, first-order calculus with object extension. In
Proc. ECOOP *98, pages 462-497. LNCS 1445, Springer-Verlag, 1998. Preliminary
version appeared in FOOL 5 proceedings.

169

BIBLIOGRAPHY 170

[BHJLS86]

[BLI2]

[BL95]

[BLM97]

[BLS94]

[Boo94]

[BPS99]

[BPSM99]

[Bra92]

[BRS198]

[Bru94]

[BSvG95]

A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure in the Emerald
system. In Proc. OOPSLA ’86, pages 78-86, 1986.

G. Bracha and G. Lindstrom. Modularity meets inheritance. In Proceedings of the
IEEE Computer Society International Conference on Computer Languages (ICCL
’92), pages 282290, April 1992.

V. Bono and L. Liquori. A subtyping for the Fisher-Honsell-Mitchell lambda calcu-
lus of objects. In Proc. CSL °94, pages 16—-30. LNCS 933, Springer-Verlag, 1995.

dJ. Bank, B. Liskov, and A. Myers. Parameterized types and Java. In Proc. POPL
97, 1997.

N. Boyen, C. Lucas, and P. Steyaert. Generalized mixin-based inheritance to sup-
port multiple inheritance. Technical Report vub-prog-tr-94-12, Vrije Universiteit
Brussel, 1994.

G. Booch. Object-Oriented Analysis and Design with Applications. (second edition,).
Benjamin/Cummings, 1994.

V. Bono, A. Patel, and V. Shmatikov. A core calculus of classes and mixins. In
Rachid Guerraoui, editor, ECOOP ’99 — Object-Oriented Programming 13th Eu-
ropean Conference, Lisbon Portugal, volume 1628 of Lecture Notes in Computer
Science, pages 43—66. Springer-Verlag, New York, NY, June 1999.

V. Bono, A. Patel, V. Shmatikov, and J. C. Mitchell. A core calculus of object, classes,
and mixins. Technical Report, The University of Birmingham and Stanford Uni-
versity, 1999. Forthcoming.

G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. Ph.D. thesis, Dept. of Computer Science, University of Utah, March
1992.

D. Biaumer, D. Riehle, W. Siberski, C. Lilienthal, D. Megert, K. Sylla, and
H. Ziillighoven. Values in object systems. Technical Report TR-1998-10-1, Ubi-
lab, 1998.

K. B. Bruce. A paradigmatic object-oriented language: Design, static typing and
semantics. J. Functional Programming, 4(2):127-206, 1994.

K. B. Bruce, A. Schuett, and R. van Gent. PolyTOIL: A type-safe polymorphic
object-oriented language. In ECOOP’95—O0bject-Oriented Programming, 9th Eu-
ropean Conference, volume 952, pages 26-51. Springer, 1995.

BIBLIOGRAPHY 171

[Car93]

[CDGI7]

[CF91]

[Cha92]
[Cha93]
[Cha99]

[CHC90]

[Com92]

[Co089]

[Co092]

[Cop92]

[Cop99]

[Cur97]

[CW85]

[DDG*96]

[DMN70]

T. A. Cargill. The case against multiple inheritance in C++. In Jim Waldo, editor,
The Evolution of C++: Language Design in the Marketplace of Ideas, pages 101-
109, Berkeley, CA, USA and Cambridge, MA, USA, 1993. USENIX and MIT Press.

C. Chambers, J. Dean, and D. Grove. Whole-program optimization of object-
oriented languages. Technical Report TR-96-06-02, University of Washington, Jan-
uary 28, 1997.

E. Crank and M. Felleisen. Parameter-passing and the lambda calculus. In Proc.
POPL 91, pages 233—244, 1991.

C. Chambers. Object-oriented multi-methods in Cecil. In Proc. ECOOP *92, 1992.
C. Chambers. Predicate classes. In Proc. ECOOP ’93, 1993.
D. Chase. Garbage collection FAQ, 1999.

W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In Proc. POPL °90,
pages 125-135, 1990.

Apple Computer. The Dylan Reference Manual. Apple Computer, 1992.

W. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown University,
1989.

W. Cook. Interfaces and specifications for the Smalltalk-80 collection classes. In
Proc. OOPSLA 92, 1992.

dJ. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1992.

James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, Reading,
Mass., 1999.

P. Curtis. LambdaMOO programmer’s manual, 1997.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471-522, 1985.

d. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An optimizing
compiler for object-oriented languages. In Proc. OOPSLA *96., pages 83—100. ACM
Press, 1996.

O-dJ. Dahl, B. Myrhaug, and K. Nygaard. SIMULA common base language. Tech-
nical report, Norwegian Computing Center S-22, 1970.

BIBLIOGRAPHY 172

[ES90]

[FF98]

[FH92]

[FHM94]

[Fis96]

[FKF98]

[F1a98]

[FM95]

[FM98]

[Ful96]

[GHJV9I5]

[GJS96]

[Gos97]

[HM95]

[Inc94]

M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
1990.

R. Findler and M. Flatt. Modular object-oriented programming with units and
mixins. In Proc. ICFP ’98, pages 94-104, 1998.

M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235-271, 1992.

K. Fisher, F. Honsell, and J. C. Mitchell. A lambda-calculus of objects and method
specialization. Nordic J. of Computing, 1(1):3-37, 1994. Preliminary version ap-
peared in Proc. LICS ’93, pp. 26-38.

K. Fisher. Type Systems for Object-Oriented Programming Languages. PhD thesis,
Stanford University, Stanford, CA , USA, 1996.

M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proc. POPL
’98, pages 171-183, 1998.

D. Flanagan. JavaScript. O’'Reilly & Associates, 1998.

K. Fisher and J. C. Mitchell. A delegation-based object calculus with subtyping.
In Proc. 10th International Conference on Fundamentals of Computation Theory
(FCT ’95), pages 42—61. LNCS 965, Springer-Verlag, 1995.

K. Fisher and J. C. Mitchell. On the relationship between classes, objects, and data
abstraction. Theory and Practice of Object Systems, 4(1):3-26, 1998. Preliminary

version appeared in Marktoberdorf’97 proceedings.
dJ. Fulton. Extension classes, Python extension types become classes, 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

dJ. Gosling, B. Joy, and G. Steele. The Java Language Specification. Java Series.
Sun Microsystems, 1996.

dJ. Gosling. The evolution of numerical computing in Java, 1997.

M. Hoang and J. Mitchell. Lower bounds on type inference with subtypes. In Proc.
POPL ’95, 1995.

Taligent Inc. Taligent’s Guide to Designing Programs: Well Mannered Object-
Oriented Design in C++. Addison-Wesley, 1994.

BIBLIOGRAPHY 173

[Ing78]

[Int94]

[Kee89]

[KR94]

[LCI*T92]

[LM96]

[LRVD99]

[Lut96]

[LY96]

[Mey87]

[Mey92]

[Mey94]

[MMPN93]

[Moo86]

[MT89]

D. Ingalls. The Smalltalk-76 programming system design and implementation. In
Proc. POPL 78, 1978.

Borland International. A technical comparison of Borland ObjectWindows 2.0 and
Microsoft MFC 2.5. Technical report, Borland International, Inc., 1994.

S. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley, 1989.

S. Kamin and U. Reddy. Two semantic models of object-oriented languages. In
C. Gunther and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-
gramming. MIT Press, 1994.

M. Linton, P. Calder, J. Interrante, S. Tang, and J. Vlissides. InterViews reference
manual, 1992.

M. Van Limberghen and T. Mens. Encapsulation and composition as orthogonal
operators on mixins: a solution to multiple inheritance problems. Object Oriented
Systems, 3(1):1-30, 1996.

X. Leroy, D. Rémy, J. Vouillon, and D. Doligez. The Objective Caml system, docu-
mentation and user’s guide, 1999.

M. Lutz. Programming Python. O’Reilly and Associates, 1996.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Java series.
Sun Microsystems, 1996.

B. Meyer. Eiffel: Programming for reusability and extendability. SIGPLAN No-
tices, 22(2), February 1987.

S. Meyers. Effective C++: 50 Ways to Improve Your Programs and Designs. Addison-
Wesley, 1992.

B. Meyer. Reusable Software. Prentice-Hall, 1994.

O. Lehrmann Madsen, B. Moller-Pedersen, and K. Nygaard. Object-Oriented Pro-
gramming in the BETA Language. Addison-Wesley, 1993.

D. Moon. Object-oriented programming with Flavors. In Proc. OOPSLA ’86, pages
1-8, 1986.

I. Mason and C. Talcott. Programming, transforming, and proving with func-
tion abstractions and memories. In Proc. ICALP ’89, pages 574-588. LNCS 372,
Springer-Verlag, 1989.

BIBLIOGRAPHY 174

[MTHM90] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML.

[OSF91]

[Ous94]

[OW9T7]

[Pet94]
[Pit93]

[Pot98]

[SB98]

[Sny86]

[Ste90]
[Str]

[Str94]
[Str97]

[TMC*96]

[TT94]

[US87]

[VN96]

[vR99]

MIT Press, Cambridge, Massachusetts, 1990.

OSF, editor. OSF/Motif Programmers Guide. Prentice Hall, Englewood Cliffs, 5
edition, 1991.

dJ. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In
Proc. POPL 97, 1997.

C. Petzold. OS/2 Presentation Manager Programming. Ziff-Davis Press, 1994.
K. Pitman. What’s in a name? Lisp Pointers, VI(1), 1993.

F. Pottier. A framework for type inference with subtyping. In Proc. ICFP ’98, pages
228-238, 1998.

Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers.
In Proc. ECOOP *98, pages 550-570, 1998.

A. Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. In Proc. OOPSLA 86, 1986.

G. Steele. Common Lisp: the Language (second edition). Digital Press, 1990.

dJ. Strout. POO programmer’s reference.

B. Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

B. Stroustrup. The C++ Programming Language (3rd ed.). Addison-Wesley, 1997.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-
directed optimizing compiler for ML. In Proc. PLDI ’96, pages 181-192, 1996.

L. Thorup and M. Tofte. Object oriented programming and Standard ML. In ACM
SIGPLAN Workshop on Standard ML and its Applications, June 1994.

D. Ungar and R. Smith. Self: The power of simplicity. In Proc. OOPSLA °87, 1987.

M. VanHilst and D. Notkin. Using role components to implement collaboration-
based designs. In Proc. OOPSLA *96, pages 359-369, 1996.

G. van Rossum. Metaclasses in Python 1.5, 1999.

BIBLIOGRAPHY 175

[VRTB98] J. Viega, P. Reynolds, B. Tutt, and R. Behrends. Automated delegation is a viable
alternative to multiple inheritance for class based languages. Technical Report
Computer Science tech report CS-98-03, University of Virginia, 1998.

[Wad87] P. Wadler. Views: A way for pattern matching to cohabit with data abstraction. In

Principles of Programming Languages, Munich, Germany, January 1987.

[Wan94] M. Wand. Type inference for objects with instance variables and inheritance. In
C. Gunther and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-
gramming. MIT Press, 1994.

[WF94] A. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38-94, 1994.

[You89] D. Young. X Window Systems, Programming and Applications with Xt. Prentice
Hall, 1989.

[Zuk97] dJ. Zukowski. JAVA AWT reference, 1997.

