
SAT-Based Model Checking Without Unrolling

Aaron R. Bradley

Dept. of Electrical, Computer & Energy Engineering
University of Colorado at Boulder

Boulder, CO 80309
bradleya@colorado.edu

Abstract. A new form of SAT-based symbolic model checking is de-
scribed. Instead of unrolling the transition relation, it incrementally gen-
erates clauses that are inductive relative to (and augment) stepwise ap-
proximate reachability information. In this way, the algorithm gradually
refines the property, eventually producing either an inductive strengthen-
ing of the property or a counterexample trace. Our experimental studies
show that induction is a powerful tool for generalizing the unreachability
of given error states: it can refine away many states at once, and it is
effective at focusing the proof search on aspects of the transition system
relevant to the property. Furthermore, the incremental structure of the
algorithm lends itself to a parallel implementation.

1 Introduction

Modern SAT-based model checkers unroll the transition relation and thus present
the SAT solver with large problems [2, 24, 21, 23]. We describe a new SAT-based
model checking algorithm that does not unroll the transition relation, that is
nevertheless complete, that is competitive with the best available model check-
ers [3], and that can be implemented to take advantage of parallel computing
environments. The fundamental idea is to generate clauses that are inductive
relative to stepwise reachability information.

When humans analyze systems, they produce a set of lemmas — typically
inductive properties — that together imply the desired property. Each lemma
holds relative to some subset of previously proved lemmas in that this prior
knowledge is invoked in proving the new lemma [19]. A given lemma usually
focuses on just one aspect of the system. Typically, early lemmas discuss variable
domains, properties about module-local data structures, and so on, while later
lemmas address more global aspects of the system. Yet even the later lemmas are
fairly easy to prove since prior information heavily constrains the state space.
When a lemma is too difficult to prove directly, a skilled human verifier typically
searches for additional supporting lemmas.

In contrast, standard model checkers employ monolithic strategies. Many
iteratively compute pre- or post-images precisely [7, 20] or approximately [21];
others unroll the transition relation [2, 24, 23]. Section 5 provides further discus-
sion of related work.

This paper describes a model checking algorithm for safety properties whose
strategy is not monolithic but rather closer to that of a human, albeit a particu-
larly industrious one. It produces lemmas in the form of clauses that are inductive
relative to previous lemmas and stepwise assumptions. At convergence, a subset
of the generated lemmas comprise a 1-step inductive strengthening of the given
property. Humans construct lemmas of a more general form than clauses, and
in this respect, the analogy breaks down; but the incremental construction of
lemmas to form a proof is similar. Section 3 covers induction in further depth,
reviews previous work on generating inductive clauses [6], and motivates the use
of stepwise assumptions. Sections 4 and 6 discuss the algorithm in detail.

The implementation of the algorithm, ic3 (“Incremental Construction of
Inductive Clauses for Indubitable Correctness”), has certain runtime character-
istics that support the comparison to a human strategy (see Table 1 of Section 7).
A typical run of ic3 on a nontrivial problem executes many tens of thousands of
SAT queries that test whether various formulas are 1-step inductive, and it pro-
duces hundreds or thousands of intermediate lemmas. Each SAT query is trivial
compared to the queries made in other techniques [20, 2, 24, 23]: ic3 successfully
employs ZChaff [22], a decidedly non-state-of-the-art solver, yet one that pro-
vides efficient incremental support. While a human would likely produce fewer
but higher-level lemmas, the overall pattern of applying relatively low reasoning
power to produce many lemmas is familiar to the experienced human verifier.
In HWMCC’10, ic3 ranked third, placing it among sophisticated, multi-engine
model checkers. It is available for download at the author’s website [3].

The human verifier analogy can be taken one step further. Just as large
verification problems benefit from the attention of several humans, they also
benefit from the attention of multiple cooperating ic3 instances. In particular,
because the relative to relation among lemmas is a partial order and typically not
a linear order, ic3 can take advantage of multi-core and distributed computing
environments. Each instance shares only its lemmas and not the work that went
into producing them, and it incorporates the lemmas that the other processes
generate. Section 8 demonstrates empirically that this parallel implementation is
effective and that, in particular, processes do not duplicate work too frequently.

2 Definitions

A finite-state transition system S : (̄i, x̄, I, T) is described by a pair of proposi-
tional logic formulas: an initial condition I(x̄) and a transition relation T (̄i, x̄, x̄′)
over a set of input variables ī, internal state variables x̄, and the next-state
primed forms x̄′ of the internal variables [9]. Applying prime to a formula, F ′,
is the same as priming all of its variables.

A state of the system is an assignment of Boolean values to all variables x̄ and
is described by a cube over x̄, which, generally, is a conjunction of literals, each
literal a variable or its negation. An assignment s to all variables of a formula
F either satisfies the formula, s |= F , or falsifies it, s 6|= F . If s is interpreted as

a state and s |= F , we say that s is an F -state. A formula F implies another
formula G, written F ⇒ G, if every satisfying assignment of F satisfies G.

A clause is a disjunction of literals. A subclause d ⊆ c is a clause d whose
literals are a subset of c’s literals.

A trace s0, s1, s2, . . ., which may be finite or infinite in length, of a transi-
tion system S is a sequence of states such that s0 |= I and for each adjacent
pair (si, si+1) in the sequence, si, s

′
i+1 |= T . That is, a trace is the sequence of

assignments in an execution of the transition system. A state that appears in
some trace of the system is reachable.

A safety property P (x̄) asserts that only P -states are reachable. P is invariant
for the system S (that is, S-invariant) if indeed only P -states are reachable. If
P is not invariant, then there exists a finite counterexample trace s0, s1, . . . , sk
such that sk 6|= P .

3 Applying Induction Incrementally

For a transition system S : (̄i, x̄, I, T), an inductive assertion F (x̄) describes a
set of states that (1) includes all initial states: I ⇒ F , and that (2) is closed
under the transition relation: F ∧ T ⇒ F ′. The two conditions are sometimes
called initiation and consecution, respectively. An inductive strengthening of a
safety property P is a formula F such that F ∧P is inductive. Standard symbolic
model checkers [7, 20] and interpolation-based model checkers [21] compute in-
ductive strengthenings of a given safety property P . Upon convergence, iterative
post-image, respectively pre-image, computation yields the strongest, respec-
tively weakest, inductive strengthening of P , while approximate methods yield
strengthenings of intermediate strength.

Induction need not be applied in a monolithic way, however. One can con-
struct a sequence of inductive assertions, each inductive relative to (a subset
of) the previous assertions [19]. An assertion F is inductive relative to another
assertion G if condition (1) holds unchanged: I ⇒ F , and a modified version of
(2) holds: G ∧ F ∧ T ⇒ F ′. The assertion G reduces the set of states that must
be considered so that an assertion F that is not inductive on its own (because
F ∧ T 6⇒ F ′) may be inductive relative to G.

The value of using induction in an incremental fashion is that constructing a
sequence of simple lemmas is often easier than constructing a strengthening all
at once. Of course, translating human intuition into a model checking algorithm
is difficult if not impossible, so one typically fixes a domain of assertions [10].

In previous work, we introduced a technique for discovering relatively in-
ductive clauses [6]. We review it here as motivation for the algorithm that we
subsequently introduce. The main idea is to augment the following naive model
checker: enumerate states that can reach a violation of the asserted property P

and conjoin their negations to P until an inductive assertion is produced. For
each such state s, the method searches for an inductive generalization c ⊆ ¬s
to conjoin to P instead. Such a subclause (1) is inductive relative to known
or assumed reachability information (P , previous inductive generalizations, and

the negations of considered states without inductive generalizations) and (2) is
minimal in that it does not contain any strict subclauses that are also inductive.
In practice, such a minimal inductive subclause is substantially smaller than ¬s
and excludes states that are not necessarily related to s by T .

While the method succeeds on some hard benchmarks [4], it sometimes enters
long searches for the next relatively inductive clause, for a state may not have
an inductive generalization even if it is unreachable. It is this problem of search
that motivated investigation into a more effective way to use inductive clause
generation. The new approach de-emphasizes global information that is some-
times hard to discover in favor of stepwise information that is easy to discover.
In particular, stepwise assumptions guarantee that an unreachable state always
has a stepwise-relative inductive generalization, one that asserts that s and many
similar states are unreachable for some number of steps. Because we consider
finite state systems, these stepwise-relative inductive generalizations eventually
become truly inductive.

Since finding minimal inductive subclauses remains a core subprocedure in
the new approach, an informal description of it is in order. To find a subclause
d ⊆ c = c0 that is inductive relative to G, if such a clause exists, first consider
consecution: G ∧ c0 ∧ T ⇒ c′0. If both this implication and initiation hold, c0
is itself inductive. Otherwise, a counterexample state s exists. Form the clause
c1 = c0 ∩ ¬s by keeping only the literals that c0 and ¬s share. Iterate this
process until it converges to some clause ci. If ci satisfies initiation, then let
d = ci; otherwise, c0 does not have an inductive subclause. This process is called
the down algorithm [6].

Now d ⊆ c0 is inductive, but it is not necessarily minimal — and in practice
it is large. Form d1 by dropping some literal of d, and apply down to d1. If down
succeeds, the result is a smaller inductive subclause; if it fails, try again with
a different literal. Continue until no literal can be dropped from the current
inductive subclause. The result is a minimal inductive subclause of c0. This
process is called the MIC algorithm; it can be accelerated using the up algorithm
[6]. Section 7 discusses optimizations to these procedures.

4 Informal Description

Consider a transition system S : (̄i, x̄, I, T) and a safety property P . The algo-
rithm decides whether P is S-invariant, producing an inductive strengthening if
so or a counterexample trace if not.

Let us first establish the core logical data structure. The algorithm incre-
mentally refines and extends a sequence of formulas F0 = I, F1, F2, . . . , Fk that
are over-approximations of the sets of states reachable in at most 0, 1, 2, . . . , k
steps. While major iterations of the algorithm increase k, minor iterations can
refine any i-step approximation Fi, 0 < i ≤ k. Each minor iteration conjoins
one new clause to each of F0, . . . , Fj for some 0 < j ≤ k, unless a counterex-
ample is discovered. (Adding a clause to F0 = I is useless, but it simplifies the
exposition.)

Assuming that any clause conjoined to F0, . . . , Fj over-approximates j-step
reachability, this simple description implies that the sequence always obeys the
following properties: (1) I ⇒ F0 and (2) Fi ⇒ Fi+1 for 0 ≤ i < k. Actually,
letting clauses(Fi) be the set of clauses that comprise Fi, (2) can be more strongly
expressed as (2’) clauses(Fi+1) ⊆ clauses(Fi) for 0 ≤ i < k. The algorithm
guarantees two other relationships: (3) Fi ⇒ P for 0 ≤ i ≤ k, and (4) Fi ∧ T ⇒
F ′
i+1 for 0 ≤ i < k. If ever clauses(Fi) = clauses(Fi+1), then these properties

imply that Fi is an inductive strengthening of P .
With this logical data structure and its intended invariants in mind, we now

turn to the workings of the algorithm. Initially the satisfiability of I ∧ ¬P and
I ∧ T ∧ ¬P ′ are checked to detect 0- and 1-step counterexamples. If none exist,
F1 is set to P .

Now let us suppose that we are in major iteration k > 0, so that sequence
F0, F1, . . . , Fk satisfies properties (1)-(4). Is it the case that Fk ∧ T ⇒ P ′?

Suppose so. Then the extended sequence F0, F1, . . . , Fk, P = Fk+1 satisfies
properties (1)-(4). We can move onto major iteration k+1. Additionally, for any
clause c ∈ Fi, 0 ≤ i ≤ k, if Fi∧T ⇒ c′ and c 6∈ clauses(Fi+1), then c is conjoined
to Fi+1. If during the process of propagating clauses forward it is discovered that
clauses(Fi) = clauses(Fi+1)

1 for some i, the proof is complete: P is invariant.
Now suppose not: Fk ∧ T 6⇒ P ′. There must exist an Fk-state s that is one

transition away from violating P . What is the maximum Fi (that is, the weakest
stepwise assumption), 0 ≤ i ≤ k, such that ¬s is inductive relative to it? If ¬s
is not even inductive relative to F0, then P is not invariant, for s has an I-state
predecessor. But if P is invariant, then ¬s must be inductive relative to some
Fi.

2 We then apply inductive generalization to s: a minimal subclause c ⊆ ¬s
that is inductive relative to Fi is extracted as described in Section 3. Because the
inductive generalization is performed relative to Fi, this process must succeed.
After all, ¬s is itself inductive relative to Fi. The clause c is conjoined to each
of F0, . . . , Fi+1. (Why to Fi+1? Because Fi ∧ c ∧ T ⇒ c′ holds.) 3

If i = k−1 or i = k, then c was conjoined to Fk, eliminating s as an Fk-state.
Subsequent queries of Fk ∧ T ⇒ P ′ must either indicate that the implication
holds or produce different counterexample states than s. But it is possible that
i < k − 1. In this case, s is still an Fk-state.

Consider this question: Why is ¬s inductive relative to Fi but not relative
to Fi+1? There must be a predecessor, t, of s that is an Fi+1-state but not an
Fi-state. Now if i = 0, t may have an I-state as a predecessor, in which case P

1 Notice that this syntactic check avoids checking semantic equivalence of potentially
complex formulas.

2 In fact, ¬s is inductive relative to Fk−2, if not a later stepwise approximation. For
suppose not; then there would exist an Fk−2-state t that is a predecessor to s, so
that by (4), s would be a Fk−1-state. But then an Fk−1-state could reach a violation
in one transition, contradicting (3) and (4).

3 In practice, because c may actually be inductive relative to Fj for some j > i even
though ¬s is not, we attempt to push it forward as far as possible, that is, until
Fj ∧ c ∧ T ⇒ c′ but Fj+1 ∧ c ∧ T 6⇒ c′. However, this variation complicates the
discussion, so we do not consider it further.

would not be invariant. But if i > 0, then because of property (4), ¬t must be
inductive relative to at least Fi−1. And even if i = 0, ¬t may nevertheless be
inductive relative to some Fj .

Hence we recur on t. The new subgoal is to produce a subclause of ¬t that
is inductive relative to Fi, eliminating t at Fi+1. Unless P is not invariant, such
a clause is eventually added to Fi+1, possibly after considering one or more
predecessors of t. Then s can be considered with respect to the strengthened
over-approximation Fi+1. This process of considering predecessors recursively
continues until ¬s is finally inductive relative to Fk (unless a counterexample
trace is discovered first). In practice, it is worthwhile to find subclauses induc-
tive relative to Fk for every other state considered during the recursion, as the
resulting clauses may be mutually inductive but not independently inductive.

With s no longer an Fk-state, Fk ∧ T ⇒ P ′ can be considered again.

5 Related Work

SAT-based unbounded model checking constructs clauses via quantifier elimina-
tion; for a safety property P , it computes the weakest inductive strengthening of
P [20]. In our algorithm, induction is a means not only to construct clauses by
generalizing from states, but also to abstract the system based on the property.

Our algorithm can be viewed from the perspective of predicate abstrac-
tion/refinement [17, 8]: the minor iterations generate new predicates (clauses)
while the major iterations propagate them forward through the stepwise ap-
proximations (that is, add c ∈ Fi to Fi+1 if Fi ∧ T ⇒ c′). If the current clauses
are insufficient for convergence to an inductive strengthening of P , the next
sequence of minor iterations generates new clauses that enable propagation to
continue at least one additional step.

The stepwise over-approximation structure of F0, F1, F2, . . . , Fk is similar to
that of interpolation-based model checking (ITP), which uses an interpolant
from an unsatisfiable K-step BMC query to compute the post-image approxi-
mately [21]. All states in the image are at least K − 1 steps away from violating
the property. A larger K refines the image by increasing the minimum distance
to violating states. In our algorithm, if the frontier is at level k, then Fi, for
0 ≤ i ≤ k, contains only states that are at least k − i + 1 steps from violating
the property. As k increases, the minimum number of steps from Fi-states to
violating states increases. In both cases, increasing k (in ours) or K (in ITP)
sufficiently for a correct system yields an inductive assertion. However, the algo-
rithms differ in their underlying “technology”: ITP computes interpolants from
K-step BMC queries, while our algorithm uses inductive generalization of cubes,
which requires only 1-step induction queries for arbitrarily large k.

Our work could in principle be applied as a method of strengthening k-
induction [24, 23, 1, 25]. However, k-induction would simply eliminate the states
that are easiest to inductively generalize — since they have short predecessor
chains — so we do not recommend this combination.

The method described in this paper first appeared in a technical report [5].

Listing 1.1. The main function

1{@post : rv i f f P i s S−i n va r i an t }
2boo l prove () :
3i f sat (I ∧ ¬P) or sat (I ∧ T ∧ ¬P ′) :
4return fa l se
5F0 := I , clauses(F0) := ∅
6Fi := P , clauses(Fi) := ∅ for a l l i > 0
7for k := 1 to . . . :

8{@rank : 2|x̄| + 1
9@assert (A) :
10(1) ∀ i ≥ 0, I ⇒ Fi

11(2) ∀ i ≥ 0, Fi ⇒ P

12(3) ∀ i > 0, clauses(Fi+1) ⊆ clauses(Fi)
13(4) ∀ 0 ≤ i < k, Fi ∧ T ⇒ F ′

i+1

14(5) ∀ i > k, |clauses(Fi)| = 0 }
15i f not strengthen (k) :
16return fa l se
17propagateClauses (k)
18i f clauses(Fi) = clauses(Fi+1) for some 1 ≤ i ≤ k :
19return true

6 Formal Presentation and Analysis

We present the algorithm and its proof of correctness simultaneously with an-
notated pseudocode in Listings 1.1-1.5 using the classic approach to program
verification [16, 18]. In the program text, @pre and @post introduce a function’s
pre- and post-condition, respectively;@assert indicates an invariant at a location;
and @rank indicates a ranking function represented as the maximum number of
times that the loop may iterate. As usual, a function’s pre-condition is over its
parameters while its post-condition is over its parameters and its return value,
rv. For convenience, the system S : (̄i, x̄, I, T) and property P are assumed to be
in scope everywhere. Also, some assertions are labeled and subsequently refer-
enced in annotations. All assertions are inductive, but establishing the ranking
functions requires additional reasoning, which we provide below.

Listing 1.1 presents the top-level function prove, which returns true if and
only if P is S-invariant. First it looks for 0-step and 1-step counterexample traces.
If none are found, F0, F1, F2, . . . are initialized to assume that P is invariant,
while their clause sets are initialized to empty. As a formula, each Fi for i >

0 is interpreted as P ∧
∧
clauses(Fi). Then it constructs the sequence of k-

step over-approximations starting with k = 1. On each iteration, it first calls
strengthen(k) (Listing 1.2), which strengthens Fi for 1 ≤ i ≤ k so that Fi-
states are at least k − i + 1 steps away from violating P , by assertions A(2)
and strengthen’s post(2). Next it calls propagateClauses(k) (Listing 1.3) to
propagate clauses forward through F1, F2, . . . , Fk+1. If this propagation yields
any adjacent levels Fi and Fi+1 that share all clauses, then Fi is an inductive
strengthening of P , proving P ’s invariance.

Listing 1.2. The strengthen function

20{@pre :
21(1) A

22(2) k ≥ 1
23@post :
24(1) A.1−3
25(2) i f rv then ∀ 0 ≤ i ≤ k, Fi ∧ T ⇒ F ′

i+1

26(3) ∀ i > k + 1, |clauses(Fi)| = 0
27(4) i f ¬rv then there e x i s t s a counterexample t race }
28boo l strengthen (k : l e v e l) :
29try :
30while sat (Fk ∧ T ∧ ¬P ′) :

31{@rank : 2|x̄|

32@assert (B) :
33(1) A.1−4
34(2) ∀ c ∈ clauses(Fk+1), Fk ∧ T ⇒ c′

35(3) ∀ i > k + 1, |clauses(Fi)| = 0 }
36s := the predecessor extracted from the witness
37n := inductivelyGeneralize (s , k − 2 , k)
38pushGeneralization ({(n+ 1, s)} , k)
39{@assert (C) : s 6|= Fk }
40return true
41except Counterexample :
42return fa l se

While the assertions are inductive, an argument needs to be made to jus-
tify the ranking function. By A(3), the state sets represented by F0, F1, . . . , Fk

are nondecreasing with level. Given propagateClauses’s post(2), avoiding ter-
mination at line 19 requires that they be strictly increasing with level, which is
impossible when k exceeds the number of possible states. Hence, k is bounded by
2|x̄|+1, and, assuming that the called functions always terminate, prove always
terminates.

For level k, strengthen(k) (Listing 1.2) iterates until Fk excludes all states
that lead to a violation of P in one step. Suppose s is one such state. It is
eliminated by, first, inductively generalizing ¬s relative to some Fi through a
call to inductivelyGeneralize(s, k− 2, k)4 (Listing 1.4) and, second, pushing
for a generalization at level k through a call to pushGeneralization({(n+1, s)},
k) (Listing 1.5). At the end of the iteration, Fk excludes s (assertion C). This
progress implies that the loop can iterate at most as many times as there are
possible states, yielding strengthen’s ranking function.

The functions in Listing 1.4 perform inductive generalization relative to some
Fi. If min < 0, s might have an I-state predecessor, which is checked at line 68.

The pushGeneralization algorithm (Listing 1.5) is the key to “pushing”
inductive generalization to higher levels. The insight is simple: if a state s is not
inductive relative to Fi, apply inductive generalization to its Fi-state predeces-

4 Note that ¬s is inductive relative to Fk−2 by A(2) and A(4).

Listing 1.3. The propagateClauses function

43{@pre :
44(1) A.1−3
45(2) ∀ 0 ≤ i ≤ k, Fi ∧ T ⇒ F ′

i+1

46(3) ∀ i > k + 1, |clauses(Fi)| = 0
47@post :
48(1) pre
49(2) ∀ 0 ≤ i ≤ k, ∀c ∈ clauses(Fi) , i f Fi ∧ T ⇒ c′ then c ∈ Fi+1 }
50vo i d propagateClauses (k : l e v e l) :
51for i := 1 to k :
52{@assert : ∀ 0 ≤ j < i, ∀c ∈ clauses(Fj) , i f Fj ∧ T ⇒ c′ then c ∈ Fj+1 }
53for each c ∈ clauses(Fi) :
54{@assert : pre }
55i f not sat (Fi ∧ T ∧ ¬c′) :
56clauses(Fi+1) := clauses(Fi+1) ∪ {c}

sors. The complication is that this recursive analysis must proceed in a manner
that terminates despite the presence of cycles in the system’s state graph. To
achieve termination, a set states of pairs (i, s) is maintained such that each pair
(i, s) ∈ states represents the knowledge that (1) s is inductive relative to Fi−1,
and (2) Fi excludes s. The loop in pushGeneralization always selects a pair
(n, s) from states such that n is minimal over the set. Hence, none of the states
already represented in states can be a predecessor of s at level n.

Formally, termination of pushGeneralization is established by the inductive
assertions D(2), which asserts that the set of states represented in states does
not decrease (statesprev represents states’s value on the previous iteration or,
during the first iteration, upon entering the function); E, which asserts that the
new state p is net yet represented in states; and F , which asserts that the level
associated with a state can only increase. Given that each iteration either adds
a new state to states or increases a level for some state already in states and
that levels peak at k+1, the number of iterations is bounded by the product of
k + 1 and the size of the state space.

Listings 1.1-1.5 and the termination arguments yield total correctness:

Theorem 1. For finite transition system S : (̄i, x̄, I, T) and safety property P ,

the algorithm terminates, and it returns true if and only if P is S-invariant.

A variation exists that is perhaps more satisfying conceptually. Recall that
inductivelyGeneralize and generateClause (Listing 1.4) together generate a
subclause of ¬s that is inductive relative to Fi, where Fi is the weakest stepwise
assumption relative to which ¬s is inductive. It is possible to find the highest
level j ≥ i for which ¬s has a subclause that is inductive relative to Fj even if ¬s
is not itself inductive relative to Fj (in which case j > i). However, in practice,
this variation requires more time on designs with many latches. Whereas the
unsatisfiable core of the query Fi−1∧T ∧¬s∧ s′ at line 75 can be used to reduce
s, often significantly, before applying inductive generalization (see Section 7), no
such optimization is possible for the variation.

Listing 1.4. Stepwise-relative inductive generalization

57{@pre :
58(1) B

59(2) min ≥ −1
60(3) i f min ≥ 0 then ¬s i s i nduc t i v e r e l a t i v e to Fmin

61(4) there i s a t race from s to a ¬P−s t a t e
62@post :
63(1) B

64(2) min ≤ rv ≤ k , rv ≥ 0
65(3) s 6|= Frv+1

66(4) ¬s i s i nduc t i v e r e l a t i v e to Frv }
67l e v e l inductivelyGeneralize (s : s t a t e , min : l e v e l , k : l e v e l) :
68i f min < 0 and sat (F0 ∧ T ∧ ¬s ∧ s′) :
69raise Counterexample
70for i := max(1 , min + 1) to k :
71{@assert :
72(1) B

73(2) min < i ≤ k

74(3) ∀ 0 ≤ j < i , ¬s i s i nduc t i v e r e l a t i v e to Fj }
75i f sat (Fi ∧ T ∧ ¬s ∧ s′) :
76generateClause (s , i− 1 , k)
77return i− 1
78generateClause (s , k , k)
79return k

80

81{@pre :
82(1) B

83(2) i ≥ 0
84(3) ¬s i s i nduc t i v e r e l a t i v e to Fi

85@post : (1) B , (2) s 6|= Fi+1 }
86vo i d generateClause (s : s t a t e , i : l e v e l , k : l e v e l) :
87c := subclause of ¬s that is inductive relative to Fi

88for j := 1 to i+ 1 :
89{@assert : B }
90clauses(Fj) := clauses(Fj) ∪ {c}

7 Single-Core Implementation

Our submission to HWMCC’10, ic3, placed third in the “unsatisfiable” category,
third overall, and solved 37 more benchmarks than the 2008 winner [3].5 We
discuss the implementation details of ic3 in this section.

We implemented the algorithm, AIG sweeping [11], and conversion of the
transition relation to CNF based on technology mapping [13] in OCaml. The
preprocessor of MiniSAT 2.0 is applied to further simplify the transition relation

5 The data are available at http://fmv.jku.at/hwmcc10. The competition binary
and an open source version of ic3 are available at http://ecee.colorado.edu/

~bradleya.

Listing 1.5. The pushGeneralization function

91{@pre :
92(1) B

93(2) ∀ (i, q) ∈ states , 0 < i ≤ k + 1
94(3) ∀ (i, q) ∈ states , q 6|= Fi

95(4) ∀ (i, q) ∈ states , ¬q i s i nduc t i v e r e l a t i v e to Fi−1

96(5) ∀ (i, q) ∈ states , there i s a t race from q to a ¬P−s t a t e
97@post :
98(1) B

99(2) ∀ (i, q) ∈ states , q 6|= Fk }
100vo i d pushGeneralization (states : (l e v e l , s t a t e) se t , k : l e v e l) :
101while true :

102{@rank : (k + 1)2|x̄|

103@assert (D) :
104(1) pre
105(2) ∀ (i, q) ∈ statesprev, ∃j ≥ i, (j, q) ∈ states }
106(n, s) := choose from states , minimizing n

107i f n > k : return
108i f sat (Fn ∧ T ∧ s′) :
109p := the predecessor extracted from the witness
110{@assert (E) : ∀ (i, q) ∈ states , p 6= q }
111m := inductivelyGeneralize (p , n− 2 , k)
112states := states ∪ {(m+ 1, p)}
113else :
114m := inductivelyGeneralize (s , n , k)
115{@assert (F) : m+ 1 > n }
116states := states \ {(n, s)} ∪ {(m+ 1, s)}

[12, 13]. The time spent in preprocessing the transition relation is amortized over
thousands to millions of 1-induction SAT instances in a typical analysis.

One implementation choice that may seem peculiar is that we used a mod-
ified version of ZChaff for SAT-solving [22]. The most significant modification
was to change the main data structure and algorithm for BCP to be like Min-
iSAT [14]. We chose ZChaff, which is considered to be outdated, because it offers
efficient incremental functionality: clauses can be pushed and popped, which is
necessary for finding an inductive subclause. While this functionality can be
simulated in more recent solvers [15], each push/pop iteration requires a new
literal. Given that hundreds to thousands of push/pop cycles occur per second

in our analysis, each involving clauses, it seems that the amount of garbage that
would accumulate in the simulated approach would be prohibitive. Thus we
elected to use a library with built-in incremental capability. The consequence is
that ZChaff caused timeouts on the following benchmarks during HWMCC’10:
bobaesdinvdmit,bobsmfpu, bobpcihm, and bobsmminiuart. Otherwise, the per-
centage of time spent in SAT solving varies from as low as 20% to as high as
85%. Benchmarks on which SAT solving time dominates could benefit from a
faster solver.

We highlight important implementation decisions. The most significant opti-
mization is to extract the unit clauses of an unsatisfiable core whenever possible.
Consider the unsatisfiable query F ∧ c ∧ T ∧ ¬c′; the unsatisfiable core can re-
veal a clause d ⊂ c such that F ∧ c ∧ T ∧ ¬d′ is also unsatisfiable. The clause
d is an inductive subclause if it satisfies initiation. If the initial state is defined
such that all latches are 0 (as in HWMCC’10) and d does not satisfy initiation,
ic3 simply restores a negative literal from c. This optimization applies in the
following contexts: (1) in the inductivelyGeneralize algorithm, from the un-
satisfiable query that indicates that ¬s is inductive relative to Fi when ¬s is
not inductive relative to Fi+1 (Listing 1.4, line 75); (2) in the down algorithm
[6], from the (final) unsatisfiable query indicating an inductive subclause; (3) in
the up algorithm; and (4) in propagateClauses, during propagation of clauses
between major iterations (Listing 1.3, line 55).

In the implementation of inductive generalization (algorithm MIC [6]), we
use a threshold to end the search for a minimal inductive subclause. If down is
applied unsuccessfully to three subclauses of c, each formed by removing one
randomly chosen literal, then c is returned. While c may not be minimal — that
is, some d ⊂ c may also be (relatively) inductive — it is typically sufficiently
strong; and the search is significantly faster.

We use a stepwise cone of influence (COI) [2] to reduce cubes: if a state s is
i transitions away from violating P , the initial clause c ⊆ ¬s is set to contain
only state variables of the i-step COI; the transition relation is unchanged for
practical reasons. The generated clause is more relevant with respect to P in
explaining why states similar to s are unreachable, although c may only be
inductive relative to a stronger stepwise assumption than ¬s.

Subsumption reduces clause sets across levels between major iterations: if
clause c at level i subsumes clause d at level j ≤ i, then d is removed.

For memory efficiency, one SAT manager is used for computing consecution
at all levels. A level-specific literal is added to each generated clause. Clauses at
and above level i are activated when computing consecution relative to Fi.

An initial set of simulation runs yields candidate equivalences between
latches. These candidate equivalences are then logically propagated across the
stepwise approximations between major iterations. Some benchmarks are easily
solved once key equivalences are discovered, and while the pure analysis is poor
at discovering them, propagation easily finds them. Simulation make this analy-
sis inexpensive even when it is not effective. This binary clause analysis fits well
with the overall philosophy of generating stepwise-relative inductive clauses.

When searching for inductive subclauses, using an arbitrary static ordering
of literals to consider for removal yields poor results. We tried various heuristics
for dynamically ordering the literals, but none were particularly effective. The
competition version of ic3 prefers the negations of literals that appear frequently
in the states set of pushGeneralization. A clause with such literals is relevant to
many of the states in states. However, the only definite claim is that changing the
variable ordering is superior to using an arbitrary static ordering. We have not
investigated whether well-chosen static orderings might yield better performance.

Table 1. Runtime data for selected benchmarks from HWMCC’10 [3]

Benchmark Result Time (s) # queries |proof| k

bjrb07amba10andenv unsat 260 12238 262 7

bob3 unsat 10 44058 865 7

boblivea unsat 5 34884 652 14

boblivear unsat 4 34547 668 14

bobsmnut1 unsat 9 20530 554 15

intel007 unsat 30 31250 1382 6

intel044 sat 303 578982 92 57

intel045 sat 316 596539 124 49

intel046 sat 223 431123 78 44

intel047 sat 293 561304 82 52

intel054 unsat 56 147986 1459 19

intel055 unsat 9 28302 385 15

intel056 unsat 15 63877 649 19

intel057 unsat 21 72925 731 18

intel059 unsat 11 47840 558 17

intel062 unsat 301 389065 3372 26

nusmvbrp unsat 5 55281 306 27

nusmvreactorp2 unsat 51 308627 779 116

nusmvreactorp6 unsat 178 753335 1723 119

pdtvisns3p00 unsat 11 4428 465 12

pdtvisns3p01 unsat 27 104750 1109 10

pdtvisns3p02 unsat 21 85812 680 12

pdtvisns3p03 unsat 21 80810 745 12

pdtvisns3p04 unsat 115 281812 1783 14

pdtvisns3p05 unsat 135 326604 2033 13

pdtvisns3p06 unsat 13 55016 631 9

pdtvisns3p07 unsat 84 228175 1631 11

pj2017 unsat 233 74417 685 27

While time and memory data for HWMCC’10 are already publicly available,
Table 1 provides data particular to ic3 for the benchmarks that ic3 and at most
two other entries solved. The table indicates the number of executed SAT queries
(# queries); the size of the proof (|proof|), which is the number of clauses for
unsatisfiable benchmarks and the length of the counterexample for satisfiable
benchmarks; and the maximum value of k. Notice how widely the maximum k

value varies. The benefit of the work described in this paper over previous work
[6] is particularly apparent for benchmarks with large k, as such benchmarks
require generalizing the many states of long sequences simultaneously. Notice
also the rate at which SAT queries are solved — several thousand per second
— indicating that these queries are trivial compared to those posed by other
SAT-based model checkers.

A variant of this algorithm emphasizes speed over quality in inductive clause
generation. Rather than using “strong” induction to compute a minimal induc-
tive subclause c ⊆ d relative to Fi, it computes a prime implicate ĉ of Fi∧d∧T ,
that is, a minimal subclause ĉ ⊆ d such that Fi ∧ d ∧ T ⇒ ĉ′ holds. On the
HWMCC’10 benchmark set, this variation solves 28 fewer unsatisfiable bench-
marks and three fewer satisfiable benchmarks. Quality matters.

8 Parallel Implementation

Converting the implementation from sequential to parallel is straightforward.
The overall model is of independent model checkers sharing information. Each

time a process generates a clause c at level i, it sends the tuple (c, i) to a central
server and receives in return a list of clause-level tuples generated since its last
communication. To avoid one source of duplicated effort, it uses the new infor-
mation to syntactically prune its states set. During propagateClauses calls,
each process propagates a subset of the clauses based on hashing modulo the
number of total processes, and the processes proceed in lockstep, level by level.
Additional communications handle exceptional situations such as the discovery
of a counterexample. Processes attempt to avoid discovering the same informa-
tion simultaneously simply through exploiting the randomness in the ZChaff
implementation, although co-discovery occurs in practice early and late in each
major iteration.

How well does the parallel implementation scale with available cores? To
investigate this question, we selected eight benchmarks from the competition
that are difficult but possible for the non-parallel version: Intel benchmarks 20,
21, 22, 23, 24, 29, 31, and 34. We ran the non-parallel and parallel implementa-
tions on four Quad Core i5-750/2.66GHz/8MB-cachemachines with 8GB, DDR3
non-ECC SDRAM at 1333MHz, running 64-bit Ubuntu 9.10. One process was
arranged as a single process on an otherwise mostly idle machine; four processes
were arranged as one process per machine; eight processes were arranged as two
processes per machine; and twelve processes were arranged as three processes per
machine. Unfortunately, (shared) memory latency increased significantly with
the number of processes per machine so that the twelve-process configuration
was not necessarily an improvement on the eight-process configuration in terms
of the system-wide number of SAT problems solved per second.

Each benchmark was analyzed eight times by each configuration, with a
timeout of two hours (7200 seconds). Figure 1 presents the results in eight graphs
that plot running times against the number of processes. The numbers adjacent
to dots at 7200 indicate the number of timeouts.

Every benchmark benefits from additional cores. One possible explanation,
however, is simply that parallelism reduces variance. The high variability of the
single-process implementation may be a result of “lucky” discoveries of certain
clauses that yield major progress toward proofs. Runs that fail to make these
discoveries early can take significantly longer than those that do. To explore
this possibility, we set up the following configuration: eight non-communicating
processes, where the first to finish causes the others to terminate. In other words,
the minimum time is taken from eight independent runs, except that all are
executed simultaneously, thus experiencing the memory latency of the eight-
process communicating configuration. The results are shown in Figure 2(a).

The data show that some performance gain can indeed be attributed to a
reduction in variance. However, comparing Figures 1 and 2 for each benchmark
indicates that this reduction in variance cannot explain all of the performance
gain. In particular, the standard eight-process parallel version is significantly
faster on benchmarks 23, 24, and 29. Except on benchmark 22, for which the
data are inconclusive, it is faster on the other benchmarks as well. Therefore,
communication is a significant factor in explaining superior performance.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

intel020

 4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

intel021

 6 3 1 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

intel022

 8 6 6 6

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

intel023

 7 1 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

intel024

 4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

intel029

 8 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

intel031

 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

intel034

Fig. 1. Number of communicating processes vs. time (in seconds)

Unfortunately, saturation is also possible: at some number of processes, the
rate of co-discovery of information is such that additional processes do not im-
prove runtime. For example, the performance that benchmarks 31 and 34 gain
from the four-process configuration is not improved upon with additional pro-
cesses. However, the data do not indicate degrading performance, either.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

20 21 22 23 24 29 31 34

8 independent processes

 1 7 7 8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

bob05
bob1u05cu

bobsmi2c

bobsmoci

mentorbm1p05

mentorbm1p07

pdtswvqis10x6p1

pdtswvqis8x8p1

pdtswvroz10x6p1

pdtswvroz8x8p2

pdtswvtma6x4p2

pdtswvtma6x6p1

nusmvqueue

pdtpmsns3

pdtvissfeistel

cmudme1

unsolved by ic3

 1 2 1 3 1 1

(a) (b)

Fig. 2. Benchmarks vs. time

Having established that communicating processes are superior to independent
processes, we next tested if parallel ic3 is superior to serial ic3 in numbers of
benchmarks solved in a given time, in particular the 900 seconds per benchmark
allotted in HWMCC’10. We ran the twelve-process communicating configura-
tion for one hour on each of the 105 benchmarks that ic3 failed to solve during
HWMCC’10 and then extracted the 16 benchmarks that were proved to be un-
satisfiable, excluding the intel set of Figure 1. Analyzing these 16 benchmarks
four times each with a timeout of one hour produced the data in Figure 2(b).
Figures 1 and 2(b) indicate that the twelve-process configuration would yield at
least twelve additional proofs within 900 seconds.

9 Conclusion

The performance of ic3 in HWMCC’10 shows that the incremental generation
of stepwise-relative inductive clauses is a promising new approach to symbolic
model checking. Furthermore, it is amenable to simple yet effective paralleliza-
tion, a crucial characteristic given modern architectures.

Why does this algorithm work so well? Consider a clause c. Predecessors
to c-states are likely to be or to look similar to c-states, to the extent that
dropping a few literals from c may yield an inductive clause d. This reasoning
motivates the inductive generalization algorithm (Section 3). However, systems
violate this observation to a varying extent. The stepwise sets F0, ..., Fk offer a
new possibility: c, if invariant, is inductive relative to a stepwise assumption Fi.
Subsequent discovery of additional clauses can yield a set of mutually (relatively)
inductive clauses that are propagated forward together.

Ongoing research includes designing a thread-safe incremental SAT solver,
in which threads share a common set of core constraints but have thread-local
temporary constraints; investigating how inductive clause generation can ac-
celerate finding counterexamples; and exploring how stepwise-relative inductive
generalization can apply to the analysis of infinite-state systems.

Acknowledgments. I am grateful to Fabio Somenzi for many fruitful discus-
sions. Arlen Cox provided the initial implementation of technology mapping-
based CNF translation. This work was supported by NSF grant CCF 0952617.

References

1. Awedh, M., and Somenzi, F. Automatic invariant strengthening to prove prop-
erties in bounded model checking. In DAC (2006), ACM Press, pp. 1073–1076.

2. Biere, A., Cimatti, A., Clarke, E. M., and Zhu, Y. Symbolic model checking
without BDDs. In TACAS (London, UK, 1999), Springer-Verlag, pp. 193–207.

3. Biere, A., and Claessen, K. Hardware model checking competition. In Hardware
Verification Workshop (2010).

4. Bradley, A. R. Safety Analysis of Systems. PhD thesis, Stanford University,
May 2007.

5. Bradley, A. R. k-step relative inductive generalization. Tech. rep., CU Boulder,
March 2010. http://arxiv.org/abs/1003.3649.

6. Bradley, A. R., and Manna, Z. Checking safety by inductive generalization of
counterexamples to induction. In FMCAD (2007).

7. Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang,

L. J. Symbolic model checking: 10ˆ20 states and beyond. Inf. Comput. 98, 2
(1992), 142–170.

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003).

9. Clarke, E., Grumberg, O., and Peled, D. Model Checking. MIT Press, 2000.
10. Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In
POPL (1977), ACM Press, pp. 238–252.

11. Eén, N. Cut sweeping. Tech. rep., Cadence, 2007.
12. Eén, N., and Biere, A. Effective preprocessing in SAT through variable and

clause elimination. In SAT (2005).
13. Eén, N., Mishchenko, A., and Sörensson, N. Applying logic synthesis for

speeding up SAT. In SAT (2007), pp. 272–286.
14. Eén, N., and Sörensson, N. An extensible SAT-solver. In SAT (2003).
15. Eén, N., and Sörensson, N. Temporal induction by incremental SAT solving.

In BMC (2003).
16. Floyd, R. W. Assigning meanings to programs. In Symposia in Applied Mathe-

matics (1967), vol. 19, American Mathematical Society, pp. 19–32.
17. Graf, S., and Saidi, H. Construction of abstract state graphs with PVS. In

CAV (June 1997), O. Grumberg, Ed., vol. 1254 of LNCS, Springer, pp. 72–83.
18. Hoare, C. A. R. An axiomatic basis for computer programming. Communications

of the ACM 12, 10 (October 1969), 576–580.
19. Manna, Z., and Pnueli, A. Temporal Verification of Reactive Systems: Safety.

Springer-Verlag, New York, 1995.
20. McMillan, K. L. Applying SAT methods in unbounded symbolic model checking.

In CAV (2002), vol. 2404 of LNCS, Springer-Verlag, pp. 250–264.
21. McMillan, K. L. Interpolation and SAT-based model checking. In CAV (2003),

vol. 2725 of LNCS, Springer, pp. 1–13.
22. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S.

Chaff: Engineering an Efficient SAT Solver. In DAC (2001).
23. Moura, L. D., Ruess, H., and Sorea, M. Bounded model checking and induc-

tion: From refutation to verification. In CAV (2003), Springer-Verlag, pp. 14–26.
24. Sheeran, M., Singh, S., and St̊almarck, G. Checking safety properties using

induction and a SAT-solver. In FMCAD (2000), pp. 127–144.
25. Vimjam, V. C., and Hsiao, M. S. Fast illegal state identification for improving

SAT-based induction. In DAC (2006), ACM Press, pp. 241–246.

