Understanding IC3

Aaron R. Bradley

ECEE, CU Boulder &
Summit Middle School

Further Reading ;

This presentation is based on

Bradley, A. R. “Understanding IC3.” In SAT,
June 2012.

http://theory. stanford. edu/ ~ar br ad

http://theory.stanford.edu/~arbrad

Foundation of verification for 40+ years (Floyd, Hoare)

To prove that S : (I,T) has safety property P, prove:
e Base case (initiation):

I =P
 Inductive case (consecution):

PANT = P’

e —

P s inductive

Understanding IC3 — 4/55

When Induction Falls

We present two solutions. ..
1. Use a stronger assertion, or

2. Construct an incremental proof, using
previously established invariants.

Tohar Manno

— Manna and Pnueli

Temporal Verification

AL ARl Temporal Verification of Reactive Systems: Safety

1995

Method 1 = “Monolithic”
Method 2 = “Incremental”

Understanding IC3 — 5/55

1. lllustration of the two methods
2. SAT-based model checkers

3.
4,
5.

Understanding IC3 as a
Understanding IC3 as a

orover
oug finder

Beyond IC3: Incrementa

. Inductive verification

Two Transition Systems

X1 y .= 11 1 1

IS while x: 2
2

X, Yy =X +VYy,Vy + X |3

Induction on System 1

X! y .= 11 1 1

g - while x: 2
1-

X, y = X+ 1,y + X |3

e |nitiation:
r=1Ny=1 =y >1
Initial condition P

e Consecution (fails):

>IN = +1AY = T >
y > _ Y _y Z> Y >
P transition relation P

Incremental Proof :

X! y .= 11 1 1

g - while x: 2
1-

X, y = X+ 1,y + X |3

Problem: y decreases If z IS negative. But...
Q01 X Z 0

e |nitiation:

r=1Ny=1=2>0

e Consecution:

r>0ANy =x+1ANY =y+az=2">0

/

P1 transition relation P1

Back to P I

X! y .= 11 1 1

g - while x: 2
1-

X, y = X+ 1,y + X |3

Consecution:

r>0Ay>1A2 =2 +1ANy =y+ax=y >1
1 P transition relation P

P 1s Inductive relative to ¢;.

Induction on System 2

X! y .= 11 1 1

G- while x: 2
9.

X, V = X+Vy, Vy+X |3

Induction falls for P as in System 1.
Additionally,

r>0ANd =z+yANy =y+ax A2 >0

x > 0 1S not inductive, either.

Monolithic Proof I

X,y =1, 1 1
g, - while x: 2
2.

X, Yy =X+Vy, Vy+ X |3

Invent strengthening all at once:

P: 2>0Ay>1

Consecution:

r>0ANy> 1A =ax+yANy =y+ao=2">0Ay >1

— —
P B

Understanding IC3 — 13/55

Incremental vs. Monolithic Methods

 Incremental: does not always work

« Monolithic: relatively complete

* Incremental: apply induction iteratively (*modular”)
« Monolithic: invent one strengthening formula

We strongly recommend its use whenever
applicable. Its main advantage is that of
modularity.

— Manna and Pnuel
Temporal Verification of Reactive Systems: Safety

1995

Finite-state System

Transition system:

Cube s:
« Conjunction of literals, e.qg.,

5171/_072/_'563/\5174/\"'
* Represents set of states (that satisfy it)

Clause: —s

SAT-Based Backward Model Checking

1. Search for predecessor s to some error state:
PAT = P

If none, property holds.

2. Reduce cube s to s:

« Expand to others with bad successors
[McMillan 2002], [Lu et al. 2005]

e If PA—-s AT = =5, reduce by implication
graph [Lu et al. 2005]

* Apply inductive generalization [Bradley 2007]
3. P.=PA-s

Inductive Generalization

Given: cube s
Find: ¢ C —s such that

e |nitiation:
I = c

e Consecution (relative to information P):
PANcANT = ¢

 No strict subclause of ¢ Is inductive relative to P

Analysis of Backward Search

Strengths:
« Easy SAT queries, low memory
* Property focused

e Some are approximating, computing neither
strongest nor weakest strengthening

Weaknesses:
e Essentially undirected search (bad for bug finding)
e Ignore Iinitial states

Analysis of FSIS :

Strengths (essentially, great when it works):

e Can significantly reduce backward search

e Can find strong lemmas with induction
Weaknesses:

 Like others when inductive generalization falls

BMC

Compared to backward search:
« Considers initial and final states
* Requires solving hard SAT queries
* Practically incomplete (UNSAT case)

k—1
In NP ATD) A -PH
1=0

Understanding IC3 — 23/55

k-Induction I

Addresses practical incompleteness of BMC:
e Initiation: BMC
e Consecution:

k-1
/\(p(i) AT = p)
i=0

(plus extra constraints to consider loop-free paths)

k- Induction

Property-focused over-approximating post-image:

k—1
F;in \(PYATD) = p®
1=0

 {states < i steps from initial states} C F;
e If holds, finds interpolant F;_:

FNT = Fly Flyn NPOATO) = po

e If falls, Increases k

BMC — k-Induction — ITP :

 Completeness from unrolling transition relation

e Evolution: reduce max k£ in practice (UNSAT case)

e Monolithic:
« hard SAT queries
* Induction at top-level only

e Consider both initial and final states

Best of Both? I

Desire:

« Stable behavior (backward search)
« Low memory, reasonable queries
e Can justlet it run

« Consideration of initial and final states (BMC)

« Modular reasoning (incremental method)
Avoid:

 Blind search (backward search)

* Queries that overwhelm the SAT solver (BMC)

|IC3: A Prover :

Stepwise sets Fy, Fi, ..., Fi, Fi..1 (CNF):
o {states < steps from initial states} C F;

o I; C {states > k — ¢ + 1 steps from error}
Four Invariants:

e Fy=1

o Iy = Fiy

« HEAT = F,,

o Except Fi 1, F; = P

. ifever F;, = F,,1, I} isinductive & P is invariant

Induction at Top Level

Is P inductive relative to F}.?
Fi. NT = P’
(Recall: F}, = P)

* Possibility #1: Yes
e Conclusion: P is inductive relative to F;

——

ROAPAT =P

Understanding IC3 — 33/55

Induction at Top Level

Monolithic behavior (predicate abstraction):
e For i from 1 to k: find largest C' C F; s.t.

FENT = ('

Fign = FaNC
* Frppn = b AP
 New frontier: Fj..

If ever F; = F;, done: P Is invariant.

Counterexample To Induction (CTI)

FLANT = P
e Possibility #2: No
e Conclusion: 4 Fj.-state s with error successor
 If sIs an Initial state, done: P Is not invariant

e Otherwise...

Induction at Low Level

Inductive Generalization in IC3
e Given: cube s

e Find: ¢ C —s such that
 |nitiation:
I = c

« Consecution (relative to F;):
FANeNANT = ¢

» No strict subclause of ¢ Is inductive relative to F;

Induchve Qeneralizztion

Understanding IC3 — 38/55

Addressing CTl s ;

* Find highest : such that

F,AN-sNANT = —§
« Apply inductive generalization:
cC-s [I=c¢c FANcNT=/¢

o - Fi11 = Fy1 A c(also update Fj, j <)
e If + < k, new proof obligation:

(s, 1+ 1)

“Inductively generalize s relative to £; "

Addressing Proof Obligation (t, 5

SAT query:
F; Nt AT = =t

If UNSAT:
 Inductive generalization must succeed:

cC—t I=c FANcANT=C
* Fipn = FjaNc

« Updated proof obligation (if j < k): (¢, j + 1)

Addressing Proof Obligation (, ;

SAT query:
F; Nt AT = =t

If SAT: New CTI u, treat as before
e Find highest ¢ s.t. —u Is Inductive relative to F;
 Inductively generalize (c C —u): Fj.1 .= F, 1 Ac
« New proof obligation (if : < k): (u, ¢+ 1)

One of IC3’s Insights

e Suppose CTI s was inductively generalized at F;
c Fiy1 = Nc
« Removed s and some predecessors from F;_4
« Updated proof obligation: (s, 7 + 1)

One

e SU

of IC3’s Insights

ppose CTI s was inductively generalized at F;
it1:= P Ae

 Removed s and some predecessors from F;_ 4
« Updated proof obligation: (s, 7 + 1)

e SU

ppose F; 1 A—s AT & —s

» 4 s-predecessor F;_-State ¢
 But ¢ was not a F;-state
* t1s arelevant predecessor: the difference

INC

petween F; and F,
uctive generalization at £} focuses IC3’s choice

of

oredecessors at £ ;.

Understanding IC3 — 43/55

Meeting Obligations :

IC3 pursues proof obligation (¢, j) until j = £ — even
If the original CTIl has been addressed. Why?

e Supporting lemmas for this frontier can be useful
at next

e During “predicate abstraction” phase, supporting
clauses propagate forward together

« Allows IC3 to find mutually (relatively) inductive
lemmas, addressing a key weakness of FSIS

e More...

|IC3: A Prover :

e Based on CTls from frontier and predecessors,
|C3 generates stepwise-relative inductive clauses.

 |C3 propagates clauses forward in preparing a
new frontier.
« Some clauses may be too specific.
» Their loss can break mutual support.

e But as the frontier advances, IC3 considers ever
more general situations.

* It eventually finds the real reasons (as truly
iInductive clauses) that P Is invariant.

IC3: A Bug Finder :

Suppose:

e u —t— s — Error
* Proof obligations:

{(s, k—=1), (t, k—2), (u, k—1)}

That Is,
* s must be inductively generalize relative to F}._;
* t must be inductively generalize relative to Fj._s
* u must be inductively generalize relative to Fj._;

Which proof obligation should IC3 address next?

Guided Search I

Two observations:

* u IS the “deepest” of the states

u—t— s — Error

e ¢ IS the state that IC3 considers as likeliest to be
closest to an initial state.

{(s, k—=1), (t, k—=2), (u, k—1)}
“Proximity metric”
Conclusion: Pursue (¢, k£ — 2) next.

(It also happens to be the correct choice [Bradley 2011].)

(b)

{G k), kD), (kD)
Rroof Obligations : Guided Seard

IC3: A Bug Finder :

|C3 executes a guided search.

« Proximity metric: j of (¢, j)
« |C3 pursues obligation with minimal proximity

* A new clause updates the proximity metric for
many states
e Same conclusion as proof perspective:
 Pursue all proof obligations (¢, 7) until j = &
* Now: To gain important heuristic information

« Additionally: Allows IC3 to search deeply even
for small &

Incremental, Inductive Verification

11V Algorithm:
« Constructs concrete hypotheses
« Generates intermediate lemmas incrementally
e Applies induction many times
« Generalizes from hypotheses to strong lemmas

After IC3 :

e FAIR [Bradley et al. 2011]
» For w-reqgular properties, e.g., LTL
* Insight: SCC-closed regions can be
characterized inductively
e [ICTL [Hassan et al. 2012]
e For CTL properties
* Insight: EX (SAT), EU (IC3), EG (FAIR)

« Standard traversal of CTL property’s parse tree
« Over- and under-approximating sets
 Task state-driven refinement

FAIR: Reachable Fair Cycles

Reduce search for reachable fair cycle to a set of
safety problems:

o Skeleton:

Together satisfy all fairness constraints.

e Task: Connect states to form lasso.

Each connection task Is a reach query.

e Stem query. Connect initial condition to a state:

(To itself if skeleton has only one state.)

IC3 FAIR IICTL
Hypothesis CTI “lasso” skeleton task state
Lemma clause barrier refinement
Induction 1 1 EU (IC3), EG (FAIR)
Generalization MIC proof improvement

trace generalization

Conclusions :

o Attempted to explain why IC3 works:

« As a compromise between the incremental
and monolithic strategies

 In terms of best and worst qualities of previous
SAT-based model checkers

* As a prover
* As a bug finder

e Other IIV algorithms:
 FAIR and IICTL

 An Indication that IC3’s characteristics work In
other contexts

	Further Reading
	Induction
	
	When Induction Fails
	Outline
	Two Transition Systems
	Induction on System 1
	Incremental Proof
	Back to P
	Induction on System 2
	Monolithic Proof
	
	Incremental vs. Monolithic Methods
	Finite-state System
	SAT-Based Backward Model Checking
	Inductive Generalization
	
	
	Analysis of Backward Search
	Analysis of FSIS attrib {Bradley 2007}
	BMC attrib {Biere et al. 1999}
	
	k-Induction attrib {Sheeran et al. 2000}
	
	ITP attrib {McMillan 2003}
	
	BMC $
ightarrow $ k-Induction $
ightarrow $ ITP
	Best of Both?
	IC3: A Prover
	
	Induction at Top Level
	
	Induction at Top Level
	Counterexample To Induction (CTI)
	
	Induction at Low Level
	
	Addressing CTI s
	Addressing Proof Obligation (t, j)
	Addressing Proof Obligation (t, j)
	One of IC3's Insights
	
	Meeting Obligations
	IC3: A Prover
	IC3: A Bug Finder
	Guided Search
	
	IC3: A Bug Finder
	Incremental, Inductive Verification
	After IC3
	FAIR: Reachable Fair Cycles
	Reach Queries
	{IIV}
	Conclusions

