

The Calculus of Computation

Decision Procedures with Applications to Verification

Aaron R. Bradley and Zohar Manna

Stanford University

(Aaron is visiting EPFL and will soon be at CU Boulder)

The Calculus of Computation?

*It is reasonable to hope that the relationship between **computation** and **mathematical logic** will be as fruitful in the next century as that between **analysis** and **physics** in the last. The development of this relationship demands a concern for both applications and mathematical elegance.*

— John McCarthy

A Basis for a Mathematical Theory of Computation, 1963

Aaron R. Bradley
Zohar Manna

The Calculus of Computation

Decision Procedures
with Applications to Verification

 Springer

Goals

Teach logic as a fundamental tool in engineering.

- Present computational view of logic.
- Apply logic to specification and verification.
 - Promote a practical understanding of logic.
 - Teach the fundamental concepts in verification.
- Connect to other topics.

Audience

- Advanced undergraduate students
- Beginning graduate students
- Computer scientists and engineers who want to apply decision procedures

But assumes very little.

Topics: Overview

- First-order logic
- Specification & verification
- Satisfiability decision procedures
- Static analysis

Part I: Foundations

- 1. Propositional Logic
- 2. First-Order Logic
- 3. First-Order Theories
- 4. Induction
- 5. Program Correctness: Mechanics
 - Inductive assertion method, Ranking function method
- 6. Program Correctness: Strategies

Pi: Prove it

```
@pre  $\top$ 
@post  $\forall m, n. 0 \leq m \leq n < |rv| \rightarrow rv[m] \leq rv[n]$ 
int[] BubbleSort(int[] a0) {
    int[] a := a0;
    for
        @L1 :  $\left[ \begin{array}{l} -1 \leq i < |a| \\ \wedge \forall m, n. i \leq m \leq n < |a| \rightarrow a[m] \leq a[n] \\ \wedge \forall m, n. 0 \leq m \leq i \wedge i + 1 \leq n < |a| \rightarrow a[m] \leq a[n] \end{array} \right]$ 
        (int i := |a| - 1; i > 0; i := i - 1)
        for
            @L2 :  $\left[ \begin{array}{l} 1 \leq i < |a| \wedge 0 \leq j \leq i \\ \wedge \forall m, n. i \leq m \leq n < |a| \rightarrow a[m] \leq a[n] \\ \wedge \forall m, n. 0 \leq m \leq i \wedge i + 1 \leq n < |a| \rightarrow a[m] \leq a[n] \\ \wedge \forall m. 0 \leq m < j \rightarrow a[m] \leq a[j] \end{array} \right]$ 
            (int j := 0; j < i; j := j + 1)
            if (a[j] > a[j + 1]) {
                int t := a[j];
                a[j] := a[j + 1];
                a[j + 1] := t;
            }
        return a;
}
```


Part II: Algorithmic Reasoning

7. Quantified Linear Arithmetic

Quantifier elimination for integers and rationals

8. Quantifier-Free Linear Arithmetic

Linear programming for rationals

9. Quantifier-Free Equality and Data Structures

10. Combining Decision Procedures

Nelson-Oppen combination method

11. Arrays

More than quantifier-free fragment

12. Invariant Generation

Abstract interpretation without the Greek

Full course

- Semester: time for theorems
- Quarter: fast pace or skip some theorems

Partial course

- Combination procedure track: 5-10 lectures
Incorporate into course on theorem proving
- Verification track: 5-10 lectures
Prepare students for depth in static analysis

Track: Combination Procedures

1. Propositional Logic

2. First-Order Logic

Theorems: Compactness, Craig Interpolation

3. First-Order Theories

8. Quantifier-Free Linear Arithmetic

9. Quantifier-Free Equality and Data Structures

10. Combining Decision Procedures

Theorem: Correctness of Nelson-Oppen

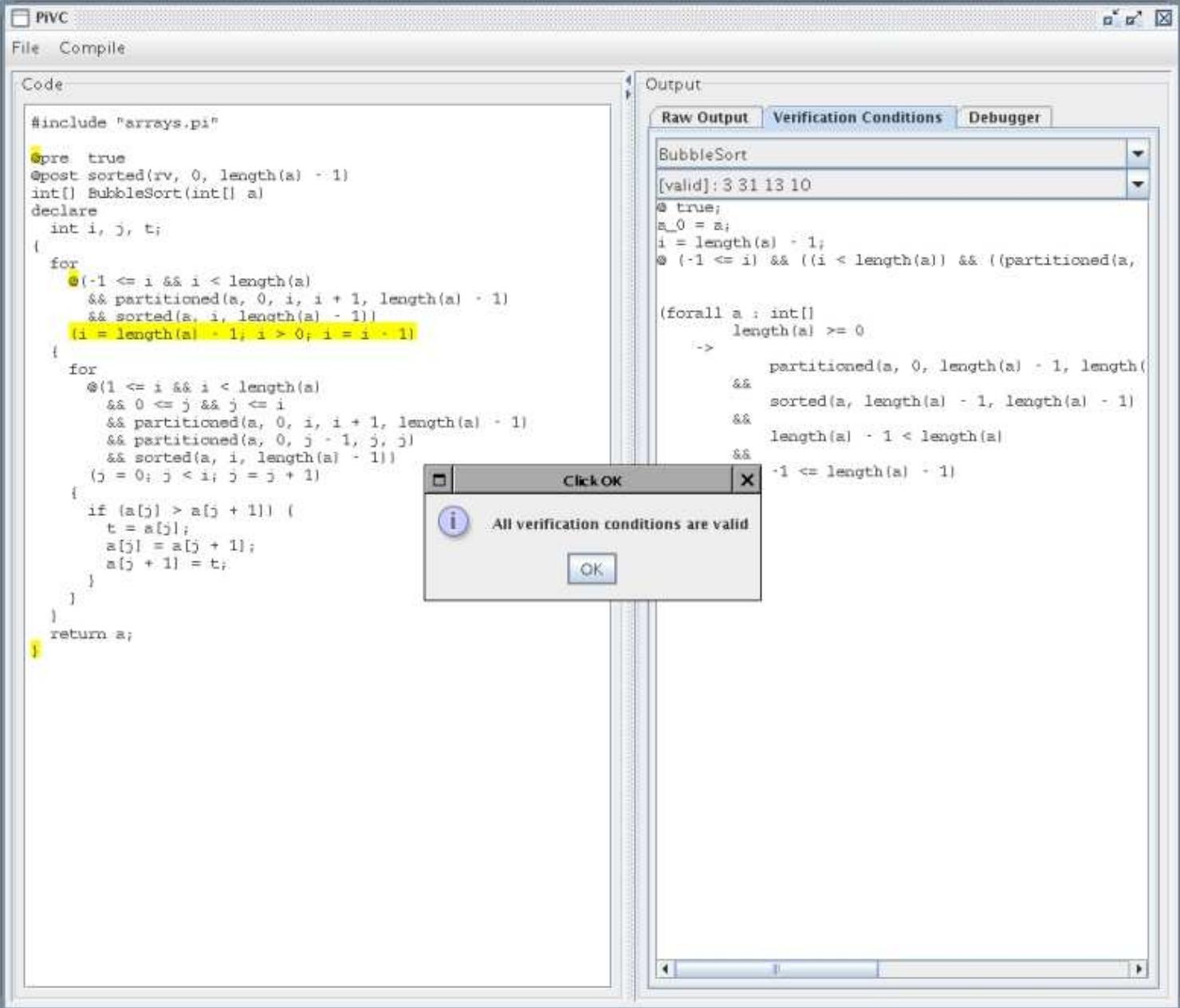
Track: Verification

Partial & total correctness of sequential programs

1. Propositional Logic
2. First-Order Logic
3. First-Order Theories
4. Induction
5. Program Correctness: Mechanics
6. Program Correctness: Strategies
12. Invariant Generation

Exercises

- Each chapter includes exercises.
Range from applied to theoretical
- π VC: Assign exercises throughout course.
 - Students need time to learn skills.
 - Students learn to use logic.



The screenshot shows the PiVC tool interface. The left pane is a code editor with the following C-like code:

```
#include "arrays.pi"
@pre true
@post sorted(rv, 0, length(a) - 1)
int[] BubbleSort(int[] a)
declare
    int i, j, t;
{
    for
        @(-1 <= i && i < length(a)
            && partitioned(a, 0, i, i + 1, length(a) - 1)
            && sorted(a, i, length(a) - 1))
        (i = length(a) - 1; i > 0; i = i - 1)
    {
        for
            @ (1 <= i && i < length(a)
                && 0 <= j && j <= i
                && partitioned(a, 0, i, i + 1, length(a) - 1)
                && partitioned(a, 0, j - 1, j, j)
                && sorted(a, i, length(a) - 1))
            (j = 0; j < i; j = j + 1)
        {
            if (a[j] > a[j + 1])
                t = a[j];
                a[j] = a[j + 1];
                a[j + 1] = t;
        }
    }
    return a;
}
```

The right pane is an output window with tabs for "Raw Output", "Verification Conditions" (selected), and "Debugger". The "Verification Conditions" tab shows the following verification conditions:

```
BubbleSort
[valid]: 3 31 13 10
@ true;
a_0 = a;
i = length(a) - 1;
@ (-1 <= i) && ((i < length(a)) && ((partitioned(a,
(forall a : int[]
length(a) >= 0
->
partitioned(a, 0, length(a) - 1, length(
&&
sorted(a, length(a) - 1, length(a) - 1)
&&
length(a) - 1 < length(a)
&&
-1 <= length(a) - 1)
```

A modal dialog box titled "Click OK" is in the foreground, displaying the message "All verification conditions are valid" with an "OK" button.

- Download:
<http://theory.stanford.edu/~arbrad/pivc>
- Runs on Linux & Mac OS X
- Minimal technical overhead
- All exercises from Chapters 5 & 6

Verification Exercises

Focus on arrays. Why?

- Data structure invariants are common.
- Most expressive decidable fragment in book.
- Personal bias (previous research).

Exercises:

- Sorting: from BubbleSort to QuickSort
- Searching: linear and binary search
- Set operations

More Information

- <http://theory.stanford.edu/~arbrad>
- I have a copy of the book with me.

