The Calculus of Computation:

Decision Procedures with

Applications to Verification

by
Aaron Bradley

Zohar Manna

Springer 2007

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus
FOL Syntax

variables	x, y, z, \cdots
constants	a, b, c, \cdots
functions	f, g, h, \cdots
terms	variables, constants or
	n -ary function applied to n terms as arguments a, $x, f(a), g(x, b), f(g(x, g(b)))$
predicates	p, q, r, \cdots
atom	\top, \perp, or an n -ary predicate applied to n terms
literal	atom or its negation
	$p(f(x), g(x, f(x))), \quad \neg p(f(x), g(x, f(x)))$

$\begin{array}{ll}\text { Note: } & 0 \text {-ary functions: constant } \\ & 0 \text {-ary predicates: } P, Q, R,\end{array}$

[^0]```
quantifiers
 existential quantifier }\existsx.F[x
 "there exists an x such that F[x]"
 universal quantifier }\forallx.F[x
 "for all x,F[x]"
FOL formula literal, application of logical connectives
 (\neg,\vee,^, ->,\leftrightarrow) to formulae,
 or application of a quantifier to a formula
```


## Example: FOL formula

```
\(\forall x \cdot \underbrace{p(f(x), x) \rightarrow(\exists y \cdot \underbrace{p(f(g(x, y)), g(x, y))}_{G}) \wedge q(x, f(x))}_{F}\)
```

The scope of $\forall x$ is $F$.
The scope of $\exists y$ is $G$.
The formula reads:
"for all x ,
if $p(f(x), x)$
then there exists a $y$ such that
$p(f(g(x, y)), g(x, y))$ and $q(x, f(x)) "$

## FOL Semantics

An interpretation $I:\left(D_{l}, \alpha_{l}\right)$ consists of:

- Domain $D_{l}$
non-empty set of values or objects
cardinality $\left|D_{l}\right|$ finite (eg, 52 cards),
countably infinite (eg, integers), or uncountably infinite (eg, reals)
- Assignment $\alpha_{\text {I }}$
- each variable $x$ assigned value $x_{l} \in D_{I}$
- each n-ary function $f$ assigned

$$
f_{l}: D_{l}^{n} \rightarrow D_{l}
$$

In particular, each constant a (0-ary function) assigned value $a_{l} \in D_{l}$

- each n -ary predicate $p$ assigned

$$
p_{I}: D_{I}^{n} \rightarrow\{\underline{\text { true }, ~ f a l s e}\}
$$

In particular, each propositional variable $P$ ( 0 -ary predicate) assigned truth value (true, false)

- The length of one side of a triangle is less than the sum of the lengths of the other two sides

$$
\forall x, y, z . \operatorname{triangle}(x, y, z) \rightarrow \text { length }(x)<\text { length }(y)+\text { length }(z)
$$

- Fermat's Last Theorem.

$$
\begin{aligned}
& \forall n . \text { integer }(n) \wedge n>2 \\
& \rightarrow \forall x, y, z . \\
& \quad \text { integer }(x) \wedge \operatorname{integer}(y) \wedge \operatorname{integer}(z) \\
& \quad \wedge x>0 \wedge y>0 \wedge z>0 \\
& \quad \rightarrow x^{n}+y^{n} \neq z^{n}
\end{aligned}
$$

```
Example:
 \(F: p(f(x, y), z) \rightarrow p(y, g(z, x))\)
```

Interpretation I: $\left(D_{l}, \alpha_{l}\right)$
$D_{I}=\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\} \quad$ integers
$\alpha_{I}:\{f \mapsto+, g \mapsto-, p \mapsto>\}$
Therefore, we can write

$$
F_{I}: x+y>z \rightarrow y>z-x
$$

(This is the way we'll write it in the future!) Also

$$
\alpha_{I}:\{x \mapsto 13, y \mapsto 42, z \mapsto 1\}
$$

Thus

$$
F_{I}: 13+42>1 \rightarrow 42>1-13
$$

Compute the truth value of $F$ under $I$

$F$ is true under I


## Semantics: Quantifiers

$x$ variable.
$x$-variant of interpretation $I$ is an interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{I}=D_{\jmath}$
- $\alpha_{l}[y]=\alpha_{J}[y]$ for all symbols $y$, except possibly $x$

That is, $I$ and $J$ agree on everything except possibly the value of $x$
Denote $J: I \triangleleft\{x \mapsto v\}$ the $x$-variant of $I$ in which $\alpha_{J}[x]=v$ for some $v \in D_{l}$. Then

- I $\vDash \forall x . F \quad$ iff for all $v \in D_{l}, l \triangleleft\{x \mapsto \mathrm{v}\} \models F$
- $I \vDash \exists x . F \quad$ iff there exists $v \in D_{I}$ s.t. $I \triangleleft\{x \mapsto v\} \vDash F$


## Example

For $\mathbb{Q}$, the set of rational numbers, consider

$$
F_{I}: \forall x . \exists y .2 \times y=x
$$

Compute the value of $F_{I}(F$ under $I)$ :
Let

$$
\begin{array}{ll}
J_{1}: I \triangleleft\{x \mapsto \mathrm{v}\} & J_{2}: J_{1} \triangleleft\left\{y \mapsto \frac{v}{2}\right\} \\
x \text {-variant of } I & y \text {-variant of } J_{1}
\end{array}
$$

```
for v }\in\mathbb{Q}\mathrm{ .
```

Then

| 1. | $J_{2}$ | $=2 \times y=x$ | since $2 \times \frac{v}{2}=v$ |
| :--- | ---: | :--- | :--- |
| 2. | $J_{1} \vDash \exists y .2 \times y=x$ |  |  |
| 3. | $I$ | $=\forall x . \exists y .2 \times y=x$ | since $v \in \mathbb{Q}$ is arbitrary |

## Second case

| 1. I | $\neq \quad \forall x \cdot p(x)$ | assumption |
| :---: | :---: | :---: |
| 2. $\quad 1$ | $\vDash \neg \exists x . \neg p(x)$ | assumption |
| 3. $\quad$ ব $\triangleleft x \mapsto \mathrm{v}\}$ | $\neq p(x)$ | 1 and $\forall$, for some $v \in D_{\text {l }}$ |
| 4. $\quad 1$ | $\nmid \quad \exists x . \neg p(x)$ | 2 and $\neg$ |
| 5. $\quad \triangleleft\{x \mapsto \mathrm{v}\}$ | $\neq \quad \neg p(x)$ | 4 and $\exists$ |
| 6. $\quad l \triangleleft\{x \mapsto \mathrm{v}\}$ | $\vDash p(x)$ | 5 and $\neg$ |

3 and 6 are contradictory.
Both cases end in contradictions for arbitrary $l \Rightarrow F$ is valid.

Example. $\quad F:(\forall x \cdot p(x)) \leftrightarrow(\neg \exists x \cdot \neg p(x)) \quad$ valid?
Suppose not. Then there is $/$ s.t.
$0 . \quad I \not F(\forall x . p(x)) \leftrightarrow(\neg \exists x . \neg p(x))$
First case

| 1. |  |  | $\forall x . p(x)$ | assumption |
| :---: | :---: | :---: | :---: | :---: |
| 2. | I | $\nmid=$ | $\neg \exists x . \neg p(x)$ | assumption |
| 3. | 1 | $\models$ | $\exists x . \neg p(x)$ | 2 and $\neg$ |
|  | $l \triangleleft\{x \mapsto \mathrm{v}\}$ | $\models$ | $\neg p(x)$ | 3 and $\exists$, for some $v \in D_{l}$ |
|  | $l \triangleleft\{x \mapsto v\}$ | $\vDash$ | $p(x)$ | 1 and $\forall$ |

4 and 5 are contradictory.

Example: Prove

$$
\overline{F:} p(a) \rightarrow \exists x \cdot p(x) \quad \text { is valid. }
$$

Assume otherwise.

| 1. | $I$ | $\not \models$ | $F$ |
| :--- | :---: | :--- | :--- |
| 2. | $I$ | $\models$ | $p(a)$ |
| 3. | $I$ | $\not \models$ | $\exists x \cdot p(x)$ |
| 4. | $I \triangleleft\left\{x \mapsto \alpha_{I}[a]\right\}$ | $\not \models$ | $p(x)$ |

2 and 4 are contradictory. Thus, $F$ is valid.

Example: Show

$$
F:(\forall x \cdot p(x, x)) \rightarrow(\exists x . \forall y \cdot p(x, y)) \quad \text { is invalid. }
$$

Find interpretation I such that

```
 \(I \vDash \neg[(\forall x . p(x, x)) \rightarrow(\exists x . \forall y . p(x, y))]\)
 i.e.
 \(I \vDash(\forall x . p(x, x)) \wedge \neg(\exists x . \forall y . p(x, y))\)
Choose \(\quad D_{I}=\{0,1\}\)
 \(p_{I}=\{(0,0),(1,1)\} \quad\) i.e. \(p_{I}(0,0)\) and \(p_{l}(1,1)\) are true
 \(p_{l}(1,0)\) and \(p_{l}(1,0)\) are false
\[
I \models \neg[(\forall x \cdot p(x, x)) \rightarrow(\exists x \cdot \forall y \cdot p(x, y))]
\]
i.e.
\[
I \models(\forall x \cdot p(x, x)) \wedge \neg(\exists x \cdot \forall y \cdot p(x, y))
\]
Choose \(\quad D_{l}=\{0,1\}\)
\[
\begin{array}{rr}
p_{I}=\{(0,0),(1,1)\} \quad \text { i.e. } p_{I}(0,0) \text { and } p_{l}(1,1) \text { are true } \\
p_{I}(1,0) \text { and } p_{l}(1,0) \text { are false }
\end{array}
\]
```

I falsifying interpretation $\Rightarrow F$ is invalid.

## Rename $x$ by $x^{\prime}$ :

replace $x$ in $\forall x$ by $x^{\prime}$ and all free $x$ in the scope of $\forall x$ by $x^{\prime}$.

$$
\forall x . G[x] \quad \Leftrightarrow \quad \forall x^{\prime} \cdot G\left[x^{\prime}\right]
$$

Same for $\exists x$

$$
\exists x \cdot G[x] \quad \Leftrightarrow \quad \exists x^{\prime} . G\left[x^{\prime}\right]
$$

where $x^{\prime}$ is a fresh variable

Proposition (Substitution of Equivalent Formulae)

$$
\sigma:\left\{F_{1} \mapsto G_{1}, \cdots, F_{n} \mapsto G_{n}\right\}
$$

s.t. for each $i, F_{i} \Leftrightarrow G_{i}$

If $F \sigma$ a safe substitution, then $F \Leftrightarrow F \sigma$
I falsifying interpretation $\Rightarrow F$ is invalid.
where $x^{\prime}$ is a fresh variable
2. $F^{\prime} \sigma: \forall x^{\prime} \cdot p\left(x^{\prime}, f(x)\right) \rightarrow \exists x . h(x, y)$
$F:(\forall x . \overbrace{p(x, y)}) \rightarrow q(f(y), x)$
bound by $\forall x \nearrow \nwarrow$ free free $\nearrow \nwarrow$ free

$$
\operatorname{free}(F)=\{x, y\}
$$

substitution

$$
\sigma:\{x \mapsto g(x), y \mapsto f(x), q(f(y), x) \mapsto \exists x . h(x, y)\}
$$

$F \sigma$ ?

## 1. Rename

$$
F^{F^{\prime}}: \underset{\uparrow}{\forall x^{\prime}} \cdot \underset{\uparrow}{p\left(x^{\prime}, y\right)} \rightarrow q(f(y), x)
$$



## Formula Schema

Formula

$$
(\forall x . p(x)) \leftrightarrow(\neg \exists x . \neg p(x))
$$

Formula Schema

$$
\begin{gathered}
H_{1}:(\forall x . F) \leftrightarrow(\neg \exists x . \neg F) \\
\uparrow \text { place holder }
\end{gathered}
$$

Formula Schema (with side condition)

$$
H_{2}:(\forall x . F) \leftrightarrow F \quad \text { provided } x \notin \operatorname{free}(F)
$$

## Valid Formula Schema

$H$ is valid iff valid for any FOL formula $F_{i}$ obeying the side conditions

Example: $H_{1}$ and $H_{2}$ are valid.

Substitution $\sigma$ of $H$

$$
\sigma:\left\{F_{1} \mapsto \quad, \ldots, F_{n} \mapsto \quad\right\}
$$

mapping place holders $F_{i}$ of $H$ to FOL formulae, (obeying the side conditions of $H$ )

Proposition (Formula Schema)
If $H$ is valid formula schema and
$\sigma$ is a substitution obeying $H$ 's side conditions then $H \sigma$ is also valid.

Example:
$\begin{array}{ll}H:(\forall x . F) \leftrightarrow F & \text { provided } x \notin \operatorname{free}(F) \quad \text { is valid } \\ \sigma:\{F \mapsto p(y)\} \quad \text { obeys the side condition }\end{array}$
$\sigma:\{F \mapsto p(y)\} \quad$ obeys the side condition
Therefore $H \sigma: \forall x . p(y) \leftrightarrow p(y) \quad$ is valid

## Normal Forms

1. Negation Normal Forms (NNF)

Augment the equivalence with (left-to-right)

$$
\begin{aligned}
& \neg \forall x . F[x] \Leftrightarrow \exists x . \neg F[x] \\
& \neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]
\end{aligned}
$$

Example

$$
G: \forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w) .
$$

1. $\forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$
2. $\forall x . \neg(\exists y . p(x, y) \wedge p(x, z)) \vee \exists w . p(x, w)$

$$
F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2}
$$

3. $\forall x .(\forall y . \neg(p(x, y) \wedge p(x, z))) \vee \exists w \cdot p(x, w)$ $\neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]$
4. $\forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w . p(x, w)$

## 2. Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

$$
Q_{1 x_{1}} \cdots Q_{n} x_{n} . F\left[x_{1}, \cdots, x_{n}\right]
$$

where $Q_{i} \in\{\forall, \exists\}$ and $F$ is quantifier-free.
Every FOL formula $F$ can be transformed to formula $F^{\prime}$ in PNF s.t. $F^{\prime} \Leftrightarrow F$.

Example: Find equivalent PNF of

$$
\begin{aligned}
F: \forall x . & \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists y \cdot p(x, y) \\
& \uparrow \text { to the end of the formula }
\end{aligned}
$$

1. Write $F$ in NNF

$$
F_{1}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists y . p(x, y)
$$

## Decidability of FOL

- FOL is undecidable (Turing \& Church)

There does not exist an algorithm for deciding if a FOL formula $F$ is valid, i.e. always halt and says "yes" if $F$ is valid or say "no" if $F$ is invalid.

- FOL is semi-decidable

There is a procedure that always halts and says "yes" if $F$ is valid, but may not halt if $F$ is invalid.
On the other hand,

- PL is decidable

There does exist an algorithm for deciding if a PL formula $F$ is valid, e.g. the truth-table procedure.

Similarly for satisfiability
2. Rename quantified variables to fresh names

$$
\begin{gathered}
F_{2}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w \cdot p(x, w) \\
\uparrow \text { in the scope of } \forall x
\end{gathered}
$$

3. Remove all quantifiers to produce quantifier-free formula

$$
F_{3}: \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

4. Add the quantifiers before $F_{3}$

$$
F_{4}: \forall x . \forall y . \exists w . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Alternately,

$$
F_{4}^{\prime}: \forall x . \exists w . \forall y . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Note: $\ln F_{2}, \forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$
$\begin{aligned} & \\ &\left.\begin{array}{l}F_{4} \Leftrightarrow F \text { and } F_{4}^{\prime} \Leftrightarrow F \\ \\ \text { Note: However } G F\end{array}\right)\end{aligned}$

$$
G: \forall y . \exists w \cdot \forall x . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w) \underbrace{}_{2=\overline{\overline{2}}, ~ ๑ a c}
$$

## Semantic Argument Proof

To show FOL formula $F$ is valid, assume $I \not \vDash F$ and derive a contradiction $/ \models \perp$ in all branches

- Soundness

If every branch of a semantic argument proof reach $/ \models \perp$, then $F$ is valid

- Completeness

Each valid formula $F$ has a semantic argument proof in which every branch reach $/ \vDash \perp$


[^0]:    0 -ary predicates: $P, Q, R, \ldots$

