Automated Analysis of Security-Critical JavaScript APIs

Ankur Taly
Stanford University
ataly@stanford.edu

Ulfar Erlingsson
Google Inc.

ulfar@google.com

Abstract—JavaScript is widely used to provide client-side
functionality in Web applications. To provide services ranging
from maps to advertisements, Web applications may incor-
porate untrusted JavaScript code from third parties. The
trusted portion of each application may then expose an API to
untrusted code, interposing a reference monitor that mediates
access to security-critical resources. However, a JavaScript
reference monitor can only be effective if it cannot be circum-
vented through programming tricks or programming language
idiosyncracies. In order to verify complete mediation of critical
resources for applications of interest, we define the semantics
of a restricted version of JavaScript devised by the ECMA
Standards committee for isolation purposes, and develop and
test an automated tool that can soundly establish that a given
API cannot be circumvented or subverted. Our tool reveals a
previously-undiscovered vulnerability in the widely-examined
Yahoo! ADsafe filter and verifies confinement of the repaired
filter and other examples from the Object-Capability literature.

Keywords-Language-Based Security,
APIs, Javascript

Points-to Analysis,

I. INTRODUCTION

JavaScript is widely used to provide client-side func-
tionality in Web applications. Many contemporary websites
incorporate untrusted third-party JavaScript code into their
pages in order to provide advertisements, Google Maps,
so-called gadgets, and applications on social networking
websites. Since JavaScript code has the ability to manipulate
the page Document Object Model (DOM), steal cookies, and
navigate the page, untrusted third-party JavaScript code may
pose a significant security threat to the hosting page.

While third-party code may be isolated by placing it in
an iFrame, this reduces performance and restricts interaction
between the hosting page and third-party code. Instead,
Facebook and other sites rely on language-based techniques
[36] to embed untrusted applications directly into the hosting
page.

A widely used approach combines a language-based
sandbox to restrict the power of untrusted JavaScript with
trusted code that exports an API to untrusted code. In the
API+Sandbox approach, used in Facebook FBIJS [36], Ya-
hoo! ADsafe [9], and Google Caja [6], the trusted code must
encapsulate all security-critical resources behind an API that
provides JavaScript methods to safely access these resources.
While there has been significant progress [23-25] toward
provably-safe sandboxes for restricting access to the global

John C. Mitchell
Stanford University
mitchell@stanford.edu

Mark S. Miller
Google Inc.

erights@google.com

Jasvir Nagra
Google Inc.

jasvir@google.com

object and other critical objects, very little research has been
devoted to rigorously analyzing API confinement. In this
paper, we therefore study and provide precise semantics for
a subset of JavaScript that supports confinement, present an
automated tool that provably verifies confinement, and use
this tool to analyze code designed to provide confinement.

We consider a variant of a recently-standardized version of
JavaScript that supports static scoping and hiding of nested
local variables. Using this language, our static analysis
method examines trusted code used in a hosting page,
such as security-focused wrapping libraries, and determines
whether it is secure against arbitrary untrusted code in the
same language. Since trusted code enforcing a reference
monitor is written by security-conscious programmers, we
believe the authors of trusted code may be willing to
structure their code to improve the precision of the analysis.
Under these conditions, our automated method is sufficient
to verify that no interleaved sequence of API method calls
returns a direct reference to a security-critical object.

Given an implementation of an API reference monitor
and a set of security-critical objects, our automated tool
ENCAP soundly verifies API confinement. We used this
tool to analyze the Yahoo! ADsafe library [9] under the
threat model defined in this paper and found a previously
undetected security oversight that could be exploited on the
current web to leak access to the document object (and hence
the entire DOM tree). This demonstrates the value of our
analysis, as ADsafe is a mature security filter that has been
subjected to several years of scrutiny and even automated
analysis [18]. After repairing the vulnerability, our tool is
sufficient to prove confinement of the resulting library under
our threat model.

A. API+Sandbox examples

We illustrate the API+Sandbox approach using a simple
example: a hosting page intends to provide a write only log
facility to untrusted code. It enforces this intent by creating
an array to log data and an API object which has a single
method push that only allows data to be pushed on to the
array. The API object is then provided to untrusted code by
placing it in a global variable api.

var priv = criticalLogArray;
var api = {push: function(x){priv.push(x)} }

Untrusted code is restricted so that the only global variable
accessible to it is api. A necessary requirement in establish-
ing correctness of this mechanism is to verify that the API
object does not leak a direct reference to criticalLogArray as
that would allow reading data from the array.

While the example above may suggest that the API
confinement problem is easily solved, the addition of the
following store method to the API may suggest otherwise:

api.store = function(i,x){priv[i] = x}

While a cursory reading shows that neither API method
returns a reference to the array, the API fails to confine the
array. A client may gain direct access to the criticalLogArray
by calling methods of the API and mutating external state,
as in the following code:

var result;
api.store("push’,function(){result = this[0]});
api.push();

The exploit makes unanticipated use of the store method by
supplying “push” as the first argument instead of a numeral.
Our automated analysis detects this problem by effectively
considering all possible invocations of all the API methods.

The foundations of the API+Sandbox approach lie in the
object-capability theory of securing systems (see [20, 29]).
In the context of capabilities, the methods of the API are
capabilities supplied to untrusted code and the sandbox is
the loader that loads untrusted code only with a given set of
capabilities [29]. If API methods are viewed as capabilities,
then the API Confinement Problem is also known as the
Overt Confinement Problem for Capabilities [19].

B. Confinement-friendly JavaScript

One reason why prior work has not focussed on verifying
correctness of APIs is because present JavaScript, based on
the 374 edition of ECMA-262 standard, is not amenable to
static analysis, for reasons discussed in section 2. Recog-
nizing these difficulties, the ECMA Standards Committee
(TC39) developed a strict mode (ES5S) in the 5" edition
of the ECMAScript Standard (ESS) [10], that supports static
lexical scoping and closure-based encapsulation. ES5S, how-
ever, has two remaining limitations for confinement and
static analysis: (1) ambient access to built-in objects may be
used to subvert some of the checks in API implementations,
and (2) eval allows dynamic code execution.

In this paper, we propose a variant SES;;¢5,¢ of ESSS that
supports static analysis and confinement by eliminating the
two problems above. As discussed in section 2, SES;;p; is
comparable to and more expressive than previous JavaScript
sandboxing sublanguages. In SES;;4p;, malicious use of
built-in objects is restricted by making necessary objects
immutable. For dynamic code execution, the language only
supports a restrictive form of eval, which we call variable-
restricted eval, that is amenable to static analysis. While a

more permissive sublanguage Secure EcmaScript (SES) is
currently under proposal by the ECMA committee (TC 39),
the two languages are relatively close. The main difference
between SES and SES;;,, is that SES supports getters/set-
ters and SESy;45,¢ does not because they are not amenable to
the analysis methods we considered practical and they are
not used in FBJS [36] and related sublanguages [23,24].
Since no current browser implements the SES;;47¢ seman-
tics, we describe a way to enforce the SES;;4,; semantics
in an ES5S environment, using an initialization script that
must be run in the beginning and a static verifier that must
be applied to all code that runs subsequently. While we have
implemented this method, our formal analysis is based on
the independent semantics of SES;;gn¢

C. Static analysis method

The main technique used in our verification procedure is a
conventional context-insensitive and flow-insensitive points-
to analysis. We analyze the API implementation and gener-
ate a conservative Datalog model of all API methods. We
encode an attacker as a set of Datalog rules and facts, whose
consequence set is an abstraction of the set of all possible
invocations of all the API methods. Our attacker encoding
is similar to the encoding of the conventional Dolev-Yao
network attacker, used in network protocol analysis. We
prove the soundness of our procedure by showing that the
Datalog models for the API and the attacker are sound
abstractions of the semantics of the API and the set of all
possible sandboxed untrusted code respectively. The threat
model is based on arbitrary untrusted SES;;45,; code run with
respect to the SES;;41,; semantics after sandboxing.

D. Contributions and Organization

In summary, the main contributions of this paper are:

e The syntax and semantics of the language SES;; 5+, which
supports a safe sandbox and is amenable to static analysis,
e A Datalog-based procedure for deciding confinement
properties of SES;;4,: APIs,

e A proof of semantic soundness of the procedure under the
SES;gn¢ threat model,

e An implementation of the procedure in the form of an
automated tool ENCAP, and

e Applications of the tool to demonstrate an attack on
Yahoo! Adsafe, confinement properties of repaired Adsafe,
and confinement properties of standard examples from the
object-capability literature.

The remainder of this paper is organized as follows:
section 2 motivates the design of the language SES;;g4,
section 3 describes its syntax and semantics, section 4
formally defines the Confinement problem for SES;;gn:
APIs, section 5 presents a static analysis procedure for
verifying API Confinement, section 6 presents applications
of the procedure on certain benchmark examples, 7 describes
related work and section 8 concludes.

II. FROM JAVASCRIPT TO ES5-STRICT TO SES;g5¢

We motivate the design of the language SES;; 5 in two
steps. We first describe the restrictions ES5S imposes on
the form of JavaScript implemented in current browsers and
then explain the added restrictions of SES;;4p,, over ESSS.

A. JavaScript to ES5S

In Dec 2009, the ECMA committee released the 5t
edition of the ECMA262 standard [10] which includes
a “strict mode” that is approximately a syntactically and
semantically restricted subset of the full language. Shifting
from normal to strict mode is done by mentioning the “use
strict” directive at the beginning of a function body, as
in function(){ "use_strict’;}. In this paper we analyze the
strict mode of ES5 as a separate programming language
and assume that all code runs under a global “use strict”
directive. Figure 1 summarizes the restrictions enforced by
ES5S on JavaScript. The three language properties that hold
for ES5S as a result are: Lexical Scoping, Safe Closure-based
Encapsulation and No Ambient Access to Global Object. For
each of these properties, we briefly explain why they fail for
JavaScript and hold for ESS5S:

Lexical Scoping. Even though variable bindings in ES3 are
almost lexically scoped, the presence of prototype chains on
scope objects (or activation records) and the ability to delete
variable names makes a static scope analysis of variable
names impossible. This makes ordinary renaming of bound
variables (a-renaming) unsound and significantly reduces
the feasibility of static analysis. For example in the following
code, it is impossible to decide the value returned by the call
f(), for an arbitrary expression e.

Object.prototype[<e>] = 24;
var x = 42;
var f = function foo(){return x;}; f();

If the evaluation of expression e returns “x” then the call
f() returns 24, else it would return 42. Similar corner cases
arise when code can potentially delete a variable name or
can use the with construct to artificially insert objects on the
scope chain. Recognizing these issues, ES5S forbids deletion
on variable names and the use of the with construct. Further-
more, the semantics of ES5S models activation records using
the traditional store data structure and therefore without any
prototype inheritance.

Safe Closure-based Encapsulation. JavaScript implemen-
tations in most browsers support the arguments.caller construct
that provides callee code with a mechanism to access
properties of the activation object of its caller function.
This breaks closure-based encapsulation, as illustrated by
the following example: a trusted function takes an untrusted
function as argument and checks possession of a secret
before performing certain operations.

Rationale

Lexical Scoping
Lexical Scoping
Lexical Scoping
Isolating Global Object
Isolating Global Object
Safe Encapsulation

Restriction

No delete on variable names
No prototypes for scope objects
No with

No this coercion

Safe built-in functions

No .callee, .caller on
arguments objects

No .caller, .arguments on
function objects

No arguments and formal
parameters aliasing

Safe Encapsulation

Safe Encapsulation

Figure 1. ESS5S restrictions over JavaScript

function trusted(untrusted, secret) {
it (untrusted() === secret) {
// process secretObj

}

Under standard programming intuition, this code should
not leak secret to untrusted code. However the following
definition of untrusted would enable it to steal secret.

function untrusted() {return arguments.caller.arguments[1];}

ESS5S eliminates such leaks and make closure-based encap-
sulation safe by explicitly forbidding implementations from
supporting .caller, .arguments on function objects.

No Ambient Access to Global Object. JavaScript provides
multiple (and surprising) ways for code to obtain a reference
to the global or window object, which is the root of the entire
DOM tree and hence security-critical in most setups. For
instance, the following program can be used to obtain a
reference to the global object.

var o = {foo: function (){return this;}}
g = o.foo; g();

This is because the this value of a method when called as a
function gets coerced to the global object. Further, built-in
methods sort, concat, reverse of Array.prototype and valueOf of
Object.prototype return a reference to the global object when
invoked with certain ill-formed arguments. ES5S prevents all
these leaks and only allows access to the global object by
using the keyword this in global scope and any host-provided
aliases, such as the global variable window.

B. ES5S to SESlight

While ESSS simplifies many issues associated with
JavaScript, two challenges related to the API Confinement
problem remain: (1) All code has undeniable write access to
the built-in objects, which can be maliciously used to alter
the behavior of trusted code that make use of built-in objects,
and (2) Code running inside eval is unavailable statically,
and so we do not know what global state it accesses. These
problems are addressed by the SES;;,,; restrictions on ES5S.

The first problem is solved by making all built-in ob-
jects, except the global object, transitively immutable, which
means that all their properties are immutable and the objects
cannot be extended with additional properties. Further, all
built-in properties of the global object are made immutable.

The second problem is addressed by imposing the re-
striction that all calls to eval must specify an upper bound
on the set of free variables of the code being eval-ed.
(Unlike JavaScript, the free variables of a program are
statically definable for ESS5S; see [35] for a precise defi-
nition.) At run-time, the code is evaluated only if its free
variables are within the set specified by the arguments.
The restricted eval function is called variable-restricted eval.
For example: the call eval(‘var x =y + z’) is written out as
eval(‘var x =y + 2, y’, "z) where {*y",“z"} is the set of free
variables. This restriction makes it possible to conservatively
analyze eval calls by assuming a worst-case behavior based
on the free variables specified.

Like FBJS [36] and the JavaScript subsets devised in
previous sandboxing studies [23, 24], SES;;45¢ does not sup-
port setters/getters. However, SES;;5¢ is a more permissive
language subset. For example, SES;;;,; allows a form of
eval, while the other languages do not. In addition, while
SESiigne has a restricted semantics to support isolation,
the corresponding restrictions in FBJS are enforced using
a combination of filtering, rewriting and wrapping that is
not clearly documented in a public standard. For example, in
order to prevent this from referring to the global object, FBJS
rewrites the keyword this to ref(this), where ref implements
an inlined runtime monitor that does not return the global
object. In addition, FBJS does not have full lexical scoping
or immutable built-in objects. Since SES;;45,; is essentially
ES5S without setters/getters, with the variable-restriction on
eval and transitively immutable built-in objects, we believe
that this clean language design with standardized semantics
is more attractive to programmers and developers than
previous languages designed to support similar forms of
sandoxing and confinement via code rewriting and wrapping.

III. THE LANGUAGE SES;;41:

We define the syntax and semantics of SES;;gp:.

A. Syntax

The abstract syntax of SES;;44: is given in figure 2, using
the notation # for a comma-separated list #,...,¢,. The
syntax is divided into values, expressions and statements. A
value is either a primitive value, a heap location or one of
the error values TypeError, RefError. Locations include
constants for the global object, and all pre-defined built-in
objects. Expressions are either variables or values. State-
ments include assignment, property load, property store, and
all representative control flow constructs from ESS5S. All
statements are written out in a normal form, similar to the
A-Normal form of featherweight Java [2]. It is easy to see

Variables and Values

(Loc) L= g | lobs | loProt | --- locations
null |11] ...
(PVal) pv == num | str | bool | undef primitives
(Val) v := 1| pv | TypeError | RefError values
(FVal) fv:= function z(g){s} function values
(A) a== S$AI| $Num | ... annotations
(Vars™) ,y :== this | foo | bar | ... user-variables
Expressions:
(Ezps) e= z|w
Statements:
(Stmts®) s,t == y=e expr

y = e1 binop ez binary expr
Yy = unop e unary expr
y = e1le2, a load
eilez,a]l = es store
y={z%e} object literal
y =[é] array literal
y =e(€&) call
y = ele/,a](€&) invoke
y = new e(é;) new

y = function = (2){s} function expr

function = (2){s} func decl
eval(e, str) eval
return e return
var var
throw e throw
s;t sequence
if (e) then s [else t] if
while (e) s while
for (z in e) s forin
try{s1 }catch (z){sz}inally{ss} try
N | Th(v) | Ret(v) end
Figure 2. Syntax for SES;;¢p¢

that using temporary variables, all complex statements from
ESSS, except setters/getters and eval, can be re-written into
semantics-preserving normalized statements. For example,
y = o.f.g.h() can be re-written to $a=o.f ; $b=$a.g ; y=$b.h()
with temporary variables $a and $b.

The syntax for property-lookup is augmented with prop-
erty annotations, which are an optional method to improve
the precision of our static analysis method. A property
lookup with annotation @ is written as ej[es,a]. The an-
notation indicates a bound on the set of string values
the expression ey can evaluate to. Examples of anno-
tations are: $Num which represents the set {“07,“1”,...},
$Native which represents the sets of built-in method names
{*toString”, “valueOf”, . . .} etc. We use the annotation $All to
represent the domain of all strings. Using $All, we can triv-
ially translate an un-annotated property lookup to annotated
property lookup. We denote the set of all annotations by .4
and assume a map Ann : Str — 24 specifying the valid
annotations for a given string.

B. Operational Semantics

We define a small step style operational semantics ([32])
for SES;;gn¢, denoted by (X, —). For all expressions and
statements except eval, the semantics is based on the 5t edi-
tion of the ECMA262 standard. In this respect, our semantics
is similar to the JavaScript semantics by Maffeis et al [22],
which was also based on the ECMA262 standard. The main
technical difference in the structure of our semantics and
the one by Maffeis et al is that we model scope objects
using the standard store data structure and not as first class
objects. This simplification was possible due to the more
standard scoping semantics of ES5S. The entire semantics
is approximately 27 pages long in ASCII, including a model
for the DOM and a subset of built-in objects, and is listed
online [34]. We now briefly describe the semantics.

Notations Conventions. Loc, Val, Vars“, Stmts" are
the set of all locations, values, user variables and user
statements as defined in figure 2. Loc includes [, which
is the (constant) location of the global object. Since the
semantics is small step style, it introduces new terms and
values in the program state for book-keeping. Such terms
and values are called “internal” and are prepended with the
symbol ‘@’. Vars® and Stmts® are the sets of all internal
variables and statements respectively. Vars is the set of all
variables, defined as Vars“ U Vars@, and Terms is the
set of all terms, defined as Stmts* U Stmts®. For a partial
map f, dom(f) is the set of elements on which it is defined.
For a value v and partial map f, f[z — v] denotes the map
obtained by updating the value of f(x) to v.

Heaps, Stacks and States. The complete definitions of
Heaps and Stacks are present in figure 3. Stacks contain
property records (or activation records) which are partial
maps from Vars to the set of records values RVal. A record
value is either L, denoting an uninitialized property name or
a pair of a value (from Val) and an attributes set specifying
whether the property is writable, enumerable or deletable.
Unless needed, we will always write records values as values
and ignore their attribute part. The empty stack | | specifies
the global scope. JavaScript supports closures, which are
modeled as pairs of statements and stacks, denoting a
function’s body and lexical scope respectively. Heaps are
modeled as partial maps from the set of locations (or object
references) to the set of objects. Objects are of two kinds:
(1) Non-function objects modeled as property records. (2)
Function objects modeled as pairs of property-records and
closures. We use Heaps, Stacks to denote the domain of
heaps and stacks respectively. Finally, a program state is
defined as a triple consisting of a heap, a stack and a term.
XY := Heaps X Stacks x Terms is the domain of all states.

Property Lookup and Variable Resolution. Property
lookup and variable resolution for SES;; 45, can be defined as
functions over a heap and stack. Property lookup uses the
prototype-based inheritance mechanism, which is modeled

Vars® := Qextensible | Qclass | Qcode | @proto | @1, ...
Attr := writable | con figurable | enumerable

Closure := FVal x Stacks

RVal := (Val) x 24" U {1}

Records R := Vars — RVal

Objects o0 := Records U (Records x Closure)
Stacks A, B := [Records™]

Heaps H, K := Loc — Objects

Figure 3. Heaps and Stacks

in the semantics using an @proto internal property on all
objects that points to their respective prototype object. Given
a heap H, the value of property p for a location [is given
by the function Proto(H, !, p), defined as follows:

p ¢ dom(H(l))
Proto(H,l,p) = Proto(H, H(l)(*@proto’), p)

p € dom(H(l)) v=H()(p)
Proto(H,l,p) =v

Proto(H,null,p) = undef

Variable resolution for SES;;,;, is defined in the standard
way by traversing down the stack of activation records. It is
formalized using the function Lookup(H, A, x), defined as
follows

r€R v=R(x)
Lookup(H,[R, Al,z) =v

—HasProp(H,l4,x)
Lookup(H, [],xz) = RefError

x ¢ dom(R)
Lookup(H, R, Al],z) = Lookup(H, A, x)

HasProp(H,lg4,x)
Lookup(H,[|, z) = Proto(H,lg,x)

Here [, is the reference to the global object and
HasProp(H,lg,x) checks if = appears anywhere on the
prototype chain of the global object.

Expression semantics. Semantics of an expression e is
given by a map [e] : Heaps x Stacks — Val, defined as
follows:

[z]HA = Lookup(H, A, x) [v[HA = v

Statement semantics. Semantics of statements are ex-
pressed as small-step state transition rules of the form
H,A,t — K, B, s. Rules are divided into axioms and con-
text rules. We define three kinds of termination statements:
N for normal completion of execution, Ret(v) for function
termination and Th(v) for disrupted execution. For the latter
two, v denotes the value returned and thrown respectively.
We now explain a few rules to convey the main ideas.

Load. We present the semantics for the annotated load

statement y = v [ve, a
@1,@y = freshVar()
S = @TS(@Q,UQ); @TO(@l,Ul);y = @1[@2,&]
H, A,y =wvi|ve,a] — H, A, s

a ¢ Ann(str)
H, Ay =l[str,a] — H, A, Th(TypeError)

v = Proto(H, 1, str) a € Ann(str)
H,A,y=l[str,a] — H,A,y=v

The first step is to convert vy to a string and v; to an
object. This is achieved using the internal statements
QTS (Qg,v2) and QTO(@Qq,vq) respectively, where @
and @, are internal variables used to store the results of
the conversions. Next, if the string value of v, matches the
annotation a, then the corresponding property is looked up,
else a TypeError is thrown.

(Variable-restricted) Eval. We now present the
semantics for the variable-restricted eval statement
eval(strg, stry,...,stry). The first step is to convert the
argument strg to a string, if it is not already in string form.
The next step is to parse the string strg and check if its
free variables are contained in {stry,...,str,}. We refer
the reader to [35] for a formal definition of free variables
of a SES;;gn: term. If the free variable check goes through
then a new activation record is placed on the global stack
and the parsed term is executed. The reduction rule is as
defined follows:

Parse(stro) = s Free(s) C {stri, ..., strn}

R = NewAR() A1 = setVD([R], s)

K,B = setFD(H, A1, s, true)

H, A, eval(stro, stry, ..., stry,) — K, B,QEVAL(s, A)

setV D and setF'D methods in the premise scan the eval
code for all local variable and function declarations and
add the corresponding bindings to the activation record.
QFEVAL(_,A) is an internal statement context which re-
duces any statement placed in it to a terminal value and
then restores the stack A in case of normal termination.

Built-in Objects and the DOM. The ESS standard defines a
set of objects and functions that must be initially present
in all JavaScript environments. We model this by defining
an initial heap and stack Hy, Ag which contain all the pre-
defined objects. For ease of analysis, we only model a
small set of the built-in objects in SES;;45, namely: global
object, constructors Object, Array, methods toString, valueOf,
hasOwnProperty, propertylsEnumerable of Object.prototype, meth-
ods toString, call, apply of Function.prototype and methods
toString, join, concat, push of Array.prototype.

As mentioned in section 2, SES;;4p,; imposes the restric-
tion that all built-in objects, except the global object, are
transitively immutable, which means that their Qeztensible
property is set to false and all their properties have attributes
non-configurable and non-writable. Furthermore, all built-in

properties of the global object also have the attributes non-
configurable and non-writable.

In addition to the built-in objects, all browser JavaScript
environments also contain a pre-defined set of Document
(DOM) objects whose initial root is pointed to by the
‘document’ property of the global object. The DOM ob-
jects have several properties and methods for manipu-
lating features of the underlying Web page. In this pa-
per, we consider all DOM objects as security-critical and
conservatively model all DOM methods using the stub
function(x"){return document}, that is, the document object
leaks via all methods of all DOM objects.

IV. THE API CONFINEMENT PROBLEM FOR SES;;4n¢

In this section, we formally define the confinement prob-
lem for SES;;4,+ APIs. We start by building up the formal
machinery required for stating the problem.

A. Preliminaries

Given a state S := (H, A,t), H(S), A(S) and T (S)
denote the heap, stack and term part of the state. Given states
S and T, we say S reaches T in many steps, denoted by
S ~» T, iff either S — T holds or exists states Sq,...,S,
(n > 1) such that S — S; — ... — S,, — T holds. For
a state S, Tr(S) is the possibly infinite sequence of states
S,81,...,8,,...suchthat S - S — ... = 5, — ...
Given a set of states S, Reach(S) is the set of all reachable
states, defined as {S’ | 35 €S : S5~ S’}

Labelled Semantics. In the setting considered in this paper,
the resources to be confined are references to certain objects
that are deemed critical by the hosting page. Since precise
references only come into existence once the hosting page
code executes, we statically (and conservatively) identify all
critical references by their allocation sites in the hosting page
code. In order to formalize this, we statically attach labels
to all nodes in the syntax tree of a term. For example, the
statement if (x) theny = 1 else y = 2 is labelled as ilzif (x)
then Zg:y =1 else Zg:y=2 where lAl are the labels. £ is the
domain from which labels are picked. Labels are also at-
tached to heap locations and stack frames, based on the term
whose evaluation created them. All rules H, A,t — K, B, s
are augmented so that any allocated location or activation
record carries the label of term ¢ and also any dynamically
generated sub-term of s carries the label of term ¢. Finally,
unique labels are attached to all locations on the initial heap
Hy. We use fg as the label for the global object.

From here onwards, we will only consider the labelled
semantics for SES;;4n:. To avoid notational overhead, we
will use the same symbols [, R and s for labelled locations,
activation records and statements and define Lab(l), Lab(R)
and Lab(s) respectively as the labels associated with them.
The map Lab is naturally extended to sets of heap locations
and activation records.

a-Renaming. As discussed earlier, unlike JavaScript,
SESiigne is a lexically scoped language. We formalize this
property by defining a semantics preserving procedure for
renaming bound variables in a SES;;47,; term. The procedure
is parametric on a variable renaming map « : Vars X L —
Vars that generates unique names for a particular scope
label. The procedure makes use of an auxiliary property
named closest bounding label, which we define first.

Definition 1: Given a labelled statement s and a variable
x appearing in s we define the closest bounding label of
x, denoted by Bl(x,s), as the label of closest enclosing
function expression, function declaration or try-catch-finally
statement that has x as one of its bound variables.

We now define the a-Renaming procedure.

Definition 2: [a-Renaming] Given a labelled statement s
and a variable renaming map « : Vars x L — Vars, the
renamed statement Rn(s, «) is defined by the following pro-
cedure: For each variable x appearing in s, if © ¢ Free(s),
replace x with oz, Bl(z, s))

In order to prove that the above procedure is semantics
preserving, we extend the renaming function Rn to labelled
program traces and show that renamed and unrenamed traces
are bisimilar. States are renamed by individually renaming
the heap, stack and term components. A heap is renamed
by appropriately renaming all closures appearing on it and
a stack is renamed by renaming all variables using the label
of the property record in which it appears.

Theorem 1: For all wellformed states S, Rn(Tr(S)) =
Tr(Rn(S))

Proof Sketch: By induction on the length of the trace, with
the inductive case proven using a case analysis on the set of
reduction rules. O

B. Problem Definition

In this section, we formally state the API Confinement
problem. We assume that the security-crtical resources are
specified using a set of forbidden allocation-site labels P.
Further, we assume that labels of all DOM objects also
belong to the set P. This is not required for the correctness
of the subsequent analysis, but is the special case under
which our conservative model of the DOM is practically
relevant.

In accordance with the API+Sandbox mechanism, the
hosting page code runs first and creates an API object, which
is then handed over to the untrusted code that runs next.
The hosting page code is called the trusted API service.
We assume for simplicity that the hosting page stores the
API object in some shared global variable api. In order
for this mechanism to be secure, untrusted code must be
appropriately restricted so that the only trusted code global
variable it has access to is api. Using the variable-restricted
SES;;gn: eval, it is straightforward to restrict any term s to

any specific set of global variables {x1,...,z,} simply by
rewriting s to eval(s, z7,...,T,).

In order to set up the confinement problem we also
provide untrusted code access to a global variable un, which
is used as a fest variable in our analysis and is initially
set to undefined. The objective of untrusted code is to store
a reference to a forbidden object in it. Without loss of
generality, we assume that the API service ¢ is suitably-a-
renamed according to the procedure in definition 2 so that
it does not use the variable un.

In summary, if ¢ is the trusted API service and s is the
untrusted code then the overall program that executes in
the system is ¢;var un;eval(s, “api”, “un’). Informally, the API
confinement property can be stated as: for all terms s, the
execution of ¢;var un;eval(s, “api”, “un”’) with respect to the
initial heap-stack H, Ay never stores a forbidden object in
the variable un. We now formally define this property. The
definition makes use of the map PtsTo : Vars" x 2% — 2F
which we define first. Recall that [, is the location of the
global object.

Definition 3: [Points-to] Given a set of states S € 2%, and
a variable v € Vars", PtsTo(v,S) is defined as the set:
{Lab(H(ly)(v)) | 3H,A,t : H, A, t € S}

Given a trusted API service, let Sy(t) be the set of states
{Ho, Ao, t;var un;eval(s, “api’, “un”) | s € SES;ight}.

Definition 4: [Confinement Property] A trusted service t
safely encapsulates a set of forbidden allocation-site labels
P iff PtsTo(“un”, Reach(So(t))) N P = 0. We denote this
property by Confine(t, P).

API Confinement Problem. Given a term t and a set of
forbidden allocation-site labels P, verify Confine(t, P)

V. ANALYSIS PROCEDURE

In this section we define a procedure D(t, P) for verifying
that an API service t safely confines a set of critical
resources P. The main idea is to define a tractable procedure
for over-approximating the set PtsTo(“un”, Reach(Sy(t)))
where So(t) = {Ho, Ao, t;var un;eval(s,“api”,“un”) | s €
SESlight}. We adopt an inclusion-based, flow-insensitive
and context-insensitive points-to analysis technique [1] for
over-approximating this set. This is a well-studied and scal-
able points-to analysis technique. Flow-insensitivity means
that the analysis is independent of the ordering of the
statements and context-insensitivity means that the analysis
only models a single activation record for each function,
which is shared by all call-sites. Given the presence of
closures and absence of a static call graph in JavaScript, a
context-sensitive analysis is known to be significantly more
expensive than a context insensitive one (see [14,27] for
complexity results). The technique adopted in this paper on
the other-hand is polynomial time. Given that there has been
very little prior work (see [13]) on defining provable-sound

static analyses for JavaScript, we believe that a provably-
sound flow-insensitive and context-insensitive analysis is a
reasonable first step.

In adopting the well-known inclusion-based based flow
and context insensitive points-to analysis technique to our
problem, we are faced with the following challenges: (1)
Statically encoding eval statements (2) Statically reasoning
about the entire set of states Sy(¢) at once. (3) Correct mod-
eling of the various non-standard features of the SES;;4n;
semantics.

We resolve these challenges as follows. As discussed
earlier, the arguments to eval in SES;;4p,; statically specify a
bound on the set of free variables of the code being eval-ed.
We use this bound to define a worst case encoding for eval,
which essentially amounts to creating all possible points-to
relationships between all the objects reachable from the set
of free variables. Since the encoding only depends on the set
of free variables and is independent of the actual code being
evaluated, it resolves both challenges (1) and (2). For (3),
we leverage upon the insights gained while developing the
formal semantics for SES;;,5,; and formulate our abstractions
in a sound manner. We also present a proof of correctness
for our procedure which guarantees that we (conservatively)
respect the semantics.

We now present the details of the procedure. We follow
the approach of Whaley et al. [40] and express our analysis
algorithm in Datalog. Before describing the details of this
approach, we provide a quick introduction to Datalog.

Quick introduction to Datalog. A Datalog program
consists of facts and inference rules. Facts are of the form
P(t1,...,tn) where P is a predicate symbol and ¢; are
terms, which could be constants or variables. Rules are
sentences that provide a means for deducing facts from
other facts. Rules are expressed as horn clauses with the
general form Ly:—L4,..., L, where L; are facts. Given a
set of facts F and a set of inference rules R, Cons(F,R)
is the set of all “consequence” facts that can be obtained
by successively applying the rules to the facts, upto a fixed
point. As an example if F := {edge(1,2), edge(2,3)} and

R = { path(z,y) :(— edge(z,y); }
path(z, z) :— edge(z,y), path(y, z)
then Cons(F,R) is the set {edge(1,2),edge(2,3),
path(1,2), path(2,3), path(1,3)}. We refer the reader
to [7] for a comprehensive survey of Datalog and its
semantics.

Procedure Overview. A high-level overview of the proce-
dure D(t, P) is as follows:

(1) Collect facts (expressed over Datalog relations) about
the statements present in ¢ and add them to a Database.
Add facts about the initial heap Hy and the term
var un; eval(s, “un”, “api”) for any s € SES;gns.

(2) Conservatively encode the semantics of SES;;4p,; in the

form Datalog inference rules and then use them to compute
the consequence set of the Database obtained in (1).

(3) Analyze the databases from (1) and (2), and check for
confinement violating facts.

The rest of this section is organized as follows: 5.1
describes the encoding of SES;;45¢ statements as Datalog
facts, 5.2 presents the inference rules, 5.3 presents the formal
definition of the procedure and 5.4 provides a soundness
argument.

A. Datalog Relations and Encoding

Our encoding of program statements into Datalog facts,
makes use of the standard abstraction of heap locations
as allocation-site labels. Since JavaScript represents objects
and function closures in the same way, this applies to
function closures as well. In the terminology of control-
flow analysis, this abstraction makes our analysis 0-CFA.
Further, the analysis only supports weak updates, which
means we aggregate values with each variable and property
assignment.

Facts are expressed over a fixed set of relations R,
enumerated in figure 4 along with their domains. V' C Vars
is the domain for variable and field names, L C L is the
domain for allocation-site labels (abstract locations) and [is
the domain for function argument indices. A similar set of
relations has been used for points-to analysis of Java in [3,
40]. Besides relations that capture facts about the program,
we use Heap, Stack, Prototype to capture facts about the
heap and stack. Heap([l, T, i2) encodes that an object with
label I; has a field x pointing to an object with label Iy
and Stack(x,l) encodes that variable x points to an object
with label [. Prototype captures the prototype-inheritance
relation between various objects.

We define Fucts as the set of all possible facts that can
be expressed over the relations in R. We now describe the
encoding of statements in SES;;p,¢ into facts over R. For
each label I, we assume a unique and countably-infinite set
of labels h(l,1),h(l,2),... associated with it. The purpose
of these labels is to denote objects that get created on the
fly during the execution of a statement. Further we use a
variable renaming map « : Vars X £ — Vars in defining
our encoding. The encoding of a statement s depends on the
label [of the nearest enclosing scope in which it appears and
is given by the map Encr (s, [) Due to space limitations we
only describe the main ideas here and present the formal
definition of Encz(s,l) in the accompanying tech report
[35].

Binary Expression Statement. According to the semantics
of a binary operation statement s:=y = z; binop zs,
if binop € {$%,||} and if x; or zy resolve to an
object then they could potentially get assigned to y.
We therefore conservatively encode such statements by
{Assign(y,x1), Assign(y,z2)}. This is a subtle semantic

feature that existing JavaScript points-to analysis frame-
works [11,15] don’t seem to account for. Furthermore, if
binop ¢ {$$,||} and if z; or x resolve to an object, then
the evaluation might trigger an implicit ‘ToPrimitive’ type
conversion which could potentially invoke the valueOf and
toString methods of the object. We encode such statements
by {TP(x1,1), TP(x2,1)}, where TP(z,l) encodes that a
‘ToPrimitive’ conversion should be triggered on variable x
in scope L.

Load. The evaluation of a load statement s := y = z;[z2, a]
could potentially involve a ‘ToPrimitive’ conversion on the
argument zo and a ‘ToObject’ conversion on the object z;.
The statement is encoded as

{TP(x2,1), Stack(z1,11), ObjType(l), NotBuiltin(l,)} |
{Load(y,z1,a)}

Here [; = h(Lab(s), 1) is the abstract location of the object
created on the fly from the ‘ToObject” conversion. The first
set in the union encodes that x; points to a non-built-in
object with abstract location [1 and that x5 must be converted
to a primitive value in the scope I. Load(y, x1,a) encodes
that contents of z;.p flow into y for all property names p
that annotate to a.

Function Declaration and Calls. A function declaration
= function z(g){s; } is encoded as:

FormalArg(ll, 1,91), FormalArg(Zl, n,Yn),

FormalArg(ll, “q” arguments) FuncType(ll), U

FormalArg(ly, “t”, this), Stack(x, ll)
)

ObjType(l
Encr(sy, ll)

Here [, = h((Lab(s),1) and I = h((Lab(s),2) are abstract
locations for the function and prototype objects that get
created dynamically. FormalArg encodes the positions of
all the formal arguments, including default arguments this
and arguments, whose positions are denoted by “t” and “a”
respectively.

A function call statement y := x(&;) is similarly encoded
using facts of the form Actual(x,i,z;,y, [) where x; is the
actual argument at position ¢, y is the return variable and [
is the label of the nearest enclosing scope.

Heap(ly, “prototype”, ly)

(Variable-restricted) Eval. The evaluation of a variable-
restricted eval statement s := eval(z, str) forces the free
variables of the code being eval-ed to be contained in {str}.
Since we do not know the code statically, we conservatively
assume that all possible points-to relationships are created
between all objects reachable from the free and bound
variables. To make the encoding finite, we summarize all
the bound variables by a single variable a(“xcyq;”, Lab(s))
(here “Teyq” is an arbitrarily picked variable name) and
all locally allocated objects by a single abstract location
Iy = h(Lab(s), 1). For the enclosmg scope [, the encoding is
given by the set Eval(l, 1, o(“Teyar”, Lab(s)), sir), defined

Relations for encoding programs:

Assign : 2V*V Throw : 2L*V
Load : 2V>V*V Catch : 28%V
Store : 2V *V*V Global : 2V
FormalArg : 2E*1*V Annotation : 2V <V
FormalRet : 22>V ObjType : 2-
Instance : 2%V FuncType : 2F
ArrayType : 2F NotBuiltin : 2F
Actual - 2V><I><V><V><L

Relations for encoding the heap-stack:

2L><V><L 2V><L

Heap : Stack :

Prototype : 28%E

Figure 4. Datalog Relations

formally in figure 5. The set is obtained by instantiating all
relations with all possible valid combinations of the variables
in {o(“Cepar”, Lab(s)), str} and locations in {I,1;}.
Built-in Objects and DOM. We encode all built-in objects
and DOM objects present on the initial heap Hy as a
set of facts and rules Zy. For all objects references l;, o
and properties = such that such that Hy(l1)(x) = la, Ty
contains the fact Heap(Lab(ly), x, Lab(ly)). For each built-
in method, Zy contains appropriate rules over Actual facts
that capture the semantics of the method. We give the rules
for the Function.prototype.apply method, labeled by lAapply, as
an example.

According to the semantics of the apply method, the call
xg.apply(z;, z2) involves calling the function pointed to by
xo with this value x; and arguments as stored on the array
xo. It is encoded as follows:

Actual(zo, “t7, 1, vy, lapply) T — [APPLY1]
Actual (z, “t”, xo,y,ll) Actual(w,l,xl,y,ll) Stack(x,iapply)
Actual(zo, i, z3, Y, iapply) P — [APPLY2]
Actual(z, “t”, xo,y, 1), Actual(az 2,%2,Yy, 1),
Heap(x2, $Num, z3), Stack(z,

apply)

Encoding built-in methods using rules provides much bet-
ter call-return matching than the naive encoding using
FormalArg facts. This turned out to be very useful in our
experiments as calls to built-in methods are pervasive in
most API definitions. For all built-in prototype objects, Zy
contains rules for capturing the inheritance relation. For
example, the following rule is used for the Object.prototype
object which is labelled as le Prot-

Prototype(l, loprot) : —ObjType(l)

DOM methods are encoded by encoding the function dec-
laration function(Z){return document}.

B. Inference Rules

We now briefly describe the set of inference rules R,
which model a flow and context insensitive semantics of
SES;gn¢. The rules are formally defined in figure 6. Since

Eval(louter, liocal, To, T) is formally defined as:
{Assign(v1,v2) | vi,v2 € V} U
{Load(vy,va, “SAI”) | v1,v2 € V} U
{Store(v1, “SAll” ,v2) | v1,v2 €V} U
{Actual(v1,i,v2,v3,1) | v1,v2,v3 € V;l € L} U
{FormalArg(liocar, i,v) | v €V} U
{FormalRet(liocat,v) | v € V} U
{Instance(liocal,v) | v € V} U
{Throw(l,v) |veV;le L} U
{Catch(l,v) |veV;le L} U
{NotBuiltin(liocar) } U
{FuncType(liocar) } U
{ArrayType(liocar) } U
{0bjType(liocar) } U
{Stack(v,liocar) | v €V}

where V = {ZL‘O, ‘i'}, L= {llocah loute'r}

Figure 5. Encoding Eval Statements

it is clear from the context, we elide the hat and use symbols
[, m, n and k for labels.

Assign, Load and Store. Rules [ASSIGN], [Loap] and
[STORE1] are straightforward and model the semantics of
assignments, load and store statements. Rules [PROTOTYPE1]
and [PROTOTYPE2] conservatively flatten all prototype chains
by taking the reflexive and transitive closure of the relation
Prototype. Rules [STORE2] and [STORE3] capture that an
annotated property store gets reflected on all the concrete
property names that satisfy the annotation.

ToPrimitive. Rules [TP1] and [TP2] model the semantics
of ‘ToPrimitive’ conversion. Given a fact TP(x,1), the rule
derives a call to the ‘toString’ and ‘valueOf’ methods of all
objects stored at x. Since the value returned by a ‘ToPrimi-
tive’ conversion is primitive, it is discarded by specifying a
the internal variable $dump as the return variable.

Function Calls. Function calls are handled by rules
[AcTUAL1], [AcTUAL2] and [AcTUAL3]. Since functions are
modelled as objects in JavaScript, call targets are also
resolved via the heap and stack. The rule [AcTuaLl] flows
actual parameters to formal parameters, [AcTUAL2] flows
formal return values to actual return values and [ACTUAL3]
propagates “throws” across the call chain.

Global and Catch Variables. Since global variables are
properties of the global object, assignments to global vari-
ables are reflected on the global object and vice versa. This
is modeled by rules [GLoBAL1] and [GLOBAL2]. The rule
[CATCHVAR] conservatively flows ‘throws’ from a particular
scope into all ‘catch’ variables appearing in that scope.

C. Procedure for Verifying API Confinement

The procedure D(t, P) for verifying that API service ¢
confines a set of allocation-site labels P is defined in figure
7. It uses the global object label fg and an abstract points-to
map PtsTop : Vars" x 2Fac¢ts — 2L defined as follows.

Stack(z,1):—Stack(y, 1), Assign(x,y) [ASSIGN]

Stack(z,n):— [LoaD]
Load(z,y, f), Prototype(l, m),
Heap(m, f,n), Stack(y,1)

Heap(l, f,m):— [STORE1]
Store(z, f,y), Stack(z, 1), NotBuiltin(l), Stack(y, m)

Store(z, a,y):— [STORE2]
Store(z, f,y), Annotation(f, a)

Store(z, f,y):— [STORE3]
Store(z, a,y), Annotation(f, a)

Annotation(f, “SAIl”) [ANNOTATION]

Actual(n, “t”, z, “Sdump” , k):— [TP1]
TP(x, k), Stack(z,l), Prototype(l,m),
Heap(m, “toString”,n), FuncType(n)

Actual(n, “t”, z, “Sdump” , k):— [TP2]

TP(z, k), Stack(z,1), Prototype(l,m),
Heap(m, “valueO f”, n), FuncType(n)

Assign(y, z):— [ACTUALI]
Actual(f, 1, z,z, k), Stack(f,1), FormalArg(l,i,y)

Assign(z,y):— [ACTUAL2]
Actual(f, 1, z,x, k), Stack(f,1), FormalRet(l,y)

Throw(k,z) : — [ACTUAL3]
Actual(f,1i,y, 2, k), Stack(f,1), Throw(l, x)

Prototype(l,1) [PROTOTYPE1]

Prototype(l,n):— [PROTOTYPE2]
Prototype(l, m), Prototype(m,n)

Prototype(l, q):— [PROTOTYPE3]

Instance(l,y), Stack(y,),
Prototype(m n), Heap(n, “prototype”, q)

Heap(ig, fy1):=Stack(f,1), Global(f) [GLOBAL1]
Stack(f,1):—Heap(lg, f,1) [GLOBAL2]
Assign(z,y):— Catch(k, z), Throw(k,y) [THROW]

Figure 6. The set of Inference Rules R

Definition 5: [Abstract Points-to] Give a set of facts F €
2F“Cf3 and a variable v € Vars", PtsTop(v, F) is defined
as {l | Stack(v,l) € F}

The first step of the procedure is to pick any program s and
encode the term ¢; var “un”; eval(s, “un”, “api”’) in global scope.
Given the way eval statements are encoded, the encoding of
the above term does not depend of the term s. The next
step is to compute the set of all possible consequences of
the encoded facts, under the inference rules R defined in

Procedure D(¢, P):

1) Pick any term s € SES;;g5, and compute Fy(t) =
Encr(t;var un;eval(s,“api”,“un"),Zg) U Zy.

2) Compute F = Cons(Fy(t), R).

3) Show that PtsTop(‘un’, F) N P = 0.

Figure 7. Procedure for Verifying Confine(t, P)

figure 6. The final step is to compute the abstract points-
to set of the variable un over this consequence set and
check if it contains any labels from the set P. Since
the maps Ency, Cons and PtsTop are computable, the
procedure is decidable. The procedure is listed purely from
the correctness standpoint and does make any efficiency
considerations.

D. Soundness

We now prove soundness of the procedure D(¢, P) by
showing that for all terms ¢ and allocation-site labels P,
D(t,P) = Confine(t, P). Our proof is very close to
the one given by Midtgaard et al. in [26] for soundness of
0-CFA analysis. The crux of the proof is in defining a map
Enc : 2% — 2Facts (abstraction map) for encoding a set
of program states as a set of Datalog facts, and showing
that the for any set of states, the set of consequence facts
safely over-approximates the set of reachable states, under
the encoding.

Encoding of States. We rigorously define the encoding
of states in [35] and present only the main ideas here.
States are encoded by separately encoding the heap, stack
and term. Terms are encoded using the map Ency and
stacks are encoded by collecting all facts of the form
Stack(x, Lab(l)) such that variable x stores location [on the
stack. Heaps are encoded by collecting all facts of the form
Heap(Lab(ly), x, Lab(l3)) such that property x of location
Iy stores location [y, and additionally encoding all function-
closures (using the term and stack encoding) that are present
on the heap.

Results. Our first result is that for a set of states S, the
encoding of the set of all states reachable from S, is over-
approximated by the set of all consequence facts derivable
from the encoding of S.

Lemma 1: Let R be the inference rules defined in figure
6. For all set of states S € 2%, Enc(Reach(S)) C
Cons(Enc(S),R)

Proof Sketch: Given an element S € 2%, we define the
concrete single-step evaluation map N_(S) as § U
{835 €S8S:85 — S} It is easy to see that Reach(S)
is the smallest fixed point of N_, above S, in the powerset
lattice 2% .

Given an element F € 2F%cts e define the abstract single-
step evaluation map Np(F) as F U Infer,(F,R) where

Infer,(F,R) is the set of facts obtained by applying the
rules R exactly once'. Under the Herbrand semantics of
Datalog, Cons(F,R) is the smallest fixed point of Np
above F, in the powerset lattice gFacts

Next, we show by an induction on the set of reduction
rules that for all S € 2%, there exists n > 1 such that:
Enc(N_(S)) C N3 (Enc(S))

It is straightforward to prove the lemma from this property.
O

Recall the set of initial states So(t) and initial facts
Fo(t) from the definitions of Confine(t, P) and D(t, P)
respectively. Our next result shows that the Fy(t) over-
approximates the encoding of Sy(t).

Lemma 2: For all terms t € SESj;gnt, Enc(So(t)) C Fo(t)

The proof is straightforward and follows from the definition
of Enc. The final lemma for proving soundness is that the
abstract points-to map PtsTop safely over-approximates the
concrete points-to map, under the encoding.

Lemma 3: For all v € Vars" and set of states S € 2%
PtsTo(v,S) C PtsTop(v, Enc(S)).

The proof is straighforward and follows from the definitions
of Enc, PtsTo and PtsTop. We now state the soundness
theorem.

Theorem 2: [Soundness] For all terms t and forbidden
allocation-site labels P, D(t,P) = Confine(t, P)

Proof Sketch: From figure 7, D(t,P) holds iff
PtsTop(‘un’, Cons(Fo(t),R)) N P = (). From mono-
tonicity of Cons and PtsTop and lemmas 1, 2, 3, it
follows that the set PtsTo(‘un”, Reach(Sy(t))) is a subset
of PtsTop(un’, Cons(Fy(t),R)). The theorem follows im-
mediately from this result.]

VI. APPLICATIONS

In this section, we demonstrate the value of our analysis
procedure by analyzing three benchmark examples: Yahoo!
ADsafe library [9], the Sealer-Unsealer mechanism ([17,
33]) and the Mint mechanism [30]. All these examples
are of APIs that have been designed with an emphasis
on robustness and simplicity, and have been previously
subjected to security analysis. We analyze these examples
under the semantics and threat model of SES;,n:. The
goal of our experiments was to test the effectiveness of the
procedure D(t, P) by checking if it could correctly prove
confinement properties for these well-studied APIs.
Analyzer Architecture. We implemented the procedure
D(t, P) from figure 7 in the form of a tool named ENCAP.
The tool has a JavaScript parser at the front end and the
bddbddb Datalog engine [39] at the back end. Given an
input API definition and a list of precious creation-site

I Also known as the elementary production principle (see [7])

labels, the parser generates an SES;;45¢+ AST which is then
encoded into a set of Datalog facts. As described in the
procedure, this encoding is combined with the encoding
of the initial heap and the encoding of the eval statement
var “un”; eval(s, “api”, “un”) for any s € SES;ignt.

Running SES;;;,; on an ESSS browser. The procedure
D(t, P) is designed to verify confinement of APIs written
in SES;;gn¢, under the SESj;q4 threat model. The ideal
deployment scenario would be for browsers that primitively
support SES;;45¢. Given the absence of such browsers, we
present a first cut to an approach for emulating the SES;; 41,
restrictions on a browser supporting ES5S. The main idea is
to run an initialization script that makes the heap compliant
with the initial SES;;¢5+ heap and then use a static verifier
on all code that runs subsequently. The goal of the static
verifier is to ensure that the code is valid SES;;44; code and
that it does not use any $-prefixed variable names, which is a
namespace reserved for book-keeping purposes. For the sake
of emulation, we modify the syntax of annotated property
lookups from ej[eq, a] to ej]a(es)], that is, annotations are
expressed as (dynamic type-checking) functions applied on
the property being accessed.

The initialization script performs the following steps: (1)
Makes all built-in objects and properties that are not modeled
in SES;;4+ unreachable from the ones that are modeled. This
can be done using the delete e;[eg] construct. (2) Replaces
the built-in eval function with a wrapper that uses an SES; 41
parser, written in ESS5S, to ensure that code being eval-
ed has all its free variables mentioned as arguments, and
that no object literals appearing in the code contain literal
get and set properties. The latter ensures that code does
not use setters and getters. (3) Makes all built-in objects,
except the global object, transitively immutable, by applying
the built-in method Object.freeze to them, which results in
making the objects non-extensible and all their properties
non-configurable and non-writable. (4) For each annotation
a, we define a non-configurable and non-writable property
named a on the global object (using Object.defineProperty),
and store a annotation-checking function on it. The code for
the function is as follows.

var a = function(x){ var $= String(x);
if(Ann($,a){return $}] else{throw "bad’}}

Here Ann(m,n) is a pure function that checks if string m
annotates to string n. Recall that annotations in SES;; 4, are
$-prefixed and therefore the properties created would not be
tampered or shadowed by code running subsequently.

We have an implementation of the initialization script
described above, but we do not have any rigorous proof of
correctness for it yet. We conjecture that for all SES;;4pn,
terms t that do not use $-prefixed variable names, the
execution of ¢ on the initial SES;;45,¢ heap and stack under
the SES;;45,¢ semantics, is safely emulated by the execution
of ¢ on the appropriately initialized ES5S heap and stack

under the ES5S semantics.

A. ADsafe

Our first application is the Yahoo! ADsafe framework
defined by Douglas Crockford [9] for protecting host
pages from untrusted advertisements that contain arbitrary
JavaScript code. Following the API+Sandbox approach, the
framework has two main components: (1) An ADsafe library
that provides restricted access to the DOM and other global
variables. (2) A static filter JSLint that discards untrusted
JavaScript code if it makes use of certain language constructs
like this, eval, with or properties beginning with “___” etc. The
goal of the filter is to ensure that JavaScript code that passes
through it only accesses security-critical objects by invoking
methods on the ADsafe library.

As described in this paper, under the SES;;45; semantics
the JSLint goal can be achieved simply by restricting all
untrusted code to the SES;;45¢ subset and wrapping it with
the context eval(_,“api’), where api stores the ADsafe library
object. In our experiments, we analyze if the ADsafe library
confines the DOM object, under the SES;;45; semantics and
threat model. Although the ADsafe library was implemented
in JavaScript, it does not use setters/getters and eval, and can
be de-sugared (using temporary variables) into semantically
equivalent SES;;¢5¢ code, thus making it amenable to con-
finement analysis using ENCAP.

Adding Annotations. In order to make our analysis precise
and to support certain JSLint restrictions on untrusted code,
we add suitable property annotations to the ADsafe library
implementation and to the encoding of eval statements.
The ADsafe library reserves a set of property names to
hide security-critical objects and certain book-keeping in-
formation. This set of property names is blacklisted and
JSLint filters out all untrusted programs that name any
property from this set. We support this restriction in our
analysis by annotating all Load and Store facts in the
encoding of eval statements with the annotation $Safe which
ensures that the property name is not blacklisted. The
annotation $Safe is also added to patterns of the form
if (Ireject(name)){ ... object[name] ... } in the library imple-
mentation, where reject is a function that checks if name
is blacklisted. The other annotation used in the library
implementation is $Num, which is added in the context of
for-loops to property lookups involving the loop index.

Attack. We ran ENCAP on the ADsafe library (approx.
1700 loc) and found that it leaks the document object via the
methods lib and go. The running time of the analysis was
5 mins 27 secs on a standard workstation. After analyzing
the methods lib and go, we were able to construct an actual
client program that used these methods to directly access
the document object, thus confirming the leak to be a true
positive. The exploit code is present in figure 8.

In order to explain the root cause of the attack, we
describe the methods go and lib. The method go(id,f) takes

ADSAFE.lib(
”__nodes___ ",
function(lib){
var o = [{appendChild:
function(x){var steal = x.ownerDocument)},

tagName:1}];
return o;}
);
// sets adsafe_lib.___nodes___ to o
ADSAFE.go(
"test”,

function(dom,lib){
// lib points to the adsafe_lib object
var frag = dom.fragment();
var f = frag.value;
// f points to the value method of the dom library
lib.v = f;
lib.vo; }

Figure 8. ADsafe exploit code

a function f as an argument and provides it with an object
named dom that has methods that wrap the original DOM
methods, and a certain library object adsafe_lib that is meant
to store libraries defined by untrusted code. The adsafe_lib
object method is populated by the lib method which is
defined as function (name, f){adsafe_lib[name] = f(adsafe_lib);
One of the confinement mechanisms used in the ADsafe
library is to hide DOM objects in the “___ " property of
certain objects and forbid untrusted code from writing to or
reading from “___” properties. This mechanism is broken
by the lib method which allows untrusted code to write to
“___” property of the adsafe_lib object, thus leading to the
attack. We refer the reader to [35] for further details.

Fixing the Attack. A fix for the attack is to rewrite the lib
method using the annotation $Safe in the following way.

function (name, f){if('reject_name(name)){
adsafe_lib[name, $Safe] = f(adsafe_lib);}

With this rewriting, ENCAP reports no DOM leaks, thus
proving that the ADsafe library safely confines the DOM
object under the added annotations and the SES;;,,, threat
model. We reported the vulnerability to Yahoo! and the
corresponding fix was adopted immediately.

B. Sealer-Unsealer Pairs

Our next example is an implementation of the Sealer-
Unsealer encapsulation technique, which was first intro-
duced by Morris [17] in 1973, for providing an encryption
decryption like mechanism for functions. Sealer-Unsealer
pairs are important security mechanisms used in designing
capability based systems. We analyzed an SES;;p: imple-
mentation of sealers and unsealers, as shown in figure 9.
The API exposed to untrusted code provides access to the
seal method and a sealed secret function. By running ENCAP
on the implementation we successfully verified that the API
confines the secret function.

function SealerUnsealer({
var flag = false;
var payload = null;
return {seal: function (payloadToSeal){
function box(){
flag = true;
payload = payloadToSeal;

return box;

I
unseal: function(box){

flag = false;

payload = null;

try{
box0;
if ('flag){

throw ’Invalid Box’

Yelse{ return payload;}

Hinally{
flag = false;
payload = null;}

}
function secret(){ };

// a secret function

var brand = SealerUnsealer();
var box = brand.seal(secret);
// seals the secret function

var api = {seal: brand.seal, sealedFunc: box}
// API exposed to untrusted code

Figure 9. An Implementation of Sealer-Unsealer pairs

C. Mint

Our final example is the Mint function, which is a
canonical example used in the Object-Capabilities literature
to demonstrate how capability patterns like sealers and
unsealers can be used for writing robust code that can be
safely run in potentially malicious environments. The source
code is present in figure 10. Untrusted code is handed the
function Mint, which can be invoked to create the Purse
constructor. The Purse constructor can be invoked to create
purse objects which encapsulate a balance field, storing the
purse’s balance, and have methods deposit, getBalance to read
and update the balance field. One of the correctness goals
for the mint is conservation of currency, which says that the
sum of balances of all purse objects must be constant. A
quick inspection of the code reveals that the decr function
can directly alter the balance field. Thus the conservation
of currency property necessitates that the Mint object safely
confines the decr function. By running ENCAP on the code
in figure 10 combined with the implementation of sealer-
unselars pairs from figure 9, we successfully verified that
the decr function is safely confined, under the SES;;,,; threat
model.

D. Summary

We demonstrated the effectiveness of our tool by using it
to find a security-oversight in the Yahoo! ADsafe library and

function Nat(n) { if (n I==n >>> 0) { throw *NotNatural’; } return n; }

function Mint(){
var brand = SealerUnsealer();
return function Purse(balance){
function decr(amount){
balance = Nat(balance — amount);

return {
getBalance: function({return balance;},
makePurse: function(){return Purse(0);},
getDecr: function(){return brand.seal(decr);},
deposit: functionamount,src){
var box = src.getDecr();
var decr = brand.unseal(box);
Nat(balance + amount);
decr(Natamount));
balance += amount;}

}

var api = Mint;
// API exposed to untrusted code

Figure 10. An Implementation of the Mint

then verifying confinement of the repaired library and some
benchmark examples from the Object-Capabilities literature.

The vulnerability that ENCAP found in the ADsafe library
is not only exploitable using untrusted SES;;4; code, but
also using code that satisfies the stronger JSLint syntactic
restrictions imposed by ADsafe. In addition, the vulnera-
bility is also exploitable on present day browsers. In the
accompanying tech report [35], we use the exploit code to
construct a JSLint-satisfactory script element, which when
run in conjunction with the (broken) ADsafe library, is able
to obtain a reference to the document object. The exploit has
been tested on browsers Firefox, Chrome and Safari.

Perhaps surprisingly, there exist examples of API confine-
ment that are secure under standard JavaScript semantics but
not under SES;;4;; semantics. For example, the following
API fails to confine the function critical under the SES;;4pn:
semantics and threat model:

var x = function critical(){ };

var api = function(){var a = this;
if(typeof a === "object’){ delete a.x;};
return x; }

However, this is safe under JavaScript semantics, for re-
stricted untrusted code that only accesses the global variable
api. This is because in the JavaScript semantics, the this value
of the api function would be the global object and therefore
the priv binding would get deleted before the return step.
However under the SES;;,5,; semantics, the this value would
be undefined thereby making the function return critical.
Finally, we note that ENCAP has the expected limitations
and imprecision associated with flow insensitive and context
insensitive analysis. For instance, running ENCAP on the
Cajita run-time library of the Google Caja framework [6],

generated a large number of false positives as a function
freeze was being called on the return variables of all the
library methods. Due to context insensitivity, the return value
from all calls to freeze propagated to all call sites, thereby
creating too many spurious points-to edges.

VII. RELATED WORK

There is a long history of using static analysis and
language-based techniques to secure extensible software,
including such notable work as Typed Assembly Lan-
guage [31], Proof-Carrying Code and Software-based Fault
Isolation [38]. However, this line of research has focused on
providing strong guarantees about untrusted extensions, and
their access to trusted interfaces to security-relevant services.
Less considered have been the effects of giving an arbi-
trary, untrusted extension unfettered access to such trusted
interfaces. Until recently, most work that considered such
“API security” had centered around cryptographic security
modules, and their interfaces [4]. For those cryptographic
APIs, keys take the role of security-critical objects, and static
analysis has been used to establish whether (or not) those
keys are properly confined within the security module. This
line of work has strong connections to formalisms such as
BAN logic [5], where similar abstract analysis can be used
to reason about all possible interactions in security protocols.
As security-relevant services that expose rich interfaces are
increasingly written in high-level, type-safe languages, such
abstract analysis of the security properties of APIs has
increasingly wider applicability.

For server-side Web software written in languages other
than JavaScript, several efforts have employed static analysis
for security, in particular to identify and prevent Cross-Site
Scripting (CSS) attacks or SQL injection. Examples include
the taint-based CSS analysis in Pixy [16], the SQL injection
analysis by Xie and Aiken [41], both in the context of
PHP. In addition, in the context of Java, Livshits and Lam
implemented a Datalog-based analysis to establish security
properties such as proper sanitization [21]. Compared to
this work, JavaScript raises unique challenges, in particular
due to its highly-dynamic nature. In previous work [23,25],
Maffeis et al. have analyzed various subsets of JavaScript,
and defined sandboxes based on filtering, rewriting and
wrapping for restricting untrusted code written in them.

In previous work by Maffeis et al. [22], a small-step op-
erational semantics has been presented for JavaScript, based
on the 3"¢ edition of the ECMA262 standard. As mentioned
earlier, our semantics of SES;;,; is very similar in structure
to this semantics with the main technical difference being
in the modeling of scope objects. An alternate approach to
defining semantics of Javascript is that of Guha et al. [12],
who describe the semantics by defining a de-sugaring of
the surface language to a core calculus LambdaJS and then
providing execution rules for expressions in LambdalS.

Recently, flow-insensitive static analysis of JavaScript
code has been considered in the research efforts Staged In-
formation Flow [8] and Gatekeeper [11]. Both efforts make
use of mostly-static techniques, supported by some run-
time checks; in particular, Staged Information Flow leaves
to runtime checks the analysis of all dynamic code and
eval. Gatekeeper has perhaps the most similar goals to our
work: it aims to constrain potentially-obfuscated, malicious
JavaScript widgets that execute within a host Web page, and
invoke the APIs of that Web page. Gatekeeper analysis also
makes use of Datalog, in much the same way as we do in
our work. Gatekeeper, however, does not statically analyze
eval and does not provide a rigorous proof of soundness
for their analysis. As a final point of comparison, the VEX
system uses static information-flow analysis to find security
vulnerabilities in Web browser extensions. Much like in the
current work, VEX analysis is based on a formal semantics
for a fragment of JavaScript, based on [12,22]. Despite
several similarities, VEX is fundamentally different from
the current work in both its application domain, and in its
technical details. VEX aims to prevent script injection at-
tacks, and analyzes only certain types of explicit flows from
untrusted sources to executable sinks; in comparison, we
consider the confinement of security-critical objects. VEX
static analysis is path-sensitive, context-sensitive and makes
use of precise summaries. but is fundamentally unsound.
In comparison, our static analysis is simpler, applies to the
core of an important new JavaScript variant, and guarantees
soundness.

VIII. CONCLUSION AND FUTURE WORK

While JavaScript was originally designed for adding small
scripting functions to Web pages, the Web has become
dramatically more sophisticated over the past 15 years.
As larger and more complex applications have become
commonplace, Web application developers and users have
become increasingly interested in robustness, reliability, and
security of large JavaScript code bases. In this paper, we
therefore study a restricted sublanguage SES;; 4, based on
recently standardized ESSS, that we believe allows con-
cerned programmers to develop secure applications that pro-
vide restricted access to untrusted code. In effect, we believe
that SESy; 45+ provides better support for the principle of least
privilege than previous ad hoc subsets of JavaScript because
a programmer can confine access to selected resources to a
specific interface (or API).

We demonstrate the way that SES;;,4;,; supports confine-
ment by developing precise semantics for SES; 44, present-
ing an automated tool ENCAP that provably verifies confine-
ment, and using ENCAP to analyze code previously defined
to provide confinement in restricted forms of JavaScript. In
these case studies, we found a previously undetected con-
finement oversight in the Yahoo! ADsafe library [9], proved
confinement of a repaired version of ADsafe automatically,

and demonstrated confinement for other isolation examples
from the object-capability and security literature. While
SES;igns requires programmers of security-critical code to
use a more limited form of JavaScript, we believe the clean
semantic properties of SES;;4,; and the power of ENCAP
and other analysis methods enabled by SES;;44; provide
ample motivation for concerned programmers to adopt this
language. In fact, the success of our tool on some existing
code suggests that careful programmers may already respect
some of the semantically motivated limitations of SES;;.

While our success with ENCAP demonstrates some of the
advantages of SES;;4n¢, additional effort may be needed
to drive interest in SES;;gn¢, In addition, further technical
work can provide additional and more powerful analysis
methods for versions of JavaScript that support traditional
programming language properties such as the static contour
model of scope and the ability to rename bound variables
without changing program semantics (both of which fail
for arbitrary JavaScript). For example, additional analysis
methods such as object-sensitive analysis [28] and CFA2
techniques [37] may lead to more powerful tools that will
aid future programmers in developing security-critical code,
and other methods may allow us to provide more useful
diagnostics when confinement cannot be established. We
also believe that further work may allow us to extend the
present tool and proofs to broader classes of untrusted code.

ACKNOWLEDGMENT

We thank the Google Caja team for invaluable comments
and discussions. We are indebted to Shriram Krishnamurthi
and anonymous reviewers for their comments and sugges-
tions. Mitchell and Taly acknowledge the support of the Na-
tional Science Foundation, the Air Force Office of Scientific
Research, the Office of Naval Research, and Google, Inc.

REFERENCES

[1] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, 1994.

[2] I. Atsushi, B. C. Pierce, and P. Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. In ACM Transactions
on Programming Languages and Systems, pages 132-146,
1999.

[3] M. Berndl, O. Lhoték, F. Qian, L. Hendren, and N. Umanee.
Points-to analysis using bdds. In Proc. of PLDI, pages 103
— 114, 2003.

[4] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel.
Attacking and fixing PKCS#11 security tokens. In Proc. of
CCS, pages 260-269, 2010.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Trans. Comput. Syst., 8, 1990.

[6] Google Caja Team. Google-Caja: A source-to-source trans-
lator for securing JavaScript-based Web content. http://code.
google.com/p/google-caja/.

(71

(8]

(91

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

S. Ceri, G. Gottlob, and L. Tanca. What you always wanted
to know about Datalog (and never dared to ask). IEEE Trans.
on Knowl. and Data Eng., 1:146 — 166, 1989.

R. Chugh, J.A. Meister, R. Jhala, and S. Lerner. Staged
information flow for JavaScript. In Proc. of PLDI, 2009.

D. Crockford. ADsafe: Making JavaScript safe for advertis-
ing. http://www.adsafe.org/, 2008.

ECMA. ECMA-262: ECMAScript Language Specification.
Fifth edition, December 2009.

S. Guarnieri and B. V. Livshits. Gatekeeper: Mostly static
enforcement of security and reliability policies for JavaScript
code. In Proc. of USENIX security symposium, pages 50-62,
20009.

A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of
JavaScript. In Proc. of ECOOP, pages 126-150, 2010.

A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local
control and state using flow analysis. Accepted at ESOP,
2011.

D. Van Horn and H. G. Mairson. Deciding kCFA is complete
for EXPTIME. In Proc. of ICFP, pages 275-282, 2008.

D. Jang and K. Choe. Points-to analysis for JavaScript. In
Proc. of ACSAC, pages 1930-1937, 2009.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static
analysis tool for detecting Web application vulnerabilities
(short paper). In Proc. of the 2006 IEEE S&P, pages 258—
263, 2006.

J. H. Morris Jr. Protection in programming languages.
Commun. ACM, 16:15-21, 1973.

S. Krishnamurthi. Confining the ghost in the machine: Using
types to secure JavaScript sandboxing. In Proc. of APLWACA,
2010.

B. W. Lampson. A note on the confinement problem.
Commun. ACM, 16:613-615, 1973.

H. M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

B. V. Livshits and M. S. Lam. Finding security vulnerabilities
in Java applications with static analysis. In Proc. of USENIX
security symposium, pages 1-18, 2005.

S. Mafteis, J. C. Mitchell, and A. Taly. An operational
semantics for JavaScript. In Proc. of APLAS, pages 307-325,
2008.

S. Maffeis, J. C. Mitchell, and A. Taly. Isolating JavaScript
with filters, rewriting, and wrappers. In Proc. of ESORICS,
pages 505-522, 2009.

S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities
and isolation of untrusted Web applications. In Proc. of IEEE
S&P, pages 125-140, 2010.

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

(40]

(41]

S. Maffeis and A. Taly. Language-based isolation of untrusted
Javascript. In Proc. of CSF, pages 77-91, 2009.

J. Midtgaard and T. Jensen. A calculational approach to
control-flow analysis by abstract interpretation. In Proc. of
SAS, pages 347-362, 2008.

M. Might, Y. Smaragdakis, and D. Van Horn. Resolving
and exploiting the k-CFA paradox: Illuminating functional
vs. object-oriented program analysis. In Proc. of PLDI, pages
305-315, 2010.

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for Java. ACM Trans.
Softw. Eng. Methodol., 14(1):1-41, 2005.

M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, 2006.

M. S. Miller, C. Morningstar, and B. Frantz. Capability-based
financial instruments. In Proc. of FC, FC *00, pages 349-378,
2001.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to typed assembly language. In Proc. of POPL,
pages 85-97, 1998.

G. D. Plotkin. A structural approach to operational semantics.
J. Log. Algebr. Program., 60-61:17-139, 2004.

J. A. Rees. A security kernel based on the lambda-
calculus. Technical report, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, 1996.

A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and
J. Nagra. An operational semantics for SES;;4n:. http:
//theory.stanford.edu/~ataly/Semantics/seslSemantics.txt.

A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and
J. Nagra. Automated analysis of security-critical javascript
apis. Technical Report http://theory.stanford.edu/~ataly/
Papers/sp11TechReport.pdf, 2011.

The Facebook Team. FBIJS. http://wiki.developers.facebook.
com/index.php/FBJS.

D. Vardoulakis and O. Shivers. CFA2: A context-free ap-
proach to control-flow analysis. In Proc. of ESOP, pages
570-589, 2010.

R. Wahbe, S. Lucco, T. E. Anderson, and S.L. Graham.
Efficient software-based fault isolation. In Proc. of SOSP,
pages 203-216, 1994.

J. Whaley. BDDBDDB: Bdd based deductive database. http:
//bddbddb.sourceforge.net/, 2004.

J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Proc.
of PLDI, pages 131-144, 2004.

Y. Xie and A. Aiken. Static detection of security vulnera-
bilities in scripting languages. In Proc. of USENIX security
symposium, page 179192, 2006.

