
Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

A Structural Operational Semantics for JavaScript

Ankur Taly

Dept. of Computer Science, Stanford University

Joint work with Sergio Maffeis and John C. Mitchell

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Outline

1 Motivation
Web Security problem
Informal and Formal Semantics
Related work

2 Formal Semantics for JavaScript (ECMA262-3)
Syntax
Main features
Semantic rules

3 Formal Properties

4 Conclusions and Future work

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

JavaScript

Widely used web programming language.

History :

Developed by Brendan Eich at Netscape.
Standardized for Browser Compatability : ECMAScript
262-edition 3

Interesting and unusual features

First class functions
Prototype based language
Powerful modification capabilities : can convert string to code
(eval), can redefine object methods !

Very important to fully understand the Semantics so as to
reason about the security properties of programs written in it.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Big Picture

Figure: Trusted and Untrusted code

Many websites include untrusted JavaScript content:
Third party advertisements
Social Networking sites : User written applications
Web Mashups

Isolation Goal

Allow untrusted code to perform valuable interactions at the same
time prevent intrusion and malicious damage.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Real World Example

Figure: Web Mashup

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Formulating the Problem

Static Analysis Problem

Given an untrusted JavaScript program P and a Heap H
(corresponding to the trusted page), determine if P accesses any
security critical portions of the Heap.

Very hard problem to solve for whole of JavaScript as all code that
gets executed may not appear textually ! Example :

var m = ”toString=func”; var n = ”tion(){return undefined};”;
eval(m + n);

Simplification : Solve the above problem for subsets of JavaScript
that are more amenable to static analysis.

First step

Define a Formal semantics for complete JavaScript

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Formulating the Problem

Static Analysis Problem

Given an untrusted JavaScript program P and a Heap H
(corresponding to the trusted page), determine if P accesses any
security critical portions of the Heap.

Very hard problem to solve for whole of JavaScript as all code that
gets executed may not appear textually ! Example :

var m = ”toString=func”; var n = ”tion(){return undefined};”;
eval(m + n);

Simplification : Solve the above problem for subsets of JavaScript
that are more amenable to static analysis.

First step

Define a Formal semantics for complete JavaScript

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Informal Semantics

ECMA262-3 specification manual - currently in its third
edition.

Sufficient for ’understanding’ the language but insufficient for
rigorously proving properties about the language.

Prove or Disprove : For all terms t, the execution of t only
depends on the values of the variables appearing in t.

Example : Meaning[x = x + 10] only depend on value of x ?
in C ? Yes
in JavaScript ?

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Example

var y = ”a”;
var x = {toString : function(){ return y;}}

x = x + 10;
js> ”a10”

Implicit type conversion of an object to a string in JavaScript
involves calling the toString function.

Informal semantics fail to emphasize such examples.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Formal Semantics

Specify meaning in a Mathematically rigorous way.

Provides a framework for proving properties of the kind
mentioned on the previous slide.

Our Goal

Convert Informal semantics(ECMA262-3) into a Formal
semantics. (Done ! This talk)
Analyze existing safe subsets of JavaScript and formally prove
the security properties that they entail. (Ongoing work)

The very act of formalization revealed subtle aspects of the
language.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Related work

Giannini et al (ECOOP 05), Thiemann (ESOP 05)

Formalized a small (but non-trivial) subset of JavaScript
Provided a static type system but substantially simplified the
semantics.

We found examples of programs that are well-typed according
to these simplified semantics but ill-typed according to the
complete semantics and vice versa.

Our Contribution : A Structural Operational semantics for
complete ECMA standard language.
Advantages:

Ability to analyze semantics of arbitrary JavaScript code.

Gives us a more systematic way of designing the subsets,
parametric on the desired security properties.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Related work

Giannini et al (ECOOP 05), Thiemann (ESOP 05)

Formalized a small (but non-trivial) subset of JavaScript
Provided a static type system but substantially simplified the
semantics.

We found examples of programs that are well-typed according
to these simplified semantics but ill-typed according to the
complete semantics and vice versa.

Our Contribution : A Structural Operational semantics for
complete ECMA standard language.
Advantages:

Ability to analyze semantics of arbitrary JavaScript code.

Gives us a more systematic way of designing the subsets,
parametric on the desired security properties.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Outline

1 Motivation
Web Security problem
Informal and Formal Semantics
Related work

2 Formal Semantics for JavaScript (ECMA262-3)
Syntax
Main features
Semantic rules

3 Formal Properties

4 Conclusions and Future work

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Structural Operational Semantics (Gordon Plotkin)

Meaning of a program ⇔ sequence of actions that are taken
during its execution.

Specify sequence of actions as transitions of an Abstract State
machine

States corresponds to

Term being evaluated
Abstract description of memory and other data structures
involved in computation.

A state transition denotes a partial evaluation of the term.

Specify the transitions in a syntax oriented manner using the
inductive nature of the abstract syntax.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Basic JavaScript Syntax

Syntax

According to ECMA 2.62 :

Expressions (e) :: this | x | e OP e | e(e) |
new e(e) |...

Statement (s) :: "s*" | if (e) s else s |
while (e) s | with (e) s | ...

Programs (P) :: s P | fd P
Function Decl (fd) :: function x (x){ P }

Observation

Observe that according to the spec, declaring a function inside an
’if block’ is a syntax error ! However this allowed in all browsers

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Basic JavaScript Syntax

Syntax

According to ECMA 2.62 :

Expressions (e) :: this | x | e OP e | e(e) |
new e(e) |...

Statement (s) :: "s*" | if (e) s else s |
while (e) s | with (e) s | ...

Programs (P) :: s P | fd P
Function Decl (fd) :: function x (x){ P }

Observation

Observe that according to the spec, declaring a function inside an
’if block’ is a syntax error ! However this allowed in all browsers

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

JavaScript : Key Features

Everything (including functions) is either an object or a
primitive value.

Activation records are normal JavaScript objects and the
variable declarations are properties of this object.

All computation happens inside a global object which is also
the initial activation object.

Instead of a stack of activation records, there is a chain of
activation records, which is called the scope chain.

Arbitrary objects can be placed over the scope chain -
with(e) s construct.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

JavaScript : Subtle Features

Example 2

var f = function(){if (true) {function g() { return 1;}; }
else {function g() { return 2;};}
var g = function() { return 3;}
return g();
function g(){ return 4;}}

var result = f();

What is the final value of result ?

result = 2 (according to ECMA262-3)

Function body is parsed to process all variable declarations
before the function call is executed !

Different implementations chose different declarations :
Mozilla Spidermonkey : 4, Safari : 1 !

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

JavaScript : Subtle Features

Example 2

var f = function(){if (true) {function g() { return 1;}; }
else {function g() { return 2;};}
var g = function() { return 3;}
return g();
function g(){ return 4;}}

var result = f();

What is the final value of result ?

result = 2 (according to ECMA262-3)

Function body is parsed to process all variable declarations
before the function call is executed !

Different implementations chose different declarations :
Mozilla Spidermonkey : 4, Safari : 1 !

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Formal Semantics : Program state

All objects are passed by reference ⇒ The store must have
information about Heap locations.

Variables have different values in different scopes ⇒ State
must include info about current scope.

State

Program state is represented as a triple 〈H, l , t〉.
H : Denotes the Heap, mapping from the set of locations(L)
to objects.

l : Location of the current scope object (or current activation
record).

t : Term being evaluated.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Semantic Rules

Three semantic functions
e−→ ,

s−→ ,
P−→ for expressions,

statements and programs.

Small step transitions : A semantic function transforms one
state to another if certain conditions (premise) are true.

General form :
〈Premise〉

S
t→ S ′

Atomic Transitions : Rules which do have another transition
in their premise

Context rules : Rules to apply atomic transitions in presence
of certain specific contexts.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Heap and Heap Reachability Graph

Figure: Heap and its reachability graph

Heap Reachability Graph : Heap addresses are the nodes. An edge
from li to lj , if the object at address li has property p pointing to lj .

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Scope and Prototype lookup

Figure: Scope and Prototype lookup

Every scope chain has the global object at its base.
Every prototype chain has Object.prototype at the top, which
is a native object containing predefined functions such as
toString, hasOwnProperty etc.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Scope lookup : Rules

ECMA 2.62 (essence):

1 Get the next object (l) in
the scope chain. If there
isn’t one, goto 4.

2 If l ”HasProperty” x, return
a reference type l*”x”.

3 Else, goto 1

4 Return null*x.

Scope(H, l, ”x”) = ln

〈H, l, x〉 e→ 〈H, l, ln ∗ ”x”〉

HasProperty(H, l, m)

Scope(H, l, m) = l

¬(HasProperty(H, l, m))
H(l).@Scope = ln

Scope(H, l, m) = Scope(H, ln, m)

Scope(H, null, m) = null

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Prototype lookup : Rules

ECMA 2.62 :

1 If base type is null, throw
a ReferenceError
exception.

2 Else, Call the Get
method , passing prop
name(x) and base type l
as arguments.

3 Return result(2).

H2, lexcp = alloc(H, o)
o = newNativeErr(””, #RefErrProt)

〈H, l, (null ∗ m)〉 e→ 〈H2, l, 〈lexcp〉〉

Get(H, l, m) = va

〈H, l, ln ∗ m〉 e→ 〈H, l, va〉

HasOwnProperty(H, l, m)
Dot(H, l, m) = va

Get(H, l, m) = va

¬(HasOwnProperty(H, l, m))
H(l).@prototype = lp

Get(H, l, m) = Get(H, lp, m)

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Exceptions

When an intermediate step gives an exception, stop further
evaluation and throw the exception to the top level.

Example :

〈H, l, a0〉 → 〈H, l, 〈lexcp〉〉
〈H, l, a0 + a1〉 → 〈H, l, 〈lexcp〉+ a1〉

Stop evaluation of a2.

Use context based reduction rules (Felleisen)

Context Rule for Exceptions

〈H, l, eC[〈lexcp〉]〉 → 〈H, l, 〈lexcp〉〉

where eC ::= | eC OP e | va OP eC | eC[e] | ...

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Exceptions

When an intermediate step gives an exception, stop further
evaluation and throw the exception to the top level.

Example :

〈H, l, a0〉 → 〈H, l, 〈lexcp〉〉
〈H, l, a0 + a1〉 → 〈H, l, 〈lexcp〉+ a1〉

Stop evaluation of a2.

Use context based reduction rules (Felleisen)

Context Rule for Exceptions

〈H, l, eC[〈lexcp〉]〉 → 〈H, l, 〈lexcp〉〉

where eC ::= | eC OP e | va OP eC | eC[e] | ...

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

With statement

With statement allows arbitrary objects to be placed on top of the
scope chain.
Example :

var a = 5;
var o = {a:10}
with(o){ a; }
> 10

A simple rule for with is :

〈H, l, with(lnew)s〉 s→ 〈H, lnew, s〉

Is the above rule correct ?
Observe that once with completes, we need to restore the old
scope back !

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Continuation as contexts

We create a new context $with(l,) . The new rule is

〈H, l, with(lnew)s〉 s→ 〈H, lnew, $with(l, s)〉

Then we have separate context rules.

〈H, l, s〉 s→ 〈H′, l′, s′〉
〈H, l, $with(lold, s)〉 s→ 〈H′, l′, $with(lold, s′)〉

[With − s]

〈H, l, s〉 s→ 〈H′, l′, val〉
〈H, l, $with(lold, s)〉 s→ 〈H′, lold, val〉

[With − end]

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Summary

We developed an operational semantics for the entire ECMA
2.62 language.

Complete set of rules (in ASCII) span 70 pages.

Semantics does not cover features beyond ECMA 2.62, like
setters/getters etc, which are present in various browsers.

We do not model interaction with the Document Object
Model (DOM) of web browsers.

The entire exercise also led to the discovery of several
inconsistencies in the various browsers.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Outline

1 Motivation
Web Security problem
Informal and Formal Semantics
Related work

2 Formal Semantics for JavaScript (ECMA262-3)
Syntax
Main features
Semantic rules

3 Formal Properties

4 Conclusions and Future work

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Formal Analysis

Contributions :

Progress/Preservation Theorem

Evaluation of a state is never ”stuck”, and always progresses
to a next state or a value or an exception.
Essential for any subsequent formal analysis to make sense

Heap Reachability Theorem

Characterizing the reachable portion of the Heap
Showing that evaluation of a state does not depend on
anything outside the reachable portion.
First step towards solving the static analysis problem of
determining if a program can potentially access any
security-critical portions.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Soundness

Notations and Definitions :

Wf (〈H, l, t〉) : Predicate denoting well-formedness of state
(〈H, l, t〉)
G(H) : Heap reachability graph of H.

Theorem

Progress :
Wf (S) ∧ S is not a terminal state⇒ (∃S ′ : S → S ′)
Proof Idea : Induction over the structure of terms.

Preservation : Wf (S) ∧ S → S ′ ⇒Wf (S ′).
Proof Idea : Induction over the rules.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Heap Reachability

Set of root addresses : ∆(〈H0, l0, t0〉) = {l |l ∈ t0} ∪ {l0} item
viewH(l) : Subgraph of the Heap reachability graph consisting
only of nodes reachable from l .

Theorem

Evaluation of a state S = 〈H, l , t〉 only depends on the Heap
addresses corresponding to nodes reachable from the set of root
nodes in the Heap reachability graph..

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Proof Idea

Consider any two states S1 and S2. Define S1 ∼ S2 iff

There exists a heap address renaming function
f : dom(H)→ L.

∆(S1) = f (∆(S2)).

For all l ∈ ∆(S1), viewH1(l) = viewf (H2)(l)

Theorem

S1 ∼ S2 ∧ S1 → S ′
1 ⇒ ∃S ′

2. S2 → S ′
2 ∧ S ′

1 ∼ S ′
2.

Proof Idea: Induction over the set of rules.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Garbage Collector for JavaScript

Immediate Consequence of Reachability theorem.

Mark and sweep garbage collector : For a particular state S ,
Garbage collect all heap addresses not reachable from ∆(S) in
the heap reachability graph.

By Reachability theorem , the semantics of S is preserved
during garbage collection.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

A glimpse of Ongoing work

Central Problem : Design safe subset of JavaScript more
amenable to static analysis.

Main Idea

Filtering ⇔ Syntactic subset.
Example : Forbid use of evil constructs like eval, Function, e[e]
etc
Rewriting ⇔ Semantic subset.
Example : Rename all identifiers appearing in the program to
separate out the namespace of untrusted code.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

A glimpse of Ongoing work

Breakdown central problem into designing subsets with certain
language properties

Design a subset of JavaScript such that for all programs in
that subset, every property name that is accessed appears
textually in the code.
Design a subset of JavaScript such that the semantics of any
program in that subset does not change under renaming of
identifiers.
. . .

Starting point for systematically designing and proving the desired
language property for each of these subsets is the formal semantics
for entire JavaScript.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

ADSafe (Douglas Crockford)

ADSafe is a solution proposed by Yahoo for controlling the
interaction between the trusted and untrusted code.

Basic Idea :
1 Represents a safe subset of JavaScript.
2 Wraps untrusted code inside a safe object called ADSafe

object.
3 All interaction with the trusted code happens only using the

methods in the ADSafe object.
4 Untrusted code can be statically checked to ensure that it only

calls methods of the ADSafe object (Tool : JSLint).

More information on http:www.adsafe.org

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Challenges and Issues

Consider the following property : ”All interaction with the
trusted code happens only using the methods in the ADSafe
object.”
Is this achievable ?
Consider the following code :

var o = {a:10};
var arr = [10,11];
arr[o];

This function implicitly calls Object.prototype.toString,
which is a function defined in the trusted space.
What if toString in turn leaks out pointer to global object ?

Conclusion

Besides the untrusted code, ADSafe has to impose restrictions on
the native functions and objects present in the trusted space.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Challenges and Issues

Consider the following property : ”All interaction with the
trusted code happens only using the methods in the ADSafe
object.”
Is this achievable ?
Consider the following code :

var o = {a:10};
var arr = [10,11];
arr[o];

This function implicitly calls Object.prototype.toString,
which is a function defined in the trusted space.
What if toString in turn leaks out pointer to global object ?

Conclusion

Besides the untrusted code, ADSafe has to impose restrictions on
the native functions and objects present in the trusted space.

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Conclusions and Future work

Conclusions :

First step towards formal analysis of whole of JavaScript.

We have formalized the entire ECMA 2.62 language.
Complete set of rules (in ASCII) span 70 pages.

Prove basic soundness properties like progress and
preservation for the semantics and the fact that JavaScriptis
garbage collectible.

Future Work :

Add features like setters/getters (not present in ECMA 2.62)
and formalize interaction with DOM.

Encode the semantics in a machine readable format.

Apply the semantics for security analysis of safe fragments of
JavaScript such as AdSafe (Yahoo !), FBJS (FaceBook).

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Conclusions and Future work

Conclusions :

First step towards formal analysis of whole of JavaScript.

We have formalized the entire ECMA 2.62 language.
Complete set of rules (in ASCII) span 70 pages.

Prove basic soundness properties like progress and
preservation for the semantics and the fact that JavaScriptis
garbage collectible.

Future Work :

Add features like setters/getters (not present in ECMA 2.62)
and formalize interaction with DOM.

Encode the semantics in a machine readable format.

Apply the semantics for security analysis of safe fragments of
JavaScript such as AdSafe (Yahoo !), FBJS (FaceBook).

Ankur Taly A Structural Operational Semantics for JavaScript

Motivation Formal Semantics for JavaScript (ECMA262-3) Formal Properties Conclusions and Future work

Thank You !

Ankur Taly A Structural Operational Semantics for JavaScript

	Motivation
	Web Security problem
	Informal and Formal Semantics
	Related work

	Formal Semantics for JavaScript (ECMA262-3)
	Syntax
	Main features
	Semantic rules

	Formal Properties
	Conclusions and Future work

