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While Programs

Expressions E : x | n | E + E | E ∗ E
Boolean Expressions B : true | false | E = E | B =⇒ B
Commands C ,D : x := E |if B then C else C |

while B then C | C ; C

Store

Vars : Set of Variables StoreValues : Nat
Stores A,B : Vars ⇀ StoreValues
Each program C evaluates with respect to store: A1,C1 → A2,C2
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Hoare Logic

Axiomatic method for proving properties of while-programs,
invented by Hoare in 1969.

Central Idea: Assign meaning to a program C using a Hoare
triple {P}C{Q}

P : Assertion on variables before C begins execution.
Q: Assertion on variables after C finishes execution

Example:

{x = 10}y = x + 1{y = 11}.
{x = y}while x = 10 then x = x + 1; y = y + 1{x = y}.

Validity of triples

A Hoare triple {P}C{Q} is valid IFF:
IF P holds initially and C terminates THEN Q holds finally.
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The Inference System

The assertions P,Q in the triple {P}C{Q} are predicates on the
store.

{P[E/x]}x := E{P} [S-assignment]

{P}C1{P′} {P′}C2{Q}
{P}C1; C2{Q}

[S-seq]

{P ∧ B}C1{Q} {P ∧ ¬B}C2{Q}
{P}if B then C1 else C2{Q}

[S-if]

|= P =⇒ P′ {P′}C{Q′} |= Q′ =⇒ Q

{P}C{Q}
[S-conseq]

Notice the simplicity of the assignment axiom.

Assignment axiom also provides Weakest-pre-condition.
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L: While-programs + references and records

Introduce Heaps: Mappings from locations to records

Variables can be locations or numbers.

Two new boolean expressions: isNat?(x), isLoc?(x).

Three new commands:

x .p := E Update property p of record at location x .
x1 := x2.p Lookup property p of records at location x2.
x := {pi : Ei}i∈{1,...,n} Record Creation.

Heaps and Stores

Loc : Set of locations P : Set of Property names
StoreValues : Loc ∪ Nat
Stores A,B : Vars ⇀ StoreValues
Heaps H,C : Loc ⇀ P ⇀ StoreValues
Each program C evaluates with respect to a heap and a store.
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Hoare logic for L

We need assertions on heap-stores now: cont x .p = E
Meaning: Property p of record at location x has value of
expression E .
Think of cont as the function Loc ⇀ P ⇀ StoreValues.

Is {cont y p = 10}x .p = 11{cont y p = 10} valid ?
No, x and y may contain same location.
Rule of Constancy does not hold.

Correct Triple: {contx.p:=11y .p = 10}x .p = 11{cont y p = 10}
contx.p:=11 = λl , q : If (l = x) ∧ (p = q) then 10 else cont l q

This is too complex, imagine multiple assignments to x .p.

Intuitively, cont y p = E is preserved during execution of C if
y is disjoint from location-properties touched by C .

Can I prove that cont y p = E is preserved without threading
it through the entire analysis of C ?

This is where Separation Logic comes in !.
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Separation Logic

History:

1 Burstall, 1972: separate program texts which work on
separated sections of the store can be reasoned about
independently.

2 Reynolds, MPC 2000: An Intuitionistic logic based on
Burstall’s observation. Introduced ∗.

3 Ishtiaq and O’Hearn, POPL 2001: A classical version of
Reynold’s logic. Introduced →∗

4 Reynolds, LICS 2002: Generalized the above logic to arbitrary
pointer arithmatic.

5 Several variants for specific domains have been discovered:

O’Hearn et al, POPL 2004: Separation and Information hiding.
Bornat et al, POPL 2005: Separation logic with permissions.
Many more . . .
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Basic Separation Logic

Change of Notation: x .p 7→ E instead of cont x p E .
Separating conjunction ∗: (x .p 7→ 10) ∗ (y .p 7→ 10) means

Field p of locations x and y , contains 10.
x and y are different locations.
Therefore
{x .p 7→ 10 ∗ y .p 7→ 10}x .p := 11{x .p 7→ 11 ∗ y .p 7→ 10} is
valid.

Local Reasoning: A specification should only reason about
the heap locations and variables accessed.

Assignment axiom for x .p := E is simply
{x .p 7→ }x .p := E{x .p 7→ E}
How do we derive that y .p 7→ 10 is preserved under the
assignment x .p := 11 if x 6= y ?

Frame Rule: {P}C{Q}
{P∗R}C{Q∗R}

Helps in going from local specifications to global specifications.
Soundness of frame rule =⇒ A specified program never looks
beyond what is present in its pre-condition !
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Run-time Safety

Robin Milner: Well specified programs never go wrong.

Any specification {P}C{Q} is such that for any heap-store
H,A which satisfies P, executing C on H,A will never lead to
a run-time error. This means:

All locations and variables accessed are mentioned by P so
that there are no memory errors (critical for frame rule).
P includes sufficient conditions on the values of variables so
that there are no type errors.

Therefore a specification {x .p 7→ 5}C{x . 7→ 10} means that
C only accesses property p of location contained in x .

This was the main motivation behind using separation logic
for proving mashup isolation.
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Separation Logic with Permissions

Invented by Bornat et al in 2005 by incorporating fractional
permissions in Separation logic.

Main motivation was to track permissions in threads.

We consider it in a sequential setting with 3 permissions -
{r}, {w}, {r ,w}.

Key Ideas:

Add more information in the specification to reason about
what is read-only.

Read x .p 7→ v as “program has permission to read/write
property p of record at x”.

Three new assertions: x .p
{r}7→ E , x .p

{w}7→ E , x .p
{r ,w}7→ E .

Modified ∗: x .p
r7→ 10 ∗ y .p

r7→ 10 can hold even if x = y .

Frame rule stays the same !
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Web 2.0

All about mixing and merging content (data and code) from
multiple content providers in the users browser, to provide
high-value applications known as mashups

Notation:

Individual contents being mixed - Components.
Content Providers - Principals.
Publisher of the mashup- Host.

Examples:

Basic Mashup: Any web page with advertisements, Facebook
page with applications
More complex mashups: Yelp, Yahoo Newsglobe ...
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Security Issues in Mashups

Principals participating in a mashup are usually mutually
untrusting.

Each component must be protected from malicious behavior
of other components.

Each Facebook application wants to make sure that its
variables are not over-written by other applications.
Current FBJS mechanism not sufficient for ensuring this.

This Work:

Focus on non-interacting basic mashups.

Verify complete inter-component isolation.
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Our Model

Basic Mashups (defined first in our Oakland 2010 paper):

Components are programs in some sequential prog. language
Mashup is a sequential composition of the components after
variable renaming: Rn(C1); . . . ; Rn(Cn).
Reasonable model for a web page with multiple
advertisements.

Isolation Property: Behavior of each component as part of the
mashup should be similar to the behavior obtained by executing it
independently.

Isolation property in Oakland paper is a special case of the
above.
This work focusses on verifying the property whereas the
Oakland paper focusses on enforcing it.

Prog. Language: Simple Imperative language with references and
records. Far from JavaScript, but good starting point for testing
out new theoretical techniques.
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Formal Definition of Mashups

Principals: id1, . . . , idn.

Components (C1, id1), . . . , (Cn, idn): Programs from L.

Initial execution environment: Heap-store H,A

Rn(C , a): Command obtained by replacing all x ∈ C with a.x .

Rn(A, a): Store obtained by replacing all x in A with a.x .

Variable-separated mashup

A variable-separated mashup M(H,A, (C1, id1), ... , (Cn, idn)) is
defined as the state Hmash,Amash,D1; . . . ; Dn where

Hmash := H.

Amash := Rn(A, id1). . . . .Rn(A, idn).

Di := Rn(Ci , idi ).

Variable renaming is done so that components cannot influence
each other via the store.
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Operational Semantics of L

Expressions [[E ]]Exp : Stores → StoreValues ∪ {error}.
Boolean Expr [[B]]Bexp : Stores → {true, false, error}.
Program states S ,T are formalized as triples (H,A,C )

Commands:
〈premise〉

H1,A1,C1 → H2,A2,C2
(small step)

Example rules:

H,A,C1 −→ K ,B,C ′
1

H,A,C1; C2 −→ K ,B,C ′
1; C2

[C-SequenceContinue]

l ∈ dom(H) AND x ∈ dom(A)

H,A, x := l .p → H,A[x → H(l).p], normal
[C-LookupNormal]

l /∈ dom(H) OR x /∈ dom(A)

H,A, x := l .p → H,A, abort
[C-LookupAbort]
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Notations and Definitions

dom(H): {(l , p) | H(l)(p) is defined}.
dom(A): {x | A(x) is defined}.
Given states S ,T :

H(S),S(S), C(S) denote the heap store and term part of the
trace.

S  T : S goes to T in zero or more steps.

Traces(S): Set of reduction traces of S .

S ↑ def
= ¬∃T : S  T 6 →.

Safe(S)
def
= ∀T : S  T =⇒ C(T ) 6= abort.
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The Simulation Relation

Heap Actions: (l , p, a, v) where a ∈ {r ,w} and v ∈ StoreValues
Store Actions: (x , a, v) where a ∈ {r ,w} and v ∈ StoreValues

Given a trace τ , Acc(τ) is the action sequence corresponding
to the trace

State simulation S ∼ T

There exists a variable renaming ren : Vars → Vars:

1 Safe Monotonicity. Safe(S) =⇒ Safe(T )

2 Termination Monotonicity.
¬S ↑ ∧Safe(S) =⇒ ¬T ↑ ∧Safe(S)

3 Access Similarity If Safe(S) holds then for all
τT ∈ Traces(T ), there exists τS ∈ Traces(S) such that
ren(Acc(τS)) = Acc(τT )
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Isolation Property

Let M(H,A, (C1, id1), ... , (Cn, idn)) = H,Amash,D1; . . . ; Dn, where
Di is a renamed version of Ci .
Pick any τ ∈ Traces(H,Amash,D1; . . . ; Dn).

By semantics of sequential compositions, starting heap-store
for Di+1 is the final heap-store for Di .

Define States(τ, idi )) as the sub-trace of τ corresponding to
execution of Di .

States(τ, idi )) = ∅ if for some j < i , Dj doesn’t terminate
normally.
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Isolation Property, formally

Isolation Property

M(H,A, (C1, id1), ... , (Cn, idn)) is isolated IFF:
for all traces τ ∈ Traces(M((C1, id1), ... , (Cn, idn))),

∀i : States(τ, idi ) 6= ∅ =⇒ (H,A,Ci ) ∼ (Hi ,Ai ,Di )

where Hi ,Ai = HS(States(τ, idi ))
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How does Separation Logic help ?

Consider heap store H,A and two components C1,C2.
M(H,A, (C1, id1), (C2, id2))) = H,Amash,D1; D2:
Let H1,A1 be such that H,Amash,D1  H1,A1, normal (assuming
termination).

Result

Isolation(M(H,A, (C1, id1), (C2, id2)))) IFF:

∀l , p : l , p ∈ Read(H,Amash,D2) ∩ dom(H) =⇒ H(l).p = H1(l).p
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How does separation logic help

∀l , p : l , p ∈ Read(H,Amash,D2) ∩ dom(H) =⇒ H(l).p = H1(l).p
IFF: one of the following holds:
Any location-property pair that is read during the reduction of D2

on H,Amash is:

A. Not accessed during the reduction of D1 on H,A

Basic Separation logic can tell me what is accessed and
whether it is disjoint from a certain portion of the heap.

B. At most read during the reduction of D1 on H,A

Definition of isolation in Oakland paper.
Separation logic with permissions - modified separating
conjunction allows overlap on read-only portion.

C. At most written and restored during the reduction of D1 on
H,A

Tricky, I have a naive solution.
Separation logic and Information hiding.

Ankur Taly Separation Logic and the Mashup Isolation Problem



Background The Mashup Isolation problem ? Basic Separation Logic Separation Logic with Permissions Ongoing and Future Work

How does separation logic help

∀l , p : l , p ∈ Read(H,Amash,D2) ∩ dom(H) =⇒ H(l).p = H1(l).p
IFF: one of the following holds:
Any location-property pair that is read during the reduction of D2

on H,Amash is:

A. Not accessed during the reduction of D1 on H,A

Basic Separation logic can tell me what is accessed and
whether it is disjoint from a certain portion of the heap.

B. At most read during the reduction of D1 on H,A

Definition of isolation in Oakland paper.
Separation logic with permissions - modified separating
conjunction allows overlap on read-only portion.

C. At most written and restored during the reduction of D1 on
H,A

Tricky, I have a naive solution.
Separation logic and Information hiding.

Ankur Taly Separation Logic and the Mashup Isolation Problem



Background The Mashup Isolation problem ? Basic Separation Logic Separation Logic with Permissions Ongoing and Future Work

How does separation logic help

∀l , p : l , p ∈ Read(H,Amash,D2) ∩ dom(H) =⇒ H(l).p = H1(l).p
IFF: one of the following holds:
Any location-property pair that is read during the reduction of D2

on H,Amash is:

A. Not accessed during the reduction of D1 on H,A

Basic Separation logic can tell me what is accessed and
whether it is disjoint from a certain portion of the heap.

B. At most read during the reduction of D1 on H,A

Definition of isolation in Oakland paper.
Separation logic with permissions - modified separating
conjunction allows overlap on read-only portion.

C. At most written and restored during the reduction of D1 on
H,A

Tricky, I have a naive solution.
Separation logic and Information hiding.

Ankur Taly Separation Logic and the Mashup Isolation Problem



Background The Mashup Isolation problem ? Basic Separation Logic Separation Logic with Permissions Ongoing and Future Work

Outline

1 Background
Hoare Logic
Intuition behind Separation Logic

2 The Mashup Isolation problem ?
Formal Definition of Mashups
Isolation Property
How does Separation Logic help ?

3 Basic Separation Logic
Assertion language and Inference rules
Solving the Isolation Problem

4 Separation Logic with Permissions
Assertion language and Inference rules
Solving the Isolation Problem

5 Ongoing and Future Work

Ankur Taly Separation Logic and the Mashup Isolation Problem



Background The Mashup Isolation problem ? Basic Separation Logic Separation Logic with Permissions Ongoing and Future Work

Basic Separation Logic SL1

Assertion language A1

P := B | emp | x .p 7→ E | P ∗ P | P →∗P | P =⇒ P | ∃x .P

Satisfaction of Assertions: H,A |=A1 P

Boolean Exp: H,A |=A1 B iff [[B]]BexpA = true

Points-to: H,A |=A1 E1.p 7→ E2 iff
1 dom(H) = {([[E1]]ExpA, p)}
2 H([[E1]]ExpA).p = [[E2]]ExpA

Notice that the points-to relation is exact.
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Satisfaction of Assertions

Separating Conjunction: H,A |=A2 P1 ∗ P2 iff
∃H1,H2 :

dom(H1) ∩ dom(H2) = ∅
H1.H2 = H

H1,A |=A1 P1 ∧ H2,A |=A1 P2

Remarks:

No store separation, we can write (l1.p 7→ x) ∗ (l2.p 7→ x).

Semantics is exact.

Empty Heap: H,A |=A1 emp iff dom(H) = ∅
Implication: H,A |=A1 P1 =⇒ P2 iff
H,A |=A1 P1 =⇒ H,A |=A1 P2
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Satisfaction of Assertions

We have local specifications and frame rule, but how do we express
pre-conditions for an arbitrary assertion P ?
{??}x .p = 10{P}
Separating Implication (→∗):

x .p 7→ 10→∗P holds for heaps to which if a heap satisfying
x .p 7→ 10 is concatenated then assertion P holds.

Therefore, {x .p 7→ ∗ (x .p 7→ 10→∗P)}x .p = 10{P} is valid.

Formally, H,A |=A1 P1 →∗P2 iff
∀H1,H2 :

dom(H1) ∩ dom(H) = ∅
H.H1 = H2

H,A |=A1 P1 ∧ H2,A |=A1 P2
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pre-conditions for an arbitrary assertion P ?
{??}x .p = 10{P}
Separating Implication (→∗):

x .p 7→ 10→∗P holds for heaps to which if a heap satisfying
x .p 7→ 10 is concatenated then assertion P holds.

Therefore, {x .p 7→ ∗ (x .p 7→ 10→∗P)}x .p = 10{P} is valid.

Formally, H,A |=A1 P1 →∗P2 iff
∀H1,H2 :

dom(H1) ∩ dom(H) = ∅
H.H1 = H2

H,A |=A1 P1 ∧ H2,A |=A1 P2
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Axioms and Inference rules (SL1)

Hoare logic rules apply. In addition:

{E1.p 7→ ∧Wt(E2)}E1.p = E2{E1.p 7→ E2 ∧Wt(E2)} []

y not free in E

{present(x) ∧ ∃y : E .p 7→ y}x = E .p{∃y : E [y/x].p 7→ x}
[]

y not free in any Ei

{present(x) ∧ ˜Wt(Ei ) ∧ emp}x := {p̃i : Ẽi}{∃y : (x : {pi 7→ Ei [y/x]})}
[]

“Backwords” rules for arbitrary post-conditions can be written
for each of the above commands.

Ishtiaq and O’Hearn (POPL 2001) proved that the backwords
axioms express weakest-pre-conditions.
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Frame rule

{P}C{Q}
{P ∗ R}C{Q ∗ R}

[modifies(C ) ∩ free(R) = ∅]

modifies(C ) can be syntactically derived from C .

Proposition

For H,A and K ,B such that H ⊆ K and A ⊆ B, for all commands C

1 Safe Monotonicity. Safe(H,A,C) =⇒ Safe(K ,B,C)

2 Frame Property. If Safe(H,A,C) holds then:
For all K ′,B′,C ′ such that K ,B,C  K ′,B′,C ′, exists H′,A′′:

H,A,C  H′,A′,C ′
^

K ′ − H′ = K − H
^

B − A = B′ − A′

Soundness of frame rule follows from above proposition.
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Soundness

[[P]]A1

def
= {H,A | H,A |=A1 P}

Validity |=SL1

{P}C{Q} is SL1-valid IFF: for all heap-stores H,A ∈ [[P]]A1 ,

1 Safe(H,A,C )

2 For all K ,B: H,A,C  K ,B, normal =⇒ K ,B ∈ [[Q]]A1

Provability `SL1

{P}C{Q} is SL1-provable IFF: it can be derived using the
inference rules of Separation logic and A1-valid assertions.

Soundness

`SL1 {P}C{Q} =⇒ |=SL1 {P}C{Q}
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Solving the Isolation Problem

M(H,A, (C1, id1), ... , (Cn, idn)) = H,Amash,D1; . . . ; Dn

Case A: Any location-property pair that is read during the
reduction of Di on H,Amash is not accessed during the reduction of
Dj on H,Amash

Procedure 1 (sufficient for case A)

1 Deduce specifications {P1}C1{Q1}, . . . , {Pn}Cn{Qn} in SL1.

2 Show that H,A ∈ [[P1 ∗ . . . ∗ Pn ∗ true]]A1 holds.

Theorem

Procedure 1 is sound.

Spent most of my time proving the above theorem.
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Example: Tree access

H :=


l : {val : 1, fone : l1, ftwo : l2}
l1 : {val : 2, fone : l3, par : l}
l2 : {val : 3, fone : l4, par : l}
l3 : {val : 4, par : l1}


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Example: Tree access

Amash := {c1win : l1, c1tmp1 : 0, c1tmp2 : 0, c2win : l2, c2tmp1 : 0, c2tmp2 : 0}
C1 := c1tmp1 = c1win.par ; c1tmp2 = c1tmp1.val ; c1win.val = c1tmp2+;
C2 := c2tmp1 = c2win.val ; c2win.val = c2tmp1 + 1;

Prove Isolation.

Solution

1 {∃x .c1win.val 7→ 2 ∗ c1win.par 7→ x ∗ x .val 7→ 1}C1{true}
{c2win.val 7→ 3}C2{true}

2 H,Amash ∈ [[(∃x .c1win.val 7→ 2 ∗ c1win.par 7→ x ∗ x .val 7→
1) ∗ c2win.val 7→ 3 ∗ true]]A1

Ankur Taly Separation Logic and the Mashup Isolation Problem



Background The Mashup Isolation problem ? Basic Separation Logic Separation Logic with Permissions Ongoing and Future Work

Issues

Not in Algorithmic form

Validity of A1 assertions is not decidable in general.

Yang and Calcagno (FSTTCS 2001 and a few others) have
found decidable subsets of the assertion language.
I will explore these and their implications on procedure 1 in
future.

Nevertheless, we can carry out hand-proofs of isolation.
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Separation Logic with Permissions SL2

Assertion language A2

P := B | emp | x .p
a7→ E | P ∗ P | P →∗P | P =⇒ P | ∃x .P

where a ⊆ {r ,w}.
Satisfaction of Assertions

Assertions are on heap-stores and also on actions performed
by programs.

Define permission maps Σ as Loc ⇀ P ⇀ {{r}, {w}, {r ,w}}
General form: H,A,Σ |=A2 P
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Satisfaction of Assertions (A2)

Points-to: H,A,Σ |=A2 E1.p
a7→ E2 iff

dom(H) = {([[E1]]ExpA, p)} = dom(Σ)
H([[E1]]ExpA).p = [[E2]]ExpA
a = Σ([[E1]]ExpA).p

Separating-Conjunction:
H,A,Σ |=A2 P1 ∗ P2 iff ∃H1,Σ1,H2,Σ2 :

H1,A,Σ1 |=A2 P1

H2,A,Σ2 |=A2 P2

H1,Σ1 on H2,Σ2

H1 ∪ H2 = H
∧

Σ1 ∪ Σ2 = Σ

where dom(H1),Σ1 on dom(H2),Σ2 means that

H1 ∪ H2,Σ1 ∪ Σ2 are defined
∀l , p ∈ dom(Σ1) ∩ dom(Σ2) : Σ1(l) = Σ2(l) = {r}

Observe that (x .p
r7→ E ) ∗ (x .p

r7→ E )⇔ x .p
r7→ E .
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Axioms and Inference rules (SL2)

y not free in E

{present(x) ∧ ∃y : E .p
r7→ y}x = E .p{∃y : E [y/x].p

r7→ x}
[]

{E1.p
w7→ ∧Wt(E2)}E1.p = E2{E1.p

w7→ E2 ∧Wt(E2)} []

y not free in any Ei

{present(x) ∧ ˜Wt(Ei ) ∧ emp}x := {p̃i : Ẽi}{∃y : (x : {pi
r,w7→ Ei [y/x]})}

[]

There are “backwards” version for each these using →∗.
All other rules stay the same.
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Soundness

[[P]]A2

def
= {H,A | ∃Σ : H,A,Σ |=A2 P}

Validity |=SL1

{P}C{Q} is SL1-valid IFF: for all H,A,Σ, H,A,Σ |=A2 P,

1 Safe(H,A,C )
2 For all K ,B,D such that H,A,C  K ,B,D,

a. K ,B ∈ [[Q]]A2 if D = normal .
b. For all (l , p, a, v) IF (l , p, a, v) ∈ Accheap((H,A,C ), (K ,B,D))

and l , p ∈ dom(H) THEN a ∈ Σ(l).p

Provability `SL2

{P}C{Q} is SL2-provable IFF: it can be derived using the
inference rules of Separation logic and A2-valid assertions.

Soundness: `SL2 {P}C{Q} =⇒ |=SL2 {P}C{Q}.
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Solving the Isolation Problem

Case B: Any location-property pair that is read during the
reduction of Di on H,Amash is at most read during the reduction
of on Dj on H,Amash

Procedure 2 (sufficient for case B)

1 Deduce specifications {P1}C1{Q1}, . . . , {Pn}Cn{Qn} in SL2.

2 Show that H,A ∈ [[P1 ∗ . . . ∗ Pn ∗ true]]A2 holds.

Theorem

Procedure 2 is sound.

Ankur Taly Separation Logic and the Mashup Isolation Problem



Background The Mashup Isolation problem ? Basic Separation Logic Separation Logic with Permissions Ongoing and Future Work

Handling Case C

Case C: Any location-property pair that is read during the
reduction of Di on H,Amash is at most written and restored during
the reduction of on Dj on H,Amash

Difficult to handle using permissions, we have an invariant
which is temporarily broken and then restored.

Separation Logic with Information Hiding: POPL 2004
Main Idea: Consider a program using multiple procedures.

Each procedure will have certain internal resources only
managed by it.
The program should be reasoned about independent of these
internal resources.

Introduced the “hypothetical frame rule”
` {P1 ∗ R}C1{Q1 ∗ R}

. . .
` {Pn ∗ R}Cn{Qn ∗ R}

{P1}k{Q1}[X1], . . . , {Pn}k{Qn} ` {P}C{Q}
` {P ∗ R}let k1 = C1, . . . , kn = Cn in C{Q ∗ R}

[]

C does not modify variables in R except through k1, . . . , kn.Ankur Taly Separation Logic and the Mashup Isolation Problem
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Our Procedure

Our procedure is inspired by the hypothetical frame rule.

Exact Assertion: R is exact iff for all stores S there is unique
heap H such that H,A ∈ [[R]]A1 .

Procedure 3 (sufficient for case C )

1 Deduce specifications of the form
{P1 ∗ R}C1{Q1 ∗ R}, . . . , {Pn ∗ R}Cn{Qn ∗ R} in SL1.

2 Show that R is exact.

3 Show that H,A ∈ [[P1 ∗ . . . ∗ Pn ∗ R ∗ true]]A1 holds.

Theorem

Procedure 3 is sound.

Soundness of hypothetical frame rule used in the proof.

Ownership transfer of R from C1 to . . . to Cn.
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Comparison with Authority Safety

Oakland 2010 paper:

Auth(H,A,C ): Over-approximations of the set of actions
performed during the reduction of C on H,A

AuthIsolation(H,A,C1, . . . ,Cn): For all i , j , authority map of
Ci does not contain a write action to a location where Cj

reads from.

Theorem:
AuthIsolation(H,A,C1, . . . ,Cn) =⇒
Isolation(M(H,A,C1, . . . ,Cn))

How does this relate to what we have done ?

Semantically relates to solving Case B.

Authority maps are usually computed by heap reachability
analysis.

Specifications are “more informative authority maps”: More
closely related to what is actually reached.
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Future Work: Migrating to JavaScript

Hopeful about the following features:

1 Deleting record properties: There are rules for dispose

2 Computable Properties x[E]: There are rules for handling
pointer arithmetic (Reynolds, 2002).

Following seem tricky:
1 Dynamic addition of properties: Tempting to think of them as

“resource allocation”, but they are subtly different.

This is allocation of a particular resource and not a
non-deterministically chosen one.
Frame rule might break !
May be some kind of “existence permissions” can help.

2 Prototype chains: How do we express what part of the chain
is reached during property access ?
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Other Future directions

1 Think of better solutions for handling case C .

Explore if a permission based approach exists.

2 Formalize the notion of defensive consistency using separation
logic.

Informally, defensively consistent functions are ones that are
incorruptible by their clients.
Hypothetical frame rule can be useful.

3 Explore capability systems where meaning of a capability is
specified using a specification rather than an authority map.

4 Formalize the right isolation property for mashups where each
component is allowed to call methods defined by other
components. Example: Yelp
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Thank You
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