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Abstract—This paper introduces a new anytime algorithm for
Weighted MaxSAT consisting of two main algorithmic com-
ponents. First, we propose a new efficient polarity selection
heuristic and an enhancement to the variable decision heuristic
for SAT-based anytime Weighted MaxSAT solving (and, more
generally, for solving any optimization problem with a SAT-
based anytime algorithm). Second, we enhance an existing Bit-
vector Optimization-based algorithm for solving Unweighted
MaxSAT and generalize it to Weighted MaxSAT. Our resulting
Weighted MaxSAT solver outscores the state-of-the-art solvers
in the settings of both the 60-second and 300-second weighted
incomplete tracks of MaxSAT Evaluation 2018. In addition, we
describe a new application of incremental anytime Weighted
MaxSAT solving: placement at the physical design stage of
Computer-aided Design (CAD).

I. INTRODUCTION

Weighted (Partial) MaxSAT (known as simply MaxSAT) is a
well-studied optimization problem. Given a set of hard propo-
sitional clauses H and weighted soft clauses S, a MaxSAT
solver is expected to find a model that minimizes the overall
weight of the unsatisfied soft clauses. When the weight of all
the soft clauses is 1, the problem is referred to as Unweighted
(Partial) MaxSAT.

MaxSAT has a plethora of applications, including a variety
of applications in Computer-aided Design (CAD). For exam-
ple, [44] applies MaxSAT for solving three different prob-
lems in software analysis: automated verification, interactive
verification, and static bug detection. MaxSAT is applied for
post-silicon fault localization in [47]. Furthermore, MaxSAT
is used for improving the performance and accuracy of error
localization in [47] and [27] as well as for finding concurrency
bugs and recommending repairs in [27]. [20] uses MaxSAT to
detect malware in Android apps. A variety of other MaxSAT
applications are listed in [35], [44].

Our own interest in MaxSAT stems from the following
application at the physical design stage [43] of the CAD flow
at Intel.

Assume that after a placement of standard cells has already
been generated, a new set of design constraints, introduced late
in the process, has to be taken into account by the placement
flow. Re-running the placer from scratch with the new set of
constraints would not satisfy backward compatibility, stability,
and run-time requirements, hence a post-processing fixer tool
is required. The goal of the fixer is to fix as many as possible

of the violations resulting from applying the additional design
constraints. Our previous work [40] describes this problem
in detail. We considered a particular flavor of the problem,
where the violations are arranged in a strict lexicographical
order, in which case the problem can be efficiently reduced
to Bit-Vector Optimization (OBV). Recently we encountered
another flavor of the placement problem with the following
three new major requirements.

First, instead of the lexicographical order, each violation
can now be associated with an integer weight, reflecting the
actual cost in dollars (induced by various physical properties
of the circuit, such as resistance and capacitance) of leaving
that violation un-fixed. This requirement makes the problem
directly reducible to Weighted MaxSAT rather than to OBV.

Second, the tool is expected to be incremental to support
the following two features: a) The violations might be divided
into different lexicographically ordered classes, where in each
class the violations might have different weights. This prob-
lem is directly reducible to Bounded Multilevel Optimization
(BMO) [6], which itself can be easily reduced to incremental
MaxSAT [6], [39]; b) Incrementality is required to enable
What-if analysis capabilities, that is, to enable the possibility
of undoing the changes made by the placer (e.g., to try out
different weight modelings).

Third, the tool must be anytime. Recall that an anytime
algorithm is expected to return a valid solution to a problem
even if interrupted. An anytime algorithm for a SAT-based
optimization problem (that is, a discrete optimization problem,
reducible to SAT, such as MaxSAT) is expected to find
an improving set of models (that is, satisfying assignments)
{µ1, µ2, . . . , µn} over time, that is, each µi is expected to be
better than µi−1 in terms of the problem’s optimization goal.
The anytime property is essential for our application, since
it allows the user to get an approximate solution even for
very difficult instances. Furthermore, experimental results will
demonstrate that the performance of two leading non-anytime
solvers does not suit the needs of our application.

In order to meet the three requirements above, we decided
to enhance our Mrs. Beaver algorithm [39], designed
for solving Unweighted MaxSAT, to Weighted MaxSAT.
Mrs. Beaver is already anytime and incremental, which
makes it an excellent candidate for such an enhancement.
In fact, Mrs. Beaver is the only incremental MaxSAT



algorithm we are aware of. The resulting algorithm –
Weighted Mrs. Beaver (WMB) – is able to meet all the
above-mentioned requirements and has been productized at
Intel.

The MaxSAT community has been evaluating anytime
MaxSAT algorithms since 2011, when the so-called Incom-
plete MaxSAT Evaluation tracks, where the instances are hard,
the time-out is short, and optimality is not required, emerged.1

We were curious to compare WMB in non-incremental
mode against the best performing solvers of the two (non-
incremental) Weighted Incomplete tracks of the latest MaxSAT
Evaluation 2018 – the 60-second-track and the 300-second-
track – on the diverse set of instances used in the Evaluation.

Remarkably, WMB was able to considerably outscore the
state-of-the art solvers in the settings of both tracks. Further
analysis has shown that this result was enabled by two novel
independent algorithmic components. This paper will mostly
be dedicated to introducing and studying them:

• We introduce a new efficient polarity selection heuristic
Target-Optimum-Rest-Conservative (TORC)
for anytime SAT-based optimization (and, in particu-
lar, Weighted MaxSAT). We also propose a variable
decision heuristic modification for anytime SAT-based
optimization, called Target-Score-Bump (TSB). We
will see that TORC is highly beneficial not only in our
new WMB algorithm, but also in another leading anytime
Weighted MaxSAT algorithm, implemented in the winner
of the Weighted-Incomplete-60-Second track of MaxSAT
Evaluation 2018–Open-WBO-Inc-BMO [25].

• We improve the OBV-based Mrs. Beaver algo-
rithm [39] and generalize it from Unweighted MaxSAT
to Weighted MaxSAT. As we have mentioned, we call the
resulting algorithm Weighted Mrs. Beaver (WMB).

The rest of this paper is organized as follows.
Sect. II provides the necessary background.
Sect. III introduces our polarity selection heuristic
Target-Optimum-Rest-Conservative (TORC)
and the modification to the variable decision heuristic
Target-Score-Bump (TSB). Sect. IV introduces
Weighted Mrs. Beaver (WMB). Sect. V demonstrates
that WMB with TORC and TSB outperforms the state-of-the-art
solvers in the settings of both the weighted incomplete tracks
of MaxSAT Evaluation 2018. We also show that TORC is
highly beneficial within both WMB and our implementation
of Open-WBO-Inc-BMO’s Weighted MaxSAT algorithm.
Furthermore, we study the performance of several algorithms
on a number of non-incremental instances from our placement
application. Sect. VI concludes our work.

II. BACKGROUND

Let us start with some basic terminology. A literal l is a
Boolean variable v or its negation ¬v. A clause is a disjunction

1MaxSAT Evaluations have been held since 2006, but did not have the
“anytime” Incomplete category till 2011.

of literals. A formula F in Conjunctive Normal Form (CNF)
is a conjunction (set) of clauses.

A Weighted MaxSAT instance comprises a set of hard
satisfiable clauses H and a set of weighted soft constraints
T = {tn−1, tn−2, . . . , t0}, where each constraint ti is associ-
ated with a strictly positive integer weight wi. The weight of a
variable assignment µ is unsWt(T, µ) =

∑n−1
i=0 ¬µ(ti) × wi,

that is, the overall weight of T ’s bits, falsified by µ. Given
a Weighted MaxSAT instance, a Weighted MaxSAT solver
is expected to return a model having the minimum possible
weight. For the rest of the paper, for convenience and without
restricting generality, it is assumed that every soft constraint is
a unit clause (that is, a clause containing one literal).2 Thus,
T can be thought of as a bit-vector, where t0 is its Least
Significant Bit (LSB) and tn−1 is its Most Significant Bit
(MSB). T is called the target bit-vector, or, simply, the target
and every ti ∈ T is called a target bit. A (possibly partial)
variable assignment µ is ideal if µ(ti) = 1 for every target bit
ti ∈ T .

A. Anytime MaxSAT Solving

We should mention first that anytime algorithms have been
explored in the context of solving SAT-based optimization
problems other than MaxSAT. For example, PREF-DLL [18]
is an anytime algorithm for the problem of SAT with prefer-
ences. PREF-DLL’s authors highlight its “anytime” property.
Other more recent examples of anytime algorithms for SAT-
based optimization problems include branch-and-bound for
sports league scheduling within Barcelogic [42] and Bit-
Vector Optimization (OBV) [40].

Arguably the most well-known anytime MaxSAT algorithm
is the so-called Linear Search SAT-UNSAT (LSU) [9]. LSU
starts by invoking a SAT solver over the hard clauses to find
the first approximation µ1. Assume the overall weight of the
unsatisfied soft clauses in µ1 is w. Then, LSU blocks all the
solutions of weight >= w using Pseudo-Boolean (PB) or
cardinality constraints and invokes the SAT solver again to
find a better approximation. The process continues until the
problem becomes unsatisfiable. The last encountered model is
guaranteed to be optimal.

Plain LSU was still one of the best-performing anytime
MaxSAT algorithms as of 2017, when the Unweighted-
Incomplete-60-Second track of MaxSAT Evaluation 2017 [4]
was won by an LSU-based solver, Open-WBO-LSU [32].
Local search-based [12], [13], [30] and Minimal Correction
Subset (MCS) enumeration-based [31], [33] approaches to
anytime MaxSAT solving have also been explored. Moreover,
implicit hitting set-based MaxSAT solvers [14] can also be
used for anytime solving.

The latest MaxSAT Evaluation 2018 is evidence that any-
time MaxSAT development is becoming a hot research topic,
as a number of new solvers that efficiently implemented
existing and new ideas stood out:

2An arbitrary soft constraint ti, reducible to a set of clauses F , can be
transformed to a unit clause s′, where s′ is a fresh variable, by adding the
clause ¬s′ ∨ c to H for each clause c ∈ F .



1) SATLike and SATLike-c [29]: both solvers apply a
recently introduced local search-based algorithm, where
SATLike-c also uses Open-WBO-LSU in case of a
failure of its main engine.

2) LinSBPS [16] is based on Open-WBO-LSU, upgraded
with conservative polarity selection (see Sect. III for more
detail) and weight descaling.

3) Open-WBO-Inc-OBV [24] (unweighted only) applies
the OBV-based Mrs. Beaver algorithm [39] (see
Sect. IV for more detail).

4) Open-WBO-Inc-MSC [24] (unweighted only) uses
MCS enumeration.

5) Open-WBO-Inc-BMO [24] (weighted only) approxi-
mates Weighted MaxSAT with Bounded Multilevel Op-
timization (BMO) [6].

6) Open-WBO-Inc-Cluster [24] (weighted only) ap-
plies weight clustering [25].

B. Polarity Selection for SAT-based Optimization

Recall that modern SAT solvers apply phase saving [41]
as their polarity selection heuristic. In phase saving, once a
variable is picked by the variable decision heuristic, the literal
is chosen according to its latest value, where the values are
normally initialized with 0.

It turned out that overriding phase saving in the context of
anytime SAT-based optimization algorithms, which generate
an improving set of models {µ1, µ2, . . . , µn} over time, is
advantageous. One can classify the functionality of existing
polarity selection algorithms, after a new model µi is found,
according to the following criteria:
• optimistic or conservative: Set the polarity to

an ideal assignment or to the previous best one, respec-
tively. The optimistic approach sets the polarity of the
target bits to 1; it works well when the actual solution
is close to the ideal one [9], [40]. The conservative
approach was shown to simulate local search solvers,
where small incremental perturbations are performed on
the best known solution [15], [16].

• set-once or fix: Set the polarity once and let the
solver change it afterward or fix it, respectively. Fixing
the polarity of the variable v to b ∈ {0, 1} means that
wherever v is chosen as a decision, its polarity is set to
b. The technique of fixing all the polarities to a certain
assignment M in order to look for a solution near M was
first applied in [1], [38] in the context of diverse solution
generation. Setting the polarity once means applying
phase saving whenever v is picked later.

• all-variables, original-variables or
target-variables: Set the polarity, respectively,
for either: a) all the variables in the problem, or b) all
the original variables (that is, exclude any variable,
introduced to encode Pseudo-Boolean or cardinality
constraints), or c) only the variables representing the
target bits (that is, the soft constraints).

In addition, one may also set-once or fix the target bits to
1 prior to the initial SAT invocation.

The following approaches have been proposed to modify
the default polarity selection heuristic of the SAT solver in
the context of anytime SAT-based optimization:
• Barcelogic [42] (and, later, WPM3 [5]): Af-

ter a new model µi is found, Barcelogic fixes
the polarity of all the original variables to their
values in µi. This approach can be classified as
(conservative,fix,original-variables).

• LinSBPS [16]: Similar to Barcelogic, but
the variables are not restricted to the original
ones, hence this approach can be classified as
(conservative,fix,all-variables). Note
that LinSBPS won the Weighted-Incomplete-300-
Second track of MaxSAT Evaluation 2018. LinSBPS’s
polarity selection heuristic is mentioned as the key to
LinSBPS’s successful performance [16].

• Sat4j [9]: The polarity of the target bits is set-once to
1 after a new model is encountered and also before the
initial SAT invocation. This heuristic can be classified as
(optimistic,set-once,target-variables).
It is also used in the OBV-BS algorithm for solving the
OBV problem [40].

• SAT&PREF [17]: A stronger version of Sat4j’s
heuristic: whenever a target bit variable is se-
lected by the variable decision heuristic, use 1
as its polarity. The heuristic can be classified as
(optimistic,fix,target-variables).

C. Bit-Vector Optimization (OBV)

The problem of Bit-Vector Optimization (OBV), also known
as Optimization Modulo Bit-Vectors (OMT(BV)), is a SAT-
based optimization problem where, given a set of hard clauses
H and the target bit-vector T , the algorithm has to maximize
the value of T (where T is interpreted as an unsigned integer).
Note that in OBV, unlike in Unweighted MaxSAT, the order
of the target bits matters: informally, satisfying ti is more
important than satisfying all of the bits tj for j < i.

OBV was first explicitly analyzed in [40], but it is closely
related to other SAT-based optimization problems. Specifically,
OBV can be seen as a special case of the problem of SAT
with preferences, first discussed a decade earlier [17], [21].
In addition, Lexicographic SAT (LEXSAT) [28] and OBV are
essentially the same problem. Furthermore, OBV can easily
be reduced to Weighted MaxSAT [10], though solving OBV
using such a reduction does not work well in practice [40].

Now we describe the OBV-BS OBV algorithm, shown in
Alg. 1. OBV-BS was concurrently proposed in [40] and [28].
It serves as the basic building block for both the Un-
weighted MaxSAT Mrs. Beaver algorithm [39] and our
new Weighted MaxSAT WMB algorithm. Alg. 1 leaves out
OBV-BS’s polarity selection heuristic [40], discussed above
in Sect. II-B.

Alg. 1 maintains the currently best-known model µ, initial-
ized by an arbitrary model provided by the user. Assume for
now that the user provides the algorithm a model encountered
by a SAT solver invoked over the hard clauses. Alg. 1 also



maintains a partial assignment α, which contains the target
bits, whose values in any optimal model are already known.
The main loop of the algorithm (starting at line 3) goes over all
the target bits starting from the MSB tn−1 down to t0, where
each iteration extends α with either ti or ¬ti and updates µ,
if possible. Consider an arbitrary iteration i. If ti is 1 in µ,
α is simply extended by ti; otherwise, the algorithm checks
whether there exists a model with ti = 1 by invoking a SAT
solver under the assumptions α∪{ti}. If such a model exists,
α is updated with ti and µ is updated with the new model;
otherwise, α is updated with ¬ti. The algorithm returns µ at
the end.

We also proposed in [39] to use a conflict threshold to limit
each SAT invocation. The idea is to prevent the algorithm
from spending too much time on a single bit (by giving up
guaranteeing the optimal result). If the threshold is exceeded
on a certain bit, the algorithm continues as if the invocation
were unsatisfiable.

In addition, [39] presented a modification of OBV-BS,
denoted by UBS (UMS-OBV-BS in [39]). UBS modifies the
order of T ’s bits by pushing any satisfied bits towards the
MSB after a new model is found. UBS does not solve OBV
anymore and instead is designed to be used for approximating
Unweighted MaxSAT.

Algorithm 1 OBV-BS

1: function SOLVE(CNF Formula F , Target T =
{tn−1, tn−2, . . . , t0}, Model µ to F )

Require: µ satisfies F
2: α := {}
3: for i← n− 1 downto 0 step 1 do
4: if ti ∈ µ then . ti ∈ µ ≡ ti = 1 in µ
5: α := α ∪ {ti}
6: else
7: τ := SATUNDERASSUMPTIONS(α ∪ {ti})
8: if satisfiable then α := α ∪ {ti}; µ := τ else
α := α ∪ {¬ti}

9: return µ

D. Mrs. Beaver Algorithm
Here we review the Mrs. Beaver algorithm for solving

Unweighted MaxSAT [39].
We start with a definition. Given a bit-vector S =

{sn−1, sn−2, . . . , s0}, the totalizer [8] is a binary tree whose
top-most node, tot(S), is a bit-vector representing the sum
of S’s bits in unary representation. Intuitively, the totalizer
can be thought of as an implementation of a full-adder
summing all the bits of S, where the result–tot(S)–is in unary
representation.

We denote by tot(S, b) the top-most node of the total-
izer, which additionally encodes the cardinality constraint∑n−1

i=0 si ≤ b (by restricting all the nodes to b + 1 bits and
asserting that the most significant bit is 0 for all the nodes
having b + 1 bits). The smaller b is, the more efficient the
encoding of the totalizer is [11].

Alg. 2 presents the OBV-BS-based Mrs. Beaver algo-
rithm for Unweighted MaxSAT. Consider its incomplete part
(lines 3 to 6), intended to approximate Unweighted MaxSAT
with OBV. Each iteration (where the number of iterations k
is user-given) invokes either OBV-BS or UBS over the target
T and gets a model µ′. The best model µ is updated with
T whenever OBV-BS or UBS (the choice being based on
a user-given parameter) is able to improve the model w.r.t
MaxSAT’s optimization goal. Although not shown in Alg. 2,
it is important to mention that it is assumed that OBV-BS
or UBS returns the best model encountered according to the
optimization goal of MaxSAT (rather than OBV). At the end
of each iteration, T ’s bits are either reversed or shuffled
(based on a user-given parameter) in hope of getting a better
approximation at the next iteration.

The complete part of Alg. 2 (lines 7, 8) proceeds as
follows. It creates the totalizer T ′ := tot(¬T,≤ unsWt(T, µ)),
which sums up the unsatisfied bits of T using unsWt(T, µ)
as the upper bound (where F is assumed to be updated with
the totalizer’s clauses). The algorithm then invokes OBV-BS
over ¬T ′ to minimize the sum of the unsatisfied bits in T
and returns the resulting model. It is argued in [39] that
the complete part of the algorithm is nothing but an LSU
implementation. It is guaranteed to find an optimal solution.

[39] demonstrates that Mrs. Beaver is an incremental
algorithm: it can be re-used across multiple invocations with
different hard assumptions and target bit-vectors.

Algorithm 2 Mrs. Beaver

1: function SOLVE(CNF Formula F , Target T =
{tn−1, tn−2, . . . , t0})

Require: F is satisfiable
2: µ := SAT()
3: for i← 1 to k step 1 do
4: µ′ := OBV-BS(F, T, µ) or UBS(F, T, µ)
5: if unsWt(T,µ′) < unsWt(T,µ) then µ := µ′

6: T := reverse(T) or shuffle(T)
7: T ′ := tot(¬T,≤ unsWt(T, µ)) . F is updated
8: return OBV-BS(F,¬T ′, µ)

III. POLARITY AND VARIABLE SELECTION FOR ANYTIME
SAT-BASED OPTIMIZATION

This section introduces our new polarity selection heuristic
and a modification to the variable decision heuristic for
anytime SAT-based optimization.

A. Target-Optimum-Rest-Conservative (TORC)

We propose a new polarity selection heuristic, which we
call Target-Optimum-Rest-Conservative (TORC).

Before the initial SAT invocation, TORC fixes the polarity
of all the target variables to the ideal value 1. Then, after each
new improving model µi is encountered, the polarity of all the
non-target variables are fixed to their values in µi.

In other words, whenever the variable decision heuristic
chooses:



1) A target variable: TORC sets its polarity to 1 (to be
optimistic).

2) A non-target variable: TORC sets its polarity to its value
in the best model so far (to be conservative; only after
the first SAT invocation is completed)

Note that, after the initial SAT call, TORC sets the polarity
every time a new decision variable is picked, thus completely
overriding phase saving.
TORC has been designed to leverage the best of both

the conservative and the optimistic worlds. On one hand,
we are interested in taking advantage of the conservative
heuristic, which is known to find the next improved model
more quickly than the default heuristic by looking near the
previous model [15], [16]. At the same time, however, we
would like to encourage the values of the target variables to
be as close to the ideal as possible in order to move more
quickly towards the optimum [17], [40].

Obviously, TORC can be applied for anytime MaxSAT
solving. More generally, it can be used in any anytime SAT-
based optimization algorithm (such as, the OBV-BS algorithm
for solving OBV or the PREF-DLL algorithm for the problem
of SAT with preferences).

B. Target-Score-Bump (TSB)

We aim to experiment with tuning the SAT solver’s variable
selection heuristic for anytime SAT-based optimization.

Modern SAT solvers use variants of the VSIDS variable
decision heuristic [37] as part of their decision strategy. VSIDS
associates a score with every variable and picks as the next
decision the variable with the greatest score. Furthermore,
many solvers inherited from Minisat [19] the API for bumping
up the score of a given variable, thus increasing its chances
of being selected soon.

Our proposed heuristic–Target-Score-Bump (TSB)–
bumps up the variable scores of the target bit variables, so as
to improve their chances of being picked early. Specifically,
for each target bit variable, we bump up its score as if it
participated in a conflict clause. We apply TSB only once
prior to the initial SAT invocation. Our intuition is that TSB,
in conjunction with TORC (or any other optimistic polarity
selection heuristic), will improve the likelihood of the initial
model being close to the ideal one.

IV. Weighted Mrs. Beaver (WMB) WEIGHTED
MAXSAT ALGORITHM

This section introduces our Weighted Mrs. Beaver
(WMB) algorithm, which improves Mrs. Beaver and gener-
alizes it to Weighted MaxSAT solving. WMB is compliant with
any of the polarity and variable selection heuristics presented
in Sect. II-B and Sect. III. In addition, WMB inherits the
property of being incremental from Mrs. Beaver.

We need an additional definition. The Generalized Totalizer
(GT) [26] is a generalization of the totalizer encoding for the
weighted case. GT is identical to the totalizer when all the
weights are 1. For the general case, given a bit-vector S =
{sn−1, sn−2, . . . , s0} and a weight wi > 0 for each si ∈

S, the GT is a binary tree whose top-most node tot(S) is
a bit-vector whose bits comprise all the partial sums of the
weights associated with S’s bits. tot(S)i holds iff the sum of
the weights of the satisfied input bits is no less than the partial
sum associated with tot(S)i. tot(S)’s bits are sorted so that
the most significant bit is associated with the greatest weight.
We denote by tot(S, b) the top-most node of the GT, which
additionally encodes the PB constraint

∑n−1
i=0 si×wi ≤ b (by

restricting the top-most node to bits with weights less than or
equal to

∑n−1
i=0 si × wi, except for the most significant bit,

which is asserted to 0).
1) Enhancing Mrs. Beaver: First we will introduce

several enhancements to the basic Mrs. Beaver algorithm,
which will be inherited by WMB:

(a) Global stopping condition for OBV-BS: during the incom-
plete stage, Mrs. Beaver always maintains µ–the best
model so far w.r.t minimizing unsWt(T, µ). OBV-BS, on
the other hand, maintains µ′–the best model so far w.r.t
to maximizing the value of its target. During OBV-BS’s
execution, it may happen that unsWt(T, µ′) is already as
large as unsWt(T, µ). In this case, no further progress
can be made by OBV-BS, hence we propose stopping
OBV-BS’s invocation at this point. Our stopping condition
is also relevant for UBS.

(b) Size-based Switching to Complete Part
(SSCP): Mrs. Beaver has an intrinsic dilemma as
to when (and whether) to switch to the complete part
(or, otherwise, to continue the incomplete iterations).
In [39]’s experiments, the complete part only marginally
improved performance. We propose therefore to switch
to the complete part after gtI iterations, where gtI is a
user-given parameter, but only if the number of clauses
expected to be generated by the totalizer encoding is not
greater than the user-given threshold gtThr (otherwise,
continue with the incomplete iterations until the time-out).

2) Generalizing Mrs. Beaver to Weighted MaxSAT:
Now we show how to generalize Mrs. Beaver to Weighted
MaxSAT solving. Our intuition is that OBV-BS, which takes
the order of target bits into consideration, will serve as a better
approximation for Weighted MaxSAT than for Unweighted
MaxSAT. This is because one can order the target bits to reflect
their weights, thus causing OBV-BS to start with the bits that
weigh more and to progress towards the bits that weight less.

Alg. 3 presents our WMB algorithm. Syntactically, it is very
similar to Alg. 2. Let us go over the syntactic and semantic
differences:

(a) Using the GT: We use the GT instead of the totalizer
for the complete part of the algorithm (line 9; change of
semantics only). Note that the GT inherits the following
desired property from the totalizer: running OBV-BS over
the bits in the GT’s top-most node is nothing but an LSU
invocation.

(b) Sorting T : After the initial SAT invocation, WMB sorts the
target bits according to their weights (line 3).

(c) Size-based Switching to Complete Part



(SSCP) implementation: The incomplete part of
Mrs. Beaver loops for a user-given number of
iterations k. WMB, on the other hand, stops the loop if the
GT encoding is expected to be compact enough (that is,
if the number of clauses expected to be generated by the
encoding is less than a user-given threshold gtThr), but
only after gtI iterations (line 8).

(d) Dropping UBS: UBS reorders the bits of OBV-BS’s target
without regard to their weights. Such an optimization is
not expected to be useful in weighted settings (line 5).

(e) Shuffle generalization: Instead of shuffling the bits ran-
domly, we need to take their weights into account. Hence
we apply weighted random shuffling (line 7; change of
semantics only).

(f) Reverse strategy update: Instead of reversing all the bits in
T (which might ruin our Weighted MaxSAT approxima-
tion), we only reverse the bits in any block of adjacent bits
in T which have the same weight. In addition, in order to
impose some target-bit order perturbations even if blocks
having the same weight are rare or nonexistent, we go
over T from the MSB towards the LSB and, if both the
target bits ti+1 and ti, for any i, do not share weights with
any of their neighbors, we reverse the order of ti and ti+1

(line 7; change of semantics only).
In our implementation, WMB reverses the target at iterations

1, 3, 5, . . . and shuffles it at iterations 2, 4, 6, . . . (we start
iteration numbering with 1). In addition, we use 10,000 as the
conflict threshold per bit for OBV-BS when it is invoked over
the original target during the incomplete part of WMB (line 5).

Recall from Sect. II-B that the optimistic (or mixed) polarity
selection heuristics SAT&PREF, OBV-BS and TORC set the
bits of the target to 1. For the sake of these heuristics, the
complete stage of WMB uses the bits of the original target
(rather than the top-most node of the GT).

Algorithm 3 Weighted Mrs. Beaver (WMB)
1: function SOLVE(CNF Formula F , Target T =
{tn−1, tn−2, . . . , t0}, Weight wi > 0 for each ti ∈ T )

Require: F is satisfiable
2: µ := SAT()
3: Sort T by weights (to have wi ≥ wj for any i > j)
4: loop
5: µ′ := OBV-BS(F, T, µ)
6: if unsWt(T,µ′) < unsWt(T,µ) then µ := µ′

7: T := reverse(T) or shuffle(T)
8: if gtI iterations passed and |tot(¬T,≤

unsWt(T, µ))| < gtThr then break
9: T ′ := tot(¬T,≤ unsWt(T, µ)) . F is updated

10: return OBV-BS(F,¬T ′, µ)

V. EXPERIMENTAL RESULTS

Subsection V-A below evaluates different algorithms on
the MaxSAT Evaluation instances, while Subsection V-B is
concerned with industrial instances from our placement appli-
cation in the physical design stage of CAD.

A. MaxSAT Evaluation

The goal of this subsection is twofold.
First, we examine the performance of our new WMB

algorithm and compare it to the performance of the
three leading anytime Weighted MaxSAT solvers–
Open-WBO-Inc-BMO, LinSBPS and maxroster [45]–in
settings similar to the Weighted-Incomplete-60-Second
and Weighted-Incomplete-300-Second tracks of MaxSAT
Evaluation 2018. In addition, we study the overall impact
of Size-based Switching to Complete Part
(SSCP) with different combinations of SSCP’s two parameters
gtI and gtThr (recall Sect. IV-1).

Second, we isolate and study the impact of the TORC
polarity selection heuristic and TSB variable score scheme
within two algorithms: WMB and BMO, where BMO stands for
our implementation of the BMO-based algorithm implemented
in Open-WBO-Inc-BMO, the winner of the Weighted-
Incomplete-60-Second track of MaxSAT Evaluation 2018. We
also considered implementing the algorithm of LinSBPS–
the winner of the Weighted-Incomplete-300-Second track–but
unfortunately it has not been described in enough detail (in
particular, the details of its weight descaling technique have
not been revealed).

Let WMB (P,TSB,gtI,gtThr) be an invocation of WMB with the
polarity selection heuristic P (where P = - means the default
polarity selection heuristic is applied), with or without TSB
(for TSB = > or ⊥, respectively) and using the parameters
gtI and gtThr (where we use - for both gtI and gtThr if the
algorithm always switches to the complete part after 10,000
iterations, similarly to Mrs. Beaver). Let BMO (P,TSB ∈
{>,⊥}) be an invocation of BMO with the polarity selection
heuristic P and with or without TSB.

All in all, we launched the following experiments (on
machines with 32Gb of memory running Intelr Xeonr pro-
cessors with 3Ghz CPU frequency; the log files are available
at https://tinyurl.com/y5a4eqom) for 60 and 300 second time-
outs (in the algorithm below, BL, Lin and PREF stand for
Barcelogic, LinSBPS and SAT&PREF, respectively):

1: Run Open-WBO-Inc-BMO
2: Run LinSBPS
3: Run maxroster
4: for all P ∈ {-,BL,Lin,PREF,Sat4j,TORC} do
5: for all TSB ∈ {>,⊥} do
6: Run BMO (P,TSB)
7: Run WMB (P,TSB,-,-)
8: for all gtI ∈ {0, 1} do
9: for all gtThr ∈

{
106, 107

}
do

10: Run WMB (P,TSB,gtI,gtThr)

The main criteria for comparing anytime MaxSAT solvers
during the MaxSAT Evaluation 2018 was their score, defined
as follows for a particular solver S and i instances:

∑
i(1 +

the minimal weight of the unsatisfied target bits found by any
participating solver) / (1 + the weight of the unsatisfied target
bits found by S). The drawback impeding the usage of this
criteria outside of the Evaluation is that the score changes,

https://tinyurl.com/y5a4eqom


TABLE I: Overall Performance Comparison

60-Second Timeout 300-Second Timeout
Solver Score Solver Score

WMB (TORC,⊥,1,107) 0.8700 WMB (TORC,>,0,106) 0.9041
WMB (TORC,>,0,106) 0.8616 LinSBPS 0.8916

LinSBPS 0.8303 WMB (TORC,⊥,1,107) 0.8903
BMO (TORC,>) 0.8235 BMO (TORC,>) 0.8657

Open-WBO-Inc-BMO 0.8202 Open-WBO-Inc-BMO 0.8391
maxroster 0.7885 maxroster 0.8169

TABLE II: Polarity Selection within WMB. The baseline WMB config-
uration is WMB (TORC,⊥,0,106).

60-Second Timeout 300-Second Timeout
Polarity Score Polarity Score
TORC 0.8616 TORC 0.9041

SAT&PREF 0.8240 LinSBPS 0.8700
LinSBPS 0.8226 Barcelogic 0.8683
Sat4j 0.8220 SAT&PREF 0.8499

Barcelogic 0.8184 Sat4j 0.8479
- 0.7734 - 0.8166

depending on the participating solvers.
To overcome this drawback, we calculated an absolute

score against the following static criteria. We run the three
MaxSAT Evaluation winners in the Weighted-Complete track
(rc2b, rc2a [23], [34], [36], maxino [2], [3]) and the three
MaxSAT Evaluation winners in the Weighted-Incomplete-
300-Second track (LinSBPS, Open-WBO-Inc-BMO,
maxroster) for 24 hours over all the instances (results
available at https://tinyurl.com/y5a4eqom). Let the optimal
weight for a particular instance be the minimal weight found
in the above experiment. We define the score as follows:

∑
i(1

+ the optimal weight) / (1 + the weight of the unsatisfied
target bits found by S). None of the solvers was able to find
any solution for 5 of the 172 instances, so we excluded those
instances from the main experiments.

B. Overall Performance Comparison

Table I shows the absolute scores of the following solvers
for both the 60-second and 300-second timeouts, where the
following solvers are sorted by their scores: a) The three best-
performing solvers in the Weighted-Incomplete-60-Second and
Weighted-Incomplete-300-Second tracks of MaxSAT Evalua-
tion; b) The two best configurations of WMB: one per each
time-out; c) The best configuration of BMO (a single BMO
configuration performed the best for both time-outs).
WMB emerges as the winner for both time-outs, where the

gap against LinSBPS is larger for the 60-second time-out.
Based on these results, for the rest of the paper WMB refers to
WMB (TORC,>,0,106), and BMO refers to BMO (TORC,>). The
results on the 60-second time-out suggest that, in the future,
it might be worth combining LinSBPS and WMB, e.g., by
applying WMB instead of LSU as LinSBPS’s back-end.

C. Polarity Selection

Tables II and III show the impact of varying the polarity
selection within WMB and BMO, respectively. TORC emerges
as the best heuristic for both algorithms by far.

TABLE III: Polarity Selection within BMO. The baseline BMO con-
figuration is BMO (TORC,>).

60-Second Timeout 300-Second Timeout
Polarity Score Polarity Score
TORC 0.8235 TORC 0.8657

SAT&PREF 0.7903 SAT&PREF 0.8094
Sat4j 0.7790 LinSBPS 0.8046
LinSBPS 0.7556 Sat4j 0.800

Barcelogic 0.7522 Barcelogic 0.7951
- 0.7122 - 0.7392

TABLE IV: TSB and SSCP Impact on WMB (with TORC)

60-Second Timeout 300-Second Timeout
TSB gtI gtThr Score TSB gtI gtThr Score
⊥ 1 107 0.8700 > 0 106 0.9041
⊥ 1 106 0.8689 > 1 107 0.9019
⊥ 0 106 0.8684 > 1 106 0.9008
⊥ - - 0.8638 > 0 107 0.8972
> 0 106 0.8616 > - - 0.8971
> 1 107 0.8609 ⊥ 1 107 0.8903
> 1 106 0.8605 ⊥ 0 106 0.8901
⊥ 0 107 0.8595 ⊥ 1 106 0.8898
> 0 107 0.8565 ⊥ 0 107 0.8859
> - - 0.8560 ⊥ - - 0.8854

D. Target Score Bump (TSB) and Size-based Switching to
Complete Part (SSCP)

In our experiments, we found that TSB impacts BMO pos-
itively, though not by a large margin; when TSB is turned
on, the score goes up from 0.8178 to 0.8235 and from
0.8527 to 0.8657 for the 60-second and 300-second time-outs,
respectively.

The situation is more complex when it comes to the impact
of TSB and SSCP on WMB. Table IV presents the results
of running all the combinations of different TSB and SSCP
strategies within WMB. The following observations can be
made:

1) Applying SSCP is beneficial, but the tuning of its param-
eters depends on the time-out.

2) TSB’s impact depends on the time-out: TSB is useful for
the 300-second time-out, but not for the 60-second time-
out.

E. Relative Scores

So far, we have presented and analyzed the results, based
on the absolute scores. We offer another perspective on the
performance by comparing the results of all the solvers shown
in Tables I, II, III using the MaxSAT Evaluation criterion,
that is, comparing all these solvers one against the other. The
results are shown in Table V and Table VI for the 60-second
and 300-second timeout, respectively.

Interestingly, unlike in the comparison of the absolute
scores, a single WMB configuration–WMB (TORC,>,0,106)–
comes out as a winner for both time-outs. The gap between
WMB and LinSBPS is still more significant for the 60-second
timeout. WMB, TORC and TSB are all essential for enabling
our solver to outscore LinSBPS, while both TORC and TSB
are beneficial also for BMO.

https://tinyurl.com/y5a4eqom


TABLE V: Head-to-Head Comparison: 60-Second Timeout

Polarity Score
WMB (TORC,>,0,106) 0.913061517
WMB (TORC,⊥,1,107) 0.908857186

BMO (TORC,>) 0.874093999
LinSBPS 0.868803544

WMB (SAT&PREF,>,0,106) 0.858081393
Open-WBO-Inc-BMO 0.857702699
WMB (Sat4j,>,0,106) 0.852056198
WMB (LinSBPS,>,0,106) 0.851883838

WMB (Barcelogic,>,0,106) 0.847634354
BMO (SAT&PREF,>) 0.827579748
BMO (Sat4j,>) 0.811722622
maxroster 0.811692104

BMO (LinSBPS,>) 0.791335557
WMB (-,>,0,106) 0.790396535

BMO (Barcelogic,>) 0.785587982
BMO (-,>) 0.730440952

TABLE VI: Head-to-Head Comparison: 300-Second Timeout

Polarity Score
WMB (TORC,>,0,106) 0.922435560

LinSBPS 0.909276301
WMB (TORC,⊥,1,107) 0.904152238

BMO (TORC,>) 0.891196369
WMB (LinSBPS,>,0,106) 0.885370780

WMB (Barcelogic,>,0,106) 0.883654070
WMB (SAT&PREF,>,0,106) 0.864222104
Open-WBO-Inc-BMO 0.860424891
WMB (Sat4j,>,0,106) 0.860151932

WMB (-,>,0,106) 0.825258820
BMO (SAT&PREF,>) 0.824456819

maxroster 0.824387757
BMO (LinSBPS,>) 0.822867873
BMO (Sat4j,>) 0.813110679

BMO (Barcelogic,>) 0.809867421
BMO (-,>) 0.748293704

F. Industrial Application

This section analyzes the performance of several solvers
on a number of instances from our industrial application,
described in Sect. I.

For our experiments, we used the two winners of the
Complete (non-anytime) category of MaxSAT Evaluation 2018
– rc2b [23], [34], [36] and maxino [2], [3] – in order to
test the performance of leading non-anytime solvers on our
instances. In addition, we ran our WMB algorithm and the best-
performing anytime solver – LinSBPS (it outperformed other
anytime solvers on our instances in preliminary experiments).

Note that we could not test the performance of MaxSAT
solvers, other than WMB, inside our incremental flow, since
none of the other algorithms is incremental. Instead, we iso-
lated a number of non-incremental instances of our problem.
In order to evaluate the solution quality of the different solvers
over time, we ran the solvers for 9 different timeouts: 30, 60,
300, 900, 1800, 3600, 7200, 18000 and 36000 seconds.

Table VII shows the results of our experiment. Several
observations can be made:

1) The leading complete solvers do not perform suitably in
our context.

2) LinSBPS and WMB are roughly comparable, with a slight
advantage for LinSBPS. Note that LinSBPS was able
to reach a better solution than WMB for instances 4 and
6, while WMB reached a better solution for instance 7.

TABLE VII: Comparing LinSBPS (Lin), WMB, rc2b (rcb) and
maxino (mxn) on 7 Industrial Placement Instances for 9 Differ-
ent Time-outs. The overall unsatisfied weight is shown for each
Instance&Solver&Timeout combination (∞ means that the problem
was not solved within the timeout). Cells containing the best known
result for each particular instance are highlighted. The instances are
sorted from the easiest towards the most difficult one.

Sol- Timeout
ver 30 60 300 900 1800 3600 7200 18000 36000

Industrial Instance 1
Lin 21 21 21 21 21 21 21 21 21
WMB 21 21 21 21 21 21 21 21 21
rcb 21 21 21 21 21 21 21 21 21
mxn 21 21 21 21 21 21 21 21 21

Industrial Instance 2
Lin 58 58 58 58 58 58 58 58 58
WMB 58 58 58 58 58 58 58 58 58
rcb ∞ ∞ 58 58 58 58 58 58 58
mxn ∞ 58 58 58 58 58 58 58 58

Industrial Instance 3
Lin 58 58 58 58 58 58 58 58 58
WMB 58 58 58 58 58 58 58 58 58
rcb ∞ ∞ ∞ 58 58 58 58 58 58
mxn ∞ ∞ 58 58 58 58 58 58 58

Industrial Instance 4
Lin 66 66 66 66 66 66 66 66 66
WMB 94 94 67 67 67 67 67 67 67
rcb ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mxn 105 105 105 105 105 105 105 105 105

Industrial Instance 5
Lin 102 101 101 101 101 101 101 101 101
WMB 102 102 101 101 101 101 101 101 101
rcb ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mxn ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Industrial Instance 6
Svr 30 60 300 900 1800 3600 7200 18000 36000
Lin 97 84 72 72 72 72 72 72 72
WMB ∞ 116 116 80 77 73 73 73 73
rcb ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mxn 92 92 92 92 92 92 92 92 92

Industrial Instance 7
Lin 88 85 85 85 85 85 85 85 85
WMB 92 91 90 89 82 82 82 82 82
rcb ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mxn ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

This result serves as another indication that combining
LinSBPS and WMB is expected to be beneficial.

VI. CONCLUSION

This paper offers several contributions. First, we
introduced a new efficient polarity selection heuristic
for SAT-based anytime optimization algorithms, called
Target-Optimum-Rest-Conservative (TORC), and
demonstrated its superiority to existing heuristics within two
leading anytime Weighted MaxSAT algorithms. In addition,
we introduced a variable decision heuristic enhancement,
Target-Score-Bump (TSB), whose impact is also
positive. Second, we improved the OBV-based Unweighted
MaxSAT algorithm Mrs. Beaver, and generalized it to
Weighted MaxSAT. Our resulting Weighted MaxSAT solver,
Weighted Mrs. Beaver (WMB), outscored the state-of-
the-art solvers in the settings of both weighted incomplete
tracks of MaxSAT Evaluation 2018. Third, we described a
new application of incremental anytime Weighted MaxSAT
for placement in the physical design stage of CAD.
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