Autarkies for DQCNF

Oliver Kullmann ¹ Ankit Shukla ²

 $^1\mathsf{Swansea}$ University $^2\mathsf{JKU},\ \mathsf{Linz}$

FMCAD 2019, San Jose, California, USA

DQCNF: Dependency Quantified Boolean CNF

Formula

Quantifier Prefix

Matrix

F =

 $\forall x, y \, \exists a(x) \, \exists b(y) \, \exists c(x, y) \, \exists d(x) \, \exists e(y) :$

 F_0

Matrix

 $F_0 =$

Propositional formula in CNF

$$\begin{array}{l} (a \vee b \vee x) \wedge (\bar{a} \vee \bar{b} \vee \bar{x}) \wedge (\bar{a} \vee b \vee y) \wedge (a \vee \bar{b} \vee \bar{y}) \wedge \\ (c \vee x \vee y) \wedge (c \vee \bar{x} \vee \bar{y} \vee a) \wedge (\bar{c} \vee x \vee \bar{y}) \wedge (\bar{c} \vee \bar{x} \vee y) \wedge \\ (d \vee e \vee x) \wedge (\bar{d} \vee \bar{e} \vee \bar{x} \vee c) \wedge (\bar{d} \vee e \vee y) \wedge (d \vee \bar{e} \vee \bar{y}) \end{array}$$

Dependency set

$$D_a = \{x\}, D_b = \{y\}, D_c = \{x, y\}, D_d = \{x\}, D_e = \{y\}$$

DQCNF formula

```
F := \forall x, y \,\exists a(x) \,\exists b(y) \,\exists c(x,y) \,\exists d(x) \,\exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\}
```

DQCNF formula

```
F := \forall x, y \,\exists \frac{a(x)}{a} \,\exists \frac{b(y)}{b} \,\exists \frac{c(x,y)}{d} \,\exists \frac{d(x)}{d} \,\exists \frac{e(y)}{d} : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\}
```

DQCNF Satisfiability

F is satisfiable, if there exists a total assignment: map each existential variable v to a boolean function over the dependency-set of v, $f = \{fa_x, \, fb_y, \, fc_{x,y}, \, fd_x, \, fe_y\}$ such that the matrix after substitution and simplification becomes satisfiable.

DQCNF formula

```
\begin{split} F &:= \forall x, y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

DQCNF Satisfiability

F is satisfiable, if there exists a total assignment: map each existential variable v to a boolean function over the dependency-set of v, $f = \{fa_x, \, fb_y, \, fc_{x,y}, \, fd_x, \, fe_y\}$ such that the matrix after substitution and simplification becomes satisfiable.

DQCNF formula

```
\begin{split} F &:= \forall x, y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},\bar{\mathbb{C}}\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

DQCNF Satisfiability

F is satisfiable, if there exists a total assignment: map each existential variable v to a boolean function over the dependency-set of v, $f = \{fa_x, \, fb_y, \, fc_{x,y}, \, fd_x, \, fe_y\}$ such that the matrix after substitution and simplification becomes satisfiable.

Given a DQCNF formula F:

• Pick existential variables, assign it a boolean function of universal variables and substitute it in the matrix.

Given a DQCNF formula F:

- Pick existential variables, assign it a boolean function of universal variables and substitute it in the matrix.
- The corresponding clauses becomes tautology.

Given a DQCNF formula F:

- Pick existential variables, assign it a boolean function of universal variables and substitute it in the matrix.
- The corresponding clauses becomes tautology.

Ques. What are allowed values?

Given a DQCNF formula F:

- Pick existential variables, assign it a boolean function of universal variables and substitute it in the matrix.
- The corresponding clauses becomes tautology.

Ques. What are allowed values?

Ans. Any boolean function based on the **dependency set**.

Given a DQCNF formula F:

- Pick existential variables, assign it a boolean function of universal variables and substitute it in the matrix.
- The corresponding clauses becomes tautology.

Ques. What are allowed values?

Ans. Any boolean function based on the **dependency set**.

Values of boolean functions

$$\forall x, y \exists a(x) \exists b(y) \exists c(x, y) \exists d(x) \exists e(y)$$

$$a \mapsto 0, 1, x, \neg x$$

$$b \mapsto 0, 1, y, \neg y$$

$$c \mapsto 0, 1, x, \neg x, y, \neg y, x \lor y, x \land y, \dots$$

DQCNF formula

```
\begin{split} F &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

Solve the DQCNF

Choices a, b, c, d, e

DQCNF formula

```
\begin{split} F := \forall x, y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

Solve the DQCNF

Choices a, b, c, d, e

DQCNF formula

```
F := \forall x, y \,\exists a(x) \,\exists b(y) \,\exists c(x,y) \,\exists d(x) \,\exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\}
```

Solve the DQCNF

 \bullet Pick d, e

DQCNF formula

```
\begin{split} F &:= \forall x, y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

Solve the DQCNF

DQCNF formula

```
\begin{split} F_1 &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{\bar{x},\bar{y},x\}, \{x,y,\bar{x},c\}, \{x,\bar{y},y\}, \{\bar{x},y,\bar{y}\} \end{split}
```

Solve the DQCNF

DQCNF formula

```
F_{1} := \forall x, y \,\exists a(x) \,\exists b(y) \,\exists c(x, y) : \\ \{a, b, x\}, \{\bar{a}, \bar{b}, \bar{x}\}, \{\bar{a}, b, y\}, \{a, \bar{b}, \bar{y}\}, \\ \{c, x, y\}, \{c, \bar{x}, \bar{y}, a\}, \{\bar{c}, x, \bar{y}\}, \{\bar{c}, \bar{x}, y\}, \\ \{\bar{x}, e, \bar{x}\}, \{x, y, \bar{x}, c\}, \{x, \bar{y}, \bar{y}\}, \{\bar{x}, y, \bar{y}\}
```

Solve the DQCNF

DQCNF formula

```
\begin{split} F_1 &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\} \end{split}
```

Solve the DQCNF

DQCNF formula

```
\begin{split} F_1 &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\} \end{split}
```

DQCNF formula

```
\begin{split} F_1 &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\} \end{split}
```

DQCNF formula

```
\begin{split} F_1 &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\} \end{split}
```

Rule 2. Corresponding clauses becomes tautology!

DQCNF formula

```
\begin{split} F_1 &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\} \end{split}
```

DQCNF formula

```
\begin{split} F_1 &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\} \end{split}
```

Solve the DQCNF

 $\bullet \ \operatorname{Pick} \, c$

DQCNF formula

```
\begin{split} F_1 &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\} \end{split}
```

Solve the DQCNF

• Pick c $c = x \leftrightarrow y$

$$[(x \vee \neg y) \wedge (\neg x \vee y)]$$

DQCNF formula

```
\begin{split} F_2 &:= \forall x,y \, \exists a(x) \, \exists b(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{x \leftrightarrow y,x,y\}, \{x \leftrightarrow y,\bar{x},\bar{y},a\}, \{\overline{x \leftrightarrow y},x,\bar{y}\}, \{\overline{x \leftrightarrow y},\bar{x},y\} \end{split}
```

Solve the DQCNF

• Pick c $c = x \leftrightarrow y \qquad [(x \lor \neg y) \land (\neg x \lor y)]$

DQCNF formula

```
\begin{split} F_2 &:= \forall x,y \, \exists a(x) \, \exists b(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{\underline{x} \leftrightarrow \underline{y}, \underline{x}, \underline{y}\}, \{\underline{x} \leftrightarrow \underline{y}, \bar{x}, \underline{y}, a\}, \{\underline{x} \leftrightarrow \underline{y}, \underline{x}, \underline{y}\}, \\ \end{split}
```

Solve the DQCNF

• Pick c $c = x \leftrightarrow y$ $[(x \lor y)]$

$$[(x \vee \neg y) \wedge (\neg x \vee y)]$$

DQCNF formula

$$F_2 := \forall x, y \,\exists a(x) \,\exists b(y) : \{a, b, x\}, \{\bar{a}, \bar{b}, \bar{x}\}, \{\bar{a}, b, y\}, \{a, \bar{b}, \bar{y}\}$$

Solve the DQCNF

ullet Pick c

$$c = x \leftrightarrow y$$

 $[(x \vee \neg y) \wedge (\neg x \vee y)]$

DQCNF formula

$$F_2 := \forall x, y \,\exists a(x) \,\exists b(y) : \{a, b, x\}, \{\bar{a}, \bar{b}, \bar{x}\}, \{\bar{a}, b, y\}, \{a, \bar{b}, \bar{y}\}$$

DQCNF formula

$$F_2 := \forall x, y \,\exists a(x) \,\exists b(y) : \{a, b, x\}, \{\bar{a}, \bar{b}, \bar{x}\}, \{\bar{a}, b, y\}, \{a, \bar{b}, \bar{y}\}$$

DQCNF formula

```
F_2 := \forall x, y \,\exists a(x) \,\exists b(y) : 
 \{a, b, x\}, \{\bar{a}, \bar{b}, \bar{x}\}, \{\bar{a}, b, y\}, \{a, \bar{b}, \bar{y}\}
```

Solve the DQCNF

• Pick a, b

DQCNF formula

$$F_2 := \forall x, y \,\exists a(x) \,\exists b(y) : \{a, b, x\}, \{\bar{a}, \bar{b}, \bar{x}\}, \{\bar{a}, b, y\}, \{a, \bar{b}, \bar{y}\}$$

Solve the DQCNF

 $\begin{array}{c} \bullet \ \, \operatorname{Pick} \, a, b \\ a = \neg x, b = \neg y \end{array}$

DQCNF formula

$$F_3:=\{\bar{x},\bar{y},x\},\{x,y,\bar{x}\},\{x,\bar{y},y\},\{\bar{x},y,\bar{y}\}$$

Solve the DQCNF

• Pick a, b $a = \neg x, b = \neg y$

DQCNF formula

$$F_3:=\{\bar{x},\bar{y},\bar{x}\},\{x,y,\bar{x}\},\{x,\bar{y},\bar{y}\},\{\bar{x},y,\bar{y}\}$$

Solve the DQCNF

• Pick a, b $a = \neg x, b = \neg y$

DQCNF formula

 $F_3 := \mathsf{true}$

Solve the DQCNF

• Pick a, b $a = \neg x, b = \neg y$

DQCNF F is SAT

DQCNF formula

```
\begin{split} F &:= \forall x, y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

DQCNF F is SAT

DQCNF formula

```
F := \forall x, y \,\exists a(x) \,\exists b(y) \,\exists c(x,y) \,\exists d(x) \,\exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\}
```

Total satisfying assignment

$$a \mapsto \neg x, b \mapsto \neg y, c \mapsto (x \leftrightarrow y), d \mapsto \neg x, e \mapsto \neg y$$

Autarkies for SAT [Büning and Kullmann(2009)]

A partial assignment $\varphi : var(F) \mapsto \{0,1\}$ is an autarky iff

- for every clause $C\in F$ either φ does not "touch" C, i.e., ${\rm var}(\varphi)\cap {\rm var}(C)=\emptyset$, or
- φ satisfies C i.e. $\varphi * C$ is true.

Autarkies for SAT [Büning and Kullmann(2009)]

A partial assignment $\varphi : var(F) \mapsto \{0,1\}$ is an autarky iff

- for every clause $C\in F$ either φ does not "touch" C, i.e., ${\rm var}(\varphi)\cap {\rm var}(C)=\emptyset$, or
- $\bullet \ \varphi$ satisfies C i.e. $\varphi * C$ is true.

Example

```
For F = \{ \{a\}, \{a, b\} \};
```

Autarkies for SAT [Büning and Kullmann(2009)]

A partial assignment $\varphi : var(F) \mapsto \{0,1\}$ is an autarky iff

- for every clause $C\in F$ either φ does not "touch" C, i.e., ${\rm var}(\varphi)\cap {\rm var}(C)=\emptyset$, or
- ullet φ satisfies C i.e. $\varphi*C$ is true.

Example

For $F = \{\{a\}, \{a, b\}\}$; the partial assignment $b \mapsto 1$ is an autarky.

Autarkies for SAT [Büning and Kullmann(2009)]

A partial assignment $\varphi : var(F) \mapsto \{0,1\}$ is an autarky iff

- for every clause $C \in F$ either φ does not "touch" C, i.e., $\mathrm{var}(\varphi) \cap \mathrm{var}(C) = \emptyset$, or
- ullet φ satisfies C i.e. $\varphi*C$ is true.

Example

For $F = \{ \{a\}, \{a, b\} \}$; the partial assignment $b \mapsto 1$ is an autarky.

Autarkies for DQCNF

- φ assign existential variables v of F with **boolean functions** of variables of the dependency-set.
- Making a clause "true" now means making it a tautology.

DQCNF Autarky

DQCNF formula

```
\begin{split} F &:= \forall x,y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

DQCNF Autarky

DQCNF formula

```
\begin{split} F &:= \forall x, y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

Partial assignment, $d \mapsto \neg x$, $e \mapsto \neg y$ is an autarky.

Extreme cases

- ullet The empty partial assignment is an autarky for every F (trivial autarky).
- f 2 A satisfying assignment for F is also an autarky for F.

Extreme cases

- **1** The empty partial assignment is an autarky for every F (trivial autarky).
- f 2 A satisfying assignment for F is also an autarky for F.
- Selimination of pure literals is a special case of an "autarky reduction".

Pure literal

$$\forall x,y \exists a(x)b(x,y): \{x,\bar{y},\bar{a}\}, \{\bar{x},a,b\}, \{y,b\}$$
 Assign $b\mapsto 1$.

11

Lemma (satisfiability-equivalence)

For an autarky φ of F, $\varphi * F$ is satisfiability-equivalent to F.

Lemma (satisfiability-equivalence)

For an autarky φ of F, $\varphi * F$ is satisfiability-equivalent to F.

Proof.

If there is a satisfying assignment of F it satisfies also $\varphi*F$, since just clauses have been removed.

If ϕ is a total satisfying assignment for $\varphi * F$, then $\varphi \cup \phi$ is a (partial) satisfying assignment for F.

Lemma (satisfiability-equivalence)

For an autarky φ of F, $\varphi * F$ is satisfiability-equivalent to F.

Lemma (confluence)

Autarky reduction is confluent.

Lemma (composition)

The composition of two autarkies is again an autarky.

ullet A DQCNF F is called **lean** if it has no non-trivial autarkies.

- A DQCNF F is called lean if it has no non-trivial autarkies.
- ullet Lean kernel (unique) is obtained by repeatedly applying autarky-reduction on F as long as possible.

- A DQCNF F is called lean if it has no non-trivial autarkies.
- Lean kernel (unique) is obtained by repeatedly applying autarky-reduction on F as long as possible.

Lemma (autarky decomposition)

A DQCNF F can always be decomposed into the largest (unique) autark sub-DQCNF (satisfiable part by autarky) and the largest lean sub-DQCNF (lean kernel).

Every chain of autarky reductions starting with F can be extended to it's lean kernel (where it necessarily ends).

Finding autarkies

Challenge

Finding an autarky for DQCNF is as hard as finding a satisfying assignment.

Finding autarkies

Challenge

Finding an autarky for DQCNF is as hard as finding a satisfying assignment.

Our solution: Autarky Systems

- Restricting the range of autarkies to a more feasible domain.
 - Restrict the structure of the boolean function.
 - ▶ Restrict the number of existential variable used.
- Maintain the good general properties of arbitrary autarkies.

A- and E-systems: A_1 Autarky system

 A_1 allow the boolean functions to depend on 1 universal variable.

DQCNF formula

```
\begin{split} \mathsf{F} &:= \forall x, y \, \exists a(x) \, \exists b(y) \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\} \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\} \end{split}
```

Example

Exactly one A_1 -autarky $a \mapsto \neg x$, $b \mapsto \neg y$

F is E_1 -lean.

Deciding whether a DQCNF has a non-trivial A_1 -autarky is **NP-complete**.

A- and E-systems: E_1 Autarky system

 E_1 only uses one existential variable.

DQCNF formula

```
\begin{split} F := \forall x, y \, \exists c(x,y) \, \exists d(x) \, \exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\} \end{split}
```

Example

Exactly one E_1 -autarky $c \mapsto (x \vee \neg y) \wedge (\neg x \vee y)$ F A_1 -lean.

Deciding the existence of E_1 -autarky can be done in **polynomial time**.

A- and E-systems: E_1 Autarky system: $E_1 + A_1$

DQCNF formula

```
F := \forall x, y \,\exists a(x) \,\exists b(y) \,\exists c(x,y) \,\exists d(x) \,\exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\}
```

A- and E-systems: E_1 Autarky system: $E_1 + A_1$

DQCNF formula

```
F := \forall x, y \,\exists a(x) \,\exists b(y) \,\exists c(x,y) \,\exists d(x) \,\exists e(y) : \\ \{a,b,x\}, \{\bar{a},\bar{b},\bar{x}\}, \{\bar{a},b,y\}, \{a,\bar{b},\bar{y}\}, \\ \{c,x,y\}, \{c,\bar{x},\bar{y},a\}, \{\bar{c},x,\bar{y}\}, \{\bar{c},\bar{x},y\}, \\ \{d,e,x\}, \{\bar{d},\bar{e},\bar{x},c\}, \{\bar{d},e,y\}, \{d,\bar{e},\bar{y}\}
```

Total satisfying assignment

$$a \mapsto \neg x, \ b \mapsto \neg y, \ c \mapsto (x \leftrightarrow y), \ d \mapsto \neg x, \ e \mapsto \neg y$$

Exactly has 4 autarkies.

Deciding the existence of E_1+A_1 -autory can be done is **NP-complete**.

Selected (boolean) functions: explicitly list the possible boolean functions as values of the existential variables.

$$\mathbf{S(c)} = t(c,0), t(c,1), t(c,x), t(c,\neg x), t(c,y), t(c,\neg y)$$

Selected (boolean) functions: explicitly list the possible boolean functions as values of the existential variables.

$$S(c) = t(c,0), t(c,1), t(c,x), t(c,\neg x), t(c,y), t(c,\neg y)$$

2 Admissible partial assignment: compile for each clause $C \in F$ the minimal possibilities for C to become a tautology.

$$\mathtt{M}(\{\mathtt{c}, \bar{\mathtt{x}}, \bar{\mathtt{y}}, \mathtt{a}\}) = p(c, 1), p(a, 1),$$

Selected (boolean) functions: explicitly list the possible boolean functions as values of the existential variables.

$$S(c) = t(c,0), t(c,1), t(c,x), t(c,\neg x), t(c,y), t(c,\neg y)$$

2 Admissible partial assignment: compile for each clause $C \in F$ the minimal possibilities for C to become a tautology.

$$\mathtt{M}(\{\mathtt{c},\bar{\mathtt{x}},\bar{\mathtt{y}},\mathtt{a}\}) = p(c,1), p(a,1), p(c,x), p(c,y), p(a,x),$$

Selected (boolean) functions: explicitly list the possible boolean functions as values of the existential variables.

$$S(c) = t(c,0), t(c,1), t(c,x), t(c,\neg x), t(c,y), t(c,\neg y)$$

2 Admissible partial assignment: compile for each clause $C \in F$ the minimal possibilities for C to become a tautology.

$$\begin{split} \mathbf{M}(\{\mathbf{c},\bar{\mathbf{x}},\bar{\mathbf{y}},\mathbf{a}\}) &= p(c,1), p(a,1), p(c,x), p(c,y), p(a,x), \\ &\quad p(c,x,a,\neg x), p(c,\neg x,a,x) \end{split}$$

Selected (boolean) functions: explicitly list the possible boolean functions as values of the existential variables.

$$S(c) = t(c,0), t(c,1), t(c,x), t(c,\neg x), t(c,y), t(c,\neg y)$$

2 Admissible partial assignment: compile for each clause $C \in F$ the minimal possibilities for C to become a tautology.

$$\begin{split} \mathtt{M}(\{\mathtt{c},\bar{\mathtt{x}},\bar{\mathtt{y}},\mathtt{a}\}) &= p(c,1), p(a,1), p(c,x), p(c,y), p(a,x), \\ & p(c,x,a,\neg x), p(c,\neg x,a,x) \end{split}$$

ullet Selector-variable: if C is touched (selected), at least one of the minimal possibilities for C is fulfilled.

$$ALO(M(\{c, \bar{x}, \bar{y}\}))$$

Numbers: Computing normalforms in DQBF track

334 instances in the DQBF track of QBFEVAL'18 in 9000s. (finding an autarky is quick, proving UNSAT: time consuming.)

330 instances are E_1+A_1 -lean (have no non-trivial E_1 - or A_1 -autarky).

No.	Instances	Autarky type	Reduction	
			c(F)	c(F ')
1.	BLOEM_EQ1.DQDIMACS	A1-satisfiable	16	-
2.	TENTRUP17_LTL2DBA_THETA	E1+A1-satisfiable	732	-
	_environment_1.dqdimacs			
3.	BLOEM_EX1.DQDIMACS	A1: non-trivial autarky	52	18
4.	BLOEM_EX2.DQDIMACS	A1: non-trivial autarky	139	99

Autarkies use and applications

"Preprocessing can be extremely beneficial." - Armin Biere [Biere(2011)]

- Preprocessing: reduce the input formula by simplification procedures before the formula is passed to the actual solving algorithm.
- Inprocessing: use the formula simplification procedures during the search process of the solver.

Conclusion

- Autarky theory for DQBF.
- Two basic autarky systems A_1 , E_1 and their combination $E_1 + A_1$.
- A SAT translation.

Future Work:

- Determining the (unique) normalforms for A_1 , E_1 , E_1+A_1 for all over 12,000 instances in QBFLIB.
- Consider more stronger autarky systems A_2, E_2 .

Thanks!

Bibliography

Armin Biere.

Preprocessing and inprocessing techniques in SAT. In *Haifa Verification Conference*, volume 1, 2011.

Hans Kleine Büning and Oliver Kullmann. Minimal unsatisfiability and autarkies. Handbook of Satisfiability, 185:339–401, 2009.