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Abstract

An essential component in many verification methods is a fast decision procedure for
validating logical expressions. This thesis presents several advances in the theory and
implementation of such decision procedures, developed as part of ongoing efforts to
improve the Stanford Validity Checker. We begin with the general problem of com-
bining satisfiability procedures for individual theories into a satisfiability procedure
for the combined theory. Two known approaches, those of Shostak and Nelson and
Oppen, are described. We show how to combine these two methods to obtain the
generality of the Nelson-Oppen method while retaining the efficiency of the Shostak
method. We then present a general framework for combining decision procedures
which includes features for enhancing performance and flexibility. Finally, validity
checking requires that a heuristic search be built on top of the core decision proce-
dure for satisfiability. We discuss strategies for efficient heuristic search and show
how to adapt several powerful techniques from current research on Boolean satisfia-
bility. Since these algorithms can be extremely subtle, a detailed proof of correctness

is provided in the appendix.
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Chapter 1
Introduction

An automated tool to check validity of formulas is of great interest because of its
versatility. Many practical problems can be reduced to the question of whether some
formula is valid in a given logical theory. Our experience with the Stanford Validity
Checker (SVC) [1, 2], a tool for checking validity of quantifier-free formulas in a com-
bination of first-order theories, confirms the need for and interest in such a tool. SVC
has been used internally at Stanford for processor verification [23, 24, 25|, symbolic
simulation [39], software specification checking [32], and infinite-state model check-
ing [11, 12]. In addition, since its public release in 1998, SVC has been downloaded
and used in many other applications all over the world including model checking [6],
theorem-prover proof assistance [21], programming language enhancements [13], and
even the verification of an automobile airbag controller [4].

However, these applications revealed not only the need for such a tool, but also
many limitations of the 1998 implementation. Our subsequent attempts to enhance
and modify SVC revealed unnecessary constraints in the underlying theory, as well
as gaps in our understanding of it. This thesis is an outcome of our attempt to
re-architect SVC to resolve these difficulties. The primary goal has been to place
SVC on a firm theoretical foundation without sacrificing the efficiency which made it
successful.

Before describing the validity checking problem in more detail, we first give a brief

overview of relevant concepts from first-order logic.
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1.1 First-Order Logic

For those already familiar with basic first-order logic, this section may be skipped.

1.1.1 Basic Definitions

First-order logic is a widely used mathematical language for making precise state-
ments [16, 22]. The “alphabet” of statements in first-order logic includes two distinct
kinds of symbols: logical symbols and non-logical symbols. Logical symbols are com-
mon to all applications of first-order logic. They include parentheses, quantifiers,
Boolean operators, and the equality operator. Note that although it is possible to
use first-order logic without equality, we will make the assumption that equality is
always included. Also, to simplify discussion, we will include the constant formulas
true and false as logical symbols.

Non-logical symbols are symbols which vary depending on the application. They
include variables, constant symbols, function symbols, and predicate (or relation)

symbols. The symbols of first-order logic are summarized below.

1. Logical Symbols

(a) Parentheses: (,)

(b) Quantifiers: V (for all), 3 (there exists)

(c) Boolean operators: = (not), A (and), V (or)
(d) Constant formulas: true, false

(e) Equality: =

2. Non-logical Symbols

(a) Variables
(b) Constant symbols

(c¢) Function symbols: Each function symbol has an associated arity, a positive

integer that indicates how many arguments it requires.
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(d) Predicate symbols: Each predicate symbol also has an associated arity.

A symbol with arity 1, 2, or 3, is said to be a wunary, binary, or trinary symbol
respectively. In general, a symbol with arity n is said to be an n-ary symbol.

The “alphabet” of logical symbols and non-logical symbols is used to form terms
and formulas (the rough logical equivalent of “words” and “phrases”). A term is a
variable, a constant, or an application of an n-ary function symbol to n other terms.
An atomic formula is either an equality between terms or an n-ary predicate symbol

applied to n terms. A literal is either an atomic formula or its negation.

A formula is defined as follows.

a) Constant formulas are formulas.

(
(b

Atomic formulas are formulas.

(
(d

)
)
c¢) If ¢ is a formula, then —¢ is a formula.
) If ¢ and ¢ are formulas, then ¢ A ¢ and ¢ V ¢ are formulas.
)

(e) If ¢ is a formula and z is a variable, then V. ¢ and Jx. ¢ are formulas.

In each case, x is said to be bound in ¢.

Occurrences of variables which are not bound are said to be free. free(a) indicates
the set of variables which occur free in «. If a formula ¢ contains no free variables
(i.e. free(¢p) =), it is called a sentence. If it contains no quantifiers, it is said to be
quantifier-free.

Terms and formulas collectively are called ezpressions. To avoid confusion with the
logical symbol =, we will use = to indicate that two logical expressions are identical.
Similarly, when discussing Boolean values outside the context of logical expressions,
TRUE and FALSE are used, so as not to confuse them with the logical formulas true

and false.

Example 1.1. The non-logical symbols for an application involving simple arithmetic

might be as follows.

1. Variables: z,vy, z, vy, vy, . ..



CHAPTER 1. INTRODUCTION 4

2. Constant symbols: ..., —1,0,1,...
3. Function symbols: unary minus: —, binary plus: +

4. Predicate symbols: binary less-than: <, binary greater-than: >

Using these additional symbols, first-order logic can be used to precisely state various

arithmetic properties:

1. Adding 0 to an integer does not change it: Vz. (x + 0 = x).
2. Addition is commutative: Vz.Vy. (t +y =y + x).

3. There is always a larger number: V. Jy. (y > z).

1.1.2 Theories and Models

A theory is a set of first-order sentences. For the purposes of this thesis, all theories
are assumed to include the axioms of equality. The signature of a theory is the set of
function, predicate, and constant symbols appearing in those sentences. The language
of a signature X is the set of all expressions whose function, predicate, and constant
symbols come from Y. The language of a theory is the language of its signature.
Terms or formulas in the language of a signature X are called X-terms or X-formulas.

Given a signature X, a model M of ¥ is a structure including the following four items:

1. A set called the domain of M, written dom(M). Elements of the domain are
called elements of the model M.

2. A mapping from each constant ¢ in ¥ to an element ¢ of M.

3. A mapping from each n-ary function symbol f in ¥ to fM, an n-ary function
from (dom(M))™ to dom(M).

4. A mapping from each n-ary predicate symbol p in ¥ to p, an n-ary relation
on the set dom(M).
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For a given model, M, a variable assignment p is a function which assigns to each
variable an element of M. We say that M and p satisfy ¢ and write M =, ¢ if ¢ is
true in the model M with variable assignment p. A formula ¢ is satisfiable if there
exists some model A and variable assignment p such that M =, ¢. If I' is a set of
formulas and ¢ is a formula, then I' = ¢ means that for every model and variable
assignment satisfying each formula in ', the same model and variable assignment
also satisfy ¢. A formula ¢ is valid if all models and variable assignments satisfy ¢
(i.e. 0 = ¢). If T is a theory, we say ¢ is valid in T if T | ¢. Often, we will use
sets of formulas where a logical formula is expected. The intended meaning is the
conjunction of the formulas in the set. The conjunction of an empty set of formulas
is defined to true.

A set S of literals is convex in a theory 7 if 7 U .S does not entail any disjunction
of equalities between variables without entailing one of the equalities itself. A theory
T is convex if every set of literals in the language of the theory is convex in 7. A
theory T is stably infinite if any quantifier-free formula is satisfiable in some model

of T iff it is satisfiable in a model of 7 whose domain is infinite.

1.1.3 Validity Checking

Given a theory 7 and a formula ¢, the validity checking problem is simply the prob-
lem of determining whether 7 = ¢. It is a well-known fact that in general, this
problem is undecidable. There are at least two possible approaches to dealing with
this undecidability. The first is to apply heuristics which will work well on some
problems but give no result on others. The other is to restrict 7 and ¢ in such a
way that the problem becomes decidable. Because we want a decision procedure, and
because the applications in which we are interested can be handled without using the
full expressive power of first-order logic, we take the second approach.

In the restricted domain we consider, ¢ is required to be quantifier-free, and the
theory 7T is required to be the union of one or more theories 7; whose signatures are
pairwise disjoint. Additionally, in each theory 7;, the question of whether 7; = 1,

where 1 is a quantifier-free formula in the language of 7; must be decidable.
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1.2 Some History

SVC has its roots in a ground-breaking paper by Burch and Dill on processor verifi-
cation [9]. In order to better motivate the need for a validity checker, a brief overview

of its role in the Burch-Dill verification methodology is given.

1.2.1 The Burch-Dill Method

The Burch-Dill method is used to verify that an implementation of a piece of hard-
ware matches its specification. It also requires an abstraction function for matching
implementation states with their corresponding specification states.

More concretely, suppose that for a given verification problem, @); is the set of
possible states for the implementation and ) is the set of possible states for the
specification, and that Abs is a function from @); to (). Furthermore, suppose that
F; is the implementation transition function (from @; to @);) and that Fy is the
specification transition function (From @ to Q).

In order to verify that the implementation is correct (with respect to the specifi-
cation), consider a single transition starting from an arbitrary implementation state
¢;- The result, Fj(g;), should correspond to a single transition of the specification

starting from Abs(¢;). In other words, the implementation is correct if
1.1. Fs(Abs(q;)) = Abs(F;(q;)).

A diagram of this correctness condition is shown in Figure 1.1.

Traditional simulation techniques attempt to verify equation 1.1 for as many states
in (); as possible. Unfortunately, for large and complex designs, exhaustive coverage
is impossible. Formal verification techniques take a different approach: they attempt
to prove that equation 1.1 is valid.

The theory in which this proof takes place depends on the transition and ab-
straction functions. Burch and Dill proposed a theory which included uninterpreted
functions and predicates. They found that uninterpreted functions could be used to
represent portions of the datapath that were common to both the implementation

and the specification, greatly reducing the difficulty of checking formula 1.1. Thus,
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AbS(q;)

Abs Abs

9 | Fi (qi)

Figure 1.1: Burch-Dill Commuting Diagram

the first incarnation of what later became SVC was a simple validity checker for the

logic of pure equality with uninterpreted functions.

1.2.2 The Evolution of SVC

This first validity checker was successfully applied to several designs [25]. Though
these results were impressive, attempts to extend this initial work to more difficult
designs revealed that the simple theory of pure equality with uninterpreted functions
was insufficient. As time went on, a number of additional interpreted functions were
added, including arithmetic, array, and bit-vector functions [1, 3].

The addition of these functions increased the expressive power of the logic. How-
ever, it also required a strategy for combining decision procedures for individual theo-
ries. The 1998 release of SVC included a number of theories combined in a somewhat
ad hoc way, loosely based on Shostak’s method for combining theories [1, 27, 35].

As mentioned, the 1998 release, though very successful by many standards, pre-
sented a number of difficulties. Perhaps the most fundamental difficulty was that
our understanding of the underlying theory was limited. Decision procedures were
required to conform to rigid requirements which limited the kinds of theories that
could be included. Some theories which did not meet these requirements were in-

cluded anyway, with the result that our confidence in the correctness of the entire
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CheckValid(h,c)
IF ¢ = {rue THEN RETURN TRUE;
IF —Satisfiable(h) THEN RETURN TRUE;
IF ¢ = false THEN RETURN FALSE;
subgoals := ApplyTactic(h,c);
FOREACH (h',(') € subgoals DO
IF —CheckValid(h/,c/) THEN RETURN FALSE;
RETURN TRUE;

Figure 1.2: Top-level Validity Checking Algorithm

system was diminished.

There were other difficulties with the 1998 release. The system had outgrown
its original software architecture with the result that attempts to modify or extend
it in any way often broke the system in unpredictable ways. In particular, it was
difficult to experiment with certain algorithmic changes which had the potential to
dramatically increase performance.

This thesis is the result of efforts to address these issues. The theoretical and
architectural contributions contained herein form the foundation for the successor
to SVC, a system called CVC (Cooperating Validity Checker), which is significantly

more robust, while remaining as useful as its predecessor.

1.3 Validity Checking: Top-Level Algorithm

In order to better understand the theoretical issues involved in validity checking, as
well as to lay the foundation for a more detailed implementation, we here describe at
a high level the algorithm used to check validity.

Figure 1.2 shows pseudocode for CheckValid, the top-level validity checking algo-
rithm. The formula whose validity is to be determined is provided to CheckValid in
the form of two arguments: a set h of formulas, the hypotheses, and a formula ¢, the
conclusion. The pair (h,c) is called a sequent, and implicitly represents the formula
h — c. If the sequent is not obviously true or false, CheckValid applies a tactic
which returns a set of subgoals (also represented as sequents). If the set is empty,

that means the tactic has successfully proved the sequent. Otherwise, CheckValid is
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ApplyTactic(h,c)
Let ¢ be an atomic formula appearing in c;

hy := AddFact(h,¢);
¢y := Simplify(hy,c);
he := AddFact (h,—¢);

co = Simplify(ho,c);
RETURN {(h1,c1), (ha,c2)};

Figure 1.3: Case-Splitting Tactic

called recursively on each subgoal. A failure to prove any subgoal indicates that the
original formula is not valid.

The strategy of representing goals as sequents and using tactics to break them
down into subgoals is a common one used by many other theorem provers including
HOL [20] and PVS [31]. Obviously, there is a lot of freedom in the choice of which
tactics to use and how to choose between them. We focus on one particular tactic, a
case-splitting tactic, which is sufficient to produce a decision procedure. Figure 1.3
shows pseudocode for a case-splitting tactic. This tactic makes use of two additional
subroutines: AddFact and Simplify. AddFact(h, ¢) simply adds ¢ to the hypotheses
in h, and Simplify(h,c) simplifies ¢ with respect to h'.

This tactic is sufficient as long as Simplify satisfies certain conditions. A call to
Simplify(h,c) must replace each atomic formula ¢ in ¢ for which ¢ or —¢ appears
in h by true or false respectively. It is also required to evaluate purely propositional
sentences to either true or false. Given these requirements, it is not hard to see
that by repeatedly applying the case-splitting tactic, any quantifier-free formula will
eventually reduce to true or false. Since the case-splitting tactic can only be applied
a finite number of times to a finite formula, this means that the algorithm will always
terminate.

Notice that our validity checking algorithm is built on top of an algorithm for de-
termining the satisfiability of a conjunction of literals. This is the problem addressed

in the bulk of the thesis. In particular, an efficient implementation of the functions

'From a proof-theoretic point of view, this simple top-level algorithm implements a classical
Gentzen-style deductive system, and the case-splitting tactic is essentially a version of the cut in-
ference rule.
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AddFact, Simplify, and Satisfiable is the subject of chapter 3.

1.4 Organization

In chapter 2, we discuss the theoretical issues involved in combining satisfiability
procedures for different theories. Two approaches which have been used in the past
are those of Shostak [35] and Nelson-Oppen [29]. We present and prove the correctness
of three new algorithms. The first is a simple subset of Shostak’s algorithm. The next
is a variation on Nelson-Oppen. The last is an instance of the Nelson-Oppen variation
which generalizes the original Shostak algorithm.

Chapter 3 describes a detailed and efficient framework for combining theories.
The framework includes a number of important features, such as a simplifier and a
flexible interface for adding new theories. We show how the framework can be used to
efficiently implement the abstract algorithms of chapter 2. We also describe a couple
of important extensions which make the framework more powerful and give greater
flexibility when adding new theories.

Chapter 4 revisits the top-level case-splitting algorithm and shows how it can be
improved by using techniques from related work on Boolean satisfiability. We describe
the results of combining our new system, CVC, with the Chaff Satisfiability solver
[28]. The result is a combined system which on average requires far fewer decisions
to successfully check the validity of formulas.

Chapter 5 summarizes the contributions of this thesis, offers some observations
on verification, and describes future work, including one promising extension which
can handle quantified formulas in some cases.

Finally, the appendix contains a detailed proof of the correctness of the algorithm

presented in chapter 3.



Chapter 2

Combining Satisfiability

Procedures

In this chapter, we consider the problem of determining the satisfiability of a conjunc-
tion of literals in a combined theory, given a satisfiability procedure for each theory
individually. Two main approaches to this problem have emerged: Shostak’s method
and the Nelson-Oppen method. We will discuss each of these in turn.

In the process, we will also give a new simple presentation of Shostak’s method
without uninterpreted functions and a new variation of the Nelson-Oppen procedure.

We then show how these two algorithms can be combined.

2.1 Shostak’s Method

In 1984, Shostak introduced a clever and subtle algorithm which decides the satisfia-
bility of quantifier-free formulas in a combined theory which includes a first-order the-
ory (or combination of first-order theories) with certain properties and the theory of
equality with uninterpreted function symbols [35]. But despite the fact that Shostak’s
method is less general than its predecessor, the Nelson-Oppen method [29, 30], it has
generated considerable interest and is the basis for decision procedures found in sev-
eral tools, including PVS [31], STeP [5, 17], and SVC [1, 2, 27].

There are several good reasons for this. First of all, it is easier to implement:

11



CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 12

the Nelson-Oppen method provides a framework for combining decision procedures,
but gives no help on how to construct the individual decision procedures. But as we
will show below, at the core of Shostak’s procedure is a simple recipe for generating
decision procedures for a large class of theories. A second reason for the success of
Shostak’s method is that despite requiring more restrictive conditions in order to
accommodate a theory, a wide variety of useful theories have been shown to satisfy
these conditions [5, 35]. Finally, empirical studies have claimed that implementations
based on Shostak’s method are up to an order of magnitude more efficient than the
Nelson-Oppen method [10].

Unfortunately, the original paper describing Shostak’s method is difficult to follow,
due in part to the fact that it contains several errors, and despite an ongoing effort
to understand and clarify the method [10, 34, 42], it remains difficult to understand.

In the past, Shostak’s algorithm has been presented either as a monolithic whole
or as an extension of an algorithm for deciding just the the theory of pure equality
with uninterpreted functions. We take a different approach by presenting a simple
new algorithm (Algorithm S7 below) based on a subset of Shostak’s algorithm, in
particular, the subset which decides formulas without uninterpreted functions. This
algorithm provides considerable insight into how Shostak’s algorithm works. It is also
interesting in its own right because it is easily proved correct and can be used directly
to produce decision procedures. Finally, the simplified algorithm forms the basis for a
more general algorithm described in Section 2.3. A few definitions are required before

proceeding.

2.1.1 Equations in Solved Form

A set S of equations is said to be in solved form iff the left-hand side of each equation
in § is a variable which appears only once in §. We will refer to these variables which
appear only on the left-hand sides as solitary variables. A set S of equations in solved
form defines an idempotent substitution: the one which replaces each solitary variable
with its corresponding right-hand side. If S is an expression or set of expressions,

we denote the result of applying this substitution to S by S(S). Another interesting
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property of equations in solved form is that the question of whether such a set &

entails some formula ¢ in a theory 7 can be answered simply by determining the
validity of S(¢) in 7.

Proposition 2.1. If T is a theory with signature ¥ and S is a set of Y-equations in
solved form, then TUS = ¢ iff T = S(9).

Proof. Clearly, TUS = ¢ iff TUS E S(¢). Thus we only need to show that
TUS E S(¢) it T E S(¢). The “if” direction is trivial. To show the other
direction, assume that 7 US = S(¢). Any model of 7 can be made to satisfy 7 US
by assigning any value to the non-solitary variables of §, and then choosing the value
of each solitary variable to match the value of its corresponding right-hand side. Since
none of the solitary variables occur anywhere else in S, this assignment is well-defined
and satisfies S. By assumption then, this model and assignment also satisfy S(¢),
but none of the solitary variables appear in S(¢), so the initial arbitrary assignment
to non-solitary variables must be sufficient to satisfy S(¢). Thus it must be the case

that every model of T satisfies S(¢) with every variable assignment. O
By setting ¢ to false, the following corollary is obtained.
Corollary 2.1. If T is a satisfiable theory with signature ¥ and S is a set of -

equations in solved form, then T US s satisfiable.

2.1.2 Algorithm S1

We first give the conditions that a theory must meet in order for Algorithm S7 to
be applicable. We call a theory that meets these conditions a Shostak theory.

Definition 2.1. A consistent theory T with signature ¥ is a Shostak theory if the

following conditions hold.

1. ¥ does not contain any predicate symbols.

2. T is convex.
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3. There exists a canonizer canon, a computable function from X-terms to X-terms,

with the property that T = a = b iff canon(a) = canon(b).

4. There exists a solver solve, a computable function from X-equations to sets of

formulas defined as follows:

(a) If T Ea #0, then solve(a = b) = {false}.

(b) Otherwise, solve(a = b) returns a set S of equations in solved form such
that T = [(a = b) <» 3W. S|, where W is the set of variables which appear

in S but not in a orb. FEach of these variables must be fresh.

These requirements are slightly different from those given by Shostak and others.
These differences are discussed in Section 2.4 below. In the rest of this section, T is
assumed to be a Shostak theory with signature ¥, canonizer canon, and solver solve.
As we will show, the solver can be used to convert an arbitrary set of equations into a
set of equations in solved form. The canonizer is used to determine whether a specific
equality is entailed by a set of equations in solved form, as shown by the following

proposition.

Proposition 2.2. If S is a set of Y-equations in solved form, then T US Ea =0>
iff canon(S(a)) = canon(S(b)).

Proof. By Proposition 2.1, TUS Ea =biff T = S(a) = S(b). But T = S(a) = S(b)
iff canon(S(a)) = canon(S(b)) by the definition of canon. O

Algorithm S7 (shown in Fig. 2.1) makes use of the properties of a Shostak theory to
check the joint satisfiability of an arbitrary set of equalities, [', and an arbitrary set of
disequalities, A, in a Shostak theory with canonizer canon and solver solve. Since the
satisfiability of any quantifier-free formula can be determined by first converting it to
disjunctive normal form, it suffices to have a satisfiability procedure for a conjunction
of literals. Since X contains no predicate symbols, all X-literals are either equalities
or disequalities. Thus, Algorithm S7 is sufficient for deciding the satisfiability of

quantifier-free ¥-formulas. Termination of the algorithm is trivial since each step
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S1(I', A, canon, solve)

1. S:=0;

2. WHILE I' # () DO BEGIN
3 Remove some equality a =b from I';
4. a*:=S8(a); b*:=8(b);
5. S§* 1= solve(a* = b*);
6 IF §* = {false} THEN RETURN FALSE;

7 S :=8*(S)US*;

8 END

9. IF canon(S(a)) = canon(S(b)) for some a # b & A THEN RETURN FALSE;
10. RETURN TRUE;

Figure 2.1: Algorithm S1: based on a simple subset of Shostak’s algorithm

terminates and each time line 3 is executed the size of I' is reduced. The following

lemmas are needed before proving correctness.

Lemma 2.1. If 7' is a theory, I' and © are sets of formulas, and S is a set of
equations in solved form, then for any formula ¢, T"UT UOUS E ¢ iff T"UT U
SO)US E ¢.

Proof. Follows trivially from the fact that ©US and S(©)US are satisfied by exactly

the same models and variable assignments. a

Lemma 2.2. IfT" is any set of formulas, then for any formula ¢, and X-terms a and
b,
TUul'U{a=0b} E=¢ iff T UL'U solve(a =b) = ¢.

Proof.

= Given that 7T UT'U {a = b} |= ¢, suppose that M =, T UT' U solve(a = b). It is
easy to see from the definition of solve that M |=, a = b and hence by the hypothesis,
M =, ¢.

<: Given that 7 UI'U solve(a = b) = ¢, suppose that M =, T UI'U{a = b}. Then,
since T = (a = b) «» 3@. solve(a = b), there exists a modified assignment p* which
assigns values to all the variables in @ and satisfies solve(a = b) but is otherwise
equivalent to p. Then, by the hypothesis, M =, ¢. But the variables in w are fresh
variables, so they do not appear in ¢, meaning that changing their values cannot
affect whether ¢ is true. Thus, M =, ¢. O
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Lemma 2.3. IfT, {a = b}, and S are sets of X-formulas, with S in solved form, and
if 8* = solve(S(a = b)) then if S* # {false}, then for every formula ¢, T UT' U{a =
bUS E o iff TUTUS*US*(S) = ¢.

Proof.

Tul'U{a=b0}USE¢ & TUI'U{S(a=b}USE¢  Lemma21l
& TULUS'USE9 Lemma 2.2
& TULUSTUSS) Eo Lemma 2.1

Lemma 2.4. During the execution of Algorithm S1, S is always in solved form.

Proof. Clearly, § is in solved form initially. Consider one iteration. By construction,
a* and b* do not contain any of the solitary variables of §, and thus by the definition of
solve, §* doesn’t either. Furthermore, if S* = {false} then the algorithm terminates
at line 6. Thus, at line 7, §* must be in solved form. Applying S* to S guarantees
that none of the solitary variables of S* appear in S, so the new value of S is also in

solved form. 0

Lemma 2.5. LetT',, and S,, be the values of I' and S after the while loop in Algorithm
S1 has been executed n times. Then for each n, and any formula ¢, the following
invariant holds: T ULy E ¢ iff TUL,US, | ¢.

Proof. The proof is by induction on n. For n = 0, the invariant holds trivially. Now

suppose the invariant holds for some £ > 0. Consider the next iteration.

TUTy ¢ TUT,US E o Induction Hypothesis
TUFk+1U{a:b}USk):¢ Line 3
TUTLn US*US*(Sk) E o Lemmas 2.3 and 2.4

TU Fk+1 U Sk-i—l ): ¢ Line 7

reT e

Now we can show the correctness of Algorithm S1.

Theorem 2.1. Suppose T is a Shostak theory with signature X, canonizer canon,
and solver solve. If I' is a set of X-equalities and A is a set of X-disequalities, then

T UT UA is satisfiable iff S1(I', A, canon, solve) = TRUE.
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Proof. Suppose S1(I", A, canon, solve) = FALSE. If the algorithmm terminates at line 9,
then, canon(S(a)) = canon(S(b)) for some a # b € A. It follows from Proposition
2.2 and Lemma 2.5 that T UL |=a = b, so clearly 7 UT' U A is not satisfiable. The
other possibility is that the algorithm terminates at line 6. Suppose the loop has
been executed n times and that ', and &, are the values of I' and S at the end of
the last loop. It must be the case that 7 |= a* # b*, so T U{a* = b*} is unsatisfiable.
Clearly then, 7 U {a* = b*} US, is unsatisfiable, so by Lemma 2.1, T U{a = b} US,
is unsatisfiable. But {a = b} is a subset of I, so T UT',, US,, must be unsatisfiable,
and thus by Lemma 2.5, 7 U [ is unsatisfiable.

Suppose on the other hand that S1(I", A, canon, solve) = TRUE. Then the algorithm
terminates at line 10. By Lemma 2.4, S is in solved form. Let A be the disjunction of
equalities equivalent to =(A). Since the algorithm does not terminate at line 9, 7US
does not entail any equality in A. Because T is convex, it follows that 7 U S £ A.
Now, since T US is satisfiable by Corollary 2.1, it follows that 7 USUA is satisfiable.
But by Lemma 2.5, TUT E ¢ iff TUS [ ¢, so in particular T US = I'. Thus
T USUAUT is satisfiable, and hence 7 U ' U A is satisfiable. O

2.1.3 An Example

Perhaps the most obvious example of a Shostak theory is the theory of linear arith-
metic with signature {0,S5,+} (where S is the successor function) and domain the
real numbers. Terms in this theory can be more conveniently represented by us-
ing some standard abbreviations: base 10 numerals instead of repeated applications
of successor (i.e. 3 instead of S(S(S(0)))), multiplication by a constant instead of
repeated applications of + (i.e. 3z instead of x + x + x). Division by a non-zero
constant and the use of unary minus can also be included since equations involving
these operations can always be converted into equivalent equations without them.

A simple canonizer for this theory can be obtained by imposing an order on
all variables (lexicographic or otherwise), and combining like terms. For example,
canon(z +3y —x —5z) = —x + 3y + (—42). Similarly, a solver can be obtained simply

by solving for one of the variables in an equation.
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A well-known method for obtaining a solution to a system of equations in this
theory is simply to use Gaussian elimination and back-substitution. Interestingly,
by using the solver and canonizer just described, Algorithm S7 actually implements
Gaussian elimination with back-substitution.

Consider the following system of equations:

r+3y—2z = 1
r—y—6z = 1

This system can be represented by a matrix and transformed to reduced row echelon
form as follows.

1 3 =2 |1 1 3 =2 |1 1 0 -5 |1
= =
1 -1 -6 |1 0 -4 —4 |0 0 1 110

Compare this with running Algorithm S7 on the same set of equations. The following
table shows the values of I'; §, S(a = b), and S8* on each iteration of Algorithm
S1 starting with ' = {x +3y — 2z =1,z —y — 62 = 1}:

I S S(a=10) S*
r+3y—22=11|10 r+3y—22=1 r=1-3y+2z

r—y—6z=1

r—y—6z=1 |z2=1-3y+22|1-3y+2z2—y—6z2=1|y=—2
0 r=145z

y=—=2

The substitution for = in the second iteration corresponds to using x as a pivot variable
to produce a zero in the second row of the matrix. Similarly, the last execution of line
7 transforms x = 1 — 3y 4+ 2z into x = 1 + 5z, corresponding to the transformation
of the first row of the matrix due to back-substitution. Notice that the final solution
obtained by Algorithm S7 is the same as that obtained from the matrix in reduced
row echelon form.

To make the example a little more interesting, suppose a third equation is added:
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2x + 8y — 2z = 3. Transforming the matrix yields:

1 3 =2 |1 1 3 =2 |1 13 =21
1 -1 6|1 |=]0 -4 —-4]0]|=]101 110
2 8 =2 |3 0 2 21 00 01

At this point, the last row indicates that the system of equations is unsatisfiable.
Suppose that the same new equation is processed by Algorithm S1. Note that rather
than restarting the algorithm, the new equation can be placed in I' and the algorithm
can continue from where it left off. This illustrates a very nice property of the algo-
rithm: it is incremental. If a new equation is added to ' after some of the equations
have already been processed, the algorithm can continue without any difficulty. The

result is as follows:

r S S(a =1b) S*
20+8y—22=3|x=1452 | 2(1+52)+8(—2) — 22 =3 false
y=—z

The solver detects an inconsistency when it tries to solve the equation obtained after
applying the substitution from S. The solver indicates this by returning {false},
which results in the algorithm returning FALSE.

Finally, suppose that instead of the equation 2z + 8y — 2z = 3, the disequality
y+ x # x — z is added. This is handled by line 9 of the algorithm:

canon(S(y +z)) = canon(—z+1+5z) = 1+4z
canon(S(x — 2)) = canon(l+5z—2) = 1+4z

Since y + © # v — 2z € A and canon(S(y + z)) = canon(S(x — 2)), the algorithm
returns FALSE.

There is no matrix analog to the case which includes the disequality. Algorithm
S1 may, in fact, properly be viewed as a generalization of Gaussian elimination. Not
only can it handle disequalities, but it can also introduce fresh variables or equations

when solving. Also, the set of function symbols can be richer than those provided
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by a vector space. The key requirement is simply that an appropriate canonizer and

solver exist.

2.1.4 Combining Shostak Theories

In [35], Shostak claims that two Shostak theories can always be combined to form
a new Shostak theory. A canonizer for the combined theory is obtained simply by
composing the canonizers from each individual theory. A solver for the combined the-
ory is ostensibly obtained by repeatedly applying the solver for each theory (treating
terms in other theories as variables) until a true variable is on the left-hand side of
each equation in the solved form. This does in fact work for many theories, providing
a simple and efficient method for combining Shostak theories. However, as pointed
out in [27] and [34], the construction of the solver as described is not always possible.
We do not address this issue here, but mention it as a question which warrants further

investigation.

2.2 The Nelson-Oppen Combination Method

Nelson and Oppen [29, 30] described a method for combining decision procedures for
theories which are stably infinite and have disjoint signatures. In this section, we
assume 77 and 75 are two such theories with signatures X; and 3, respectively (the
generalization to more than two theories is straightforward). Furthermore, we let
T =TiU7Tz and ¥ = ¥; UXs. The Nelson-Oppen procedure decides the satisfiability
in 7 of a set ® of X-literals.

2.2.1 Tinelli and Harandi’s Approach

There have been many detailed presentations of the Nelson-Oppen method. Tinelli
and Harandi’s approach is particularly appealing because it is rigorous and conceptu-
ally simple [40]. Here we give a brief review of the method based on their approach.

First, a few more definitions are required.
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Members of ¥;, for z = 1,2 are called i-symbols. In order to associate all terms
with some theory, each variable is also arbitrarily associated with either 7; or 75. A
variable is called an i-variable if it is associated with 7; (note that an i-variable is not
an i-symbol, as it is not a member of ;). A Y-term ¢ is an i-term if it is an i-variable,
a constant i-symbol, or an application of a functional i-symbol. An i-predicate is an
application of a predicate ¢-symbol. An atomic i-formula is an ¢-predicate or an
equality whose left term is an i-term. An ¢-literal is an atomic i-formula or the
negation of an atomic i-formula. An occurrence of a j-term ¢ in either a term or a
literal is i-alien if ¢ # j and all super-terms (if any) of that occurrence of ¢ are i-terms.
An i-term or i-literal is pure if the only non-logical symbols it contains are ¢-symbols
and variables (i.e. only variables occur as i-alien sub-terms).

Given an equivalence relation ~, let dom. be the domain of the relation. We

define the following sets of formulas induced by ~:

E. = {z=y|z,y€dom.andz~y}
D. = {s#vy|z,y€dom.andzx £y}
Ar. = E_UD..

Let Ar be a set of equalities and disequalities. If Ar = Ar. for some equivalence
relation ~ with domain A, we call Ar an arrangement of A.

The first step in determining the satisfiability of ® is to transform & into an
equisatisfiable formula ®; A &, where ®; consists only of pure i-literals as follows.
Let 1 be some i-literal in @ in which a non-variable j-term ¢ occurs z-alien. Replace
all occurrences of ¢t in ¢ with a fresh j-variable z and add the equation z =t to ®.
Repeat until every literal in ® is pure. The literals can then easily be partitioned into
®, and P,. It is easy to see that @ is satisfiable if and only if ®; A @, is satisfiable.

Now, let A be the set of all variables which appear in both ®; and ®,. A simple
version of the Nelson-Oppen procedure simply guesses an equivalence relation ~ on
A nondeterministically, and then checks whether 7; U ®; U Ar. is satisfiable. The

correctness of the procedure is based on the following theorem from [40].

Theorem 2.2. Let T, and Ty be two stably infinite, signature-disjoint theories and
let ®; be a set of pure i-literals for i = 1,2. Let A be the set of variables which appear
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in both ® and ®,. Then T UT,UP UDy is satisfiable iff there exists an arrangement
Ar of A such that T; U ®; U Ar is satisfiable for 1 =1, 2.

2.2.2 A Variation of the Nelson-Oppen Procedure

The first step in the version of the Nelson-Oppen procedure described above changes
the structure and number of literals in ®. However, it is possible to give a version of
the procedure which does not change the literals in ® by instead treating occurrences
of alien terms as variables. This simplifies the algorithm by eliminating the need
for the purification step. But more importantly, this variation is required for the
combination of Shostak and Nelson-Oppen described next.

First, we introduce a purifying operator which formalizes the notion of treating
occurrences of alien terms as variables. Let v be a mapping from Y-terms to variables
such that for i = 1,2, each i-term ¢ is mapped to a fresh i-variable v(t). Then, for
some Y-formula or X-term «, define 7;(c) to be the result of replacing all i-alien
occurrences of terms ¢ by v(t). It is easy to see that as a result, v;(«) is i-pure. Since
v; simply replaces terms with unique place-holders, it is injective. We will denote its

inverse by ~; '

We will also denote by 7p(a) the result of replacing each maximal
term (i.e. terms without any super-terms) ¢ in « by v(¢). Thus, the only terms in
7o) are variables.

Our variation on the Nelson-Oppen procedure works as follows. Given a set of
literals, @, first partition ® into two sets ®; and ®,, where ®; is exactly the set of
i-literals in @. Let A be the set of all terms which occur i-alien (for some ) in some
literal in @ or in some sub-term of some literal in ®. A consists of exactly those terms
that would end up being replaced by variables in the original Nelson-Oppen method.
A will also be referred to as the set of shared terms. As before, an equivalence relation
~ on A is guessed. If 7;U~;(®; U Ar.) is satisfiable for each i, then T U® is satisfiable,

as shown by the following theorem:.

Theorem 2.3. Let T, and Ty be two stably infinite, signature-disjoint theories and
let ® be a set of literals in the combined signature . If ®; us the set of all i-literals in
® and A is the set of shared terms in ®, then Ty U Ty U P is satisfiable iff there exists
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an equivalence relation ~ on A such that for i = 1,2, T; U~;(®; U Ar.) is satisfiable.

Proof.

=: Suppose M =, TU®. Let a ~ biff (a,b € A and M =, a = b). Then clearly
fori =1,2, M =, T; U®; U Ar.. It is then easy to see that 7; U v;(®; U Ar.) is
satisfiable by choosing a variable assignment which assigns to each variable v(t) the
corresponding value of the term ¢ which it replaces.

<: Suppose that for each i, T; U v;(®; U Ar.) is satisfiable. Consider i = 1. Let
©; be the set of all equations v(t) = t, where ¢t € A is a 1-term. Consider v,(0).
Since 7, never replaces 1-terms and each v(t) is a fresh variable, it follows that v, (O;)
is in solved form, and its solitary variables are exactly the variables which are used
to replace 1-terms. Thus, by Corollary 2.1, 7; U 7,(0©;) is satisfiable. Furthermore,
since none of the solitary variables of v,(©;) appear in v, (®; U Ar.), a satisfiable
assignment for 7; Uv;(01) can be constructed from the satisfying assignment for 7; U
71 (®1 U Ar.) (which exists by hypothesis) so that the resulting assignment satisfies
Tr U (P U Ar. UB;). Now, each term in 7, (Ar.) which is not already a variable is
the right-hand side of some equation in v,(0;), so by repeatedly applying equations
from ~,(©;) as substitutions, 7;(Ar.) can be transformed into 7y(Ar.), and thus
Ti Uy (P UBOp) Up(Ar.) must also be satisfiable. Applying the same argument
with i=2, we conclude that 75 U 7,(Po U Oy) U vy(Ar.) is satisfiable. But for each
i, vi(P; UO;) is a set of i-literals. Furthermore, v9(Ar.) is an arrangement of the
variables shared by these two sets, so Theorem 2.2 can be applied to conclude that
TUPUO; UBO,, and thus 7 U @, is satisfiable. O

2.2.3 A Deterministic Implementation for Convex Theories

A deterministic version of our Nelson-Oppen variation for convex theories is shown in
Fig. 2.2. Algorithm N-O takes as input a set of literals ® (partitioned into 1-literals
®; and 2-literals ®,) and two decision procedures, Sat; and Satg, where Sat; decides

the satisfiability of literals in 7;. Formally, for any set of ¥;-literals ©,
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N—U((I)l, S(J,tl, @2, Satg)

1 done := FALSE;

2 ~ := reflexive-only relation on the shared terms in ®; U Py;
3 WHILE —done DO BEGIN

4 done := TRUE;

5. FOR ¢ := 1,2 DO BEGIN

6 IF ﬂSah(QiLJEL) THEN RETURN FALSE;

7 IF —Sat;(®; U Ar..) THEN BEGIN

8 Choose a #b € D, such that —Sat;(¢; UE.U{a # b});
9 . ~ := symmetric-transitive closure of ~ U (a,b).
10. done := FALSE;

11. END

12. END

13. END

14. RETURN TRUE;

Figure 2.2: Algorithm N-O: an implementation of the Nelson-Oppen variation for two
convex theories

Sat;(©) = TRUE iff T; U~;(O) W~ false.

The algorithm seeks to discover an arrangement Ar. by successive refinement of
~. Initially, ~ is the reflexive-only relation on all shared terms. In each iteration, the
satisfiability of ®; U Ar. is checked for each theory 7;. If both are satisfiable, then ®
is satisfiable and algorithm terminates. If the equalities in Ar. are sufficient to cause
the unsatisfiability, then the algorithm terminates at line 6.

If not, then it is possible to choose a single disequality of Ar. which, in the pres-
ence of the equalities E. and the literals ®;, is unsatisfiable in 7;. This is because
if the algorithm reaches line 8, then ~;(®; U E. U D.) is not satisfiable in 7;, but
7:(®; U E.) is. It follows from convexity of 7; that there must be a disequality a # b
in D.. such that v;(®; U E. U {a # b}) is not satisfiable in 7;. One simple implemen-
tation of this step is as follows. Start with a set of literals consisting of ®; U E._.
Then, incrementally add disequalities from D. until the set becomes unsatisfiable.
The last disequality added has the desired property.

It is easy to see that the algorithm terminates because each step terminates and
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the loop can only be executed a finite number of times. To see why, notice that each
time done is set to FALSE, two equivalence classes of ~ are merged together. Since
the domain of ~ is finite (the shared terms of ®) and does not increase, equivalence

classes can only be merged a finite number of times.

Lemma 2.6. Let ~,, be the value of ~ after line 9 in Algorithm N-O has been exe-

cuted n times. Then for each n, if = is an equivalence on the shared terms of ® such
that fori=1,2, T; U~(®; U Ary) is satisfiable, then E., C Arx.

Proof. The proof is by induction on n. For n = 0, E__ is empty, so the invariant
holds trivially. Now assume it holds for £ and consider the next execution of line 9.
Suppose that ~ is an equivalence relation on the shared terms such that for i = 1,2,
Ti U7i(®; U Ary) is satisfiable. By the induction hypothesis, E., C Ary. By line 8,
Ti Ui(®; U EL, U{a#b}) is not satisfiable. Since either a = b or a # b must be in
Ary, it must be the case that a = b € Ary. It follows that E C Ary,. m|

~41

Theorem 2.4. Let T, and Ty be two convex, stably infinite, signature-disjoint the-
ories and let ® be a set of literals in the combined signature . Furthermore, for
1 =1,2, let Sat; be a procedure for deciding satisfiability of conjunctions of literals in
T; as defined above. If ®; is the set of all i-literals in ® and A is the set of shared
terms in @, then T, U Ty U @ is satisfiable iff N-0(®4, Sat;, Pg, Sat,) = TRUE.

Proof. Suppose N-0(®y, Sat;, @,, Saty) = FALSE. This can only happen if the algo-
rithm terminates at line 6. Suppose there is an equivalence relation &~ on the shared
terms such that for i = 1,2, T;U~;(®; U Ary) is satisfiable. It follows from Lemma 2.6
that £. C Ary. But since the algorithm terminates at line 6, 7; U v;(®; U E..) must
be unsatisfiable. Thus no such equivalence relation ~ can exist. Thus, by Theorem
2.3, 71 U T3 U @ is unsatisfiable.

Suppose on the other hand that N-0(®,, Sat;, @, Saty) = TRUE. Then, it must be
the case that the if condition in line 7 is false for both =1 and =2 the last time the
while loop is executed. This means that 7; U ,;(®; U Ar.) is satisfiable for i = 1,2.
Thus, by Theorem 2.3, 7; U 7> U @ is satisfiable. a
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2.3 Combining Nelson-Oppen and Shostak

In order to embed Shostak’s algorithm in the more general Nelson-Oppen framework,
we use the following result which relates convexity (a requirement for Shostak theo-
ries) and stable infiniteness, (a requirement for applying the Nelson-Oppen method).

Note that a trivial model is one whose domain contains only a single element.
Theorem 2.5. A convez first-order theory with no trivial models is stably infinite.

Proof. Suppose U is a first-order theory which is not stably infinite. Then there exists
some quantifier-free set of literals ® which is satisfiable in a finite model of U, but not
in an infinite model of /. Let 37.® be the existential closure of ®. Then 37.® is true
in some finite model, but not in any infinite model, of ¢. It follows that &/ U {3 7. O}
is a theory with no infinite models. By first-order compactness, there must be some
finite cardinality n such that there is a model of & U {37. ®} of cardinality n, but
none of cardinality larger than n. Clearly, i/ U @ is satisfiable in some model of size
n, but not in any models larger than n. It follows by the pigeonhole principle that if
Yi,0 < i < n are fresh variables, then Y U @ |= V,.;y; = y;, but because U has no
trivial models, U U @ }~= y; = y; for any 4, j with ¢ # j. Thus, U is not convex. ad

Now let 71, 72,%1,%2, 7, and X be defined as in the previous section, with the
additional assumptions that 7; is a Shostak theory and that neither 7; nor 7; admits
trivial models (typically, theories of interest do not admit trivial models, or can be
easily modified so that this is the case). The above theorem implies that both theories
are also stably infinite. As a result, they can be combined using the Nelson-Oppen
method.

One obvious way to combine the two theories is simply to use Algorithm N-O with
Algorithm S7 as the Sat; parameter. Although this works, we next describe an
algorithm which combines the two methods explicitly. Our purpose in doing this is
to describe an algorithm which is still abstract enough that it can be understood and
proved correct, but specific enough that it is not hard to see how to specialize it further
to recover Shostak’s original algorithm (this is described in Section 2.4.2; below). The

combined algorithm not only sheds light on how Shostak’s method can be seen as an
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efficient refinement of the Nelson-Oppen method, but also provides a starting point
for achieving other efficient refinements. Indeed, the next chapter describes a detailed

implementation-level framework based on the combined algorithm.

2.3.1 The Combined Algorithm

Suppose @ is a set of X-literals. As in Section 2.2.2, divide ® into ®; and ®, where
®; contains exactly the i-literals of ®. Let A be the set of shared terms. By Theorem
2.3, T U P, U D, is satisfiable iff there exists an equivalence relation ~ such that for
i=1,2, T; U (P; U Ar.) is satisfiable.

In order for the approach in Algorithm S7 to function in a multiple-theory en-
vironment, it is necessary to generalize the definition of equations in solved form to
accommodate the notion of treating occurrences of alien terms as variables. A set S of
equations is said to be in i-solved form if ~;(S) is in solved form. If S is a set of equa-
tions in 7-solved form and A is an expression or set of expressions in a mixed language
including 3J;, then we define S(A) to be the result of replacing each i-alien occurrence
in A of the left-hand sides of equations in & with the corresponding right-hand side.
Formally, S(A) is redefined to be v, *(7:(S)(7:(A))), i.e. the application of S to A
should be equivalent to first replacing all i-alien occurrences of terms with variables
in both § and A, then doing the substitution, and then finally restoring the i-alien
terms to their places. We similarly need to extend the definitions of canon and solve.
Let canony () denote v, *(canon(y1(c))) and solve,(3) denote v, *(solve(v1(5))).

Now, let I" be the set of all equalities in ®; and A the set of disequalities in
®,. Furthermore, as in Algorithm N-O, above, let Sat, be a decision procedure for

satisfiability of literals in 75:

Saty (@) = TRUE iff To U 1(P) W~ false.

Algorithm §2 combines Algorithms S1 and N-O . Essentially, lines 3 through 5 mimic
the Nelson-Oppen approach for 7;, while the rest of the algorithm is identical to S1.
Rather than being maintained explicitly as in Algorithm N-O, the equivalence relation

~ on A is derived from S:
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S2(I', A, canon, solve, ®,, Saty)

1. S:=0;

2. WHILE ' =0 OR —Sats(®Py U Ar.) DO BEGIN

3. IF —Sats(®y U Ar.) THEN BEGIN

4. IF —Sats(P2 U E.) THEN RETURN FALSE;

5. ELSE Choose a # b€ D., such that —Sats(®2 U E. U{a # b});
6. END ELSE Remove some equality a =0 from [';
7. a* :=38(a); b*:=S8(b);

8. S* := solvey (a* = b*);

9. IF §* = {false} THEN RETURN FALSE;

10. S§:=8%(S)uUS*;

11. END

12. IF a~b for some a # b € A THEN RETURN FALSE;
13. RETURN TRUE;

Figure 2.3: Algorithm S2: a generalization of Shostak’s algorithm

a~biff a,b € AN canony (S(a)) = canony(S(b))

In each iteration of the while loop, an equation is processed and integrated with S.
This equation is either the result of the current arrangement being inconsistent in
7> (lines 3 through 5) or simply an equation from I' (line 6). As shown below, the
definition of ~ ensures that § is consistent with Ar.. Similarly, equations are added
to & until Ar. is also consistent with ®,. Thus, when the algorithm returns TRUE,
both ®; and ®, are known to be consistent with the arrangement Ar..

Algorithm S2 terminates because each step terminates and in each iteration either
the size of I' is reduced by one or two equivalence classes in ~ are merged. As before,

the correctness proof requires a couple of preparatory lemmas.

Lemma 2.7. Suppose § is a set of X-formulas in 1-solved form, A is a set of X-
terms, and ~ s defined as above. If =~ is an equivalence relation on A such that
Ti Um(Ary US) is satisfiable, then E., C Arn. In other words, every arrangement

of A consistent with S must include E...

Proof. Consider an arbitrary equation ¢ = b between terms in A. a = b € E_ iff
canony (S(a)) = canony (S(b)) iff (by Proposition 2.2) 71 U % (S) E 7i(a=1b). So
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v1(a = b) must be true in every model and assignment satisfying 7; U 1(S). In
particular, if 77 U, (Ary U S) is satisfiable, the corresponding model and assignment
must also satisfy v,(a = b). Since either the equation a = b or the disequation a # b
must be in Ary, it must be the case that a = b € Ary. Thus, E. C Ary. O

Lemma 2.8. Let ', and S, be the values of I' and S after the loop in Algorithm
S2 has been executed n times. Then for each n, the following invariant holds: T U ®

15 satisfiable iff there exists an equivalence relation =~ on A such that
(1) TN, UAU Ary US,) is satisfiable, and

(2) T Uo(Pe U Ary) is satisfiable.

Proof. The proof is by induction on n. For the base case, notice that by Theorem
2.3, T U @ is satisfiable iff there exists an equivalence relation & such that (1) and
(2) hold with n = 0.

Before doing the induction case, we first show that for some fixed equivalence
relation ~, (1) and (2) hold when n = k iff (1) and (2) hold when n =k + 1. Notice
that (2) is independent of n, so it is only necessary to consider (1). There are two
cases to consider.

First, suppose that the condition of line 3 is true and line 5 is executed. We first
show that (1) holds when n = k iff the following holds:

(3) TiUm(Tre1 UAU Arg U {a = b} USy) is satisfiable.

Since line 6 is not executed, I'yy; = I'x. The if direction is then trivial since the
formula in (1) is a subset of the formula in (3). To show the only if direction, first
note that it follows from line 5 that ToU72(®2 U E.) = 72(a = b). But by Lemma 2.7,
E. C Ary, so it follows that ToU~,(Ps U Ary) = v2(a = b). Since either a = b € Ary,
or a # b € Ary, it must be the case that « = b € Ary and thus (3) follows trivially
from (1). Now, by Lemma 2.3 (where ¢ is false), if line 10 is reached, then (3) holds
iff

(4) Ti U (T UAU Argy U S*(Sk) U S¥) is satisfiable,
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where §* = solve;(S(a = b)). But Sp11 = S*(Sk) U S, so (4) is equivalent to (1)
with n =k + 1.

In the other case, line 6 is executed (so that I'yy; = I'y — {@ = b}). Thus, (1)
holds with n = &k iff 7 Uy (Fpri UAU{a =0} U Ary US}) is satisfiable, which is
equivalent to (3). As in the previous case, it then follows from Lemma 2.3 that (1)
holds at & iff (1) holds at k + 1.

Thus, given an equivalence relation, (1) and (2) hold at k& + 1 exactly when they
hold at k. It follows easily that if an equivalence relation exists which satisfies (1)
and (2) at k, then there exists an equivalence relation satisfying (1) and (2) at k£ + 1
and vice-versa. Finally, the induction case assumes that 7 U ® is satisfiable iff there
exists an equivalence relation ~ such that (1) and (2) hold at k. It follows from the
above argument that 7 U @ is satisfiable iff there exists an equivalence relation ~
such that (1) and (2) hold at k£ + 1. O

Theorem 2.6. Suppose that T, is a Shostak theory with signature Xy, canonizer
canon, and solver solve, and that Ty is a convex theory with signature Yo disjoint
from X1 and satisfiability procedure Sats. Suppose also that neither T; nor Ty admit
trivial models, and let T = TLU Ty and ¥ = X1 U Xy, Suppose ® is a set of X-literals.
Let I be the subset of ® which consists of 1-equalities, A the subset of ® which consists
of 1-disequalities, and Py the remainder of the literals in ®. T U ® is satisfiable iff
S2(T', A, canon, solve, &y, Sat,) = TRUE.

Proof. First note that by the same argument used in Lemma 2.4, § is always in
1-solved form.

Suppose S2(I', A, canon, solve, @9, Sat,) = FALSE. If the algorithm terminates at
line 9 or 12, then the proof that ® is unsatisfiable is the same as that for Algorithm
S1 above. If it stops at line 4, then suppose there is an equivalence relation = satisfy-
ing condition (1) of Lemma 2.8. It follows from Lemma 2.7 that £ C Ar,. But since
the algorithm terminates at line 4, 75 U 75(Po U Ary) must be unsatisfiable. Thus
condition (2) of Lemma 2.8 cannot hold. Thus, by Lemma 2.8, 7 U ® is unsatisfiable.

Suppose on the other hand that S2(I", A, canon, solve, @5, Sat,) = TRUE. By the
definition of ~ and Proposition 2.2, a = b € Ar. iff T, U (S) = 71(a = b). It follows
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from the convexity of 77 and Corollary 2.1 that 73 U (S U Ar.) is satisfiable. It
then follows from the fact that S2 does not terminate at line 12 (as well as convexity
again) that 7; Uy (SUA U Ar.) is satisfiable. This is condition (1) of Lemma 2.8.
Condition (2) must hold because the while loop terminates. Thus, by Lemma 2.8,
T U @ is satisfiable. O

2.3.2 An Example

Let 71 be the theory of linear arithmetic described in Section 2.1.3 above. Let 75
be the pure theory of equality with uninterpreted functions. Consider the following

formula from Shostak’s original paper [35]:

r=fle—y)Ne=z+yn—y#—(z— f(f(2))

For this example, if all variables are assumed to be 1-variables, we have the following:

I = {z=flea—y),z=2+y}
A = {-y#—(x—f(f(2)}
(I)Q == @

A= o —y, flz—y),2 F(f(2)}

Recall that a term is shared if it occurs ¢-alien in either a literal or a sub-term of a
literal in ®. We will step through the execution of Algorithm S2 on this example.
The table below shows the values of I', §, and the equivalence classes of ~ for each
iteration. On the first iteration, the test on line 3 fails, so line 6 is executed and
z = f(x—y) is chosen, which is already in 1-solved form, so S becomes {z = f(z—y)}.
As a result, the equivalence classes containing z and f(x — y) are merged, since
canony (S8(2)) = canony (S(f(x — y))) = f(xz — y). On the next iteration, v = z +y
is chosen. After applying S to the equation, we get x = f(z — y) + y, which is
already solved, so it is added to S. Now notice that canon, (S(x —y)) = canon(f(x —
y)+y—y) = f(x —y), so x —y must be in the same equivalence class as f(z — y)
and z. At this point, Ar. includes z = v —y, v —y = f(x — y), and z # f(f(2)).
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These three formulas are not satisfiable in 75 since the first two imply the negation
of the third. Thus z # f(f(z)) is chosen in line 5 and the algorithm continues.
After executing line 8, 8* = {f(z — y) = f(f(2))}, so as a result of executing line
9, f(x — y) is replaced everywhere in § by f(f(z)). The loop exits since the while
condition is no longer true. The final row of the table shows the final value of S.
Now, observe that canon; (S(—(z — f(f(2))))) = canoni (—(f(f(2)) +y—f(f(2)))) =
—y = canony (S(—y)). Thus, since —y # —(z — f(f(2))) € A, the algorithm will halt

at line 12 and report that the formula is unsatisfiable.

r S ~

z=flz-y) |0 {{e —ub Af@ =)} {zH{/(f(2)}}

r=z+y

z=z+y |z=fla—y) {{o =y} {f@—y). 2} {f(f()}}

0 2= flz—y) {{e—y, fle—y), 21, {f(f(2)}}
v=fx—y)+y

0 z=f(f(z)) {{o =y, fle—y), 2 [(f(2)}}
x=f(f(z)+y

[z —y) = f(f(2))

2.4 Comparison with Shostak’s Original Method

There are two main ways in which this work differs from Shostak’s original method,
which is best represented by Ruess and Shankar in [34]. The first is in the set of
requirements a theory must fulfill. The second is in the level of abstraction at which

the algorithm is presented.

2.4.1 Requirements on the Theory

Of the four requirements given in our definition of a Shostak theory, the first two are
clarifications which are either assumed or not addressed in other work, and the last
two are similar to, but slightly less restrictive, than the requirements listed by others.

The first requirement is simply that the theory contain no predicate symbols. This is
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a minor point which is included simply to be explicit about an assumption which is
implicit in other work. Shostak’s method does not give any guidance on what to do
if a theory includes predicate symbols. One possible approach is to encode predicates
as functions, but this only works if the resulting encoding admits a canonizer and
solver.

The second requirement is that the theory be convex. This may seem overly
restrictive since Shostak claims that non-convex theories can be handled [35]. Con-
sider, however, the following simple non-convex theory with signature {a,b}: {a #
b,Va.(x =aVa=">0)}. Itiseasy to see that this theory admits a (trivial) canonizer
and a solver. However, for the unsatisfiable set of formulas {z # y,y # 2,z # 2},
any version of Shostak’s algorithm will fail to detect the inconsistency. Ruess and
Shankar avoid this difficulty by restricting their attention to the problem of whether
T UL E a = b for some set of equalities I'. However, the ability to solve this problem
does not lead to a self-contained decision procedure unless the theory is convex.

The third requirement on the theory is that a canonizer exist. Shostak gave several
additional properties that must be satisfied by the canonizer. These are not needed
at the level of abstraction of our algorithms, though some efficient implementations
may require the additional properties.

A similar situation arises with the requirements on the solver: only a subset of the
original requirements are needed. Note that although we require the set of equalities
returned by the solver to be equisatisfiable with the input set in every model of T,
whereas Ruess and Shankar require only that it be equisatisfiable with the input set
in every o-model!, it is not difficult to show that their requirements on the canonizer

imply that every model of 7 must be a o-model.

2.4.2 Level of Abstraction

Though Algorithm S2 looks very different from Shostak’s original published algorithm
as well as most other published versions, it is, in fact, closely related to them, differing

primarily in that it is more abstract. For example, an algorithm equivalent to that

!In the notation of Ruess and Shankar, the canonizer is denoted by o, and a o-model M is one
where M |= a = o(a) for any term a.
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found in [34] can be obtained by making a number of refinements. We do not describe
these in detail, but we outline them briefly below. We also describe some general
principles they exemplify which could be used in other refinements.

The most obvious refinement is to replace 75 by the theory of equality with unin-
terpreted function symbols. The data structure for S can be expanded to include all
equations (not just the 1-equations), obviating the need to track ®, separately. The
check for satisfiability in 75 is replaced by a simple check for congruence closure over
the terms in §. The general principle here is that if S can be expanded to track the
equalities in another theory, then equality information only needs to be maintained
in one place, which is more efficient.

Another refinement is that a more sophisticated substitution can be applied at
line 7 of Algorithm S2. The more sophisticated substitution considers each sub-term
t, and if it is known to be equivalent to a term w already appearing in &, then all
instances of ¢ are replaced with u. For terms in the Shostak theory, this is essentially
accomplished by applying the canonizer. For uninterpreted function terms, it is a
bit more subtle. For example, if + = y € S and f(x) appears in S, then if f(y) is
encountered, it can be replaced by f(x). As a result, fewer total terms are generated
and thus fewer terms need to be considered when updating S or when performing
congruence closure. The general principle is that simplifications and substitutions
which reduce the total number of terms can improve efficiency. This is especially
important in a natural generalization of Algorithm S2 to accommodate non-convex
theories in which the search for an appropriate arrangement of the shared terms can

take time which is more than exponential in the number of shared terms [30].



Chapter 3

A Framework for Combining

Theories

In this chapter, a concrete implementation framework is presented which allows satis-
fiability procedures for disjoint theories to cooperate. The implementation is based on
algorithm N-O of the previous chapter but includes a number of additional features.

First of all, it is an online algorithm, meaning that instead of checking satisfiability
of a set of formulas, the formulas are fed into the framework one at a time. The
framework tracks whether the set of formulas seen so far is satisfiable, and only a
small amount of incremental work is needed to process each new formula. An online
algorithm is much more versatile and is especially useful in the context of our top-
level validity checking algorithm which incrementally builds a set of formulas, checking
their satisfiability after each additional formula. Note that with an online algorithm,
the set of shared terms may grow over time. The framework is designed to handle
this automatically.

Another feature of the framework is its use of a union-find data structure to
efficiently maintain an equivalence relation on shared terms. The framework is struc-
tured in such a way as to allow this same data structure to represent also the set of
equations in solved form which must be maintained for a Shostak theory. Using a sin-
gle data structure keeps equality reasoning localized in one place avoiding redundant

work.

35
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Additionally, a simplification phase has been added to the algorithm. Conceptu-
ally, the simplifier applies quick and easy rewrite rules which can reduce the number
of shared terms seen by the core algorithm. The simplifier can also enforce certain
syntactical requirements on the terms which appear in the framework. For example,
if a theory has a canonizer (as Shostak theories do), it can be applied during the
simplification phase, ensuring that only the canonical form of each term appears.
This makes it unnecessary to deduce and propagate equalities between terms with
the same canonical form.

Finally, a flexible interface is provided for decision procedures for individual the-
ories. This interface allows an individual theory to use the code and data structures
provided by the framework (rather than having to provide its own) whenever possible.

At the end of this chapter, we give several examples of how this interface can be used.

3.1 An Overview of the Framework

Suppose that 7q,..., Ty are N first-order theories, with signatures >q,...,Xy. Let
T =UT; and ¥ = JY;. We assume that the intersection of any two signatures is
empty and that each theory is stably infinite. The goal is to provide a framework for a
satisfiability procedure which determines the satisfiability in 7 of a set of formulas in
the language of X. This is done by maintaining an implicit set of formulas ® (initially
empty) which we call the fact database and reporting if that database ever becomes
inconsistent.

As shown in Figure 3.1, the framework is intended for use within a context which
includes three parts: user code, framework code, and theory-specific code. The user
code is the code which calls the framework. It could be a simple user-interface to the
framework, or it could be an algorithm built on top of the framework (such as the
top-level algorithm of CVC described in chapter 1).
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User Code

Framework Code

Theory-Specific Code

Figure 3.1: The Framework Context

3.1.1 The Interface to the User Code

The primary interface between the user code and the framework code is the procedure
AddFact. The user calls AddFact in order to add a new formula to the fact database
®. Another piece of the framework which is exported to the user is the Simplify
procedure. If Simplify is called with argument e, the result is an expression which
is equivalent to (and hopefully simpler than) e modulo 7 U ®. Finally, at any time,
the user can also call Satisfiable which returns TRUE iff the current fact database
is consistent.

At this point, we should point out that the interface just described is slightly dif-
ferent from the one required by the top-level algorithm described in Section 1.3. The
only difference is that the top-level algorithm of figures 1.2 and 1.3 passes an additional
argument to each of the procedures AddFact, Simplify, and Satisfiable. This ad-
ditional argument corresponds to the fact database which the framework maintains
implicitly. In order to make the interface compatible, it is necessary for the framework
to provide two additional procedures: Save and Restore. Save returns the current
state of the framework, and Restore restores the state of the framework from a pre-
viously saved state. Figure 3.2 shows the modified top level algorithm corresponding

to the interface described in this chapter.
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CheckValid(h,c)
IF ¢ = {rue THEN RETURN TRUE;
Restore(h);
IF —Satisfiable() THEN RETURN TRUE;
IF ¢ = false THEN RETURN FALSE;
subgoals := ApplyTactic(h,c);
FOREACH (h,c) € subgoals DO
IF —CheckValid(h,c) THEN RETURN FALSE;
RETURN TRUE;

ApplyTactic(h,c)
Restore(h);
Let ¢ be an atomic formula appearing in c;
AddFact(¢);
c1 := Simplify(c);
h1 := Save();
Restore(h);
AddFact (—¢) ;
co = Simplify(c);
hy := Save();
RETURN {(hl, 01), (hg, 02)};

Figure 3.2: Modified Top-level Validity Checking Algorithm

In a practical implementation, saving and restoring the entire fact database is
impractical. Fortunately, the same functionality can be implemented using a stack as
discussed by Jones [25]. Though this can be challenging to implement correctly, the
basic concept is straightforward, so we will not address the implementation of Save

and Restore here.

3.1.2 The Interface to the Theory-Specific Code

The interface between the framework code and the theory-specific code consists of
several procedures which are parameterized by theory, meaning that there is an in-
stance of each of them for each theory. We indicate which theory’s instance should
be called by subscripting the call with a theory index. Thus, if f is a theory-specific
procedure, f; denotes the instance of £ associated with theory 7;.

There are seven theory-specific procedures which can be called by the framework.
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They are: TheoryAddSharedTerm, TheoryAssert, TheoryCheckSat, TheoryRewrite,
TheorySetup, TheorySolve, and TheoryUpdate. These will be described in detail

below.

3.1.3 A Comparison With Algorithm N-O

As mentioned, the framework is loosely based on Algorithm N-O. To see the con-
nection, compare Algorithm N-O to the main procedure of the framework, AddFact,
shown below.

AddFact (e)
Q := {e};
REPEAT
WHILE Q # () AND —Z DO BEGIN
Choose e* € Q;

Q := Q—{e'};
Assert (e*);
END

FOR 7 := 1 TO N DO
IF Q=0 AND —Z THEN TheoryCheckSat,();
UNTIL Q=0 OR Z;

One main difference is that AddFact is online. Formulas are passed to AddFact
one at a time. Assert is then responsible for assigning each new formula to one
of the theories. Assert is also responsible for maintaining an equivalence relation
~ on the terms shared among the sets ®;. The equivalent of lines 6 through 11 of
algorithm N-O are handled by the theory-specific procedure TheoryCheckSat,, which
is required to check the satisfiability of ®; in the arrangement of the shared terms
induced by ~.

AddFact is described in more detail in Section 3.3 below. But before describing

the framework in detail, we describe the data structures used by the framework.

3.2 Data structures

The most basic data structure in the framework is that used for representing logical

ETPTESSIONS.
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3.2.1 Expressions

As defined earlier, an ezpression is either a term or a formula. A (quantifier-free)
expression is a leaf if it is a variable or constant. Otherwise, it can be viewed as
a compound expression: an operator (a function, predicate, or Boolean connective)
applied to one or more children (the operands of the operator). For a compound
expression e, Op(e) refers to the operator of e, Arity(e) to the arity of the operator,
and e[i] to the i" child of e, where e[1] is the first child, and the children are numbered
from left to right.

For example, suppose e = f(z), then Op(e) = f and e[1] = z. On the other hand,
ife=(t = f(f(2))), then Op(e) = ‘=", while e[1] =t and e[2] = f(f(2)).

We assume that expressions are represented using a labeled directed acyclic graph
(DAG) data structure as follows. If an expression e is a compound expression, then
its DAG node is labeled with Op(e), and for each child of e, there is an edge from
the node for e to a node representing the child. We assume maximal subexpression
sharing so that any two expressions which are syntactically identical are uniquely
represented by a single DAG node. We will refer to expressions and their associated
DAG nodes interchangeably.

We will continue to use the concepts and notation introduced in Section 2.2.1.
Recall that an expression which is either a term or literal in the language of X is an
i-expression if it is a variable associated with 7;, its operator is a symbol in ¥;, or it
is an equality or disequality and its left-hand side is an ¢-term. We use the notation
T (e) to refer to the theory associated with an expression. Thus, if e is an i-expression,
T(e) =i. A j-term t occurs as an i-leaf in an expression e if every super-term of that
occurrence (not including t) is an i-term and ¢ is a variable or i # j. Note that a
term ¢ occurs as an ¢-alien of an expression e iff ¢ is not an ¢-variable and occurs as
an i-leaf of e. We say that a term ¢ is an i-leaf if it occurs as an i-leaf in itself (i.e. it

is a variable or a j-term, where i # j).
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3.2.2 Expression Attributes

It is convenient to be able to annotate expressions with additional information. For
this purpose, we define ezpression attributes. An expression attribute a is a mapping
from the set of expressions to a set of designated values for that attribute. Imple-
menting attributes is fairly straightforward. Thus, we simply assume that such a
mechanism exists and use the notation e.a to refer to the value of attribute a associ-
ated with the expression e. Two expression attributes are used by the framework.

The find attribute (which we will also refer to as the find pointer) is used to im-
plement a standard union/find data structure for maintaining an equivalence relation
on terms. The co-domain for the find attribute is the set of terms plus a distinguished
initial value, 1. The find attribute of non-terms is always L. Terms also start with
their find attributes set to L, but when a term ¢ is first used in an assertion by the
framework, t.find is set to t, indicating that the term is in an equivalence class by itself
and is its own equivalence class representative. If two equivalence classes need to be
merged, this is done by setting the find pointer of one equivalence class representative
to point to the representative of the other class. At any time, the equivalence class
representative of a term can be found by following a chain of find pointers until a
term is reached that points to itself.

We define several abstract notions based on the find attribute: hf (short for “has
find”) is a predicate on expressions defined as hf(e) iff e.find ZL (we also say that e
has a find pointer when Af(e) holds). We define the set HF as {e|hf(e)}. find" is a
partial function defined only on expressions in HF, such that find"(e) is the equivalence
class representative of e. Finally, the find attribute induces a relation on expressions
which we will denote by ~: a ~ b if and only if hf(a) A hf(b) A find" (a) = find (D).
This relation is an equivalence relation on the expressions in HF. As defined here,
the relation ~ is analogous to the relation ~ described in algorithm N-O. The only
difference is that the domain of ~ includes all terms, not just shared terms.

The notify attribute (which we will also refer to as the notify list) is used to
implement a generic call-back mechanism which is activated when equivalence classes
are merged. The co-domain for the notify attribute is a set of pairs. The first element

in each pair is a theory index i. The second is a piece of data specific to theory 7;.
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When two equivalence classes are merged, the notify list of the representative whose
find pointer changes is processed. For each (7,d) in the notify list, a call is made to
a theory-specific procedure TheoryUpdate, with d as a parameter. Notify lists are
a convenient mechanism which can be used to help implement a variety of decision

procedures. Initially, the notify list of each expression is {).

3.2.3 Global Variables

Two global variables are used by the framework: the assertion queue Q and the
inconsistent flag Z. Q is a set of formulas which are waiting to be passed to Assert.
7 is a Boolean variable which indicates whether the current fact database has become

inconsistent. It is initially FALSE.

3.3 The Framework

Figure 3.3 shows a diagram of the framework. As mentioned, the primary interface
from the user code is AddFact. The user code can also call Satisfiable, which
simply returns whether 7 is still FALSE. The user code can also call Simplify which
is the simplifier mentioned earlier. The simplifier is also called as the first step of
processing new formulas in Assert.

Of the seven theory-specific procedures, only TheoryCheckSat, TheoryAssert,
and TheoryAddSharedTerm are essential. As mentioned above, TheoryCheckSat,
is responsible for checking the satisfiability of the literals assigned to 7; (provided
by TheoryAssert) together with the arrangement of shared terms (provided by
TheoryAddSharedTerm,) induced by ~. The other theory-specific procedures are
provided for convenience, and we will see examples of how they can be used below.

We now proceed to explain the framework in detail. We will begin with the

framework code and then move on to the theory-specific code.
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User Code
Satisfiable | | AddFact Assert Simplify
SetupT Assert Assert .
upterm Formula Equalities Rewrite
Add Setup Check  Assert Solve  Update Rewrite
Wy = o
Theory-Specific Code

Figure 3.3: The Framework: arrows indicate caller-callee relationships
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AddFact (e)
Q := {e};
REPEAT
WHILE Q # () AND —Z DO BEGIN
Choose e* € Q;

Q := Q—{e'};
Assert (e*);
END

FOR 7 := 1 TO N DO
IF Q=0 AND —Z THEN TheoryCheckSat,();
UNTIL Q=0 OR Z;

Assert (e)
e* := Simplify(e);
IF Op(e*) = ‘=’ THEN AssertEqualities(TheorySolve(e*));

ELSE IF e* = false THEN 7 := TRUE;
ELSE IF e* # true THEN AssertFormula(e*);

AssertEqualities(&)
IF false € £ THEN 7 := TRUE;
ELSE BEGIN
FOREACH e € £ DO AssertFormula(e);
FOREACH e € £ DO e[l].find := e[2];
FOREACH e € £ DO FOREACH (¢,d) € e[l].notify DO TheoryUpdate;(e,d) ;
END

AssertFormula(e)
FOREACH maximal sub-term ¢ of e¢ DO SetupTerm(t,7(e));
TheoryAsserty () (e);

SetupTerm(t,s)

IF T (t) #i THEN BEGIN
TheoryAddSharedTermy(, (1) ;
TheoryAddSharedTerm, (%) ;

END

IF HasFind(¢{) THEN RETURN;

FOREACH child ¢ of ¢ DO SetupTerm(c,7(t));

t.find := t;

TheorySetupy, (1) ;

Figure 3.4: Basic Framework
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Simplify(e)
IF HasFind(e) THEN RETURN Find(e);
Replace each child c of e with Simplify(c);
RETURN Rewrite(e);

Rewrite(e)
IF HasFind(e) THEN RETURN Find(e);

e* := OpRewrite(e);
IF e #¢e* THEN ¢* := Rewrite(e*);
RETURN e*;
OpRewrite(e)
IF Op(e) =’— THEN RETURN RewriteNegation(e);
IF Op(e) = ‘=" AND e¢[l] = e[2] THEN RETURN {rue;

RETURN TheoryRewriter(,(e);

RewriteNegation(e)
IF e[l] = true THEN RETURN false;
IF e[l] = false THEN RETURN true;
IF Op(e[l]) =’~’ THEN RETURN e[1][1];
RETURN e;

HasFind(e)
RETURN e.find #1;

Find ()
IF t.ﬁndz t THEN RETURN ¢;
ELSE RETURN Find(t.find);

Satisfiable()
RETURN —Z;

Figure 3.5: Basic Framework, continued
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3.3.1 The Framework Code

Figures 3.4 and 3.5 show pseudocode for the basic framework. We will briefly explain

each procedure.

AddFact

Formulas are incrementally processed from the assertion queue Q. Initially, Q is set to
contain only the new formula passed as a parameter to AddFact. Formulas are taken
one by one from Q and passed to Assert which adds the formula to the fact database
®. As in the previous chapter, the fact database ® is composed of sets of formulas
®;, each of which is associated with a single theory 7; (the formal definition of @
and ®; in the context of the framework is given in the description of AssertFormula
below). Before Assert returns, new formulas to process may be added to Q, or an
inconsistency may be detected, in which case Z is set to TRUE.

After all the formulas in the assertion queue Q have been processed, each theory is
queried by calling TheoryCheckSat, a theory-specific procedure which checks if the set
of formulas allocated to that theory are consistent. As with Assert, TheoryCheckSat
may add new formulas to Q or set Z to FALSE. AddFact loops until there are no new

formulas to process or an inconsistency is detected.

Assert

Assert basically preprocesses formulas which are to be added to the fact database.
It first calls Simplify which returns a simplified formula which is equivalent modulo
the current fact database. Then, if the formula e provided to Assert is an equation, it
calls TheorySolve (which must return an equisatisfiable set of equations) and passes
the result to AssertEqualities. If e is a constant formula, it is handled directly: if
false, T is set to TRUE indicating that the fact database has become inconsistent; if
true, nothing needs to be done. Finally, if e is neither an equation nor a constant
formula, it is passed to AssertFormula.

The framework as shown in Figures 3.4 and 3.5 assumes that arguments of Assert

are always literals. This assumption will be true as long as only literals are passed to



CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 47

AddFact by the user code and only literals are added to Q by the theory-specific code.
For additional flexibility, an extension to the framework which handles non-literals is

discussed below in Section 3.5.1.

AssertEqualities

TheorySolve may return {false} if it determines that the formula passed to it is
inconsistent. Thus, AssertEqualities first checks for this case and sets Z to TRUE if
it occurs. Otherwise, £ is a set of equations. Each equation is sent to AssertFormula.
Then, the find attribute of each left-hand side is set to its corresponding right-hand
side. This ensures that e[l] ~ e[2] for each e € £. Finally, the notify list of each
left-hand side is traversed, and an appropriate call to TheoryUpdate is made for each

entry on the list. We will see how this mechanism is used in Section 3.4.3 below.

AssertFormula

AssertFormula is called to officially add a formula to the fact database ®. It first
passes the maximal sub-terms of its argument on to SetupTerm, which then traverses
them recursively. This ensures that SetupTerm has been called on every term in
®, which enables the theory-specific code to maintain a number of invariants. The
formula is then sent on to TheoryAssert. This is the point at which the formula
finally is considered a part of the fact database. Formally, then, the set ®; is defined
to be the set of all formulas which have appeared as an argument to TheoryAssert,.
The fact database ® is defined to be the union of all the sets ®;. As we show formally
in the appendix, the set of formulas passed to AddFact is satisfiable if and only if the
set, @ is satisfiable if and only if Z is FALSE.

SetupTerm

As just mentioned, SetupTernm is called on each term that appears in a formula sent
to AssertFormula. It does several things. First of all, it identifies terms whose par-

ent expressions are associated with a different theory: these are the shared terms.
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Whenever this happens, both theories are notified of the shared term. After recur-
sively traversing the term, TheorySetup is called which ensures that theory-specific
code has a chance to process each term before it becomes part of the fact database.
Finally, the find pointer of the term is set to point to itself. Thus, the term is added

to the domain of ~ and is initially in an equivalence class by itself.

Simplify

As mentioned above, Simplify is intended to perform quick and easy rewrites which
can simplify an expression. Simplify traverses an expression recursively, performing
rewrites at each node and rebuilding the expression from the bottom up. The main
rewrite applied (and the base case for the recursion) is to replace terms that have
a find pointer with their equivalence class representatives. Expressions without find

pointers are rewritten via a call to Rewrite.

Rewrite, OpRewrite, RewriteNegation

Rewrite repeatedly calls an operator-specific rewrite function until the expression
doesn’t change (or an expression is obtained which has a find pointer in which case
the equivalence class representative is returned). Thus it is important that repeated
application of operator-specific rewrites eventually leave an expression unchanged.
The operator-specific rewrites are handled by OpRewrite. Simple rewrites for equal-
ity and negation are included. Theory-specific operators are handled by a call to

TheoryRewrite.

HasFind and Find

HasFind and Find are simple implementations of the Af and find" functions described
earlier. Although not shown in the code (for the sake of simplicity), a useful opti-
mization to Find is path compression in which each expression’s find pointer is set to

the result of the recursive call before returning the result.
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Satisfiable

After each call to AddFact, the fact database is consistent unless Z has been set to

TRUE. Thus, this function simply returns whether Z is FALSE.

3.3.2 Theory-Specific Code

In general, whenever a theory-specific procedure is called, the theory-specific code
can do whatever it wants as long as it does not alter the framework data structures
directly. The theory-specific code may use the global variables Z and Q to communi-
cate with the framework as follows. If at any time the theory-specific code determines
that there is an inconsistency in the fact database, it may set Z to TRUE. Addition-
ally, if the theory-specific code ever needs to add a new fact to the fact database, the
fact can simply be added to Q. It will then eventually be processed by the loop in
AddFact. We now describe each of the theory-specific procedures.

TheoryAddSharedTerm

TheoryAddSharedTerm; notifies a theory about a shared term which it needs to con-
sider when checking satisfiability. Formally, TheoryAddSharedTerm, adds its argu-
ment to a set A;. The arrangement of A; induced by ~ is part of the set of formulas

checked for satisfiability by TheoryCheckSat,.

TheoryAssert

The purpose of TheoryAssert, is to notify theory 7; about a new formula for which it
is responsible. Conceptually, TheoryAssert, adds its argument, an atomic i-formula
to the set of formulas ®; maintained by theory 7;. This set of formulas is part of the
set that is checked for satisfiability in TheoryCheckSat,.

TheoryCheckSat

TheoryCheckSat, must guarantee that three conditions hold after it is called. If ®;

is the set of all formulas which have been arguments of TheoryAssert;, A; is the
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set of all terms which have been arguments of TheoryAddSharedTerm,, and ~; is
the equivalence relation on A; induced by the find attribute (equivalently, ~; is the

equivalence relation ~ defined above with its domain restricted to A;), then

L. If 7;U~;(®; U E.,) is unsatisfiable, then 7 is TRUE (this corresponds to line 6 of
algorithm N-0).

2. If 7; U ~(®; U Ar,) is unsatisfiable, but 7; U v;(®; U E.,) is satisfiable, then
a new formula a = b has been added to Q, where a # b € D., and 7; U
7i(®; U E.. U {a # b}) is not satisfiable. This corresponds to line 8 of algorithm
N-O and is always possible as long as 7; is convex. We will discuss the non-

convex case in Section 3.5.1 below.

3. Finally, if 7; U v;(®; U Ar.,) is satisfiable, then Z and Q are unchanged (corre-

sponding to the case when the condition in line 7 of algorithm N-O is false).

TheoryRewrite

TheoryRewrite; takes as input an z-expression, and returns an expression which is
equivalent modulo 7; U ®;. For a Shostak theory 7;, TheoryRewrite, can be used to
implement the canonizer. TheoryRewrite, can often be used to improve performance.
One way in which this can be done is by having TheoryRewrite, replace new terms
by equivalent terms that have already been seen when possible, reducing the need to

deduce and propagate equalities between terms that are trivially equivalent.

TheorySetup

The framework guarantees that TheorySetupy, is called on a term ¢ before it ap-
pears in a formula sent to the theory-specific code (via TheoryAssert). Typically,
TheorySetup; takes advantage of this fact by adding appropriate call-backs to the
notify list of such terms. Then, whenever a term appears as the left-hand side of
an equation, the theory-specific code for the theory associated with the term will be

notified. An example of how this mechanism is used is given in Section 3.4.3.
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TheorySolve

Unlike other theory-specific procedures, TheorySolve is not parameterized by theory.
Thus, at most one theory can provide an instance of TheorySolve. The intended use
model is that if one of the theories is a Shostak theory, it provides the implementation

of TheorySolve (see Section 3.4.3 below). Otherwise, TheorySolve does nothing.

TheoryUpdate

TheoryUpdate, is called by AssertEqualities for each entry in the notify list of the
left-hand side of each equation. Typically, these entries are added by TheorySetup.

Again, an example of this can be seen in Section 3.4.3.

3.3.3 Correctness of the Framework

As has been mentioned, the framework is essentially an implementation of algorithm
N-O with a number of features to enhance performance and flexibility. Not surpris-
ingly, then, the correctness of the framework is based on reasoning similar to that
used for Theorem 2.4. In particular, if TheoryCheckSat fulfills the requirements
listed above, then when AddFact terminates, either Z is TRUE, indicating that the
fact database is inconsistent, or the fact database is satisfiable.

This informal explanation gives some intuition as to why the framework is cor-
rect. However, part of the motivation of this work was to provide a formally verified
framework. The appendix gives a detailed proof of correctness. It also lists formal
preconditions and postconditions for each framework and theory-specific procedure.
The proof guarantees that as long as theory-specific code respects these conditions,

the result will be correct.

3.4 Using the Framework

In this section we will show how to use the framework to implement decision proce-

dures for specific kinds and combinations of theories.
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TheoryAddSharedTerm, (e)
A, = AU {6};

TheoryAssert,(e)
P, = O;U {6};

TheoryCheckSat, ()
RETURN;

TheoryRewrite; (e)
RETURN e;

TheorySetup; (e)
RETURN;

TheorySolve(e)
RETURN {e};

TheoryUpdate; (e, d)
RETURN;

Figure 3.6: Default implementation of theory-specific code for theory 7;

3.4.1 Default Implementation

Figure 3.6 presents a “default” implementation for the theory-specific code. Often, a
theory only requires the functionality of a few of the theory-specific procedures. If no
code for a particular theory-specific procedure is given, it should be assumed that the
implementation of the other procedures is just the default implementation. Basically,
the default procedures just do the bare minimum to keep the program flowing without

losing information.

3.4.2 Nelson-Oppen Theories

In Section 2.2.3, we showed how the Nelson-Oppen method can be applied to combine
theories which provide decision procedures for conjunctions of literals. Such theories
can easily be integrated into the framework if, as in Section 2.2.3, we assume that a

theory 7; provides a satisfiability procedure Sat; satisfying the following specification
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TheoryCheckSat, ()
IF —Sat;(®; UE.,) THEN Z := TRUE;
ELSE IF —Sat;(9; U Ar.,) THEN BEGIN
Choose a #b € D., such that —Sat;(9; UE. U{a # b});
Q := QU {a =b};
END

Figure 3.7: Theory-specific code for a Nelson-Oppen theory 7;

for an arbitrary set of X-literals ©O:

Sat;(©) = TRUE iff T; U~;(O) W~ false.

Figure 3.7 shows the theory-specific code needed to integrate such a theory 7; into
the framework. As might be expected, the implementation of TheoryCheckSat; is
very similar to lines 6 through 11 of algorithm N-O and basically does exactly what
is needed to guarantee that the three conditions mentioned in the description of
TheoryCheckSat, are satisfied. Note that as in algorithm N-0O, this implementation
requires the theory to be convex. A more general implementation for non-convex
theories is described in Section 3.5.1 below. The additional functionality of the other
theory-specific procedures is not required. A formal justification of the correctness of

this implementation is contained in the appendix.

3.4.3 Shostak Theories

Figure 3.8 shows the theory-specific code needed to implement a Shostak theory 7;
with canonizer canon and solver solve. This implementation, while relying on the
same correctness arguments as Algorithm S2 from Section 2.3.1, is closer in spirit
to Shostak’s original algorithm [35, 10]. As a result, some additional requirements
(essentially the same ones required by Shostak) on canon and solve are required
beyond those listed in 2.1.

1. canon is a computable function from X;-terms to X;-terms, such that

(a) 7; = a=biff canon(a) = canon(b)
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TheoryCheckSat, ()
FOREACH ¢ in ®; DO
IF Op(e) =’—’ AND Find(e[l][l]) = Find(e[1][2]) THEN BEGIN
71 := TRUE;
RETURN;
END

TheoryRewrite; (e)
IF e is not a term THEN RETURN e¢;
e* := RewriteHelper(e);

RETURN canon;(e*);

TheorySolve(e)
RETURN ~; ' (solve (vi(e)));

TheorySetup; (e)
IF e is a compound ¢-term THEN
FOREACH ¢ which occurs as an 7-leaf in e DO

c.notify = c.notify U{(i,e)};

TheoryUpdate; (e, d)

IF -7 AND Find(d) = d THEN BEGIN
d* := TheoryRewrite,(d);
AssertEqualities({d =d*});

END

RewriteHelper(e)

IF ¢ is an i-leaf THEN BEGIN
IF —HasFind(e) OR e.find = e THEN RETURN e¢;
ELSE RETURN RewriteHelper (Find(e));

END ELSE BEGIN
Replace each child c¢ of e¢ with RewriteHelper(c);
RETURN e¢;

END

Figure 3.8: Code for Implementing a Shostak theory 7;
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(b

canon(canon(t)) = canon(t) for all terms t.

¢) canon(t) contains only variables occurring in t.

(
(d) canon(t) =t if t is a variable.

)
)
)
(e) If canon(t) is a compound term, then canon(c) = c¢ for each child ¢ of

canon(t).

2. solve is a computable function from ¥ ;-equations to sets of Y;-formulas defined

as follows:

(a) If 7; =« # y then solve(x = y) = {false}.
(b) If T; &= x = y then solve(z = y) = 0.

(c) Otherwise, solve(x = y) returns a set of equations £ in solved form such

that 7 = [(a = b) <> 3w. €], where W is the set of variables which appear
in £ but not in a or b. Each of these variables must be fresh. We also

require that for each s =t € &, canon(t) = t.

As in Section 2.3.1, we must use a slightly modified version of canon and solve
in a multi-theory environment. Thus, let canon;(c) denote ;' (canon(v;(«))) and
solve;(3) denote v; ' (solve(y;(3))). We further define the Shostak database to be a
set S of equations in i-solved form as follows. Initially & is empty. Then, every
time AssertEqualities(€) is called from Assert, S is updated to be £(S) U €.
This requires that & is in solved form and S(€) = £ whenever AssertEqualities
is called from Assert. Fortunately, these conditions are guaranteed by the call to
TheorySolve which precedes the call to AssertEqualities (see the appendix for
details).

The correctness of the implementation in Figure 3.8 relies on the use of a clever
technique used by Shostak’s original algorithm. Specifically, the following invariant

is maintained for all terms ¢t € HF*

Find(t) = canon;(S(t))
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Given this invariant, the implementation of TheoryCheckSat simply needs to check
whether there is any disequality a # b in ®; where Find(a) = Find(b). To see why,

first consider the following proposition.

Proposition 3.1. Suppose S is a set of equations in i-solved form. If for every term
t € HF, Find(t) = canon;(S(t)), then for arbitrary terms s,t € HF, s ~ t if and only

if TU(S) E vils =1).

Proof.

s~t <  Find(s) = Find(¢) def. of ~
& canoni(S(s)) = canon;(S(t)) hypothesis
& Heanon(vi(S(s)))) = v; Heanon(y:(S(t))))  def. of canon;
< canon(v;(S(s))) = canon(;(S(t))) def. of v;*
& T E(S(s) = 7(S(1t)) def. of canon
< T E S (n(s=1t)) def. of i-solved form
& TiUv(S) Evils=1t) Prop. 2.1

O

Now, consider a call to the theory-specific procedure TheoryCheckSat;. It must
determine whether 7; U ;(®; U Ar.,) is satisfiable. Consider an equation s = t €
®,UAr.,. The framework guarantees that any such equation must have the property
that s ~ ¢ (this is by definition when s =t € Ar.; for the case when s =t € ®;,
see the justification of property Ss in the appendix). Thus, by the above proposition,
T Ui(S) = vi(s =t). Now consider a disequation s # t € ®; U Ar.,. After the
completion of TheoryCheckSat,, if Z has not been set, we know that s + ¢, and thus
Ti U~i(S) E vi(s =t). It follows by convexity that since 7; U 7;(S) is satisfiable
(by Corollary 2.1), 7; U 7;(®; U Ar.,) must also be satisfiable. More details on this
correctness argument can be found in the appendix.

As just shown, the correctness of TheoryCheckSat relies on the fact that for
each term t € HF, Find(t) = canon;(S(t)). In order to maintain this invariant, the
TheoryUpdate mechanism is used as follows: when an equation a = b is processed
by AssertEqualities, a = b gets added to §. This means that a is now a solitary

variable of § and any term ¢ in which a occurs as an i-leaf has a new value for
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canon;(S(t)). These terms are updated while traversing the notify list of a. To
ensure that this happens, TheorySetup puts a call-back on the notify list of each
term that occurs as an i-leaf in a compound i-term.

TheoryRewrite(e) simply calculates canon;(S(e)). However, because S is not
explicitly represented, a helper function is required. Essentially, this helper func-
tion recursively traverses e replacing solitary variables of & with their corresponding
right-hand sides. After calling the canonizer, the result is guaranteed to be equal to
canon;(S(e)).

Again, a formal justification of the correctness of this implementation is contained

in the appendix.

3.5 Extensions to the Framework

In this section, we discuss two extensions to the framework just presented. The first

is an extension which allows the framework to handle non-convex theories.

3.5.1 Non-convex Theories

The main difficulty with handling non-convex theories is that it may be impossible
to meet the conditions of TheoryCheckSat. Recall that Ar., is the arrangement of
terms in A; induced by the ~ relation and that E., is the set of equations in Ar.,
and D, is the set of disequations in Ar.,. Consider a call to TheoryCheckSat, where
T Ui (®; U Ar.,) is unsatisfiable but 7; U ;(®; U E.,) is satisfiable. In other words,
the addition of D, to E., causes an inconsistency. Thus, 7;U~;(®; U E.,) | —D.,.
Now, since =D, is a disjunction of equalities, it is possible to choose a single equality
a = b from =D, such that 7;U~;(®; U E.,) = a = b when 7; is convex. This equality
can then be added to Q fulfilling the requirements for TheoryCheckSat described in
Section 3.3.2.

If the theory is not convex, it may not be possible to find a single equality in
—D., that fulfills the requirement. The solution is to relax the requirement that only

literals be added to Q. The new requirement is that some expression e be added to
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Q where T, U~;(®; UE.,) E e and ~D., — e. In particular, choosing e = =D, will
always work.

In order to extend the framework to handle non-literals, we add a new global
state variable: a set of non-literals, A/, which is initially ). Whenever a non-literal
is asserted, it is added to this set of formulas. We define the predicate convex to
be true if and only if for each atomic formula ¢ which is a sub-expression of some
formula in \V, either ¢ € ® or ¢ € ®. The framework is only guaranteed to give the
right answer if convex is true. The changes required by the framework as well as the
theory-specific code for a non-convex Nelson-Oppen style theory are shown in Figure
3.9.

Unfortunately, the result of these changes is that the framework does not know
if the fact database is consistent unless conver holds. Ensuring that convez is true
whenever the consistency needs to be checked becomes the responsibility of the user
code.

One way to do this is to change the code for Satisfiable to recursively split on

the atomic formulas in N as follows.

Satisfiable()
IF conver THEN RETURN —Z;
Let ¢ be an atomic formula in N such that ¢ ¢ ® and —¢ & D;
h := Save();
AddFact (¢);
sat := Satisfiable();
Restore(h);
IF sat THEN BEGIN
AddFact (—¢) ;
sat := Satisfiable();
END
Restore(h);
RETURN sat;

Notice, however, that this code is very similar to that of the case-splitting tactic
introduced in Section 1.3. This suggests an alternate way to deal with the formulas

in A/. Rather than changing the code for Satisfiable, we can instead change the
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AddFact (e)
Q := {e};
REPEAT
WHILE Q # () AND —Z DO BEGIN
Choose e* € Q;

Q := Q—{e};
Assert (e*);
END

FOR 7 := 1 TO N DO
IF Q= AND —Z AND conver THEN TheoryCheckSat,();
UNTIL Q=0 OR Z;

Assert (e)
e* := Simplify(e);
IF e* is not a literal THEN N := N U{e*};
ELSE IF Op(e*) = ‘=’ THEN AssertEqualities(TheorySolve(e*));

ELSE IF e* = false THEN Z := TRUE;
ELSE IF e* # true THEN AssertFormula(e*);

OpRewrite(e)
IF Op(e) =’ THEN RETURN RewriteNegation(e);
IF Op(e) = ‘=’ AND e¢[l] = ¢[2] THEN RETURN frue;

IF ¢ is a term or an atomic formula THEN RETURN TheoryRewriteT(e)(e);
RETURN e¢;

TheoryCheckSat, ()
IF —Sat;(®; UE.,) THEN T := TRUE;
ELSE IF —Sat;(®; UATNI) THEN BEGIN
Choose A C D, such that —Sat;(®; UE., UA);
Q := {-A};
END

Figure 3.9: Extensions for Handling Non-Convex Theories
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code for ApplyTactic as follows:

ApplyTactic(h,c)

Restore(h);

IF —conver THEN BEGIN
¢ :=cV-N;
N = 0;

END

Let ¢ be an atomic formula appearing in c;

AddFact(¢);

c1 := Simplify(c);

hy := Save();

Restore(h);

AddFact (—¢) ;

co := Simplify(c);

hy := Save();

RETURN (hl, Cl), (hg, Cg) 5

This modification simply removes non-literals and adds them as part of the current
goal formula. Essentially, it implements a simple inference rule for moving formulas
from the hypothesis to the conclusion of a sequent. The advantage of this approach is
that there is only one piece of code choosing formulas on which to perform case splits.
This can be very important since it is often necessary to use a sophisticated strategy
to choose among all possible case splits, and a wrong choice can lead to significant
degradation in performance. We discuss the problem of choosing case splits and one

possible solution in the next chapter.

3.5.2 Allowing Theories to Introduce Fresh Variables

A second, and more subtle extension to the framework involves allowing theory-
specific code to introduce fresh variables as long as the fact database is equisatisfiable.
Since this extension was motivated by a specific example, we will describe it. One
of the theories implemented in CVC is a theory of infinite arrays [38].
Now suppose that ® is a set of literals in this theory. If ® contains a disequality
between two arrays, it is convenient to replace it with a disequality between elements

of the arrays. For example, if ¢ and b are array terms, then the literal a # b can
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be replaced by a[k] # b[k], where k is a fresh variable. The result is a set of literals
equisatisfiable with ®, though not logically equivalent to .

In order to support such techniques, we allow a theory 7; to introduce a new
formula ¢ into ®; as long as 7; U;(®;) = 3. v;(¢), where W are fresh variables and
w = free(¢) — free(D;).

The appendix contains a proof of correctness for the framework code introduced

in this chapter, including the extensions described in this section.



Chapter 4
Incremental Translation to SAT

In the past few years, general-purpose propositional satisfiability (SAT) solvers have
improved dramatically in performance and have been used to tackle many new prob-
lems. It has also been shown that certain simple fragments of first-order logic can be
decided efficiently by first translating the problem into an equivalent SAT problem
and then using a fast SAT solver. By using appropriate tricks to reduce the time and
space required for the translation, this approach seems to work well for simple theo-
ries such as the theory of equality with uninterpreted functions [7, 33]. However, it is
not clear how or whether such an approach would work for other decidable theories.

In this chapter, we propose a method designed to be more generally applicable:
given a satisfiability procedure Satpo (like that described in previous chapters) for
a conjunction of literals in some first-order theory, a fast SAT-based satisfiability
procedure for arbitrary quantifier-free formulas of the theory can be constructed by
abstracting the formula to a propositional approximation and then incrementally re-
fining the approximation until a sufficiently precise approximation is obtained to solve
the problem. The refinement is accomplished by using Satpo to diagnose conflicts
and then adding the appropriate conflict clauses to the propositional approximation.

We begin with a brief review of propositional satisfiability. We then describe the
problem in Section 4.2. Section 4.3 describes our approach to solving the problem
using SAT, and Section 4.4 describes a number of difficulties that had to be overcome

in order to make the approach practical. Section 4.5 describes some related work,
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propositional formula ::= true | false | propositional variable
| propositional formula A propositional formula
| propositional formula V propositional formula
| —propositional formula

CNF formula ::= (clause A ... A clause)
clause ::= (propositional literal V ... V propositional literal)

proposttional literal ::= propositional variable
| —propositional variable

Figure 4.1: Propositional logic and CNF

and in Section 4.6, we give results obtained using CVC [37], a new decision procedure
for a combination of theories in a quantifier-free fragment of first-order logic which
includes the SAT solver Chaff [28]. We compare with results using CVC without
Chaff and with our best previous results using SVC [1], the predecessor to CVC. The
new method is generally faster, requires significantly fewer decisions, and is able to

solve examples which were previously too difficult.

4.1 Propositional Satisfiability

The SAT problem is the original classic NP-complete problem of computer science.
A propositional formula is built as shown in Fig. 4.1 from propositional variables (i.e.
variables that can either be assigned true or false) and Boolean operators (A, V, —).
Given such a formula, the goal of SAT is to find an assignment of true or false to
each variable which results in the entire formula being true.

Instances of the SAT problem are typically given in conjunctive normal form
(CNF). As shown in Fig. 4.1, CNF requires that the formula be a conjunction of
clauses, each of which is a disjunction of propositional literals. In Section 4.3.1, we
describe a well-known technique for transforming any propositional formula into an
equisatisfiable propositional formula in conjunctive normal form.

Although the SAT problem is NP-complete, a wide variety of techniques have been

developed that enable many examples to be solved very quickly. A large number of
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formula ::= true | false | literal
term = term
predicate symbol (term, ..., term)

|

|

| formula A formula
| formula V formula
|

~formula
literal ::= atomic formula | —atomic formula
atomic formula ::= atomic term = atomic term
| predicate symbol (atomic term, ..., atomic term)
term ::= atomic term
| function symbol (term, ...,term)

| ite (formula,term,term)

atomic term ::= wariable | constant symbol
| function symbol Catomic term, ...,atomic term)

Figure 4.2: A quantifier-free fragment of first-order logic

publicly distributed algorithms and benchmarks are available [36]. Chaff [28] is a
SAT solver developed at Princeton University. As with most other SAT solvers, it
requires that its input be in CNF. It is widely regarded as one of the best performing

SAT solvers currently available.

4.2 The Problem

We will show how to use SAT to aid in determining the satisfiability of a formula ¢ in
a language which is much more expressive than propositional logic: the basic variant
of quantifier-free first-order logic shown in Fig. 4.2. Note that in the remainder of
this chapter, the term “literal” by itself will be used to refer to an atomic formula or
its negation, as defined in Fig. 4.2. This differs from the term “propositional literal”
which we will use as in the previous section to mean a propositional variable or its
negation. A small difference between this logic and conventional first-order logic is
the inclusion of the ite (if-then-else) operator which makes it possible to compactly

represent a term which may have one of two values depending on a Boolean condition,
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a situation which is common in applications. An ite expression contains a formula
and two terms. The semantics are that if the formula is true, then the value of the
expression is the first term, otherwise the value of the expression is the second term.
Note that while both formulas and terms may contain proper Boolean sub-expressions,
atomic formulas and atomic terms do not.

In previous chapters, we described a fast algorithm for determining the satisfiabil-
ity of conjunctions of literals with respect to some logical theory (or combination of
theories). We do not address the issue of constructing such decision procedures here,
but rather assume that we are given a decision procedure Satpo for determining the
satisfiability, with respect to a theory of interest, of a conjunction of literals in the
logic of Fig. 2.

The problem we will address is how to use such a decision procedure to construct
an efficient SAT-based decision procedure for the satisfiability of arbitrary formulas

(i.e. not just conjunctions of literals).

4.3 Checking Satisfiability of Arbitrary Formulas
using SAT

Suppose we have, as stated, a core decision procedure Satpo for determining the
satisfiability of conjunctions of literals, and we wish to determine whether an arbitrary
formula ¢ is satisfiable.

An obvious approach would be to use propositional transformations (such as dis-
tributivity and DeMorgan’s laws) to transform ¢ into a logically equivalent disjunction
of conjunctions of literals and then test each conjunct for satisfiability using Satpo.
Unfortunately, this transformation can increase the size of the formula exponentially,
and is thus too costly in practice.

As mentioned in the first chapter, the approach taken by CVC consists of a high-
level proof search built on top of a core decision procedure for satisfiability. In Fig.
1.3 (repeated here as Fig. 4.3 for convenience), an atomic formula is chosen from the

conclusion ¢, but no guidance is given on how to choose that formula. It turns out
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ApplyTactic(h,c)
Let ¢ be an atomic formula appearing in c;

hy := AddFact(h,¢);
¢ := Simplify(hy,c);
hy := AddFact (h,—¢);

¢y = Simplify(hg,c);
RETURN (hy,c1), (he,c2);

Figure 4.3: Case-Splitting Tactic

that the order in which atomic formulas are chosen can affect the performance of the
algorithm by several orders of magnitude.

In previous work on SVC [1, 27|, various heuristics were developed for choosing
which formulas to split on. Though powerful and effective on many examples, they
were also somewhat ad hoc and not very robust: small changes or differences in
formulas can cause a dramatic change in the number of decisions made and the
amount of time taken.

The new approach described in this chapter is designed to be fast and robust. The
key idea is to incrementally form a propositional abstraction of a first-order formula.
Consider an abstraction function Abs which maps first-order formulas to propositional

formulas. It is desirable that the abstraction have the following two properties:

1. For any formula ¢, if Abs(¢) is unsatisfiable, then ¢ is unsatisfiable.

2. If Abs(¢) is satisfiable, then the abstract solution can either be translated back

into a solution for ¢ or be used to refine the abstraction.

We first describe a process for determining an appropriate initial propositional
abstraction Abs. We then describe how to refine the abstraction if the proof attempt

is inconclusive.

4.3.1 Computing an Abstraction Formula

The basic idea of the process is to replace non-propositional formulas with proposi-

tional variables. Each syntactically distinct atomic formula « is replaced with a fresh
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propositional variable, p,. Syntactically identical atomic formulas are replaced with
the same propositional variable.

The result would be a purely propositional formula if not for the ite opera-
tor. Handling this operator requires a bit more work. We use a transformation
which preserves satisfiability and eliminates the ¢te expressions. First, each ite
term t is replaced with a fresh term variable v;. Again, syntactically identical
terms are replaced with the same variable. Then for each syntactically distinct term
t = ite(a, b, c) that is replaced, the following formula is conjoined to the original
formula: (¢ — v, = b) A (ma — v, = ¢). By repeating this process, all ite operators
can be eliminated (in linear time), and in the resulting formula, all terms are atomic.
Atomic formulas can then be replaced by propositional variables, as described above,
and the resulting formula is purely propositional.

To convert the resulting propositional formula to CNF in linear time, we employ
a standard technique [26]: a fresh propositional variable is introduced for each syn-
tactically distinct non-variable sub-formula. Then, a set of CNF clauses is produced
for each sub-formula which describes the relationship of the formula to its children.

The translations for each of the standard Boolean operators are as follows.

a:=-b — (aVb)A(-aV-b)
a:=bAc — (aV-bV—c)A(-aVb)A(—-aVc)
a:=bVvVe — (-aVbVe)A(aV-b)A(aV—c)

Now, suppose that Abs(¢) is satisfiable and that the solution is given as a con-
junction v of propositional literals. This solution can be converted into an equivalent
first-order solution by inverting the abstraction mapping on the solution (replac-
ing each propositional variable p, in ¢ with a). Call the result Abs ’(¢). Since
Abs ™! (1) is a conjunction of literals, its satisfiability can be determined using Sat o .
If Abs™' (1)) is satisfiable, then in the interpretation which satisfies it, the original
formula ¢ must reduce to true, and thus ¢ is satisfiable. Otherwise, the result of
the experiment is inconclusive, meaning that the abstraction must be refined. We

describe how to do this next.
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4.3.2 Refining the Abstraction

An obvious approach to refining the abstraction is to add a clause to the propositional
formula that rules out the solution determined to be invalid by Satpp. Since
is a conjunction of propositional literals, applying de Morgan’s law to — yields a
standard propositional clause. Thus, Abs(¢) A =t is a refinement of the original
abstraction which rules out the invalid solution . Furthermore, the refinement is
still in CNF as required. We call the clause ) a a conflict clause because it captures
a set of propositional literals which conflict, causing an inconsistency. This is in
accordance with standard SAT terminology. However, in standard SAT algorithms,
conflict clauses are obtained by analyzing a clause which has become false to see which
decisions made by the SAT solver are responsible. In our approach, the conflict clause
is obtained by an agent outside of the SAT solver. After refining the abstraction by
adding a conflict clause, the SAT algorithm can be restarted. By repeating this
process, the abstraction will hopefully be refined enough so that it can either be
proved unsatisfiable by the SAT solver or the solution ¢ provided by SAT can be

shown to map to a satisfying assignment for the original formula.

4.4 The Difficult Path to Success

There are a surprising number of roadblocks on the way from the previous idea to a

practical algorithm. In this section we describe some of these and our solutions.

4.4.1 Redundant Clauses

The most severe problem with the naive approach outlined above is that it tends
to produce an enormous number of redundant clauses. To see why, suppose that
SAT computes a solution consisting of n + 2 propositional literals, but that only the
last two propositional literals contribute to the inconsistency of the equivalent first-
order set of literals. Then, for each assignment of values to the other n propositional
variables which leads to a satisfying solution, the refinement loop will have to add

another clause. In the worst case, the refinement loop will have to add 2™ clauses.
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This is particularly troubling because a single clause, one containing just the two
contributing propositional literals would suffice.

In order to avoid the problem just described, the refinement must be more precise.
In particular, when Satpo is given a set of literals to check for consistency, an effort
must be made to find the smallest possible subset of the given set which is still
inconsistent. Then, a clause derived from only these literals can be added to the
propositional formula.

One possible way to implement this is to minimize the solution by trial and error:
starting with n literals, pick one of the literals and remove it from the set. If the set
is still inconsistent, leave that literal out; otherwise, return it to the set. Continue
with each of the other literals. At the end, the set will contain a minimal set of
literals. Unfortunately, this approach requires having Satpo process O(n) literals n
times for each iteration of the refinement loop (where n is the number of variables in
the abstract formula). A few experiments with this approach quickly reveal that it is
far too costly to give a practical algorithm.

A more practical solution, though one which is not trivial to implement, is to have
the decision procedure Satpo maintain enough information to be able to report di-
rectly which subset of a set of inconsistent literals is responsible for the inconsistency.

Fortunately, through a discussion with Cormac Flanagan [18], we realized that
this is not difficult to do in CVC. This is because CVC is a proof-producing decision
procedure, meaning that it is possible to have CVC generate an actual proof of any
fact that it can prove. Using the infrastructure for proof production in CVC, we
implemented a mechanism for generating abstract proofs. In abstract proof mode,
CVC just tracks the external assumptions that are required for each proof. The result
is that when a set of literals is reported by CVC to be inconsistent, the abstract proof
of inconsistency contains exactly the subset of those literals that would be used to
generate a proof of the inconsistency. The abstract proof thus provides a subset which
is known to be inconsistent. This subset is not guaranteed to be minimal, but we
found that in most cases it is very close to minimal. Since the overhead required to
keep track of abstract proofs is small (typically around 20%), abstract proofs provide

an efficient and practical solution for eliminating the problem of redundant clauses.
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4.4.2 Lazy vs. Eager Notification

The approach described in the previous section is lazy (see the note in Section 4.5
below) in the sense that the SAT solver is used as a black box and the first-order
procedure Satpo is not invoked until a solution is obtained from the SAT solver.
Unfortunately, as shown in Table 4.3, the lazy approach becomes impractical for
problems which require many refinements. In contrast, an eager approach is to notify
the first-order procedure Satpo of every decision that is made (or unmade) by the SAT
solver. Then, if an inconsistency is detected by Sat o, it is immediately diagnosed,
providing a new conflict clause for SAT. The SAT algorithm then continues, never
having to be restarted.

The performance advantages of the eager approach are significant. The disadvan-
tages are that it requires more functionality of both the SAT solver and the decision
procedure Satro. The SAT solver is required to give notification every time it makes
(or revokes) a decision. Furthermore, it must be able to accept new clauses in the
middle of solving a problem (CVC includes a modified version of Chaff which has this
functionality). The eager approach also requires Satpo to be online: able quickly to
determine the consistency of incrementally more or fewer literals. Fortunately, CVC

has this property.

4.4.3 Decision Heuristics

The decision heuristics used by Chaff and other SAT solvers consider every variable
a possible target when choosing a new variable to do a case split on. However, in
the abstracted first-order formula, not all variables are created equally. For example,
consider an ite expression: ite(a,t;,ts), and suppose that ¢, and ¢, are both large
non-atomic terms. If the propositional variable associated with « is set to true, then
all of the clauses generated by the translation of 5 can be ignored since they can no
longer affect the value of the original formula. Unfortunately, the SAT solver doesn’t
have this information, and as a result it can waste a lot of time choosing irrelevant
variables. This problem has been addressed by others [15], and our solution is similar.

We annotate the propositional variables with information about the structure of the
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original formula (i.e. parent/child relationships). Then, rather than invoking the
built-in heuristic for variable selection, a depth-first search (DFS) is performed on
the portion of the original formula which is relevant. The first variable corresponding
to an atomic formula which is not already assigned a value is chosen. Although
this can result in sub-optimal variable orders in some cases, it avoids the problem
of splitting on irrelevant variables. Table 4.4 compares results obtained using the
built-in Chaff decision heuristic with those obtained using the DFS heuristic. These

are discussed in Section 4.6.

4.4.4 SAT Heuristics and Completeness

A somewhat surprising observation is that some heuristics used by SAT solvers must
be disabled or the method will be incomplete. An example of this is the “pure literal”
rule. This rule looks for propositional variables which have the property that only one
of their two possible propositional literals appears in the formula being checked for
satisfiability. When this happens, all instances of the propositional literal in question
can immediately be replaced with true, since if a solution exists, a solution will exist
in which that propositional literal is true.

However, if the formula is an abstraction of a first-order formula, it may be the
case that a solution exists when the propositional literal is false even if a solution
does not exist when the propositional literal is ¢true. This is because the propositional
literal is actually a place-holder for a first-order literal whose truth may affect the
truth of other literals. Propositional literals are guaranteed to be independent of each
other, while first-order literals are not. Because of this, there is no obvious way to

take advantage of pure literals and the rule must be disabled. Fortunately, this was
the only such rule that had to be disabled in Chaff.

4.4.5 Theory-specific Challenges

Finally, a particularly perplexing difficulty is dealing with first-order theories that
need to do case splits in order to determine whether a set of literals is satisfiable.

For example, consider a theory of arrays with two function symbols, read and write.
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In this theory, read(a,i) is a term which denotes the value of array a at index i.
Similarly, the term write(a, i, v) refers to an array which is identical to a everywhere
except possibly at index ¢, where its value is v. Now, consider the following set of
literals in this theory: {read(write(a,i,v),j) = z,z # v,z # ali]}. In order for
the array decision procedure to determine that such a set of literals is inconsistent,
it must first do a case split on ¢ = j. However, such additional case splits by the
theories can cost a lot of time. Furthermore, they may not even be necessary to
solve the problem. We found it difficult to find a strategy for integrating such case
splits without adversely affecting performance. Instead, we preprocess the formulas
so that such case split formulas become part of the original formula and are only
split on when necessary. For the specific case of the array decision procedure, every
instance of read(write(a,i,v),j) is rewritten to ite(i = j,v,read(a,i)). Also, in
order to increase the likelihood of being able to apply this rewrite, every instance
of read(ite(a, b, ¢),v) is rewritten to ite(a, read(b, v), read(c,v)). These rewrites are
sufficient to obtain reasonable performance for our examples. However, we suspect

that for more complicated examples, something more sophisticated may be required.

4.5 Related Work

Flanagan, Joshi, and Saxe at Compaq SRC independently developed a very similar
approach to combining first-order decision procedures with SAT [19]. Their transla-
tion process is identical to ours. Furthermore, their approach to generating conflict
clauses is somewhat more sophisticated than ours. However, their prototype imple-
mentation is lazy (the nomenclature of “lazy” versus “eager” is theirs). Also it only
includes a very limited language and its performance is largely unknown. Unfortu-
nately, we have not been able to compare directly with their implementation.

De Moura, Ruess, and Sorea at SRI have also developed a similar approach using
their ICS decision procedure [14]. However, ICS is unable to produce minimal conflict
clauses, so they use an optimized variation of the trial and error method described in
Section 4.4.1 to minimize conflict clauses. Also, as with the Compaq approach, their

implementation is lazy and its performance unknown. Though they do not report
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execution times, they do provide their benchmarks, and our implementation using
CVC with Chaff was able to solve all of them easily.

It would also be interesting to compare with the approach for solving problems
in the logic of equality with uninterpreted functions by translating them (up front)
to SAT problems. We made an attempt to perform direct comparisons with [33],
but their benchmarks are not provided in the language of equality with uninterpreted
functions, and unfortunately, it is not clear how to translate them. As a result,
we were unable to run their benchmarks. We suspect that our approach would be
competitive with theirs. However, since the logic is so simple, it is not clear that a

more general approach like ours would be better.

4.6 Results

We implemented the approach described above in the CVC decision procedure using
the Chaff SAT solver, and tested it using a suite of processor verification benchmarks.
The first three benchmarks are purely propositional formulas from Miroslav Velev’s
super-scalar suite (http://www.ece.cmu.edu/~mvelev). The next three are also from
Velev’s DLX verification efforts, but they include array and uninterpreted function
operations. The rest are from our own efforts in processor verification and also include
array and uninterpreted function operations.

These were run using gcc under linux on an 800MHz Pentium III with 2GB of
memory. The best overall results were obtained by using an eager notification strategy
and the DF'S decision heuristic. Table 4.1 compares these results to results obtained
by using CVC without Chaff (using the recursive algorithm of Fig. 1.2). As can
be seen, the results are better, often by several orders of magnitude, in every case
but one (the easiest example which is solved by both methods very quickly). These
results show that CVC with Chaff is a significant improvement over CVC alone.

Our goal in integrating Chaff into CVC was not only to test the feasibility of the
approach, but also to produce a tool which could compete with and improve upon the
best results obtained by our previous tool, SVC. SVC uses a set of clever but somewhat

ad hoc heuristics to improve on the performance obtained by the algorithm of Fig.



CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 74

Table 4.1: Results comparing CVC without Chaff to CVC combined with Chaff

Example CVC without Chaff | CVC+Chaff
Decisions | Time (s) | Decisions | Time (s)
bool-dlx1-¢ 7| > 10000 2522 1.14
bool-dlx2-aa 7|1 > 10000 792 0.81
bool-dlx2-cc-bug01 7|1 > 10000 573387 833
v-dlx-pc 8642456 5082 6137 6.10
v-dlx-dmem 2888268 2820 2184 3.48
v-dlx-regfile 29435 37.6 3833 6.64
dlx-pc 515 0.68 529 1.04
dlx-dmem 6031 4.50 1276 1.90
dlx-regfile 6386 0.27 2739 4.12
pp-bloaddata-a 93714 79.1 1193 1.80
pp-bloaddata 345569 338 4451 4.51
pp-dmem?2 367877 338 2070 1.52

1.2 by learning which atomic formulas are best to split on [27]. Table 4.2 compares
the results obtained by SVC with the results obtained by CVC with Chaff.

SVC performs particularly well on the last 6 examples, a fact which is not too
surprising since these are old benchmarks that were used to tune SVC’s heuristics.
However, SVC’s performance on the first six examples shows that it’s heuristics are
simply not flexible enough to handle a large variety of formulas. CVC, on the other
hand produces good results fairly consistently. Even in the four cases where CVC
is slower than SVC, the number of decisions is comparable, and in all other cases
the number of decisions required by CVC is much less. This is encouraging because
it means that CVC is finding shorter proofs, and additional performance gains can
probably be obtained by tuning the code. Thus, overall, CVC seems to perform better

and to be more robust than SVC, which is the goal we set out to accomplish.
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Table 4.2: Results comparing SVC to CVC
Example SVC CVC+Chaff
Decisions | Time (s) | Decisions | Time (s)
bool-dIx1-c 11228452 776 2522 1.14
bool-dlx2-aa 7|1 > 10000 792 0.81
bool-dlx2-cc-bug01 7|1 > 10000 573387 833
v-dlx-pc 4620149 503 6137 6.10
v-dlx-dmem 199540 31.7 2184 3.48
v-dlx-regfile 74600 18.2 3833 6.64
dlx-pc 384 0.15 529 1.04
dlx-dmem 655 0.21 1276 1.90
dlx-regfile 936 0.27 2739 4.12
pp-bloaddata-a 902 0.66 1193 1.80
pp-bloaddata 35491 5.35 4451 451
pp-dmem?2 47989 7.54 2070 1.52

Table 4.3: Results comparing naive, lazy, and eager implementations

Example Naive Lazy Bager

[terations | Time (s) | Iterations | Time (s) | Time (s)
read0 I 0.14 17 0.09 0.07
PP-pe-s2i 71 > 10000 82 1.36 0.10
pp-invariant 7| > 10000 239 5.81 0.22
v-dlx-pc 7|1 > 10000 6158 792 3.22
v-dlx-dmem 7| > 10000 7| > 10000 4.12

4.6.1 Comparing Different Strategies

Finally, we show experimental results for some of the different strategies discussed in

the previous section. First, just to drive the point home, we show a simple compari-

son of the naive (lazy without minimal conflict clauses), lazy (with minimal conflict

clauses), and eager (with minimal conflict clauses) implementations on some simple

examples. As can be seen, the naive and lazy approaches quickly become impractical.

Next, we compare two versions of the eager approach with minimal conflict clauses:

one using the standard Chaff decision heuristics, and one using the DFS heuristic
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Table 4.4: Variable selection by Chaff vs. by depth-first search

Example Chaft DFS

Decisions | Time (s) | Decisions | Time (s)
bool-dlx1-¢ 1309 0.69 2522 1.14
bool-dlx2-aa 4974 2.36 792 0.81
bool-dlx2-cc-bug01 10903 11.4 073387 833
v-dlx-pc 4387 3.22 6137 6.10
v-dlx-dmem 5221 4.12 2184 3.48
v-dlx-regfile 6802 5.85 3833 6.64
dlx-pc 39833 19.0 529 1.04
dlx-dmem 34320 18.8 1276 1.90
dlx-regfile 47822 35.5 2739 4.12
pp-bloaddata-a 8695 0.47 1193 1.80
pp-bloaddata 9016 5.56 4451 4.51
pp-dmem?2 3167 2.24 2070 1.52

discussed in Section 4.4.3. The results are shown in Table 4.4. As can be seen,
DEFS outperforms the standard technique on all but four examples. Two of these are
purely Boolean test cases, and so the DFS method wouldn’t be expected to provide
any advantage. For purely propositional formulas, then, (or first-order formulas that
are mostly propositional), the standard Chaff technique is probably better. It is
particularly interesting to note how badly DFS does on the example “bool-dlx2-cc-
bug01”. One area for future work is trying to find a way to automatically choose

between or combine these two methods.



Chapter 5

Conclusions

5.1 Contributions

The main goal of this research was to address the limitations in the Stanford Validity
Checker (SVC). The most fundamental limitation of SVC was that it lacked a solid
theoretical foundation. This was a significant problem, manifesting itself whenever
we tried to extend or modify the program.

Partly as a result of our incomplete grasp of the theory, the requirements on de-
cision procedures for specific theories in SVC were quite restrictive and rigid. For
example, every theory was required to provide a solver which would rewrite an equa-
tion into an equisatisfiable set of equations. Furthermore, this new set of equations
was required to comply with a total ordering on expressions: the right-hand side
of each equation was required to be simpler than the left-hand side. This ordering
requirement, was often very challenging to meet and led to inefficiencies and compli-
cations in the code.

Perhaps the most severe consequence of the theoretical deficiencies of SVC was
that it diminished our confidence in the correctness of the tool. Since SVC was being
used as a verification tool, it was important that our confidence in its correctness be
high.

As mentioned, the ordering requirement was one source of complexity in SVC.

Another difficulty was simply the fact that SVC had evolved significantly and had

7
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thus outgrown its original software architecture. As is common with such systems,
new features became increasingly difficult to add. For example, one desirable new
feature was the ability to suspend the proof effort for a formula, check the validity of
a different formula, and then return to the proof of the original formula. Because of
the complexity of the state in SVC, this turned out to be impossible to do reliably.

Finally, although SVC performed well on many examples, there were also many
examples for which we knew better performance was possible.

The limitations in theory, software architecture, and performance mentioned above
are addressed by the work of this thesis (roughly in chapters 2, 3, and 4 respectively).
The theoretical contribution of this thesis includes new variations of both the Shostak
and Nelson-Oppen methods for combining procedures. These are used to show that
Shostak’s method is actually an instance of the Nelson-Oppen method. Part of this
effort includes a new theorem relating conver and stably infinite first-order theories.

Building upon this increased theoretical understanding, this thesis proposes a new
framework for combining decision procedures for individual theories. The architecture
of the new framework was designed to be significantly more flexible than that used
for SVC. For example, there is much more freedom when adding a new theory. There
are no ordering requirements, and the theory can be implemented using a Shostak
interface, a more general Nelson-Oppen interface, or its own customized interface.
Probably the most significant accomplishment of this thesis is the proof provided
in the appendix, showing the correctness of the framework. The proof not only
provides great confidence in the correctness of the framework (which is essential for a
verification tool), but also serves as documentation of the interfaces and assumptions
made by the framework. This is very helpful when trying to add or optimize theory-
specific code.

Finally, this thesis presents a new technique for dramatically improving the per-
formance of cooperating decision procedures by drawing upon the conflict diagnosis
techniques of Boolean satisfiability procedures. As described in chapter 4, a number
of additional enhancements were required in order to turn this promising idea into
a working solution, but eventually we were able to obtain results which were better

than any previous effort.
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The results presented in this thesis have been incorporated in a new tool called
CVC (Cooperating Validity Checker), the successor to SVC. A lot of the credit for
CVC goes to my colleague, Aaron Stump, who wrote most of the actual code based
on the ideas and architecture proposed in this thesis. CVC has proven to be much
more robust and flexible than SVC.

5.2 Some Observations on Program Verification

By far the most difficult part of this thesis was producing the proof of correctness
found in the appendix. The most obvious question in my mind after completing
this task is whether having a verified algorithm is really worth the enormous effort
required.

Certainly, the verified algorithm is of great value in providing a solid foundation
for CVC. But it’s not clear whether this value alone really justifies the the years
of effort required to produce the algorithm and proof. On the other hand, once we
combine this value with the fact that it provides an interesting case study in program

verification, perhaps the effort is more easily justified.

5.2.1 Organizing a Large Verification Effort

One of the difficulties was simply coming up with an approach for the proof effort.
At first, I tried to prove correctness without using a line by line approach. Though
[ was able to come up with a proof, it often required temporal reasoning, i.e. if a
certain event happens, then another event must have happened earlier, etc. I became
convinced that this introduced too much complexity.

[ reworked the proof to come up with a line-by-line proof, where the properties are
listed that are true before and after each line of code. The advantage of this approach
is that the proof for each line of code can be checked without referring to any other
part of the code. This makes the proof easier to read as well as less prone to errors.

Still, presenting the proof is a challenge. The ideal medium for presenting such

a proof would be an interactive program which would could be configured to show
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more or less detail, highlight which parts of the proof are dependent on which other

parts, and so forth. Perhaps this would be a good future research project.

5.2.2 Verification: the Cost and the Benefit

Probably the most important thing I gained from this effort is an appreciation of
how difficult program verification is. Certainly, this was not unexpected, as program
verification has long been known to be a difficult problem. While I would argue that
this algorithm is uncharacteristically complex for its size, it is remarkable how much
complexity can be hidden in relatively few lines of code.

Probably the single most difficult part of the proof was coming up with the appro-
priate loop invariants. Of course, it’s well known that this is supposed to be hard, but
I was able to verify it by my own experience. One reason they are hard is that they
often represent a complex intermediate state between two simpler states. Property
S16(see appendix) is a good example of a particularly tricky loop invariant.

The good news is that producing a loop invariant really just requires understand-
ing how and why the loop works. In fact, I found this to be true of the verification
effort in general. Of course, verification requires a level of detailed understanding
rarely (if ever) achieved when writing code. Often, even when I thought I knew how
part of the program worked, I discovered that my understanding was incomplete.
Completing the gaps in my understanding was where real effort was required. Once |
had a complete understanding, producing the proof was largely a mechanical exercise.

This is not such a tragic conclusion. Verifying an algorithm forces a level of
understanding that [ would argue is impossible to achieve in any other way. Especially
if the code is complex or the correctness of the code is essential, there is nothing as
effective as verification.

Can the verification effort be made easier?” I am confident that it can be. Certainly,
my effort would have benefited from some sort of proof assistant which could track
progress and do bookkeeping.

However, perhaps a more effective way to simplify the effort would be to write code

which does not require as much effort to understand. The algorithm I verified was



CHAPTER 5. CONCLUSIONS 81

written with efficiency and compactness as its primary goals. It may have been worth
sacrificing some of this to make the proof more straightforward. On the other hand,
much of the complexity of this algorithm is inherent, and it’s probably another major
research effort to understand how such an algorithm could be modified to simplify

the proof.

5.3 Future Work

Hopefully, the framework presented here is general and flexible enough to be useful
for a wide class of applications. However, there are certainly applications which are
beyond the scope of the current framework. A significant limitation which shows up

in a variety of applications is the inability to handle quantified formulas.

5.3.1 Quantified Formulas

The formulas given to CVC are assumed to be quantifier-free. CVC must then deter-
mine if the formula is valid. If a formula is valid, this means that it is true regardless
of the value of any variables in the formula. Another way to look at this is to consider
all variables appearing in the formula to be implicitly universally quantified. Thus,
in some sense, CVC can handle a very limited set of quantified formulas: formulas
in which every variable is universally quantified. However, often it is desirable to in-
clude existential or nested quantifiers. In general, inclusion of such quantifiers often
renders the theory undecidable, but there are examples of theories, such as Pres-
burger arithmetic [8], for which the validity of arbitrarily quantified formulas is still
decidable.

For such theories, it is theoretically possible to extend the framework to handle
existential quantifiers in some cases. A foundation for this extension is in a paper
by Tinelli and Ringeissen [41], which shows that Theorem 2.2 can be extended to
non-literals, even quantified formulas, as long as the set of formulas are pure in their
respective theories. The question then becomes: how and under what circumstances

can a formula containing quantifiers in a combination of theories be purified?
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A first result is that as long as quantified variables associated with one theory do
not appear as proper sub-terms of terms alien to that theory, it is possible to purify
the formulas in the usual way, simply by replacing occurrences of alien terms with
fresh variables (see Section 2.2.1).

A more general solution seems to require instantiating selected quantified variables

using some kind of heuristic guidance. This is a promising area of future research.

5.3.2 Restrictions on the Theories

There are two main restrictions on the kinds of theories that can be accommodated
by the framework presented in chapter 3. The first is that each theory must be stably
infinite. The other is that the signatures of the theories be disjoint.

Although we have not found either of these requirement to be prohibitive, a natural
question is whether they can be further relaxed. Tinelli and Ringeissen have some
work on combining theories with non-disjoint signatures [41], but it can only be
applied to a fairly narrow range of theories.

The requirement that theories be stably infinite is known to be more general than
required. In fact, it is only necessary that all theories have a model of the same
cardinality. Stable infiniteness is simply an easy way to guarantee this condition.

Investigating variations on relaxing these theory requirements seems to be an-
other possible area of future research, although it may be more compelling if specific

applications can be identified which require these requirements to be relaxed.

5.3.3 Performance

Though the techniques of chapter 4 make a significant improvement to the perfor-
mance of CVC, there is still more to be done. First of all, CVC is young compared to
SVC, so there is still more tuning that can be done to improve the implementation.

From an algorithmic point of view, there is also more that can be done. As men-
tioned in chapter 4, the method for choosing which variable to split on can probably
be improved. It is likely that some combination of the built-in Chaff heuristic and

our depth-first search heuristic could work better than either one individually.
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Correctness of the Framework

A.1 Approach

Correctness consists of two important parts: partial correctness and termination.
Partial correctness means that if the program terminates, the result is correct. Ter-
mination means that the program always eventually terminates (i.e. there is no way
for it to run forever). Although both of these are important, we present only a proof
of partial correctness. This is mainly because the proof of partial correctness was
already so challenging that it would have been too much effort to produce an addi-
tional proof of termination. However, from a more pragmatic standpoint, we have
found that termination problems are much easier to detect and deal with than partial
correctness problems. And in any case, it is very useful just to be able to say that if
the program terminates, the result is correct.

Partial correctness is shown by giving preconditions and postconditions for each
procedure in the framework as well as each theory-specific procedure. Each proce-
dure is then shown to guarantee its postconditions under the assumption that the
preconditions hold when it is called.

Since procedures may call each other recursively, for each proof of each procedure,
we assume that all other procedures are correct with respect to their preconditions
and postconditions. The following argument shows that this methodology is still

sufficient to guarantee partial correctness.

83
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Proposition A.1. Let Py,..., P, be a set of procedures which may call each other
recursively. Suppose we can prove partial correctness of each P; assuming that any
calls made by P; to any other procedure P; (where possibly i = j) are correct. Then

each P; is partially correct.

Proof. Define the procedure call tree for the execution of a procedure P; as follows.
Initially, there is one node in the tree, the root node, labelled by P;. The root node
is also initially the current node. During the execution of the program, whenever a
procedure call is made, say to procedure P;, a new child labelled by P; is added to the
current node, and that child becomes the current node. When a procedure finishes,
the parent of the current node becomes the current node. Note that the procedure
call tree has a node for each procedure call made during the run of the program and
that if a procedure is called more than once, it will label more than one node in the
call tree.

Clearly, if a call to P; terminates, then its call tree is finite. We prove by induction
on the height of the procedure call tree that every such call must be correct. For the
base case, consider a tree of height zero. This means that P; does not call any other
procedures. Thus, the assumption that all other procedures P; are correct is not
necessary to justify the correctness of P;. It follows that such calls to P; are correct.
For the induction step, suppose that all calls to procedures P; are correct if their
call tree has height k& or less. Consider a call to a procedure P; with call tree height
k + 1. By the induction hypothesis, the result of each procedure call made by P; is
correct. Since every procedure called by F; is correct, it must be the case that P; is

correct. d

Presenting a proof of an algorithm of this complexity is a significant challenge,
and so every effort has been made to simplify the presentation. The approach is to
identify the properties that are true between lines of code and then show that for
every line of code, the preconditions of that line together with the execution of the
line imply the postconditions.

We first define the notation used in the proof and give a list of properties used.

Following that is a copy of the code annotated with the appropriate properties before
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and after each line. Then, a detailed proof is presented for each line. Finally, we show
how the postconditions of the main procedure, AddFact, guarantee that a decision

procedure which uses the framework is sound and complete.

A.2 Definitions and Notation

A.2.1 The Shostak Theory

Some definitions and properties are only required (and only make sense) if a Shostak
theory is included. For the purposes of this proof, we assume that a single Shostak
theory 7, with signature X, is included with solver solve and canonizer canon. We
will indicate which parts of the proof are dependent on this assumption (and could
therefore be omitted if a Shostak theory is not included). We also assume that if
multiple Shostak theories are to be included, they are first combined into a single
Shostak theory. As discussed in Section 2.1.4, this is not always possible, but it often
is for theories of interest. For convenience, we repeat the definitions of solve and

canon from Section 3.4.3 here:

1. canon is a computable function from ¥, -terms to ¥,-terms, such that

(a) Ty = a=0biff canon(a) = canon(b)
(b

canon(canon(t)) = canon(t) for all terms t.

(d
(e

)
)
(c) canon(t) contains only variables occurring in ¢.
) canon(t) =t if t is a variable.

)

If canon(t) is a compound term, then canon(c) = ¢ for each child ¢ of

canon(t).

2. solve is a computable function from X, -equations to sets of X, -formulas defined

as follows:
(a) If T, =« # y then solve(x = y) = {false}.
(b) If 7, = o =y then solve(z = y) = 0.
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(c) Otherwise, solve(x = y) returns a set of equations £ in solved form such
that 7 = [(a = b) <» JwW.E], where W is the set of variables which appear
in £ but not in a or b. Each of these variables must be fresh. We also

require that for each s =t € £, canon(t) = t.

As in Section 3.4.3, we define canon,(a) as vy '(canon(yy())) and solve,(3) as
Yy (solve(7y(B)))-

A.2.2 Nelson-Oppen Theories

We assume an arbitrary number of Nelson-Oppen style theories are included. Each
Nelson-Oppen theory 7; provides a satisfiability procedure Sat; satisfying the follow-

ing specification for an arbitrary set of literals ©:
Sat;(©) = TRUE iff T; U~;(O) I~ false.

A.2.3 Variable Name Conventions

In the discussion and formulas that follow, we will consistently use the following
variable conventions. Terms are represented by r, s, and ¢. The variables ¢, d, and e,
are used to represent expressions (which could be formulas or terms). Theory indices
are represented by ¢ and j, and k£ and [ are used as expression children indices. The
variables W, X, Y, and Z are used for sets of formulas. Z is also used for sets of
terms. Finally, sets of variables are often represented as a lowercase letter with a line

over it, such as .

A.2.4 Program State

The state of the program is characterized by a number of variables which are ab-
stractions of the program data structures and the program history. These are listed

below.

1. The assertion queue Q is a set of formulas which are waiting to be asserted.

Each call to AddFact initializes Q to a set containing the formula given as an
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argument to AddFact. Theory-specific code may then add additional formulas
to Q. The formulas in Q are removed by one by AddFact and passed to Assert.
Initially, @ is assumed to be empty.

2. As described in Section 3.5.1, the non-literal set N is a set of formulas which

are not literals. It is initially empty.

3. The inconsistent flag T is a variable which indicates whether an inconsistency
has been detected. It is initially FALSE.

4. The find and notify attributes for each expression are part of the program state.
Initially, the find attribute of every expression is L, and the notify attribute of

every expression is ().

5. The assumption history, H, is the set of all formulas which have appeared as

an argument to AddFact.

6. The assertion database, A is defined as the set of all formulas which have ap-
peared as an argument to TheoryAssert. A; denotes the subset consisting of
the i-formulas in A. Notice that A; is exactly the set of formulas which appear

as arguments to TheoryAssert,.

7. As mentioned in Section 3.5.2, The code associated with an individual theory
may introduce new formulas locally. To model this, we define for each theory a
theory-specific database B; which is an optional set of formulas maintained by
the theory-specific code for theory ¢, with B = [JB;. We assume that initially

B; is empty for each 1.

8. The fact database ® is composed of the assertion database together with the
theory-specific databases. Formally, ®; = A; U B;, and ® = AUB = ?;.

9. We define the set of shared terms A as |JA;, where A; is the set of all expressions

which have appeared as arguments to TheoryAddSharedTerm,.
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10. The Shostak database is a set S of equations defined as follows. Initially, § is
empty. Then, every time line 77 of AssertEqualities (according to the line-
numbering of Section A.4) is executed (when e[1] is not a compound x-term), S
is updated to be {e}(S)U{e}. Note that {e}(S) refers to the result of applying
e as a substitution to § as described in Section 2.1.1. This piece of the program

state is only required if a Shostak theory is included.

11. The variable set V is a set of variables which includes all the variables currently
appearing in any program state. By representing this set explicitly, it is easy
to express the fact that a fresh variable is different from any variable already in

use.

In addition to these global state variables, there may be local state variables within
a procedure. Local state variables include the arguments to the procedure and may
include additional helper variables introduced within the procedure. The values of
global and local state variables, together with the location of the program within
the code form a sufficient description of the state of the program for the proof which
follows. It is often necessary to compare the current state to the state at the beginning
of a procedure. The current state will always be denoted just by the state variable
itself. The state at the beginning of the procedure will be denoted by a primed version
of the variable. Thus, ® is the current state of the fact database, and ®’ refers to the

state of the fact database at the beginning of the current procedure.

A.2.5 Other Definitions

The following definitions are either independent of the program state or derived from

it. For convenience, we also repeat some definitions found in earlier chapters.

1. T1,..., Ty are N stably infinite first-order theories, with signatures Xy,..., Xy.
T=UT;,and ¥ =U%;.

2. d = e indicates that two expressions are syntactically identical. To express

logical equivalence, we follow conventional notation, writing d = e if d and e are
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terms, and d <> ¢ if d and e are formulas. For convenience, we also introduce
the notation d =~ e to indicate logical equivalence of arbitrary expressions. In
other words, d ~ e means d <> e if d and e are formulas, and d = e if d and e

are terms.

3. A path from an expression d to a sub-expression e of d is a sequence of expres-
sions eg, €1, ..., e, such that ey = d, e;41 is a child of e; for each 7,0 < i < n,
and e is a child of e, (in the degenerate case when d = e, the path from d to e

is the empty sequence).

4. d < e denotes that d is a sub-expression of e. Similarly, d < e denotes that d is

a proper sub-expression of e.

5. Members of ¥; are called i-symbols. A variable is called an i-variable if it is
associated with 7;. A Y-term ¢ is an i-term if it is an i-variable, a constant
i-symbol, or an application of a functional i-symbol. An i-predicate is an appli-
cation of a predicate i-symbol. An atomic i-formula is an an i-predicate or an
equality whose left term is an i-term. An :-literal is an atomic i-formula or the
negation of an atomic i-formula. An occurrence of a j-term ¢ in either a term or
a literal is i-alien if i # j and all super-terms (if any) of that occurrence of ¢ are
i-terms. An i-term or i-literal is pure if the only non-logical symbols it contains

are i-symbols and variables (i.e. only variables occur as i-alien sub-terms).

6. A j-term ¢ occurs as an i-leaf in an expression e if every super-term of that
occurrence (not including ¢) is an i-term and ¢ is a variable or ¢ # j. Note that
a term t occurs as an i-alien of an expression e iff t is not an i-variable and
occurs as an i-leaf of e. We say that a term ¢ is an ¢-leaf if it occurs as an i-leaf

in itself (i.e. it is a variable or a j-term, where i # j).
7. 6;(e) is the set {c | ¢ occurs as an i-leaf in e}.

8. v is a mapping from X-terms to variables such that each i-term ¢ is mapped

to an i-variable v(t) chosen from a set of variables not used anywhere else (i.e.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

always disjoint from V). ~;(«) is the result of replacing all i-alien occurrences

of terms ¢ by v(t). 7; ' denotes the inverse operation.

Given an equivalence relation ~ with domain dom., we define E, = {s =
t|ste dom. and s ~ t}, D, = {s #t| s,t € dom. and s  t}, and
Aro=E_UD..

We define the predicate convez to be true if and only if 7 U ® E N and for
each atomic formula ¢ which is a sub-expression of some formula in N, either
pePor—¢pec .

The left-hand side function lhs returns the set of all left-hand sides of a set of
equations: ths(€) = {t | Je € €.t = ¢e[1]}.

Some procedures return an expression. In order to express properties which
should hold for the returned expression, we use retval to denote the expression

returned.

For an expression e, we define hf(e) (short for “has find”) as follows: hf(e) iff
e.find ZL.

The set HF is defined as HF = {e | hf(e)}.

The partial function find® is defined to be the expression obtained by following
the find attributes of e until an expression is obtained whose find attribute
is itself. If no such expression is obtained, then find" is undefined. A global
invariant requires that find" be defined for all expressions in HF (see G5, defined
in Section A.3.1 below).

The relation ~ is defined as follows. For expressions d and e, d ~ e if and only

if hf(d) A hf(e) A find*(d) = find(e).
The relation ~; is the restriction of ~ to elements of A;.

A sub-expression e of an expression d is called a highest find-initialized sub-
expression of d if hf(e) and there exists a path from d to e such that for each

expression e* on the path, =hf(e*).
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19. Let fr (short for “find-reduced”) be a predicate on expressions defined as follows:
fr(d) iff find*(e) = e for each highest find-initialized sub-expression e of d.

20. The find database, F, is a set of equalities derived from the relation ~ induced
by the find attribute. It is defined as follows: s =t € F iff s ~ ¢.

21. The set of find-modified terms M is {t | t.find Z t.find’}.

22. If a Shostak theory is included, then the set of normal terms, R is defined to
be {t | hf(t) A find"(t) = canon, (S(t))}.

As with the state variables, it is sometimes convenient to refer to the value of
derived variables at the beginning of a procedure. Again, this is done by using a

primed version of the variable.

A.3 Properties

A.3.1 Global Properties

Global properties are properties which are required to hold at every point in the code.
Properties G; through G, are required regardless of what theory-specific code is in
use. Properties G5 through Gy are only required if theory-specific code for a Shostak
theory is included. Since these global properties capture much of the intuition about

how the algorithm works, a few words of explanation are included for each of them.

Gi. T — (T UH = false).
This is the main soundness property. It states that the inconsistent flag is only

set when the assumption history is in fact inconsistent.

Gy. TUD = F.
This property expresses soundness of the find database. The set of facts repre-

sented in the find database should be entailed by the fact database.

Gs. T UH = 3Jw. ¢, where w = free(®) — free(H).

The framework allows fresh variables to be introduced at various places, so the
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Ga.

Ge.

G.

Gs.

Gy.

fact database is not logically equivalent to the assumption history, but it is

required to be equisatisfiable as expressed by this property.

TUHU® EQUN.
This property expresses soundness of the assertion queue and the non-literal
set. They should be entailed by the assumption history together with the fact

database.

. Ye. hf(e) — find*(e) is defined.

This property requires the find data structure to be well-defined. Chains of
find attributes should always be defined and end at an expression whose find

attribute is itself.

Ve. hf(e) — hf(c) for each child ¢ of e.
This property requires that the children of expressions with find pointers always

have find pointers as well.

Ve. hf(e) — e is a term.

Only terms are allowed to have find pointers.

free(QUN USUHUFUA) CV.

The set V should include all free variables appearing in the program state.

Vt,j. if t occurs j-alien term in any sub-term of ® UF, then (¢t € AjAt € Ary).
Every theory knows about any of its own terms that are shared as well as any
shared terms appearing in any of its terms or literals. Notice that this property

also implies that all terms which occur as aliens are contained in A.

Gio. If GS§ then Vt,j. if ¢t € A;, where j # T (t), then ¢ occurs j-alien in some

sub-term of A.

This is essentially the converse of part of the previous property. If ¢ is identified
as a shared term by theory 7;, then ¢ had better really occur as a j-alien
term somewhere in the assertion database. Unfortunately, this property is not

quite global. To compensate for this, we introduce a state variable, G¢% which is
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Gia.

Gis.

Gig.

Gis.

Gir.

defined to be true everywhere except at lines 101 through 107, lines 114 through
146, and inside any call to TheoryAddSharedTerm or TheorySetup.

. Vit <A hf(t).

All terms in the assertion database have find pointers.

B, =0.

The Shostak theory does not maintain any theory-specific formulas.

S is in x-solved form.

The Shostak database is in solved form.

TUFES.
The Shostak database is entailed by the find database.

Ty Un(S) F w(F).
The (Shostak-pure) find database is entailed by the (Shostak-pure) Shostak

database.

. If G% then

Vit [(hf(t) At is a compound x-term) — (Ve € 0,(t). (x,t) € c.notify)].

Each compound term in the Shostak theory that has a find pointer is required
to be on the notify list of all terms which occcur as a y-leaf in the term. This
ensures that if any of these leaves is asserted equal to something else, the Shostak
TheoryUpdate method will be called. Again, this property is not quite global,
so we introduce the state variable G¢ which is defined to be true everywhere

except at line 142 and inside any call to TheorySetup.

Vit c. [(x,t) € c.notify) — (t is a compound x-term A ¢ € 6,(t) A hf(t)].
This property expresses essentially the converse of the above property, limit-

ing the Shostak data on the notify list to only the cases covered in the above

property.

Gis. Ve [(Vcedy(e). fr(c)) — fr(e)].

A non-obvious invariant for Shostak terms is that if all terms which occur as
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leaves in them are find-reduced, then they are also find-reduced. This invariant

makes it easy to guarantee that Shostak terms are find-reduced.

Grg. Vit.if t is a y-leaf, then
[(hf(t) — (t.find £t <> t € lhs(S))) and (t < S — hf(t))].
Each term with a find pointer which is foreign to the Shostak theory has the
property that it points to itself if and only if it does not appear on the left-hand
side of an equation in S (i.e. it is not a solitary variable of 7,(S)). Also, all

terms in S have find pointers.

G9o. Ve € A.e is a literal.

The assertion database A consists only of literals.

A.3.2 Preservation Properties

P_(X,Y,...). This is a special property which expresses that each state variable in
its parameter list currently has the same value that it had at the beginning of
the procedure: X' = X AY' =Y ...

P-(X,Y,...). This property is similar to the above property, except that it expresses

that each state variable in its parameter list is a superset of what it was at the
beginning of the procedure: X' C X AY' CY ...

A.3.3 Other Properties

We now list the other properties which will be used to annotate the code. They
express conditions on the global and local state which are required to hold at specific
points in the program.

Each item in the following list consists of a property abbreviation followed by the
property definition. The property abbreviation is used to refer to the property in the
code which follows and consists of the letter “P” with a numeric subscript followed
by a list of the global state (if any) on which the property depends in square brackets.

For convenience, we use the notation x.find to refer to all find pointers, *.notify to
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refer to all notify lists, and A, to refer to A; for all . We also use all to denote all of
the global state variables.

Most properties also depend on local state variables. To enable reuse of such prop-
erties, the property list below is parameterized. The variables shown in parentheses
next to the property abbreviation are parameters to the properties. Thus, when the
properties are used in context, the actual local state variables appearing as arguments

to the properties should be substituted for the parameters.

P, H,Z,N]. T = (TUNUD E=H).

Py(e). e is a Y-formula.

Py[@, H](e). free(e) N free(d — H) = 0.

P[®,H,Z,N](e). -Z = (TUNUDU{e} EH).

B[@,H, T, N, Q)(e). (Pi[®,H,T,N](e)AQ={e})V (P[®,H,T,N]AQ+0D).
Ps[®,H](e). TUHU® = e.

Pi[®, A, = find)(i). TiU;(®; U Ar.,) is satisfiable.

B[O, Z,N, Q,A,, .find)(i).
(Q=0NA—ZLNA conver) — (V3,0 < j < i. Pr[®, A, *.find](j)).

Py[®, T, N, Q, A, .find](i). (Q=0A~T A convez) — P;[®, A, +find)(i)).
Pio[®, T, N, A, *.find]. (~T A convez) — (Vi,0 < i < N. P;[®, A,, *.find](i)).

Pyi(e). eis a literal.

Pp[®, H|(e). TUHU® = 3w. e, where W = free(e) — free(H U ®).

Pi3(X). Vd € X.[PL(d)AOp(d) = ‘="A(Ve € X.d % e — (d[1] £ e[1]Ad[1] Z e[2]))].
Pulx.find(X). false € X V (Ve € X. fr(e) A Prz(X)).

P d, N(W, X,)Y). WCPAX CNAY C .
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Pig[+.find|(X,Y).
VeecY. [(e € X — (e[l]l.find=e[l] Ae2].find=e[2])) A (e € X — fr(e))].

Pi7[®](X). For w = free(®) — free(X), TUX EJw. @ and wN V' = 0.
Pig[x.find](X). Ve € X. (e[l].find = e[1] A e[2].find = e[2]).

Pig[*.find|(X,Y).
VeecY. [e]2].find=e]2] A (e € X — e[l].find = ¢[2]) A
(e & X — e[l].find = e[l1])].

Pyo[H](W*, e).
AW, X, Y, Z. {W,X,Z} is a partition of W* A

T UH = Jw. W, where w = free(W) — free(H) A

TUHUW E3z,7. (X UY),
where T = free(X) — free(HU W)
and Y= free(Y) — free((HUW UX) A

TUWUX E3z.Z A zN free(HU {e}) =0,
where Z = free(Z) — free(W U X) A

ecY.

Py [x.find]. Ve. (e.find=eV e.find = e.find’).
Pyl*.find|(Z). Yt € Z.t.find = t.
Pys(e). e is a term.

Poy[A](Z, €).
Vi, d [(tQZANt<ad<QeNtoccurs T (d)-alien in d) — (t € Ay At € Aya))]-

Pys[x.find|(e). Vt,t a maximal sub-term of e. t.find = t.
Pos[As](e,i). T(e) #i— (e € Apey Ne € ).
Py[x.find|(t). ¥Vs. (s 4t — s.find = s.find’).

Poglx.find|(t). ¥Vs.[s It — (s.find = s V s.find = s.find’)].
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Pyo[*.find)(e, k). V1,1 < 1 < k. e[l].find = e[l].

Pyo[*.find)(e, k). V1,1 < 1 < k. fi(e]l]).

Py [x.find)(e). Yk, 1< k < Arity(e). e[k].find = e[k].

Py[A](e, k). V11 <1< k. Po[A](ell], e[l]) A Pag[A(ell], T (e))-
Pys(e). e is a term or e is an atomic formula.

Pslall](i). P=(® — B;, H,I,N,S, A, *.find) A Pc(Q, B;, V, *.notify) and
T U@ EJw. B)AwnNV' =0Aw CV, where W = free(3;) — free(®)) and
TiU7i(Pi = (Q— Q) A free(Q — Q) C V.

Ps35]®](d, e). Forw = free(e) — free(d), TU® = d «» 3w.e and wN (V' U free(®)) = ().
Pss[@, A, *.find|(i). T; U~ (®; U E.,) is satisfiable.

Py |®, A, *.find](i,e). T; Ui (P; UEL) E 7vile).

Pig| A, A(e). V3.Vt e A [j#T(t) — (t occurs j-alien in some sub-term of AU{e}].
Py[A](t). Vi Vsdit.(s € Aj s e Ny).

Pyy(s,t,1,7). (s€ N;)V(s=tAj=1)V (s occurs j-alien in some sub-term of ¢).
PulA(s,t,4,7). (s€ AjANJ#T(s)) = Pul(s,t,i,7).

P[] (t,0). Vs <tV 5.Py(s,t,i,7).

The following properties are only required if theory-specific code for a Shostak theory
is included. To distinguish them from the previous properties, they use the letter “S”
instead of “P”.

S1[S](s,t). s = canon, (S(t)).
So|Z, S, *.find]. =T — [Ve. (hf(e) = Si[S](find" (), ¢€))].

S3[A, L, *.find]. -Z — [Ve € A. (Op(e) = ‘=" — ¢[1] ~ €[2])].
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Su[S, . find)(e). Yt De. (~hfit) = Si[S] (L, 1)).
Ss(e). Op(e) = ‘=" — ¢€[l] # e[2].

S6(X). X is in y-solved form.

So[S, #.find)(X). false € X V (S,[S, *.find)(X) A Ss(X)).

Sg(t). t is a compound y-term.

Sl find)(e). Ac € by (e). (c.find £ c).

S1olS, #.find)(X). Je.[X = {e} ASs(e[1]) Ahfle[1]) AS1[S](e[2], e[1]) A So[«. find)(e[1])]-
Suu[S, . find)(X). Ve € X. [S1[S)(e[2], e[2]) A fr(e) A Su[S, =.find](e)].

S1o[S, #.find)(X). false € X V ((S(X) V S10[S, *.find](X)) A S11[8, * find)(X)).
Sislefind)(X). Ve € X. (Ople) = =" — ¢[1] ~ ¢[2]).

Sulxfind)(R*, X). (M —R*) C lhs(X).

S15[S, *.find|(X,Y). Sio[S, *.find](X) V [Ss(X)A (Ve (X —=Y).S(e) =e) A
(Ve € X. S1[S](e]2], e]2]))]-

S16]S, *.find|(R*, X, Y, S*).
Vit e R [hf(t) A
(8y (canony (8*(t))) N lhs(Y) =0V =Ss(X) —
find"(t) = canon, (S*(t)) = canon, (S(t))) A
(0y (canon, (S*(t))) N ths(Y') # O A =Sg(canon, (S*(t))) —
find"(t) = canon, (S(t)) A 0, (canon, (S(t))) N lhs(X) = 0) A
(0y (canony (8*(t))) N Ihs(Y) # O A Ss(canon, (S*(t)))
find' (t) = canon, (S*(t)))].

S17(X,Y). (S(X) = (Y € 8)) A (Y € X).
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519[8, *ﬁnd](R*,X, S*).
Vte R*. [t € RV (Ss(canon, (S*(t))) A hf(t) A find"(t) = canon, (S*(t)) A
5 (canon, (5*(1))) N Ihs(X) £ 0)).

Sw[S](X). Ve € X. (e[l] € ths(S) V Ss(e[1])).
Soulxfind) (L, c). Vt.[((x,t) € L) = (hf(t) A Ss(t) A ¢ € 6,(t))].

ST, S, * find)(e, R*, X,U,8). TV
[Vt e R*.t € RV (Ss(canon, (S*(t))) A hf(t) A find*(t) = canon, (S*(t)) A
Oy (canon, (8*(t))) N Ihs(X) # O A
e[l] € &, (canon, (S*(t))) = (x, canon, (S*(t))) € U)].

Soz[*.find, x.notify(e).
Vit #e. [(hf(t) ASs(t)) = (Ve € dy(t). (x,t) € c.notify)).

So4[S, x.find|(e, k). VI,1 <1< k.S4[S,*.find|(e[l]).
Sos[S, *.find|(e). V1,1 <1 < Arity(e). S4[S, *.find](e[l]).

So6[S, *.find|(d, €).
(d=e— S48, *.find|(e)) A (d # e — Sa5[S, *.find|(d)).

Syi(d,e). d % eV Ss(e).
Sus[x.find)(i,e). i =x — (hf(e) A Ss(e) A So[.find)(c)).

S|, S](X, ). TV[Ve € X. (Ople) == = (T: U(8) I vilel1])))]):
Ssolx.find)(e). V¢ € b, (€).fr(c).

S51[S, *.find](€). V¢ € 6, (e).Su[S, .find)(c).

S52[S](e). Ve € b, (e).S(c) = c.

S33[S)(d, €). canony(d) = canony(S(e)).

SsulZ, S, +.find|(d). TV (d.find# d)V (d € R).
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Sys[x.notifyl(e). Ss(e) = Ve € 8,(e).(x,€) € c.notify.
Sse[*.notify|(Z). Ve e Z.(x,e) € c.notify.

Syr[x.find)(e). Vk,1 < k < Arity(e). hf(e[k]) V fr(e[k]).

Sssx.find)(e, k). V1,1 <1< k. Sy[*.find)(e[l]).

SsolS, x.find)(e, k). V1,1 <1< k. S51[S, *.find)(e[l]) A S5[S](e[l]).

SulS, .find)(e, k). Y1,k <1< Arity(e). (Su[S, = find)(e[l]) A €'[l] = e[l]).
SulSl(e, k). Y1,1 <1< k. Sy3[S](e[l], ¢'[1]).

Si2[S](d,e). If e is a term then d = canon, (S(e)).

A.4 Annotated Code

The code shown below includes the framework code with non-convex extensions,
and the theory-specific code for Nelson-Oppen and Shostak theories, including the
default implementations (see Figure 3.6) of the procedures not explicitly provided
(note that the modification of global state variables by TheoryAddSharedTerm, and
TheoryAssert, has been moved to the framework code—see the note on “virtual”
code below). The actual code shown below is equivalent in function to that given in
Chapter 3, but in some cases it is slightly modified to be more explicit or give more
detail.

Before and after each line of code is a list of properties which should hold at that
point in the execution of the program. Since the global properties always hold, a
single capital “G” at each line is used to represent all of them.

Also, it is often helpful to add “virtual” lines of code which describe how some
piece of local or global state is modified by executing a particular line of code. These
virtual pieces of code are shown in square brackets. To aid readability, everything
that is not an actual part of the code is shown in half-tone gray. This makes it easier

to separate the code from the annotations.
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Following the presentation of the code, we give proofs for the properties between
each line of code. However, since many of the proofs are trivial, only those properties
which do not follow trivially are proved in detail. These properties are underlined in
the annotated code to make it easy to see at a glance which properties require proof.
Note that all global properties depend only on global states variables, so they are
always trivially preserved unless some global state is modified. Also, when verifying
the properties following a procedure call, we also verify that the preconditions of the
procedure are satisfied. Because the proofs of properties following a procedure call
can often be subtle, we always justify each of them (and thus, all properties following

procedure calls are always underlined).
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A.4.1 Framework Code

0. G, P[P, H,I,N], Pyle), P3[®,H](e), S2|Z,S,x*.find], S3[A,ZL,x.find]

1. AddFact(e) | H :=H U {e}; V =V U freele); |

2. G, PO, H,I,N]|(e), ecH, S[I,S,x.find], S3[A,Z,x*.find]

3. Q :={e};

4. G, PP, H,I,N]|(e), Q={e}, S2Z,S,*.find], S3[A,Z,x*.find]

5. REPEAT

6. G, Ps[®,H,Z,N,Ql(e), S2|Z,S,*.find], S3[A,Z,x.find]

7. WHILE Q # () AND —~Z DO BEGIN

8. G, Q#0, =T, P5[®,H,T,N,Q|(e), S[Z,S,*.find], S3|A,Z,*.find]

9. Choose ¢e* € Q;

10. G, B[O, H,Z,N](e*), Q#0, =T, e* € Q,
Ps[®,H](e*), free(e*) TV, So[Z,S,x*.find], S3[A,Z,x*.find

11. Q = Q—{e"'};

12. G, P)®,H,I,N]|(e*), =L, Ps[®, H|(e*), free(e*) TV,
S9lZ, S, *.find], S3[A,Z,x*.find]

13. Assert(e*);

14. G, P[®,H,I,N]|, S3[Z,8,*.find], S3[A,Z,x.find]

15. END

16. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]

17. FOR ¢ := 1 TO N DO BEGIN

18. G, P[®,H,I,N]|, BK[®,I,N,Q, A, *.find(i), S2[Z,S,x*.find],
S3[A, Z, *.find]

19. IF Q =( AND —Z AND conver THEN BEGIN

20. G, P[®,H,Z,N], Q=0, -I, KR[®,I,N,Q,A,, *find(i), conver,

So[Z, S, *.find], S3[A,ZL,x.find]
21. TheoryCheckSat, () ;
22. G, P®,H,I,N]|, B[®,I,N,Q,A,,+find(i),

Py[®,Z,N, Q, A, *.find|(i), S2|Z,S,x*.find], S3[A,ZL,x.find]
23. END
24. G, P[®,H,I,N]|, BK[®,I,N,Q, A, *.find(i),
Py[®,Z,N, Q, A, x.find)(i), So|[Z,S,x*.find], S3[A,Z,*.find]
25. END
26. G, Pl[q),H,Z,N], Pg[q),I,N, Q, A, *.find|(N + 1),
Py[®,Z,N, Q, A, *.find|(i), So|Z,S,x*.find], S3[A,ZL,x.find]
27. UNTIL Q=0 OR Z;
28. G, P[®H,I,N]|, Pyl® I,N, A, xfind], S2[Z,S,x.find], S3[A,Z,x*.find
29. END AddFact
30. G, P[®,H,Z,N], Pio[® Z,N,A, *find], S3[Z,S,*.find], S3[A,Z,x.find]
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31. G, Py®,H,I,N]|(e), ~Z, Ps[®, H](e), free(e) TV, S9|Z,8,x.find],
S3[A,Z, *.find]

32. Assert(e)

33. G, PO, H,I,N]|(e), I, Ps[®,H](e), free(e) CV, Si[Z,S,*.find],
S.‘i [A7:Z7 *'.ﬁ”d]

34. €' := Simplify(e);

35. G, P®,H,I,N|(*), =T, Ps[®,H|(e*), free(e*) TV, TUP Ee~ce*,
fr(e*), So|Z,S,x*.find], S3[A,Z,x*.find], SiS,*.find](e*), S5(e*)

36. IF e" is not a literal THEN BEGIN

37. G, Py®,H,Z,N|(e*), =T, Ps[®,H|(e*), free(e*) TV, fr(e*),

SolZ, S, *.find], Ss3[A,L,x.find]
38. N = NU{e};

39. G, P[®,H,I,N]|, S2[Z,S,x.find], S5[A,Z,x.find]
40. END ELSE IF 0p(6*) = ‘=" THEN BEGIN
41. G, Py®,H,Z,N]|(e*), =T, Ps[®, H|(e*), free(e*) CV, fr(e*), Pi1(e*),

Op(e*) ==, e*[1] # e*[2], So[Z,S,x*.find], S3]A,Z,*.find], S4[S,x*.find](e*)
42. £ := TheorySolve(e*);

43, G, Pi®,H,I,N|(E), -T, free(§) CV, Pu[®,H](E), Pul*.find(E),
SolZ, S, *.find], Ss[A,Z,x.find], S7[S,*.find](E)

44 . AssertEqualities(&);

45. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]

46. END ELSE IF e* = false THEN BEGIN

47. G, Py®,H,Z,N]|(e*), =T, Ps|®, H|(e*), TUD Ee~e*, frie*),
e* = false, S3[I,S,x*.find], S3[A,Z,x.find]

48. 71 := TRUE;

49. G, P[®,H,I,N]|, S2[Z,S,x.find], Ss5[A,Z,x.find]

50. END ELSE IF e* # true THEN BEGIN

51. G, Py®,H,Z,N]|(e*), =T, Ps[®, H|(e*), free(e*) CV, fr(e*), Pi1(e*),

Ople®) =", SHIT, S, x.find], Ss|AT,+find], Su[S,*find)(c?)
52. AssertFormula(e*) ;
53. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]
54, END
55. G, Pl[q),H,I,N], SQ[I,S,*.ﬁnd], Sg[.A,I,*.ﬁnd]
56. END Assert
57. G, P[®,H,I,N], So|Z,S,*.find], S3[A,Z,x*.find]
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58. G, Py, H,Z,N|(E), L, P[P, H](E), Pusl*.find)(E), free(E) CV,
S3[A,Z, *.find], S12[S,*.find](£)
59. AssertEqualities(&)
60. G, P-(all), Py®,H,Z,N](E), I, free(€) CV, Pi2[®, H|(E), Pis[*.find(E),
S3[szv*'ﬁnd]’ 512[87*.ﬁnd](5)
61. IF false € £ THEN BEGIN

62. G, P_(all), Py®,H,IT,N(E), Pp[® H]E), fase € E, Pul.find) (&)
63. I := TRUE;

64. G, P_(all - {T}), P[®,H,T,N], T

65. END ELSE BEGIN | A" := A; &" := &; N* = N; X := 0]

66. G, P_(all), Py[® H,T,N|(E), —I, free(§) CV, Pio]® H|(E), false & &,

Ve e & file), Pu(), SsiAT,«find], S5(€)V SuolS, = find)(€),
S TS, +ofind] (€]

67. FOREACH e € £ DO BEGIN

68. G, P-(1,S), Pc(V,F,R), Pi5[®,N](®*N*,X), Pi3(&), X CE&,
Plﬁ[*.ﬁnd](X75), P17[(I>]((I>* UX), fT@@(g) cy’, Sﬁ((‘:) V Sw[S,*ﬁnd]((‘:),
5’11[8,*.ﬁnd](5), A=A"UX, 513[*ﬁnd](A*), MCR, ecl, eg X

69. AssertFormula(e); [ X := X U {e}; |

70. G, P-(1,S), Pc(V,F,R), Pi5[®,N|(®*,N*,X), Pi3(&), X CE&,
Plﬁ[*.ﬁnd](X75), P17[(I>]((I>* UX), fT@@(g) cy’, Sﬁ((‘:) V Sw[S,*ﬁnd]((‘:),
S11[S, x.find)(€), A=A"UX, Spis[*.find(A*), MCR

T1. END

72. G, P_(S), Pc(F,R), P[®,H,I,N], Pi3(&), Pigl*.find](E), A=A"UE,
56(5)V510[8,*.ﬁnd](5), 511[5,*ﬁnd](5), 513[ ﬁnd](/l*) MCR, ECO

73. [ X :=0; R* :=R; & =8|

T4. G, P-(S), Pc(F,R), Pi[®,H,I,N], Pi3(&), Pigl*.find](E), A=A"UE,

S6(E) V S10[S, *.find](€), SulS,*.find|(€), Sislx.find(A*), MCR, £ECP
75. FOREACH e € £ DO BEGIN
76. G, Pc(F,lhs(S)), Pi[®,H,Z,N], Pi3(§), € C @, Pyl*.find(X,E),
A=A*UE, Sisl*.find(A*UX), Sulxfind(R* X), lhs(X) CR,
515[57*.ﬁnd](57X), 516[57*.ﬁnd](R*,5,X,S*), 517(5,X), ecf, e X
77. e[l].find := €e[2]; | X:=X U{e}; IF —Ss(e[l]) THEN S:={e}(S)U{e}; |
78. G, Pc(F,hs(S)), Pi[®,H,I,N], Pi3(E), EC®, Pgl*find(X,E),
A=A*UE, Ssl*.find|(A*UX), Sul*find(R*, X), lhs(X) CR,
515[8,*.ﬁnd](5,X), 516[8,*.ﬁnd](R*,5,X,8*), 517(5,X)
79. END
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80.

81.
82.

83.
84.

85.
86.

87.
88.

89.
90.

91.

92.

93.
94.

95.
96.

97.
98.

G, Pg(f,th(S)), P [®,H,Z,N], S3|A,Z,x.find], lhs(§) CR,
516[8,*.ﬁnd](R*,5,5,8*), 518[5,*.ﬁnd](72*), 520[8](5)
[ X :=10; ]
G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,x.find], lhs(€) CR,
Sm[S,*.ﬁnd]('R*), Sw[S,*.ﬁnd](R*,g—X,S*), Szo[S](g)
FOREACH e € £ DO BEGIN
G, Pg(f, hs(S)), P [®,H,Z,N], S3]A,Z,*.find], ZV (lhs(§) CR), e€&,
vV 518[8,*.ﬁnd](R*), I\/Slg[S,*.ﬁnd](R*,E—X,S*), 520[8](5), e X
L := e[l].notify; [ U = 0; |
G, Pg(f, hs(S)), P [®,H,Z,N], S3]A,Z,*.find], ZV (lhs(§) CR), e€&,
A, 518[8,*.ﬁnd](R*), 520[5](5), 521[*.ﬁnd](ﬁ,e[1]), eQX,
Soo|Z, S, x.find](e, R*,E — X, L —U,S*)
FOREACH (i,d) € L DO BEGIN
G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,.find], ZV (lhs(€) CR),
A, 518[5,*.ﬁnd](72*), 820[8](5), SQﬂ*.ﬁ’ﬂd]([,,e[l]), ecf, e X,
SxlZ, S, «.find|(e, R*,E — X, L—-U,S*), (i,d) € L, (i,d) €U
TheoryUpdate;(e,d); [ U = U U {(i,d)}; |
G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,.find], ZV (lhs(€) CR),
A, 518[5,*.ﬁnd](72*), 520[8](5), SQl[*.ﬁ'ﬂd](E,e[l]), ecf, e X,
Sp|Z, S, x.find|(e, R*,E — X, L. —U,S*)
END | X := X U {e}; |
G, Pg(]:,lhs(S)), P [®H,Z,N], S3[A,Z,«.find], TV (lhs(6)CR),
A, Sm[S,*.ﬁnd](R*), I\/Slg[s,*.ﬁnd](R*,g—X,S*), Szo[S](g)
END
G, Pg(f,th(S)), P [®,H,Z,N], S3|A,Z,x.find, TV(MCR),
ZV (lhs(€) CR), ZV(R'CR)
END
G, Pg(f,th(S)), P [®H,Z,N], S3|A,Z,x.find, ZTV(MCR),
ZV(lhs(E) CR), ZV(R' CR)
END AssertEqualities
G, Pg(f,th(S)), P [®,H,Z,N], S3|A,Z,*.find, TV(MCR),
ZV (lhs(E) CR), ZV(R' CR)
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99.
100.
101.

102.
103.

104.
105.

106.
107.

108.

109.

110.
111.

112.
113.

G, free(e) CV, fre), Pii(e), Py[H](®,e), S4i[S,*.find](e)
AssertFormula(e) | Z := (); Gy} := FALSE; |

G, P_(all), free(e) CV', fr(e), Pii(e), Pi7[®(P®'), Pal[H](D' €),
Poffind), PlA AJ(e), Si[S,find](c)
FOREACH maximal sub-term ¢ of e¢ DO BEGIN
G, P_(A,H,S), Pc(®,V,N,F,R), freee) CV', fr(e), Pii(e),
Pi7[@](2"), Po[H|(®',e), Paulxfind], Pypl+.find|(Z), Py(t), PulA(Z,e),
Psg[ A, A(e), S4[S,*.findl(e), MCR, t<e
SetupTerm(t,7(e)); | Z := Z U {t}; |
G, P_(AH,S), Pc(®,V,N,F,R), free(e) CV', fr(e), Pi(e),
P17[(I)](Q)’)’ PQ()[H](@’,@), Pgl[*.ﬁnd], PQQ[*ﬁnd](Z), P24[A*](Z,e),
PylA, A)(e), SulS,wfindle), MC R
END
G, P_(A,H,S), Pc(®,V,N,F,R), free(e) CV', Pii(e), Pi7[®](P),
Py[H](D',€e), Por[*.find], Pos[A](e,€), Pos[x.find](e), Pss[A,A](e),
MCTR
A7) = Ar@e) U {e}; G{§ := TRUE; ]
G, P-(H,S), Pc(®,V,N,F,R), free(e) CV', Pi7[®](®'U{e}),
Pyo[H)(D',e), Poi[x.find], Psl+.find](e), ec ®, A=AU{e}, MCR
TheoryAsserty(, (e);
G, P:(H,S), Pg(@»vavaR), P17[(I>]((I>'U{e}), P21[*'ﬁnd],
Pys[x.find|(e), ec @, A=A"U{e}, MCR

—

END AssertFormula
G, P-(H,S), Pc(®,V,N,F,R), Pi7[®(®' U{e}), Poil*.find],
Pys[x.findl(e), e€ ®, A=AU{e}, MCR
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114. G, fr(t), Paa(t), free(t) CV, S4[S,x*.find](t)

115. SetupTerm(t,?)

116. G, P_(all), fr(t), Pus(t), free(t) CV, Pi7[®(D'), Si[S,*.find](t)
117.  IF T(t) #i THEN BEGIN

118. G, P:(all), fr(t), Pas(t), free(t) CV, Pi7[®](D), T(t) #1,

[

107

119. AT() = AT U {t} ]

120. P_(AH,S, *ﬁnd) Pc(®,V,N,A,), fr(t), Pas(t), free(t) CV,
P, T L, te Ay, PulA(), PulA(ti), SiS, find(t)

121. TheoryAddSharedTermq-(t) (t);

122. P_(A,H,S,xfind), Pc(®,V,N,\,), fr(t), Ps(t), free(t) CV,
PN[(P]( ), T(@)#is t €Ay, Poo[As](t), Puo[As](t,4), S4S, . find](?)

123. [Ai =Ny U {t}; ]

124. P_(A,H,S, x.find), Pc(®,V,N,A.), fr(t), P(t), free(t) CV,t € Ay,
P, T L, te Argy, Puld](®), PuA(ti), SiS,find)(t)

125. TheoryAddSharedTerm, (%) ;

126. G, P-(AH,S,.find), Pc(®,V,N,A), fr(t), Pus(t), free(t) CV,t e A,
Pr[a](@), T() 71, (€ Argy, Prolh0), Prlh](b), SilS,wfind(®)

127. END

128. G, P-(AH,S,xfind), Pc(®,V,N,A.), fr(t), Ps(t), free(t) CV,
Piz[@)(@7), Pos[A:](t,9), Poo[Au](t)s Pag[As](E,4), SalS,=.find](t)

129.  IF HasFind(t) THEN BEGIN

130. G, P_(AH,S,*.find), Pc(®,V,N,A,), fr(t), Pi7[®](®), hf(t),
Poy[AL](t,t), Pos[A](t,7), Psg[A](t), Pao[As](t,7), S4u[S,x*.find|(t)

131. RETURN

132. P_(AH,S), Pc(®,V,N,A. F,R), Pi7[®(D), Pos[A](t,1),
P%[ (1), Pog[x.find](t), DPas[*.find](t), t.find =t, Po[A](t),
Pp[A(t,7), MCR

133. END

134¢. G, P-(AH,S,xfind), Pc(®,V,N,A,), free(t) CV, fr(t), Pi7[®](2'),
P23(t)’ P26[A*](t72‘)’ _'hf(t): P39[A>k](t)’ P42[A*](t72‘)’ 54[Sa*ﬁnd](t)

135. FOR k := 1 TO Arity(t) DO BEGIN

136. G, P_(A,H,S), Pc(®,V,N,A,,F,R), free()CV Pi7[®)(2"), Pas(t),

—hf(t), PasA](t,0), Por[*.find|(t), Pas[*.find|(t), Palx.find|(t,k),
Pyo[*.find] (¢, Arity(t) + 1), Pso[Ad(t, k), Pio[A](t), Paz[A](2,4),
Sa[S, *.find)(t), MCR

137. SetupTerm(t[k], T (t)) ;

138. G, P:(A,H 8) Pc(q) V N,A*,f,R), free(t) gv: Pl?[q)](q)l)’ P23(t),

=hf(t), Pos[Ai](t 1), Por[*.find](t), Pos[x.find|(t), Pyol[*.find](t,k+1),

P30[*'ﬁnd] (t AMty( ) + 1) ’ P32[A*](ta k + 1) s P39[A*](t) ’ P42[A>k](tai )

Su[S, +find](f), MCR
139. END
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140.

141.
142.

143.
144.

145.
146. G

147.
148.
149.
150.
151.
152.
153.

154.
155.
156.
157.

158.
159.

160.
161.

162.
163.

164.
165.

P26 [A

(A7H7S)’ g((I)vV N,A*,f,R), free(t) gv} Pl?[@](@,), P23(t),
(t,t), Pog[AL](t, 1), —hf(t), Por[*.find|(t), Pas[*.find](t), Psi[*.find](t),
(t)s Pu[A](t,1), Su[S,*find](t), M CR

:= t;[ G9¥ := FALSE; ]

P_(AH,S), _(<I> VN, A, F,R), Pi7[®(D"), Paul[A](t,1),

*](t,i), Py[x.find)(t), Pagl*.find](t), t.find=1, Psg[A.](t), Pio[A.](t,7),

M C R, Syl*.find, .notify|(t)
TheorySetupy(;, () ; | Gt := TRUE; |
P_(A,H,S), Pc(®,V,N,A, F,R), Pi7[®|(®'), Pou[A](t,1t),

P26 [A

J(&0), Por[efind(2), Pos[xfind](t), tfind=t, PyA(t), PulAd(t i),

MC

R

END SetupTerm

Ps[AL](
MCR

P_(AH,S), Pc(®,V,N,A,,F,R), Pi7[®](D'), Pas[A](t,t),

t,i), Por[x.find|(t), Pys[x.find|(t), t.find=1t, Pso[A.](t), Pi2[A](t,7),

G, free(e) CV

Simplify(e)
G, P_(all), free(e) CV, TUDP e ~e
IF HasFind(e) THEN BEGIN

G,

P_(all), TU® € ~e, hfle)

RETURN Find(e);

G,

P_(AH,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),

TU® = ¢ ~ retval, P7[@](®), S4[S, . find](retval), Ss(retval)

END

G, P—(all), free(e) CV, TUD =€ ~e, —hf(e)
FUR. k := 1 to Arity(e) DO BEGIN

JH, LN, S, +.find), Pc(®,V), free(e) CV, TUD =€ ~e,

P_(A C
P[N][ 1(@"), Pso[x.find|(e, k), So4[S,*.find|(e, k)
kl .=

Simplify (e[k]);
P_(AH,I,N,S,x.find), Pc(®,V), free(e) CV, TUP =€ ~e,

P17[ ]( ), Pgo[ ﬁnd](e k + ), 524[5 *ﬁnd](e k+ )

END

P_(A,H,Z,N,S,*.find), Pc(®,V), freefe) CV, TUP e ~e,

P17[ (@), Pso[*.find](e, Arity(e) + 1), So4[S, x.find|(e, Arity(e) + 1)

R.ETURN Rewrite(e);

P_(AH,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),

TU P € ~ retval, Pi7[®)(®), Su[S,* find](retval), Ss(retval)

END Simplify
G, P_(A,H,Z,N,S,*.find), PQ(CP V), free(retval) CV, fr(retval),
TU®D e ~retval, Pi7[®](®'), SiS,*.find](retval), Ss(retval)
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166. G, free(e) CV, fr(e) V hfle), Sa5[S,*.find](e)

167. Rewrite(e)

168. G, P_(all), free(e) CV, fr(e)V hfle), Sa5[S,*.find](e)
169. IF HasFind(e) THEN BEGIN

170. G, P_(all), free(e) TV, hf(e)
171. RETURN Find(e);
172. G, P_(AH,Z,N,S,*.find), P_(®,V), free(retval) CV, fr(retval),

T U® |= e~ retval, Pi7[®)(P"), S4i[S,*.find](retval), Ss(retval)
173. END
174. G, P:(all) free(e) CV, fr(e), Sos[S,*.find|(e)
175.  ¢* OpRewrite(e);
176. G, (A, H,Z,N,S,*.find), Pc(®,V), free(e’) CV, TUP e ~e*,
fr(e*), Pi7[®](®'), Sa[S,*.find](e,e*), Sar(e,e*)
177. IF e # ¢* THEN BEGIN
178. G, P_(A,H,I,N,S,«find), Pc(®,V), free(e*) CV, TUP |=ex~e*,
fr(e*), Pi7[®@](®'), Sas[S,*.find](e)

179. e* := Rewrite(e*);
180. G, P_(A,H,Z,N,S,*.find), Pc(®,V), free(e*) CV, TUP |Fe~e*,
), Pul(@), SilS, rfindc), 55
181. END
182. G, P_(AH,Z,N,S,.find), Pc(®,V), free(e’) CV, TUP |=e~e*,
rle)), PLBIY), SufS.nfind(e), Sy(e)

183. RETURN e*;
184. G, P_(AH,I,N,S,x.find), Pc(®,V), free(retval) CV, fr(retval),
TU® e~ retval, Pi7[®)(®'), S48, *.find](retval), Ss(retval)
185. END Rewrite
186. G, P_(A,H,Z,N,S,x.find), Pc(®,V), free(retval) CV, fr(retval),
TU®D e~ retval, Pi7[®](P"), S4[S,x*.find](retval), Ss(retval)

187. G, free(e) CV, fr(e), Sa5[S,*.find](e)

188. OpRewrite(e)

189. G, P_(all), free(e) CV, fr(e), Sa5[S,*.find](e)
190.  IF Op(e) = '~ THEN BEGIN

191. G, P-(all), free(e) CV, fr(e), Op(e) ="=", S4[S,*.find](e), Ss(e)
192. RETURN RewriteNegation(e) ;
193. G, P_(A,H,Z,N,S,x.find), Pc(®,V), free(retval) CV, fr(retval),

T UQ® |= e~ retval, Pi7[®)(P"), Su6[S, *.find|(e, retval), Sar(e, retval)
194. END
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195.
196.
197.
198.
199.

200.
201.
202.
203.
204.
205.

206.
207.
208.
209.

210.
211.

212.
213.
214.
215.
216.
217.
218.

219.
220.
221.
222.
223.
224.

225.

G, P-(all), free(e) CV, fr(e), Sos[S,*.find|(e)
IF Op(e) = ‘=" AND e[l] = e[2] THEN BEGIN
G, P-(all), Op(e) =‘=", €[l] =¢€[2]
RETURN t{rue;
G, P_(AH,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),
T U® |= e~ retval, Pi7[®)(P"), Sa6[S, *.find|(e, retval), Sar(e, retval)
END
G, P-(all), free(e) CV, fr(e), Ss(e), Sa5[S,*.find](e)
IF ¢ is a term or an atomic formula THEN BEGIN
G, P_(all), free(e) CV, fr(e), Pss(e), Ss(e), Sa5[S,*.find|(e)
RETURN TheoryRewriter(,(e);
G, P_(AH,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),
T U® |= e~ retval, Pi7[®)(D"), Sa6[S, *.find|(e, retval), Sar(e, retval)
END
G, P-(all), free(e) CV, fr(e), Si[S,*.find](e), Ss(e)
RETURN e¢;
G, P_(A,H,I,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),
TU® = e~ retval, Pi7[®](D'), Si6[S, *.find](e, retval), Sar(e, retval)

END OpRewrite
G, P_(A,H,Z,N,S,x.find), Pc(®,V), free(retval) CV, fr(retval),
TU® = e~ retval, Pi7[®](D'), S6[S, *.find|(e, retval), Sar(e, retval)

G, free(e) CV, fr(e), Op(e) ==, S4S,*.find](e)

RewriteNegation(e)

G, P-(all), free(e) CV, fr(e), Op(e) ='=", S4[S,*.find](e)
IF ¢[l] = true THEN BEGIN
G, P-(all), free(e) CV, fr(e), Op(e) =", e[l] = true
RETURN false;
G, P-(all), free(retval) CV, T U® |=e ~ retval, fr(retval),
S4[S, *.find)(retval)
END
G, P-(all), free(e) CV, fr(e), Op(e) ="=", S4[S,*.find](e)
IF ¢[l] = false THEN BEGIN
G, P-(all), free(e) CV, fr(e), Op(e) ="=", e[l] = false
RETURN true;
G, P-(all), free(retval) CV, T U® |=e ~ retval, fr(retval),
S4[S, *.find) (retval)
END
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226. G, P-(all), free(e) CV, fr(e), Op(e) ="=", S4[S,*.find](e)
227. IF Op(e[l]) =’—’ THEN BEGIN

228. G, P_(all), free(e) CV, fr(e), Op(e) ="=", Op(e[l]) =",
S4[S, *.find](e)

229. RETURN e[1][1];

230. G, P-(all), free(retval) CV, T U® |=e ~ retval, fr(retval),
S4[S, *.find)(retval)

231. END

232. G, P-(all), free(e) CV, fr(e), Si[S,*.find|(e)
233. RETURN e¢;
234. G, P-(all), free(retval) CV, TU®P = e ~ retval, fr(retval),
S4[S, *.find](retval)
235. END RewriteNegation
236. G, P_(all), free(retval) CV, TU® | e retval, fr(retval),
S4[S, *.find](retval)

237. G, hi(t)

238. Find(t)

239. G, P_(dall), hf(t)

240. IF t.find = t THEN BEGIN

241. G, P-(all), t.find=1

242. RETURN ¢;

243. G, P_(all), retval.find = retval, t ~ retval
244, END ELSE BEGIN

245. G, P_(all), hf(t)

246. RETURN Find(t.find) ;

247. G, P_(all), retval.find = retval, t ~ retval
248. END

249.  unreachable

250. END Find
251. G, P_(all), retval find = retval, t ~ retval
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A.4.2 API for Theory-Specific Code

252. G, free(e) CV
253. TheoryAddSharedTerm;(e)
254. (4, Pg4[&ll](i)

2565. G,
256. TheoryAssert,(e)
267. G, Psylall](i)

268. G, P[®,H,Z,N], Q=0, =T, conver, S2[Z,S,x*.find], S3[A,Z,x.find

259. TheoryCheckSat;()

260. G, P_(all —{Z,N,Q}), Pi[®,H,I,N]|, Py[®,I,N,Q,A,,x*.find(i),
So[Z, S, x.find], S3[A,Z,x.find]

261. G, free(e) CV, fr(e), Ps3(e), So5[S,*.find(e)

262. TheoryRewrite,(e)

263. G, TU® e~ retval, fr(retval), free(retval) CV, Psylall](i),
Sa6[S, *.find](e, retval)

264. G, hf(e)
265. TheorySetup, (e)
266. G, Pg4[&ll](i)

267. G, Py®,H,I,N]|(e), I, Ps[®, H](e), free(e) CV, fr(e), Pule),
Op(e) = ‘=", e[l] £ e[2], S2|Z,S,*.find], S3[A,Z,x.find], Si[S,x*.find](e)

268. TheorySolve(e)

269. G, P_(H,Z,N,x.find), Pc(®
Pi7[®](®"), Pss5[®](e, retval),

), free(retval) CV, Piy[*.find)(retval),
S9|Z, S, x.find], S3[A,Z,x*.find], S7[S,x*.find|(retval)

270. G, P\[®,H,Z,N], S3[A,Z,x*find], Sog[*.find](i,d)

271. TheoryUpdate, (e, d)

272. G, P_(F,Ihs(S)), Pi[@,H,I,N], Ss[A,Z,*find, IV(MCR), IV(R' CR),
7' =17



APPENDIX A. CORRECTNESS OF THE FRAMEWORK 113

A.4.3 Theory-Specific Code for a Nelson-Oppen Theory 7;

273. G, free(e) CV
274. TheoryAddSharedTerm;(e)
275. G, 17;34[61[[](’5)

276. &,
277. TheoryAssert,(e)
278. G, Psylall](i)

[o0]

279. G, P[®,H,Z,N], Q=0, =T, conver, So[Z,S,x*.find], S3[A,Z,x.find

280. TheoryCheckSat;()

281. G, P_(al), P[®,H,I,N], Q=0, —I, conver, So|Z,S,x.find],
S3[A,Z, *.find]

282.  IF —Sat;(®; UE. ) THEN BEGIN

283. G, P_(all), P[®,H,Z,N], Q=10, =T, conver, —Pss[®, A, *.find|(i)
284 . 71 := TRUE;
285. G, P_(all — {T}), P\[®,H.I,N]|, Po[®,T,N,Q,A,,xfind)(i),

SoZ, S, x.find], S3[A,ZL,x*.find]
286. END ELSE IF ﬁSaU(QiLJAﬂNJ THEN BEGIN

287. G, P_(all), P[®,H,Z,N], Q=0, =L, convex, —P7[®, A, *.find|(i),
Psg[®, Ay, x.find](i), So[Z,S,*.find], S3[A,Z,*.find]

288. Choose A C D., such that —Sat;(®; UE., UA);

289. G, P_(all), P[®,H,Z,N], Q=0, =L, convex, —P7[®, A, *.find](i),
Psg[®, Ay, +.find] (i), P37[®, Ay, x.find](i,=A), So[Z,S,*.find], S3[A,L,x.find]

290. Q := {-A};

201. G, P(all —{I,0Q}), P[0, H,T,N], P[®,1,N,Q,A,,*find(i),
SoZ, S, x.find], S3[A,ZL,x*.find]

292. END

293. G, P_(all —{Z,0Q}), P [®,H,I,N]|, P[P, I,N,Q,A,,x.find)(i),
S9|Z, S, x.find], S3[A,Z,x.find]
294. END TheoryCheckSat;
205. G, P_(all — {T,N,Q)), P[®,H.T,N]|, Py[®,T,N,Q,A,,«find)(i),
SoZ, S, x.find], S3[A,ZL,x*.find]
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296.
297.
298.
299.

300.
301.
302.

303.

304.
305.
306.

307.
308.
309.

G, free(e) CV, fr(e), Ps3(e), Sas[S,*.find](e)
TheoryRewrite; (e)

RETURN e¢;
G, TU® e~ retval, fr(retval), free(retval) CV, Psslall](i),
Sa6[S, *.find](e, retval)

G, hf(e)
TheorySetup; (e)
G, Psqlall](7)

G, P®,H,Z,N](e), =T, Ps[®, H|(e), free(e) CV, fr(e), Pii(e),
Op(e) = ‘=", e[l] Ze[2], S9[Z,S,x.find], S3[A,Z,x.find], S4[S,*.find|(e)
TheorySolve(e)

RETURN {e};
G, P_(H,Z,N,x.find), Pc(®), free(retval) CV, Pyy[x.find](retval),
Pi7[®](®"), Ps5[®](e, retval), So|Z,S,x.find], S3[A,Z,x.find], S7[S,*.find|(retval)

G, P[®,H,Z,N]|, S3[A,T,x*find], Sog[*.find](i,d)

TheoryUpdate; (e, d)

G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[AZ,*find], ZV(MCR), ZV(R'CR),
7' -1

A.4.4 Theory-Specific Code for Shostak Theory 7,

310.
311.
312.

313.
314.
315.

G, free(e) CV
TheoryAddSharedTerm, (e)
G, Psylall](7)

G,
TheoryAssert,;(e)
G, Psylall](7)
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316. G, P[®,H,Z,N], Q=0, I, convex, S3[Z,S,x*.find], S3[A,Z,x*.find]
317. TheoryCheckSat, () [ X := 0; |

318. G, P_(all), P[®,H,Z,N], S2|Z,S,x.find], S3[A,Z,x*.find]

319. FOREACH e in Jix DO BEGIN

320. G, P-(all), P[®,H,I,N], ec Ay, S2|Z,S,x.find], S3[A,Z,*.find],
S/ S)(X )
321. IF Op(e) = '~ AND Find(e[l][1]) = Find(e[1][2]) THEN BEGIN
322. G, P_(all), P [®,H,Z,N], Op(e[l]) =‘=", Op(e) =7,
e[l][1] ~ e[1]2], e€ Ay, So[Z,S, *.find]
323. Z := TRUE; RETURN;
324. G, P_(all = {Z,N,Q}), P[P, H,I,N], Po[®,T,N,Q, A, *.find](x),

SolZ, S, x.find], S3[A,ZL,x*.find]

325. END | X := X U {e}; |

326. G, P_(all), P[®,H,Z,N], So|Z,S,x.find], S3[A,Z,x*.find],
Sa[Z, S|(X, x)

327. END

328. G, P_(adl—{Z,N,Q}), P[®,H,IZ,N], P[®,I,N,Q,A,, *.find](x),
SolZ, S, x.find], Ss3[A,Z,x*.find]
329. END TheoryCheckSat,
330. G, P_(all —{Z,N,Q}), Pi[®,H,I,N]|, Py|®,IZ,N,Q,A,,x.find](x),
S2lZ, S, *.find], S3[A,Z,x.find]

331. G, free(e) CV, fr(e), Pss(e), S25[S,*.find](e)

332. TheoryRewrite, (e)

333. G, P-(all), free(e) CV, fr(e), Ps3(e), Sa25[S,*.find](e)
334. IF e is not a term THEN BEGIN

335. G, P-(all), free(e) CV, fr(e), Ps3(e), ~P3(e), Si[S,x*.find](e)

336. RETURN e¢;

337. G, TU® |=e~ retval, fr(retval), free(retval) CV, Psslall](x),
Sa6[S, *.find] (e, retval) , Si2[S](e, retval)

338. END

339. G, P-(all), free(e) CV, fre), Pas(e), S25[S,*.find](e)

340. €" := RewriteHelper(e);

341. G, P-(all), free(e*) CV, Pos(e*), TUD Eex~e*, Ss[+.find](e*),
SlS, = fnd(e), SalSIe), SuSle0)

342.  RETURN canomy (e");

343. G, TU® e~ retval, fr(retval), free(retval) CV, Psy4lall](x),
Sa6[S, *.find](e, retval), Si2[S](e, retval)

344. END TheoryRewrite,

345. G, TU® = e~ retval, fr(retval), free(retval) CV, Psalall](x),

Sa6[S, *.find|(e, retval) , Si2[S](e, retval)
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346. G, Py[®,H,I,N]|(e), I, Ps[®, H](e), free(e) TV, fr(e), Pi(e),
Op(e) = ‘=", e[l] £ e[2], S2|Z,S,*.find], S3[A,Z,x.find], Si[S,x*.find](e)
347. TheorySolve(e)
348. G, P-(all), Py®,H,Z,N]|(e), =T, Ps[®,H|(e), free(e) CV, fr(e), Pii(e),
0p(e) = =", ell] # el2], SIS, wfind], SLA.TL 5 find), $i[S.+find)(c)
349.  RETURN solvey(e); [ V =V U free(retval) |
350. G, P_(®,H,Z,N,x ﬁnd) free(retval) CV, Piy[*.find](retval),
P7[®](9"), P35[ |(e, retval), So|Z, S, *.find], Ss[A,Z,x*.find],
S7[S, *.find](retval)
351. END TheorySolve
352. G, P_(H,Z,N,x.find), Pc(®
Pi7[®](®"), Pss5[®](e, retval),
S7[S, *.find](retval)

), free(retval) CV, Piy[*.find)(retval),
SolZ, S, x.find], S3[A,Z,x*.find,

353. G, hf(e)

354. TheorySetup, (e)

355. G, P_(all), hf(e)

356. IF e is a compound x-term THEN BEGIN [ Z := (); |

357. G, P-(all), hfle), Ss(e)

358. FOREACH c € 6, (¢) DO BEGIN

359. G, P_(all — {x.notify}), Pc(x.notify), hf(e), Ss(e), Szs[*.notify](Z)
c € dy(e)

360. c.notify := cnotifyU{(x,e)}; | Z = Z U {c}; |

361. G, P_(all — {*x.notify}), Pc(x.notify), hf(e), Ss(e), Szs[*x.notify](Z)

362. END

363. G, Psylalll(x), Sss[x.notify](e)

364 . END

365. G, Palalll(x), Sss[x.notify](e)
366. END TheorySetup,
367. G, Psylall](x), Sss[*.notify|(e)
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368. G, P\[®,H,IZ,N]|, hf(d), S3[A,Z,x.find], Ss(d), So[x.find](d)

369. TheoryUpdate, (e,d)

370. G, P_(dall), P[®,H,Z,N]|, hf(d), S3[A,Z,x.find], Ss(d), So[x.find](d)
371. IF =7 AND Find(d) = d THEN BEGIN

372. G, P_(al), P[®,H,Z,N], L, d.find=d, S3|A,Z,x.find], Ss(d),
ol find) (d)

373. d* := TheoryRewrite, (d);

374. G, P_(S,*.find), P [®,H,Z,N]|, -, =T', fr(d*), Py3(d*), d.find=d,
S1[S|(d*,d), S3[A,Z,x*.find], S4[S,*.find|(d*), Ss(d), So[x.find|(d)

375. AssertEqualities({d = d*});

376. G, Pc(F,lhs(S)), Pi[®,H,Z,N], -T', S3|A,Z,*.find], TV(MCR),
IV(R'CR), IV(deR)

377 . END

378. G, Pc(F,hs(S)), P®,H,I,N]|, S3[AL, xfind, TV(MCR),
IV(R'CR), T =T, SulL,sS,*find)(d)
379. END TheoryUpdate,
380. G, Pc(F,Ihs(S)), Pi[®,H,I,N], Ss|A,Z,*find], IV(MCR), IV(R' CR),
' = I, S34[Z,S,*.find)(d)

381. G, free(t) CV, Psl(t), fr(t) VvV hf(t), Sos[S,*.find|(t)

382. RewriteHelper(t)

383. G, P_(all), free(t) CV, t'= t, Pas(t), fr(t) V hf(t), Sas[S,*.find](t)
384. IF ¢t is a x—-leaf THEN BEGIN

385. G, P_(all), free(t) CV, t'= t, Py(t), fr(t) VvV hf(t), —Ss(t),
525[83 *ﬁnd] (f)
386. IF —HasFind(#) OR t.find= t THEN BEGIN
387. G, P_(all), free(t) CV, t' = t, fr(t), Pas(t), —Ss(t),
S51[S, x.find](t) , S32[S](t), Ss3[S](¢, 1)
388. RETURN ¢;
389. G, P_(all), free(retval) CV, TU® =t ~ retval, Paz(retval),

Sso[x.find|(retval), S31[S, *.find](retval), Ssa[S](retval), S33[S](retval,t’)
390. END ELSE BEGIN

391. G, P_(all), free(t) CV, t'= t, Py(t), hf(t), So5[S,*.find](t)
392. t := Find(®);

393. G, P_(all), free(t) CV, t'~ t, Py(t), fr(t), Sos[S,*.find](t)
394. RETURN RewriteHelper(t*);

395. G, P_(all), free(retval) CV, T U® |=1t' ~ retval, Pos(retval),

Sso[*.find](retval), S31[S, *.find](retval), Sso|S](retval), Ss3[S](retval,t’)
396. END
397. unreachable
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398. END ELSE BEGIN

399. G, P_(all), free(t) CV, t'= t, Py(t), fr(t) vV hf(t), Ss(t),
S95[S, *.find)(t) -
400. FOR & := 1 to Arity(t) DO BEGIN
401. G, P_(all), free(t) CV, TU® Et ~t, Py(t), Ss(t), Ssr[+.find](t),

Sag[*.find](t, k), Ss9[S,*.find](t,k), Si[S,*.find](t,k), Su[S](t k),
Op(t) = Op(t')

402. t[k] := RewriteHelper (t[k]);

403. G, P_(all), free(t) CV, TU® Et ~t, Py(t), Ss(t), Ssr[+.find](t),
Ssg[x.find|(t,k + 1), Sso[S,*.find](t,k+ 1), Sil[S,*.find|(t,k + 1),
Su[S](t.k+1), Op(t) = Op(t')

404. END

405. G, P_(all), free(t) CV, TUD =t ~t, Pos(t), Sso[*.find|(t),
531[5, *.ﬁnd] (TL) N S&Z[S](t) N S;;;;[S](t, Tf’)

406. RETURN ¢;

407 . G, P_(all), free(retval) CV, T U® |=t' ~ retval, Py3(retval),

Sso[*.find](retval), Ss1[S, *.find](retval), Ss2[S](retval), Ss3[S](retval,t’)
408. END
409.  unreachable
410. END RewriteHelper
411. G, P_(all), free(retval) CV, TU® =t =~ retval, Py3(retval),
Sso[*.find](retval), S31[S, *.find](retval), Sso[S](retval), Ss3[S](retval,t’)

A.5 Detailed Proof

Finally, we present a detailed, line-by-line proof of each underlined property listed
in the annotated code. For each line, the code together with the properties before
(preconditions) and after (postconditions) are reproduced for convenience. Then, for
each underlined postcondition, a justification is given.

It is often necessary to refer to the value of state variables before the line is
executed. This is done by subscripting the variable with the line number of the
preconditions. For example, in the proof for line 2, Hy refers to the value of the
assumption history just before entering AddFact, while H refers to the value at line

2, after entering and executing the virtual code which changes H.
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A.5.1 Lemmas

We start with a few general-purpose lemmas.

Lemma A.1. Suppose t is a X-term, S is a set of equations in x-solved form,

and canon, 1s a generalized canonizer as described in Section A.2.1. Then if s =
canony, (S(t)), then S(s) = s.

Proof. Suppose that S(s) # s. Then since S is in y-solved form, there must be
some ¢ € [hs(S) such that ¢ € §,(s). Then, by property 3 of canon, this means
that ¢ € 0,(S(¢)). But because S is in x-solved form, d,(S(t)) N lhs(S) = 0 which
contradicts the fact that ¢ € lhs(S). Thus, S(s) = s. O

Lemma A.2. Suppose T, is a Shostak theory with signature ¥, and canonizer canon,

tis a Xy-term, and §', S, and {e} are sets of X, -equations in solved form such that
S ={e}(S")U{e}. Then canon(S(canon(S'(t)))) = canon(S(t)).

Proof.
T, =t=t T, includes reflexivity.
T,US ES(t) =t S’ in solved form.

T, US' = canon(S'(t)) =t Properties 1 and 2 of canon
T, US' US |= S(canon(S'(t))) = S(t) S in solved form.

T, US = S(canon(S'(t))) = S(t) SES.

T, = S(canon(S'(t))) = S(1) Proposition 2.1.

canon(S(canon(S'(t)))) = canon(S(t)) Property 1 of canon.
O

Corollary A.1. Suppose T, is a Shostak theory which is part of a combined theory
T with signature 3, and suppose canon, is a generalized canonizer as described in
Section A.2.1. Then, if t is a X-term, and Sy, S1,...S, are sets of equations in x-
solved form, where for each i,1 < i < n, there exists e such that {e} is in x-solved

form and S; = {e}(S;_1) U {e}, then canon, (S, (canon,(Sy(t)))) = canony(S,(t)).

Lemma A.3. Suppose T, is a Shostak theory which is part of a combined theory

T, and suppose canon, is a generalized canonizer as described in Section A.2.1. If
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f(s1,...,8n) is a compound x-term, then

canony (f(s1,...,s,) = canony(f(canony(s1), ..., canony(sy))).

Proof. By property 1 and 2 of canon, T, k= canon(s;) = s; for each s;. It follows
that 7, = f(canon(s:),..., canon(s,)) = f(s1,...,5,) by substitution. Thus, by
property 1 of canon, canon(f(canon(sy), ..., canon(s,))) = canon(f(si,...,s,). The

generalization to canon, is straightforward. a

Lemma A.4. Suppose T UW |=37. X, where T = free(X) — free(W) and TUX
7. Y, where § = free(Y') — free(X). Suppose also that W C X and X CY. Then
TUW EJw. Y, wherew =TUY = free(Y) — free(W).

Proof. Suppose M =, W. Then, because 7 UW k= 37. X, it follows that there
exists a variable assignment p* which differs from p only on 7 such that M =, X.
Similarly, it follows from 7 U X |= 37. Y that there exists a variable assignment p**
which differs from p* only on 7 such that M =, Y. Thus, M =, 37,7. Y. But
T = free(X) — free(W), 7 = free(Y') — free(X), and W C X and X C Y, so it follows
that TUY = free(Y) — free(W). O

Lemma A.5. If all global properties hold at the beginning of a procedure, and P—(all)
is true at some line of the procedure, then G and Ps[all](i) (for all i) also hold at
that line.

Proof. The global properties depend only on global state, so if the global state is un-
changed, then clearly the global properties still hold. We now consider the properties
in P34[all](z)

P(® — B, H,I,N,S, A,, =.find): By P_(all).

P-(Q, B, V, *.notify): By P-(all).

T, U~i(®; = 3Jw. B;): By B, = B; and B'; C ®.. Note also that w = free(B;) —
free(®}), so w = (), and thus, clearly, wNV'=0Aw C V.
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TiUy(®i = (Q—9)): Q- Q =0.

free(@—-Q) CV: Q- Q' =10

O

Lemma A.6. If all global properties hold at the beginning of a procedure, and the
property Psy[all](i) holds at the end of a procedure, then all global properties except

for Gy, G1o and G117 are automatically satisfied.

Proof. Recall that property Ps4[all](i) implies that P_(® — B;, H,Z, N, S, A, x.find),
P(Q,B;, V, x.notify), T, Uv(®, =E3w.B;) AwnV' = OAw C V, where w =
free(B;) — free(®}), and T;U~;(P; = (Q — Q) Afree(Q— Q') C V. We now show that
the global properties hold.

G,: By P_(H,Z).

Gy: By @ = ' U B; and P_(x.find).

G3: By G at the start of the procedure and P_(#), we have T UH | 3@. @', where
w = free(®') — free(H). Then, by Ps4lall](i), we have v;(7; U@} = 37T B;),
where T = free(BB;) — free(®}). It follows that 7 U @, = 3. B;, and thus
TUd' E37.B8;, 50 TUH = 3w, T.(P'UB;). But & = ®'UB; (by P_(®—B5;) and
Pc(B;)), so TUH |= 3w, T.®. It remains to show that WUT = free(®)— free(H).
We know that free(®) = free(®') U free(B;) and w = free(®') — free(H). Now,

= free(B;) — free(®%), but we also know that ZN V' = () and free(HU®') C V'

s at the start of the procedure), so T = free(B;) — free(H U @), and thus

(by G
wUT = free(®) — free(H).

G4: By Gy at the start of the procedure and P_(H,N) and ® = &' U B;, we have
TUHU® E Q UN. It remains to show that TUH U® = (Q — Q'). But this
follows from 7; U v;(®; = (Q — Q).

G5: By P_(x.find).

Gg: By P_(x.find).
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G7: By P_(x.find).

Gs: By P_(N,H, A, *.find) and Pc(V), free(( N UHUFUA) C V. It remains to show
that free((Q — Q") U (® — @')) C V. But this follows easily from Ps4[all](i).

G11: By P_(A, x.find).

Gh3: By P_(S).

G14: By P_(S, *.find).

Gis: By P_(S, +find).

Gig: By definition, P_(G{). Gig then follows by P_(x.find) and Pc(x.notify).
Gs: By P_(x.find).

Gi9: By P_(S, *.find).

Gz By P_(A).

A.5.2 AddFact

Line 2:

0. G, P[P, H,Z,N], Py(e), Ps[®,H](e), S2[Z,S,x*.find], S3[A,Z,x.find]
1. AddFact(e) | H = H U {e}; V =V U free(e); |
2. G, PO, H,I,N|(e), ecH, S[I,S,x.find], S3[A,Z,x*.find]

G Only those global properties which depend on H or V need be considered:

G1: By Gy at 0, Zy — T UHy | false. Since Z is unchanged and Ho C H, it
follows that T — T U H |= false.

Gs: By G3 at 0, T UHy | Jw. &, where w = free(®) — free(Hy). Since
H = Ho U {e}, it follows that T UH = Jw. . But P[P, H](e) at 0
ensures that free(e) N free(® — Hy) = 0, so W = free(P) — free(H).
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G4 By Gyat 0, TUHoU® = QUN. But since Hy C H, it follows trivially
that TUHoU® = QUWN.

Gs: By Gg at 0, free(( QUN UPUHyUFUA) CVy. But H =HoU {e} and
YV =V, U free(e), so it follows that free(QUN UPUHUFUA) CV.

Py[®,H,T,N]|(e): By Pi[®,H,Z,N]| at 0, =Z — (T UN U P E H). Then, since
H = Ho U {e}, it follows that =Z — (T UN U P U {e} = H).

G, Py®,H,Z,N](e), ecH, S[Z,8,*.find], S3[A,ZL,x*.find]
3.  Q :={e};
G, Pj®,H,I,N]|(e), Q={e}, So|Z,S,*.find], S3[A,ZL,x.find]

G': Only those global properties which depend on Q need be considered:
Gy By Gyat 2, TUHU® |E QyUWN. Then, since e € H and Q = {e}, it
follows that TUH U ® = QUN.

Gs: By Gg at 2, free(QoUN UPUHUFUA) CV, but again, e € H and
Q = {e}, so Q@ C H, and thus free(Q) C V.

Line 6:

4. G, PO, H,Z,N]|(e), Q={e}, S[Z,S,*.find], S3[A,ZL,x*.find]
5. REPEAT

6. G, P5|®,H,Z,N,Q|(e), S2[Z,S,*.find], S3[A,ZL,x.find]

26. G, P[0, H,T,N], B|®,T,N,Q A, *find(N +1),
Py[®,Z,N, Q, A, *.find|(i), So|Z,S,x.find], Ss[A,ZL,x.find
27. UNTIL Q@ =0 OR Z;

P5[®,H,Z,N, Q](e): We must show (P,[®, H,Z,N|(e)AQ = {e})V (P[P, H,Z, N]A
Q # (). From 4, this is clear since P,[®, H,Z,N](e) AN Q = {e} at 4. From 26 it
is also trivial since Pi[®, H,Z, N] holds at 26 and Q # () by the loop condition.
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Line 8:

6. G, P5|®,H,Z,N,Q|(e), S2[Z,S,x*.find], S3[A,ZL,x.find]

7. WHILE Q # () AND —Z DO BEGIN

8. G, Q#0, -, P5|®,H,Z,N,Q|(e), S2[Z,S,x*.find], S3[A,Z,x.find]
14. G, P[®,H,I,N], S2[Z,S,x.find], S3[A,Z,x.find]

15. END

P5[®,H,Z,N, Q](e): We must show (P,[®, H,Z,N|(e)AQ = {e})V (P[P, H,Z, N]A
Q # (). From 6, it follows trivially. From 14, it follows since P,[®, H,Z, N
holds at 14 and Q # () by the loop condition.

Line 10:
8. G, Q#0, =, P5|®,H,Z,N,Q|(e), S2[Z,S,x*.find], S3[A,Z,x.find]
9. Choose e¢* € Q;

10. G, Pi®,H,I,N|(e*), Q£0, I, ¢* €0,

Ps[®, H](e*), free(e*) CV, S9|Z,S,x*.find], S3[A,Z,x.find

Py[®,H,Z,N](e*): By P5[®,H,Z,N,Q](e) at 8, either P,[®, H,Z,N](e) A Q = {e}
or P[®,H,Z,N]AQ # . Consider the first case: Py[®, H,Z, N](e) A Q = {e}.
Since Q@ = {e} and e* € Q, it follows that e = e*. Thus, P[®, H,Z,N](e*)
follows from P,[®,H,Z, N](e). In the other case, we have P,[®, H,Z, N]A-Q =
(. But P[®, H,Z,N] implies Py[®, H,Z, N](e*).

Ps[®,H](e*): By Gyat 8, TUHU® = Q. Bute* € Q, so it follows that TUHUD = e*.

free(e*) C V: Follows by G at 8 since e* € Q.

Line 12:
10. G, Pi®,H,I,N|(e"), Q£0, I, ¢* € Q,
Bs[®, H](e*), free(e*) CV, So|Z,S,x*.find], S3[A,I,x*.find]
11. Q = Q—{e"'};
12. G, Py[®,H,I,N](e*), -T, Ps[®, H](e*), free(e’) TV,

n

9[Z, S, x.find], Ss3[A,Z,x*.find]
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G: Only those global properties which depend on Q need be considered. These are
G4 and Gy, and they follow from G4 and Gg respectively at 10 and the fact that

Q C Q.
Line 14:
12. G, Py, H,Z,N]|(e*), ~I, Ps[®,H|(e*), free(e*) CV,
So[Z, S, *.find], S3[A,Z,x*.find]
13. Assert(e*);
14. G, P[®,H,I,N], S2[Z,S,x.find], S3[A,Z,x.find]

31. G, Py®,H,I,N]|(e), -I, Ps[®, H](e), free(e) TV, S2[Z,S,x*.find],
S3[ A, Z, *.find]
32. Assert(e)

56. END Assert
57. G, P[®,H,IZ,N], S9|Z,S,*.find], S3[A,ZL,x.find]

We must verify that the preconditions of Assert are met and that the postconditions
of Assert imply the conditions at line 14. However, it is not hard to see that the
preconditions of Assert match the properties at line 12 and that the postconditions

of Assert are equivalent to the properties at 14.

Line 16:
6. G, P5|®,H,Z,N,Q|(e), S2[Z,S,x*.find], S3[A,ZL,x.find]
7. WHILE Q # () AND —Z DO BEGIN
14. G, P[®,H,I,N]|, S3[Z,8,*.find], S3[A,Z,x.find]
15. END
16. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]

P[®,H,Z,N]: From 6: By the loop condition, @ = () or Z. If @ = (, then
P[®,H,Z,N] follows from Ps[®, H,Z,N, Ql(e) at 6. If Z, then P,[®, H,Z, N]

is trivially true. From 14: trivial.
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Line 18:

16. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]

17. FOR 7 := 1 TO N DO BEGIN

18. G, P[®,H,I,N]|, BK[®,I,N,Q A *find(i), S2[Z,S,x*.find],
S3[ A, Z, *.find]

2. G, P®,H,T,N], B[®,T,N,Q,A,,*find)(i),

Py[®,Z,N, Q, A, x.find)(i), So|Z,S,x*.find], S3[A,Z,*.find]
25. END

B[®,Z,N, Q, A,, *.find)(i): We must show that (Q = 0 A ~Z A convezr) — (V5,0 <
J < i. P[®, Ay, x.find|(j)). From line 16, this is trivial since i = 1. For the
transition from line 24, note that i = iy +1. Ps[®,Z, N, Q, A,, *.find|(i) follows
easily by B[®,Z, N, Q, A, *.find|(iz4) and Po[®,Z, N, Q, A, *.find)(i24).

Line 22:

20. G, P[®H,Z,N], Q=0, =T, R[®,I,N,Q,A,, *find(i), convez,
SoZ, S, x.find], S3[A,ZL,x*.find]

21. TheoryCheckSat; () ;

22. G, PO, H,T,N]|, B[®,T,N,Q,A,, *find)(i),

Py[®,I,N, Q, A, x.find| (i), S2|Z,S,x*.find], S3|A,Z,x.find]

258. G, P|[®,H,Z,N], Q=0, —I, conver, S3[L,S,x*.find], S3[A,ZL,x.find]

259. TheoryCheckSat;()

260. G, P_(all —{Z,N,Q}), Pi[®,H,I,N]|, Py[®,I,N,Q,A,,x*.find(i),
So|Z, S, x.find], S3[A,Z,x.find]

The conditions at 20 and 22 match the preconditions and postconditions of the theory-
specific procedure TheoryCheckSat. The only exception is Ps[®,Z, N, Q, A,, *.find)(7)
at 22 which follows from Ps[®,Z,N, Q, A,, .find](i) at 20 and the postcondition
P_(all = {Z,N, Q}) of TheoryCheckSat.
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Line 26:

16. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]
17. FOR 7 := 1 TO N DO BEGIN

24. G, P[®,H,I,N]|, BK[®,I,N,Q, A, *find(i),

Py[®,Z,N, Q, A, x.find)(i), So|[Z,S,x*.find], S3[A,Z,*.find]
25. END
26. G, P[®,H,Z,N], B[®,I,N,Q,A,, *find(N +1),
Py[®,Z,N, Q, A, *.find|(i), So|Z,S,x*.find], S3[A,ZL,x.find]

We assume there is at least one theory, so there is no possible transition from 16.

P[®,Z,N, Q,A,, *.find|(N + 1): This follows easily from P[®,Z, N, Q, A, *.find|(7)
and Py[®,Z, N, Q, A, *.find|(7) at 24 and the loop termination condition: ¢ =
N.

Line 28:

26. G, P[®,H,I,N]|, KB[®,I,N,Q A, *find(N+1),
Py[®,Z,N, Q, A, *.find|(i), So|Z,S,x.find], Ss[A,ZL,x.find
27. UNTIL Q@ =0 OR Z;
28. G, P[®,H,I,N], Pp|®,I,N, A *find], S2[Z,S,x*.find], S3[A,Z,x.find

Py[®,Z, N, A, +.find]: By B[®,Z,N,Q,A,,*.find(N + 1) at 26, (Q = DA =T A
convez) — (V5,0 < j < N. P;[®, A, *.find](j)). Then, by the loop termination
condition, we have: @ = () VZ. Suppose Q = (), then we have (=Z A conver) —
(V7,0 <j < N.P[®, A, *.find|(j)), which is exactly Pjy[®,Z, N, A, *.find]. If,
on the other hand, Z is TRUE, then Pyo[®,Z, N, A,, .find] follows trivially.
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A.5.3 Assert

Line 35:

33. G, P®,H,IZ,N|(e), I, Ps|®,H](e), free(e) TV, Si[Z,S,x*.find],
S3[A,Z, *.find]

34. ¢€* := Simplify(e);

35. G, PO, H,I,N|(e*), =T, Ps[®, H](e*), free(e*) TV, TUD Ee~ce,
fr(e*), SolZ,S,*.find], S3|A,Z,*.find], S4[S,*.find](e*), Ss(e*)

147. G, free(e) CV
148. Simplify(e)

164. END Simplify

165. G, P-(A,H,Z,N,S,x.find), Pc(®,V), free(retval) CV, fr(retval),
TU® =€ ~retval, Pi7[®](®'), SaS,*.find](retval), Ss(retval)

The preconditions of Simplify follow easily from the properties at 33. Thus, we
simply must show that the postconditions imply the properties at 35.

G: Follows by G at 165.

TU® Ee~e': By TU® e ~ retval at 165.

Py[®,H,T,N](e*): To show that -Z — (T UN U U {e*} = H), suppose —Z and
M, TUNU®U{e'}. We must show that M =, H. First notice that
by TU® = e ~ e at 35 (which we just showed), it follows that M |=,
TUNU®U{e}. Now, by P_(Z,N) and P-(®) at 165, we have —Z33 and
M =, T UNs U @33 U {e}, so it follows from Py[®,H,Z,N]|(e) at 33 that
M =, Hss. But by P_(H) at 165, Hs3 = H,so M =, H.

—Z: By —Z at 33 and P_(Z) at 165.

Ps[®, H](e*): To show that TUHU® |= e*, suppose M =, TUHUP. We must show
that M =, e*. Now, by P_(H) and P-(®) at 165, we have M =, T UH 33U P33.
Then, by Ps|®, H|(e) at 33, M k=, e. Finally, by TU® |= e =~ e* at 35, it follows
that M =, e*.

free(e*) C Vi By free(retval) CV at 165.
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TU® Eex~e': By TU® =€ ~ retval at 165.

fr(e*): By fr(retval) at 165.

SolZ, S, x.find]: By So|Z, S, *.find| at 33, P_(Z, S, .find) at 165.

S3[A,Z, x.find]: By S3[A,Z, *.find] at 33, P—(A,Z, x.find) at 165.

Sy[S, *.find](e*): By S4[S, *.find|(retval) at 165.

Ss(e*): By Ss(retval) at 165.

Line 39:

37. G, P®,H,Z,N](e*), =T, Bs[®, H|(e*), free(e*) TV, fr(e*),
SolZ, S, x.find], Ss[A,Z,x*.find]

38. N = NUu{e};

39. G, P[®,H,I,N], So|Z,S,x.find], S3[A,Z,x.find]

Gyt By Gy at 37, TUHU® = QUN57. But TUHU® = e* by B[P, H](e*) at 37,
so it follows that TUH U P E QUN.

Gg: Follows from Gy at 37 and free(e*) C V at 37.

P[®,H,Z,N]: By —Z and Py[®, H,Z,N](e*) at 37, TUN3; UP U {e*} = H. Thus,
TUNU® EH, from which P[®,H,Z, N] follows easily.

Line 41:

35. G, PO, H,I,N]|(e*), =T, Ps[®, H](e*), free(e*) TV, TUD Ee~ce,
fr(e*), SolZ,S,x.find], S3[A,Z,x.find], S4[S,*.find](e*), Ss(e*)
36. IF e* is not a literal THEN BEGIN

40. END ELSE IF Op(e*) = ‘=" THEN BEGIN

41. G, Py®,H,Z,N]|(e*), =T, Ps[®, H](e*), fr(c( ) CV, 1((3*), Ppy(e”),
Op(e*) = =", e*[1] £ e*[2], S2[T,S,*.find], S3[A,T, *.find], S4[S,*.find](e*)

Py (e): By the if-condition at 36, e* is a literal.

e*[1] # e*[2]: By Ss(e*) at 35, we have Op(e*) = ‘=" — e*[1] #Z €*[2]. Then, since
Op(e*) = ‘=" at 41 (by the if-condition), e*[1] # e*[2].
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Line 43:

41. G, Py®,H,Z,N|(e*), =T, Ps[®,H|(e*), free(e*) TV, fr(e ), Py (e*),
Op(e*) = =", e*[1] £ e [2], S2[Z,S,*.find], S3[A,ZL, *.find], Si[S,*.find|(e*)

42. & := TheorySolve(e*);

43. G, Py@,H,Z,N|(E), I, free(€) TV, Pio[®, H|(E), Pua[*.find](E),
So[Z, S, x.find], S3[A,Z,x*.find], S7[S,x*.find](E)

267. G, Py[®,H,Z,N](e), I, Ps[®, H](e), fr(’e( ) CV, fr(e), Pii(e),
Op(e) = ‘=", e[l] Ze[2], S9[Z,S,x.find], S3[A,Z,x.find], S4[S,*.find|(e)

268. TheorySolve(e)

269. G, P_(H,Z,N,x.find), Pc(®), free(retval) CV, Piy[*.find](retval),
P17[®](®'), Pss[®](e, retval), So[T,S,x.find], Ss[A,Z,xfind, S7[S,x.find](retval)

The preconditions for TheorySolve match exactly the properties at line 41. We now

show that the postconditions imply the properties at line 43.

G: By G at 269.
—Z: By —Z at 41 and P_(Z) at 269.

Pyo[®, H](E): We must show that TUHU®P = 3w@.E, where W = free(E) — free(HUD).
First note that by FPs[®, H](e*) at 41, T U Hy U @4y = €*. Then, by P_(H)
and P-(®) at 269, it follows that 7 UH U ® = e*. Now, by Ps5[®|(e, retval)
at 269, we have T U ® = e* «» J7T. £, where T = free(€) — free(e*) and
TN (Vi U free(®)) = 0. It follows that T UH U P = 37. £. Now, note that
T = free(E) — free(e*) = free(E) — free(e*) — free(HU®) since free(H) C Vi by Gy
at 41 and P_(H) at 269. But then T C w, so it follows that TUHUP = Jw.£.

Py[®,H,T,N|(E): To show that -Z — (T UN UP U E = H), note that we have
already shown —Z and then suppose that M =, T UN UPUE. We must show
that M =, H. As above, we have by Ps5[®]|(e, retval) at 269 that 7 U @ |=
e’ < 37. &, where T = free(E) — free(e*). Since M =, €, clearly M =, 37. &,
so therefore M (=, e*. Then, by P_(N) and Pc(®) at 269, we can conclude
that M =, T UNy U@y U {e*}. It then follows from Ps[®, H](e*) at 41 that
M =, M. Finally, by P_(H) at 269, we conclude that M =, H

free(€) C V: By free(retval) C 'V at 269.
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Piy[x.find|(€): By Pyy[*.find](retval) at 269.

SolZ, S, *.find]: By Ss|Z, S, .find] at 269.

S3[A,Z, *.find): By S3[A,Z, *.find] at 269.

S7[S, x.find](€): By S7[S, *.find|(retval) at 269.

Line 45:

43. G, Pi[®,H,Z,N|(E), —I, free(€) CV, Pio[® H](E), Pia[*.find](E),
S9|Z, S, x.find], S3[A,Z,x*.find], S7[S,x*.find](E)

44. AssertEqualities(&);

45. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]

58. G, Py, H,Z,N]|(E), L, P[P, H](E), Pusl*.find)(E), free(E) CV,
S3[A,Z, .find], Si2[S,*.find](E)
59. AssertEqualities(&)

97. END AssertEqualities
98. G, Pc(F,hs(S)), Pi[®,H,Z,N], S3[A,ZL, «.find, IV(MCR),
ZV (lhs(€) CR), ZV(R' CR)

First, consider the preconditions of AssertEqualities. All preconditions except for
S12[S, *.find|(€) are trivial.

S12[S, *.find](E€): We must show that at 43, false € EV ((S5(E) V S19[S, *.find|(E)) A
S11[S, *.find](E)). If false € £, then S15[S, x.find](E) follows trivially. Suppose
false ¢ E. Then, by S7[S,x*.find|(£) at 43, S4[S, *.find|(E) N Ss(E), and by
Pyy*.find|(€) at 43, Ve € E. fr(e) A Pi3(E) S12[S, *.find|(£) will follow if we can
show S11[S, *.find|(£). To this end, suppose e € £. We have fr(e) by Ve €
E. fr(e) and S4[S, x.find|(e) by S4[S, *.find](E). Finally, we must show e[2] =
canon, (S(e[2])). Suppose hf(e[2]). Then, since fr(e), we must have e[2].find =
e[2]. It then follows from —Z and S,|Z, S, *.find] that e[2] = canon, (S(e[2])). If
—hf(e[2]), then e[2] = canon, (S(e[2])) by Sa[S, .find](e).

We now show that the postconditions imply the properties at 45.

G: By G at 98.
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Pl[cI),H,I,N]: By Pl[cI),H,I,N] at 98.

S[Z, S, *.find]: Assume —Z. We must show Ve. (hf(e) — find"(e) = canon,(S(e))).
Suppose then that e is an expression ¢ € HF. Now consider two cases. If
e € HFy3, then e € Ry3 by 55|Z, S, *.find| and —Z at 43. Then, by ZV (R' C R)
at 98 (and because we have assumed —Z), e € R, so find"(e) = canon, (S(e)).
Suppose on the other hand that e ¢ HF;3. Then since e € HF, e € M at 98. It
follows by ZV (M C R) that e € R, which implies find"(e) = canon, (S(e)).

Ss[A,Z, *.find]: By Ss3[A,Z,*.find] at 98.

Line 49:

47. G, Py[®,H,Z,N]|(e*), =T, P[P, H|(e*), TUD Eex~e*, fr(e),
e* = false, So|Z,S,*.find], S3[A,Z,x.find]

48. 7 := TRUE;

49. G, P[®,H,I,N]|, S2[Z,S,x.find], S5[A,Z,x.find]

G: Only G is affected. We must show that 7 U #H is unsatisfiable. Suppose T U H
is satisfiable. Then there exists a model M and interpretation p such that
M =, TUH. Then, by G5 at 47, we can construct p* so that M =, TUHU®.
But, by P5[®, H](e*) and e* = false at 47, it then follows that M =, false,

which is a contradiction. Thus, it must be the case that 7 U H is unsatisfiable.

P[®,H,Z,N|,5|Z,S, *.find],S5[ A, Z, *.find]: These are trivial since Z is TRUE.
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Line 53:

51. G, Py®,H,Z,N]|(e*), -, Ps[®, H|(e*), free(e*) CV, fr(e*), Pi1(e*),
Op(e*) # ‘=", So|Z,S,x*.find], S3[A,Z,x.find], S4[S,*.find](e*)

52. AssertFormula(e*) ;

53. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]

99. G, free(e) CV, fr(e), Pii(e), Py[H](®,e), S4[S,*.find](e)
100. AssertFormula(e)

112. END AssertFormula
113. G, P-(H,S), Pc(®,V,N,F,R), Pi7[®|(2'U{e}), Poi[*.find],
Pys[x.findl(e), e€ ®, A=A U{e}, MCR

First consider the preconditions of AssertFormula.

Pyo[H](®,e*): Let W = @, X =0, Y = {e*}, and Z = (). Clearly, {W,X,Z} is a
partition of ®. 7 UH | Jw. @, where W = free(®) — free(H) by Gs. Also,
TUHU® = 37,7 (X UY) simply reduces to TUHU®P = I7.e* which follows
from Ps[®, H](e*) at 51.

Now we consider the properties at line 53.

G: By G at 113.

P [®,H,T,N]: Suppose =T and M |, T UN UP. We must show that M =, H.
First note that by Pc(®,N) at 113, we have M |=, T U N3 U @5, Also, by
e€ ®at 113, e € &, 50 M =, e*, and thus M |=, T UN5 U®5 U{e*}. Then,
by Py[®, H,Z,N](e*) at 51, M =, Hs. Finally, by P_(H) at 113, M =, H.

ST, S, .find]: Assume —~Z. We must show Ve. (hf(e) — find"(e) = canon,(S(e))).
Suppose then that e is an expression ¢ € HF. Now consider two cases. If
e € HFy5, then e € R5 by S5[Z, S, +.find] and —Z at 51. Then, by P-(R)
at 113, e € R, so find"(e) = canon,(S(e)). Suppose on the other hand that
e € HF5,. Then since e € HF, e € M at 113. It follows by M C R that e € R,
which implies find*(e) = canon, (S(e)).
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S3[ A, Z, x.find]: Assume —Z. We must show Ve € A. (Op(e) = ‘=" — e[l] ~ €[2]).

Consider d € A. Suppose d € Az . Then Op(d) = ‘=" — d[1] ~5 d[2]. But
by Pc(F) at 113 it follows that Op(d) = ‘=" — d[1] ~ d[2]. Suppose on the
other hand that d ¢ As . Then since A = A" U {e} at 113, it follows that
A = A5 U {e*} at 53, so it must be the case that d = e*. Since we know
Op(e*) # ‘=", it follows trivially that Op(d) = ‘=" — d[1] ~ d[2].

Line 55:

35. G, P®,H,I,N|(e*), =T, Ps[®,H|(e*), free(e*) TV, TUP Ee~ce*,
fr(e*), So|Z,S,x*.find], S3[A,Z,x*.find], Si[S,*.find](e*), S5(e*)

36. IF ...

39. G, P[®,H,Z,N], S2[Z,S,x.find], S3[A,Z,x.find]

40. END ELSE IF ...

45. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]

46. END ELSE IF ...

49. G, P[®,H,Z,N], S3[Z,S,x*.find], S3[A,Z,x*.find]

50. END ELSE IF e* # true THEN BEGIN

53. G, P[®,H,Z,N], S2[Z,S,x.find], S3[A,Z,x.find]

54, END

55. G, P[®,H,I,N], S2[Z,S,x.find], Ss5[A,Z,x*.find]

Note that the conditions at line 55 follow trivially from the conditions at the end

of each if-block. Thus, the only case which is not obvious is when none of the
if-conditions are true. In this case, Sy[Z,S,*.find] and S3|A,Z, *.find] follow triv-
ially from 35. To show P[®, H,Z,N], note that e* = true. Thus, by —Z and
Py®, H,Z,N](e*) at 35, T UN U ® | H, from which P,[®,H,Z, N] follows easily.

A.5.4 AssertEqualities

Line 64:

62. G, P_(all), P @, H,Z,N](E), Pio[®, H](E), false € E, Pyy[*.find](E)
63. I := TRUE;

64. G, P_(all —{T}), Pi[®,H,T,N], T
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G: Only G, is affected. We must show that 7 U #H is unsatisfiable. Suppose 7 U H
is satisfiable. Then there exists a model M and interpretation p such that
M =, TUH. Then, by G5 at 62, we can construct p* so that M =, TUHU®.
But, by Pi3[®, H](€) and false € € at 62, it then follows that M =, false, which

is a contradiction. Thus, it must be the case that 7 U H is unsatisfiable.

Pi[®,H,Z,N]: Trivial since Z is TRUE.

Line 66:

60. G, P-(all), Py®,H,Z,N](E), I, free(€) CV, Pi2[®, H|(E), Pis[*.find](E),
S3[A,Z, x.find], Si2[S,*.find](E)
61. IF false € £ THEN BEGIN

65. END ELSE BEGIN | A" := A; &* := &; N* := N =0 ]

66. G, P-(all), Py®,H,I,N|(E), —T, free(§) CV, Pu[‘I) H](E), false & &,
Vee&. frie), Pi3(E), S3[A,Z,x*.find], Ss(E)V S1o[S, *.find|(E),
S1[S, .find](€)

Ve e €. fr(e): By Pu[*.find](€) at 60 and false ¢ £ at 66.
Pi3(€): By Pyyl*.find)(€) at 60 and false ¢ £ at 66.

Ss(E) V S1o[S, *.find|(E): By S12[S, *.find)(€) at 60 and false & £ at 66.

S11[S, x.find|(€): By Si2[S, *.find|(€) at 60 and false & £ at 66.
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Line 68:
65. END ELSE BEGIN | A* := A; @ := &; N* = N X =10 ]
66. G, P_(all), P®,H,Z,N|(E), =L, free(€) TV, Pio[®, H](E), false & E,

Vee&. frle), Pi3(E), S3[A,Z,x.find], Ss(E)V Sio[S, *.find](E),
SM[S,*.ﬁnd](E)

67. FOREACH e € £ DO BEGIN

68. G, P_(H,S), Pc(V,F,R), Pi5[®,N|(®*,N*,X), Pi3(§), X CE,
Pig[*.find)(X,E), Pi7[®](®* UX), free(€) CV', Ss(&)V S1o[S, *.find|(E),
S11[S, *.find)(E), A=A*UX, Siz[*.find](A*), MCR, ec&, ed X

70. G, P_(H,S), Pc(V,F,R), Pi5[®,N|(®*,N*,X), Pi3(&), X CE,
Pig[*.find)(X,E), Pi7[®](®* UX), free(E) CV', Ss(&)V S1o[S, *.find](E),
S11[S, *.find|(E), A=A"UX, Si3[*.find](A*), MCR

71. END

The variables A*, ®*, N*, and X are helper variables which aid the proof. A*, ®*,
and N* simply store for future reference the value of their respective state variables
at line 65. X is used to track which elements of £ have been processed by the loop at
lines 67 to 71. Since the properties at 68 and 70 are identical (except for the trivial

ones which mention ¢), we only need to consider the transition from line 66 to 68.

Pi5[®, N](®*, N'*, X): Trivial since ®* = &, N* =N, and X = () at 66.

Pigl*.find)(X, E): Since X = () at 66, this follows trivially from Ve € &. fr(e) at at 66.

P7[®](®* U X): Trivial since ®* = ® and X = () at 66.

A= A*U X: Trivial since A = A* and X =0 at 66.

Sis[*.find|(A*): By —Z, S5[A,Z, *.find), and A = A* at 66.

M C R: By P_(all) at 66, M = ().
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Line 70:
68. G, P:(H,S), Pg(V,f,R), Pl5[(I),N]((I)*,N*,X), Pl;;(g), XC¢,
Pig[*.find)(X,E), Pi7[®](®* UX), free(E) CV', Ss(&)V S1o[S, *.find](E),
S11[S, *.find)(E), A=A"UX, Sis[*.find](A*), MCR, ec&, ed X
69. AssertFormula(e); [ X := X U {e}; |
70. G, P:(H,S), Pg(V,f,R), Pl5[(I),N]((I)*,N*,X), Pl;;(g), ng,
Pigl*.find|(X,E), Pi7[®](®* UX), free(€) CV', Ss(&)V S1o[S, *.find](E),
S11[S, x.find)(E), A=A"UX, Si[*.find(A*), MCR
99. G, free(e) CV, fr(e), Pii(e), Pop[H](P,e), S4[S,*.find|(e)
100. AssertFormula(e)
112. END AssertFormula

113.

G, P:(H18>, Pg((I),VﬁNﬁfﬁR), PN[(I)]((I)/U{C}), Pgl[*.ﬁnd],
Pys[x.findl(e), e€ ®, A=AU{e}, MCR

First we consider the preconditions of AssertFormula.

free(e) C V: Follows from free(€) C V', P(V), and e € £ at 68.

fr(e):

By Pig[*.find|(X,€) and e ¢ X at 68.

Py[H](P,e): Let W =* X =X —-0" YV =E—X,and Z =P — (P*UX). It is not

hard to see that {®*, X —®* & —(P*UX)} is a partition of ®: the sets are clearly
disjoint (by construction). Then, their union is ® because ®* C ® and X C @
(by Pi5[®, N](®*,N*, X) at 68). Next we must show that 7 UH = Jw. ¥,
where W = free(®*) — free(H). But this follows easily from G3 at 66 and P_(H)
at 66 and 68. Next, we must show that TUHU®* = 37,7. (X —2*)U(E - X))
where T = free(X — ®*) — free(H U ®*) and § = free(€ — X) — free(H U ®* U
(X — @*)). With some effort and the the fact that X C & at 68, it can be
shown that this is equivalent to 7 U H U ®* = 37. (£ — (®* N X)) where
T = free(€ — (P* N X)) — free(H U @*). This certainly follows from the stronger
requirement 7 U H U ®* = 37. £ where T = free(§) — free(H U ®*). But by
P_(H) at 66 and 68, this follows from P5[®, H|(E) at 66. Finally, we must
show that TU®* U (X — ®*) =37z (P — (P*U X)) and zN free(H U {e}) = 0,



APPENDIX A. CORRECTNESS OF THE FRAMEWORK 138

where Z = free(® — (®* U X)) — free(®* U (X — @*)). This follows from the
stronger condition 7 U ®* U X = Jz. ® and z N free(H U {e}) = (), where
Z = free(®) — free(®* U X) which follows from Pj7[®](®* U X) at 68, together
with e € € and free(§) C V' at 68, and P_(H) at 68 and Gy at 58. The last
condition, e € (£ — X)) follows easily from e € £ and e ¢ X at 68.

S4[S, *.find](e): By S11[S, *.find](£) and e € £ at 68.

Now we consider the properties at line 70.

G: By G at 113.
P_(H,S): By P_(H,S) at 68 and 113.

P-(V,F,R): By Pc(V,F,R) at 68 and 113.

Pyis[®, N|(®*, N'*, X): By Pys[®,N](®*, N'*, X) at 68 and Pc(®,\) at 113.

P13((‘:): By P13((‘:) at 68.

ng. ByX68Qg,eeg,andX:X(;gU{e}.

Pig[*.find](X,E): We must show Ve € €. [(e € X — (e[l].find = e[1] A e[2].find =
el2])) A (e € X — fr(e))]. Suppose e € £. Suppose further that e € X. If
e € Xgs, then e[l].findss = e[l] and e[2].findgs = €[2], so by Py [*.find] at 113,
e[l].find = e[1] and e[2].find = e[2]. If e ¢ Xgs, then by the definition of X, e
must have been the argument to the call to AssertFormula, so e[l].find = e[l]
and e[2].find = e[2] by Pys[*.find](e) at 113. Finally, suppose that e ¢ X. It
follows that e € Xeg, so fr(e) was true at 68. By Py [*.find] at 113, fr(e) is true
at 70 as well.

P[®](®* U X): We must show that TU®* U X | Jw. ® and w N V' = (), where
W = free(®) — free(®* U X). Suppose that M =, 7 U ®* U X. Now, by
P7[®](®* U X)) at 68, we have T U ®* U Xgg = IT. Pgs and TNV’ = ), where
T = free(®es) — free(P* U Xgg). It follows that 7 U @* U X = IT. Pgg since
X = Xgs3 U {e}. Further, T = free(®gs) — free(®* U X) since TN V' = ) and
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free(e) C V'. Thus M |=, 3T. Pgg, so there is a variable assignment p* such
that M =, T U ®* U X U ®gg where p* differs from p at most only on the
values of T. Now, by Py7[®](®' U {e}) at 113, we have T U $gs U {e} = I7. D
and 7 N Veg = (), where § = free(®) — free(®gs U {e}). It then follows that
M {=,- 37. ®. Thus, we can conclude that M =, 37,7. ®. Finally, we show
that if w = 7U7, then N V' = 0, and W = free(®) — free(®* U X). First
note that we already have TNV’ = (. It is easy to see that yN V' = ()
since 7N Vgs = 0 and P (V) at 68. Now, let W = @* U X, then w =7U7 =
(free(®gg) — free(W)) U (free(®) — free(PesU{e})). But ®esU{e} = Pgg UW, since
O* C Dgg and Ngg C Dgg by Pis[®, N](D*, ", X) at 68 (and X = X5 U {e}),
so W = (free(Pgg) — free(W)) U (free(P) — free(Pgs UWW)). Finally, since $gg C P
by Pc(®) at 113, it is not hard to see that W = free(®) — free(W) = free(®) —
free(®* U X).

free(€) C V't By free(£) C V' at 68.

Ss(E) V S1o[S, *.find|(€): Suppose Sg(€) at 68. Then Sg(E) at 70 since € does not
change. Suppose on the other hand that S([S,*.find](€) holds at 68 and
suppose that e is the witness. Then we will show that e is also a witness
for S1[S, *.find](£) at 70. In fact, it is easy to see that all conditions of
S10[S, *.find|(E) except for Sy[x.find|(e[1]) follow from S)y[S,*.find](E) at 68
and P-(S) and P-(F) at 113. Now, by Sy[*.find|(e[1]) at 68, there is a ¢ such
that ¢ € d,(e) A c.findgs # c. Also, by hf(e[l]) at 68, it follows that hf(c) at
68 (by Gg at 68). It then follows from Gy at 68 that ¢ € lhs(Sgs). But since
S = Sgs by P_(S) at 113, it follows by Gyg at 70 that c.find Z c.

S11[S, x.find|(€): Suppose e € £. We must show that 51[S](e[2],e[2]) A fr(e) A
Sy[S, *.find](e). S1[S](e]2], e[2]) follows from Sy (S, *.find|(€) at 68 and P_(S)
at 113. fr(e) follows from Pig[*.find](X,E) at 70 which we showed above. Fi-
nally, consider S,[S, *.find](e). Let t Je and suppose —hf(t). We must show that
s = canony(S(t)). But by Pc(F) at 113, -hf(t) at 68, so s = canon, (Ses(t)),

from which it follows (by P_(S) at 113) that s = canon, (S(t)).
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A=A"UX: By A= A*U Xgs at 68, A = A" U {e} at 113, and X = Xgs U {e}.

Sig[x.find](A*): By Sisl*.find](A*) at 68 and P(F) at 113.

M C R: We know that, Mgs C Rgs, so by Pc(R) at 113, Mgg C R. But by M C R
at 113, we also know that (M — Mgs) C R.

Line 72:

[ A" 1= A; @* := &; N* := N; X :=( ]

66. G, P_(all), P®,H,Z,N|(E), =T, free(€) TV, Pio[®, H](E), false & E,
Veel. frle), Pi3(E), S3[A,Z,«.find], Ss(E)V Sio[S, *.find](E),
SM[S,*.ﬁnd](E)

67. FOREACH e € £ DO BEGIN

70. G, P_(H,S), Pc(V,F,R), Pi5[®,N|(®*,N*,X), Pi3(), X CE,
Pig[*.find)(X,E), Pi7[®](®* UX), free(E) C V', Ss(&)V S1o[S, *.find](E),
S11[S, x.find)(€), A=A"UX, Si[*.find(A*), MCR

T1. END

72. G, P_(S), Pc(F,R), P[0, H,I,N], Pis(E), Pisl«find)(E), A=A*UE,

S6(E) V S10[S, *.find)(E), S11[S, *.find](E), Siz[x.find](A*), MCR, EC P

P[®,H,Z,N]|: By =Z and P,[®, H,Z,N](E) at 66, T UN* U ®* UE = Hes. From
66, E =0, N* =N, &* = &, and Hes = H, so it follows that TUN U D E H.
From 70, by Pi5[®, N](®*, N*, X) at 70 and the end-of-loop condition X = &,
it follows that TUN U® | Hes. Then, by P_(H) at 70 and 66, TUN UD = H.

Pig[*.find](€): From 66: trivial since & = (). From 70: by Pig[*.find](X,€) and the
end-of-loop condition X = £.

Siz[*.find](A*): From 66: by S3[A,Z, .find), =Z, and A* = A at 66. From 70: trivial.

E C ®: From 66: trivial since &€ = (. From 70: by Pi5[®, N](®*,N*, X) and the
end-of-loop condition X = €&.
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Line 76:

73. [ X :=0; R* :=R; & =8|

4. G, P_(S), Pc(F.R), PO, H,I,N]|, Pis(), Pislxfind(€), A=A*UE,

S6(E) V S10[S, *.find)(E), S11[S, *.find](E), Siz[*.find](A*), MCR, ECP

75. FOREACH e € £ DO BEGIN

76. G, Pg(fq”ls(S)), pl[(I),H,IﬁN], plg((c:), qu), P—lg[*.ﬁnd](X,E),
A=A*UE, Ssl*.find|(A*UX), Sul*find(R*, X), lhs(X) CR,
S15[S, *.find)(E,X), Si6[S,*.find|(R*,E,X,S8%), Si7(€,X), ec€&, ed X

78. G, Pg(fq”ls(S)), pl[(I),H,IﬁN], plg((c:), qu), P—lg[*.ﬁnd](X,E),
A=A*UE, Sl*.find|(A*UX), Sul+find(R*, X), lhs(X) CR,
S15[S, *.find)(E,X), Si6[S, *.find](R*,E,X,S*), Si7(€, X)

79. END

Other than the trivial property e € £, the properties at 76 and 78 are identical and

none of them depend on e, so it suffices to consider only the transition from 74.

Pigl*.find)(X, E): By Pig[*.find](€) at 74 and the fact that X = ().

Sifx.find(R*, X): M C R at 74, so M —R* = ().

lhs(X) C R: Trivial since X = ().

S15[S, *.find](E, X): If Sip[S, *.find](E) at 74 then we also have Syo[S, *.find|(E) at

76, from which Si5[S, *.find] (€, X) follows easily. Otherwise, Sg(E) by Sg(€) V
S10[S, *.find|(€) at 74. It then remains to show that Ve € £.5(e) = e and Ve €
E.51[S](e[2],e[2]). Consider e € €. S1[S](e[2], e[2]) follows from Sy [S, *.find](E)
at 74. We now show that S(e) = e. First, we know that e[1] is a y-leaf by Sg(&).
Also, e[1].find = e[1] by Pig[*.find|(E) at 74. It follows by G9 that e[1] & lhs(S),
so S(e[1]) = e[1]. Now, we know that e[2] = canon, (S(e[2])) by S11[S, *.find](E)
at 74. Thus, by Lemma A.1, S(e[2]) = ¢[2].

S16[S, *.find](R*,E, X, S8*): Consider t € R*. Since at this point X = 0, R = R*,

and § = S§*, we know that hf(t), find'(t) = canon,(S*(t)) = canon, (S(1)),
and 0y (canon, (S(t))) N lhs(X) = (0. This is sufficient to satisfy the property
516[8,*.ﬁnd](R*,5,X, 8*)
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S17(€, X): Trivial since X = ).

Line 78:

76.

TT.
78.

G, Pg(fq”ls(S)), pl[q),/H,IﬁN], plg((c:), qu), P—lg[*.ﬁnd](X,E),
A=A"UE, Sis[xfind(A*UX), Si*.find(R*, X), lhs(X) CR,
S15[S, *.find)(E,X), Si6[S,*.find|(R*,E,X,S8%), Si7(€,X), ec€&, egd X
e[l].find := €e[2]; | X:=X U{e}; IF —Ss(e[l]) THEN S:={e}(S)U{e}; |
Q, Pg(fq”ls(S)), pl[q),/H,IﬁN], plg((c:), qu), P—lg[*.ﬁnd](X,E),
A=A"UE, Siz[xfind(A*UX), Si[*.find(R*, X), lhs(X) CR,
S15[S, *.find)(E,X), Si6[S, *.find|(R*,E,X,5%), Si7(€,X)

G: We consider the global properties that depend on find or §. First note that

HF7s = HF. This is because ¢[1] is the only expression whose find pointer has
changed, but hf(e[l]) at 76 by Pyg[*.find|(X, &) since e € €.

Gy

Since e[l1].findg = e[1] and e[2].findg = €[2] (by Pig[*.find](X,E), € € &,
and e ¢ X at 76), the result of executing line 77 is to merge the ~-
equivalence classes whose representatives are e[1] and e[2] respectively. It
is not hard to see, then, that F is the symmetric-transitive closure of
(Fre U{e}). Now, T U® |= Frg by Go at 76. Also, e € ® by £ C ® and
e € £. Thus, since T includes the properties of equality, 7 U ® = F.

: Since G holds at 76 and since (as we showed above) e[1].findzs = e[1] and

e[2].findzs = e[2], setting e[l].find to e[2].find cannot cause find*(d) to be
undefined for any expression d for which find*(d) is defined at 76.

: By Gg at 76 and HF7;s = HF.
: By G7 at 76 and HF7;s = HF.

: As shown above, F is the symmetric-transitive closure of (F7g U {e}). But

since e[l].findzg = e[l] and e[2].find;g = €e[2], (e[l] = e[l]) € Frs and
(e[2] = €[2]) € Frg. Thus, free(Fre)=free(F). Gy then follows by Gy at 76.

: The above argument also shows that there are no new terms in F that were

not in Frg, so Gy follows from Gy at 76.

@: By G11 at 76 and HF76 = HF.
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Gis:

Suppose So[S, *.find|(€) at 76. Then e[1] is a compound y-term, so S is
unchanged. Thus, S is in y-solved form by Gi3 at 76. If =.51y[S, *.find|(£)
at 76, then by Si5[S, *.find|(E€, X) at 76, £ is in x-solved form and Sz(e) =
e. It is thus easy to see that since Sz is in x-solved form (by G153 at 76),
{e}(S7) U {e} is also in y-solved form.

G14: As described above, F is the symmetric-transitive closure of F7g U {e}.

«

D

16+

: By Gy7 at 76 and HF7¢ = HF.

-

«

Thus, in particular, F | F7s U {e}. By G4 at 76, T U Frs = Sr6, and
finally, by definition, 7 U Sz U {e} = S. Putting these together, we get
TUFES.

: We first show that 7, U7, (S) = 7, (e). If e[1] is a x-leaf, then this is trivial

since e € S. Otherwise, e[l] is a compound x-term, and thus £ is not in
x-solved form. Then, by Si5[S, *.find](E, X) at 76, Sip[S, *.find|(€) must
be true at 76 which implies that e[2] = canon, (S(e[l])), from which it
follows that 7, U7, (S) = 7y (e[1] = €[2]). Next, we note that by definition,
Y (8) = 74 (S76), so it follows that T, U7, (S) | 7, (Frs) by Gis at 76. But
F is the symmetric-transitive closure of F76 U{e}. Thus, since 7, includes

symmetry and transitivity of equality, T, U 7, (S) = 7, (F).
By G16 at 76 and HF76 = HF.

: A little thought reveals that for this property to false, there would have

to be a compound y-term t such that hf(t) A t.find # t and c.find = ¢ for
all ¢ € 0,(t). By Gis at 76, there is no such term ¢ at 76. There are two

ways that the execution of line 77 could create such a term:

1. The first way is if e[1] is the term ¢. For this to be the case, e[l]
would have to be a compound x-term with c.find;s = ¢ for all ¢ €
dy(e[1]). But, by Si5[S,*.find|(€,X) at 76, either S1y[S, *.find|(£)
or Sg(€) must hold at 76. If Syy[S, *.find](£) holds, then the last
condition of S1y[S, *.find|(£) states that I¢ € d,(e). (c.findg # c),
which contradicts our assumption. If; on the other hand, Sg(&), then

e[l] must be a y-leaf, which also contradicts an assumption.
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2. The other possibility is that e[l] is a x-leaf of some term ¢ where
t.findzg £ t and e[l] = e[2]. Again, by Si5[S, *.find|(€, X) at 76, either
S10[S, *.find|(E) or Ss(£) must hold at 76. If Syo[S, *.find](£) holds,
then e[1] is not a x-leaf which contradicts our assumption, and if Sg(&)
holds at 76, then we cannot have e[l] = e[2] since then £ would not

be in x-solved form.

G19: Suppose Sy[S, *.find|(€) at 76. Then e[l] is a compound x-term, so S
is unchanged. Also, the find attributes of no y-leaves are changed and
HF7 = HF, so G follows from G1g at 76. If —S1[S, *.find](E) at 76, then
by Si5[S, *.find|(€, X) at 76, £ is in x-solved form and S = {e}(S7) U {e}
(which is in x-solved form as shown above). Thus lhs(S) = lhs(S7)U{e[1]}.
Now, note that for ¢t # e[l], t.find;g = t.find and t € [hs(Sz) <> t €
lhs(S). For t = e[l], clearly ¢t € lhs(Eq), but since e[l] # e[2] (otherwise
& would not be in x-solved form), ¢.find # t. Finally, the only terms in S
that are not in Szs are those in e, but hf(t) for every sub-term ¢ of e by
Py[x.find|(X,E) at G¢ at 76 and HF = HFr. Gig thus follows from G
at 76.

P (F,hs(S)): As described above, F is the symmetric-transitive closure of FrsU{e},
so clearly F7s C F. F' C F then follows from Pc(F) at 76. To show that
Ihs(S76) C lhs(S), assume that —Sg(e[1]) (otherwise, S = Sz, so it is trivial) and
note that as shown above in the proof of G153, S76(e) = e. Thus, 6, (e)Nlhs(S7) =
(), and so hs({e}(S7)) = lhs(Sz). Then, since S = {e}(Sz) U {e}, it follows
that hs(Sz) C 1hs(S).

Pig[*.find|(X, E): Follows easily by Pyo[+.find|(X, &) at 76, the execution of line 77,
and X = X76 U {6}

Sis*.find)(A* U X): We must show Ve € X. (Op(e) = ‘=" — e[l] ~ ¢[2]). Suppose
de X. Ifd € Xy, then Op(e) = ‘=" — ¢e[l1] ~ ¢[2] by Si3[*.find](A*U X) at 76
and Pc(F) (shown above). Otherwise, d = e, but e[1] ~ e[2] by the execution
of line 77 and the definition of ~.
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Sul*.find(R*, X): We must show (M — R*) C lhs(X). Suppose t € (M — R*). If
t € (Mz — R*), then t € [hs(X) by Syu[*.find](R*, X) at 76 and Xz C X.
Otherwise, since M = Mzs U {e[1]}, we must have ¢t = ¢[1]. But e[l] € lhs(X)
since X = X6 U {e}.

S17(€,X): Clearly, X C & since Xgg C € by S17(€,X) at 76, e € £, and X =
X6U{e}. Now, suppose that £ is in x-solved form. Then X7s C S by S17(€, X)
at 76. Also, e[1] is a x-leaf, so S = {e}(S7) U {e}. Now, {e}(X7) = X76 since
X76 € € and e € € and € is in x-solved form. Thus we have § = {e}(Srzs) U{e},
X7 C S, {e}(Xz6) = X76, and X = X6 U {e}. It follows that X C S.

S15[S, *.find|(€, X): We must show that Sy[S, *.find|(E) or
[Ss(E) A (Vee (E—X).S) =e) A (Ve € E.5[S](e]2],e[2]))].

1. Suppose Syp[S, *.find|(€) at 76. Then we can show that Sy,[S, *.find|(E)
also holds at 78. Let e be the witness for Siy[S,*.find|(£) at 76. We
will show that e is the witness at 78 as well. Clearly, & = {e} A Sg(e[1])
at 78 follows from Syy[S, *.find](E) at 76. Also, hf(e[1]) follows since, as
has been shown above, HFy;s = HF. Then, since e[l] is a compound x-
term, S is unchanged from 76, so e[2] = canon, (S(e[1])). Finally, the only
expression whose find attribute changed from 76 to 78 was not a x-leaf, so
dc € 0,(e). (c.find # ¢) must hold at 78 since it holds at 76.

2. Suppose on the other hand that —51y[S, *.find](£) at 76. Then it follows
from S15[S, *.find] (€, X) at 76 that Sg(&) holds, Ve € (€ —Xr6).Srs(e) = e,
and Ve € &.¢[2] = canon,(Sr6(e[2])). We must show that these conditions
also hold at 78.

Ss(€): By Sg(€) at 76.
Vee (£ —X).S(e) =e: Consider d € (£ — X). Since X = X6 U {e}, we
know that d € (5 — X76), SO 876 (d) = d and thus 6X(d) N lh8(876) = @

Also, because £ is in x-solved form and e € & (and e # d since
e € X), e[l] € 0,(d). Now, as we showed above, (in the proof of Gy),
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Ihs(S) = lhs(S7) U {e[1]}, so it follows that 0, (d) N Ihs(S) = 0, and
thus S(d) = d.

Ve e €. e2] = canon, (S(e[2])): Let d € €. From S;5[S, *.find](€, X) at
76, we know that d[2] = canon,(S76(d[2])), so Szs(d) = d by Lemma
A.1. But as shown above, lhs(S) = lhs(S7) U {e[l]} and since & is
in x-solved form, e[l] & 6,(d[2]), so S(d[2]) = d[2]. Thus, d[2] =
canon, (S(d[2])).

lhs(X) C R: Consider d € X. In order to show d € R, we must show hf(d[1]) A
find* (d[1]) = canon, (S(d[1])). We know that d € £ by Si7(€,X) at 78 (shown
above). Then, by Pjg[*.find|(X, ) at 78 (also shown above), d[1].find = d|[2], so
hf(d[1]) A find*(d[1]) = d[2]. Now, if Syo[S, *.find|(£) at 78, then we know that
d[2] = canon, (S(d[1])). Otherwise, € is in x-solved form (by S15[S, .find|(€, X)
at 78, shown above), so again by Si7(£,X), d € S. It then follows by G13 that
S(d[1]) = d[2]. But, by Si5[S, *.find|(€,X), d[2] = canon,(S(d[2])), so by
property 2 of canon, canon,(d[2]) = d[2], and thus canon, (S(d[1])) = d[2].

S16]S, *.find|(R*,E, X,S8%): Suppose t € R*. We know that hf(t) since hf(t) at 76
(by Si6[S, *.find|(R*, &, X,S8*) at 76) and HF = HF7s. Now, we must consider

three cases.

1. Suppose 0, (canon, (S*(t))) N lhs(X) = 0V ~Ss(E). We must show that
find*(t) = canon, (S8*(t)) = canon,(S(t)). Since lhs(Xz) C lhs(X), it
must be the case that d, (canon, (S*(t))) Nihs(X76) = 0V —Se(E). Thus, by
Si6[S, *.find](R*,€,X,S8%), findys(t) = canony(S*(t)) = canony(Sr(1)).

We consider two sub-cases.

(a) Suppose Syp[S, *.find|(€) at 76. Then since e must be a compound
x-term, we know that Sz = &, and thus it follows trivially that
canony (Sz6(t)) = canon, (S(t)). Now, if find*(t) = findy(t), then
clearly find"(t) = canon,(S*(t)) = canon,(S(t)). If, on the other
hand, find*(t) # find;4(t), then it must be the case that find;4(t) = e[1]
and find*(t) = e[2]. But then e[l] = canon,(Sz(t)) = canon, (S(t)).
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Furthermore, €[2] = canon,(S(e[l])) by Si5[S, *.find|(£,X) (shown
above), so e[2] = canon,(S(t)) by Corollary A.1, and thus e[l] = ¢[2]
which contradicts the assumption that find"(t) # find,(1).

Suppose —S1y[S, *.find|(€) at 76. Then £ is in x-solved form (by
S15[S, *.find](€,X)) and thus d, (canon, (S*(t))) N lhs(X) = 0. But
e € X and e[l] is a x-leaf, so in particular canon, (S*(t)) # e[1]. Thus,
since findzg(t) = canon,(S*(t)), it follows that find*(t) = find(t).
Thus, find'(t) = canon,(S*(t)) = canon,(Sr(t)). Finally, we show
canon, (S7(t)) = canony(S(t)). First note that S(canon,(S(t))) =
canon, (Sz6(t)). To show this, suppose it is not true. Then there
would have to be some ¢ € d,/(canon,(Sz(t))) such that ¢ € lhs(S).
But & = {e}(S7w) U {e}, so ¢ € Sz or ¢ = e[l]. But if ¢ € hs(Sr),
then ¢ ¢ 0, (canon, (S7(t))) by property 3 of canon, which is a con-
tradiction. Also, ¢ = e[l] would imply ¢ & 6, (canon, (Sz(t))) be-
cause canon, (Sz(t)) = canon, (S*(t)), e € X and 0, (canon, (S*(t))) N
lhs(X) = 0. Thus S(canon, (S7(t))) = canon,(S7(t)), and so it then
follows from property 2 of canon that canon, (S(canon, (S7(t))))

canon, (Sz6(t)). But by Corollary A.1, canon, (S(canon, (Sz(t))))
canon, (S(t)).

2. Suppose that £ is in x-solved form, ¢, (canon, (S*(t))) N lhs(X) # 0, and
canon, (S*(t)) is a x-leaf. We must show that find"(t) = canon,(S(t)) A
Oy (canony (S(t))) N ihs(E) = 0. Since canon, (S*(t)) is a x-leaf, it follows
by Si6[S, *.find|(R*, €, X, S*) at 76 that find;,(t) = canon, (Sz(t)). There

are two cases.

()

Suppose canon, (S*(t)) = e[l]. Note that X = X5 U {e} and the
left-hand sides of X are all distinct (since X C & and & is in x-
solved form), so d,(canon, (S*(t)))Nihs(Xz6) = 0. It then follows from
S16[S, *.find](R*, £, X, 8*) at 76 that canon, (S*(t)) = canon, (S7(1)).
Now, since finds(t) = canon,(Sz(t)), it follows that find(t) =
canon, (S*(t)) and thus find;(t) = e[l]. So, after the execution of
line 77, find*(t) = e[2]. But we know that S(canon,(S*(t))) = e[2]
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since canon, (S*(t)) = e[l], e € X and X C S (by S17(€,X) at 78,
shown above). Finally, we also know that e[2] = canon,(S(e[2])) by
S15]S, *.find|(€, X) (also shown above), so by substitution, we have
that e[2] = canon, (S(S(canon,(S*(t))))) which further reduces to
canony (S(canon, (§*(t)))) which, finally, is equivalent to canon, (S(t))
by Corollary A.1. Thus, find"(t) = canon, (S(t)). It is then easy to see
that d, (canon, (S(t))) N ths(€) = 0 since canon, (S(t)) = e[2], e € &,
and & is in x-solved form.

Suppose that canon, (S*(t)) # e[l]. Then, since ¢, (canon, (S*(t))) N
lhs(X) # 0, it must be the case that 6, (canon, (S*(t))) N lhs(Xzs) # 0
(since, as mentioned above, X = X7 U {e} and the left-hand sides
of X are all distinct). Thus, by Sis[S, *.find](R*, £, X, S*) at 76,
Oy (canony (Sz(t))) N ihs(E) = (. In particular, we have that e[l] ¢
dy (canon, (Sz(t))), and so, since finds(t) = canon, (S76(1)), it follows
that find"(t) = canony(Szs(t)). Also, since S = {e}(Sz) U {e}, it fol-
lows by property 3 of canon that S(canon, (Sz6(t))) = canon, (Sz(t)).
It then follows that canon, (S(canon, (S7(t)))) = canon, (S7s(t)) by
property 2 of canon. But we also know from Corollary A.1 that
canony (S(canon, (Sz6(t)))) = canon,(S(t)), so we can conclude that
find*(t) = canony(Sz6(t)) = canon,(S(t)). Finally, it is easy to see
that 0, (canon, (S(t)))Nihs(E) = 0, since 0, (canon, (Sz(t)))Nihs(E) =
0 and canon, (Sz(t)) = canony (S(t)).

3. Finally, suppose & is in yx-solved form, 0, (canon, (S*(t))) N ths(X) # 0,
and canon, (S*(t)) is a compound yx-term. We must show that find*(t) =

canon, (S*(t)). Since canon, (S*(t)) is a compound x-term, it follows from
S6[S, x.find|(R*, £, X,8%) at 76 that find;(t) = canon,(S*(t)). But, it
also follows that canon, (S*(t)) # e[1] since e[1] must be a x-leaf (because
e € £ and & is in y-solved form), so find"(t) = find;4(t) = canon, (S*(t)).
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Line 80:
73. [ X :=0; R* :=R; 8§ =8 ]
4. G, P_(S), Pc(F,R), P[®,H,I,N], Pi3(E), Pislx.find|(€), A=A"UE,

Se(&) v 510[81;.ﬁnd](5), S11[S, x.find)(E), Siz[x.find](A*), MCR, ECP
75. FOREACH e € £ DO BEGIN

78. G, Pc(F,lhs(S)), P@,H,T,N], Pi3(E), £C @, Pl+find(X,E),
A=A"UE, Siz[x.find](A* UX), Su[xfind(R*, X), lhs(X) CR,
Sm[S,*.ﬁ’lLd](E,X), 516[8,*.ﬁ’lld](R*,g,X,S*), 517(5,X)

79. END

80. G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,xfind], lhs(§) CR,

516[8,*.ﬁn(l](R*ﬁgﬁgﬁS*), Sm[S,*.ﬁn(l](R*), 520[5](5)

S3[ A, Z, *.find): By Sys[*.find](A* U X) (at both 74 and 78) and the end-of-loop con-
dition, X = &, we have Sy3[*.find|(A*UE). But A= A*UE, so Sy3[*.find|(A),
from which S3[A,Z, *.find] follows.

S16]S, x.find|(R*,E,E,8%): From 74: Consider ¢ € R*. Since at this point X =
0, R = R*, and S = S§*, we know that hf(t), find"(t) = canon,(S*(t)) =
canon, (S(t)), and o, (canon,(S(t))) N lhs(X) = 0. Since we also know that
& =0, this is sufficient to satisfy the property Si[S, *.find](R*, &, E,S*). From
78: follows from Si4[S, *.find](R*, £, X, S*) at 78 by the end-of-loop condition
X =¢.

S18[S, *.find](R*): From 74: by M C R. From 78: by Sy[*.find](R*, X) at 78 and
the end-of-loop condition, (M —R*) C lhs(€). But lhs(€) C R, so (M —R*) C
R.

So0[S](€): From 74: trivial since & = (). From 78: suppose Sio[S, *.find|(E) at 78.
Then there exists e such that £ = {e} and e is a compound x-term. Suppose
on the other hand that =.51y[S, *.find](€) at 78. Then by Si5[S, *.find|(£, X) at
78, £ is in x-solved form, so by Si7(€, X) at 78 and the end-of-loop condition,

£ECS.
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Line 82:
80.

81.
82.

G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,xfind], lhs(6) CR,
Sl(,'[S,*.ﬁnd](R*,E,E,S*), Sm[S,*.ﬁnd](R*), 520[8](5)

(X = 0]

G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,xfind], lhs(6) CR,
Sm[S,*.ﬁnd](R*), 519[5,*.ﬁ71(l](R*,5—XﬁS*), SQO[S](E)

S19[S, *.find](R*, € — X,8*): Note that X = (), so it suffices to show the property

S1o[S, +.find|(R*,€,8*). Consider t € R*. By Si[S, *find|(R*,&,&,8%) at
80, we know that hf(t). Also, find"(t) = canon,(S(t)) and thus ¢t € R unless
dy (canon, (8*(t))) N lhs(E) # O A Sg(canon, (S*(t))), in which case find"(t) =
canony, (S*(t)). Sig[S, *.find|(R*,E,S*) follows easily.

Line 86:

84.

85.
86.

G, Pc(F,lhs(S)), P [®,H,Z,N], S3]A,Z,*.find], TV (Ilhs(§) CR), e€ &,
Y, 518[8, Xﬁlld](Rx), A, 519[8, Xﬁlld](Rx,g - X,S*), 520[8](5), € Q X
L := e[l]l.notify; [ U = 0; |

G, Pc(F,lhs(S)), P [®,H,Z,N], S3]A,Z,*.find], TV (Ilhs(§) CR), e€ &,
IV S18[S, *.find|(R*), So[SI(E), Soil+.find|(L,e[l]), e X,
So2[Z, S, x.find(e, R*,E — X, L —U,S*)

Sop[x.find] (L, e[1]): By Giz.

Soo|Z, S, x.find|(e, R*,E — X, L —U,S*): Suppose =Z and let t € R*. Since we know

that ZV S19[S, *.find|(R*, € — X, S8*) at 84, t € R or Ss(canon, (S*(t))) Ahf(t) A
find"(t) = canon, (S*(t)) A 0y (canon, (S*(t))) N lhs(X) # 0. It remains to show
that if ¢ ¢ R, then e[l] € 6, (canon, (S*(t))) — (X, canon,(S*(t))) € (L —U).
But this follows by G4, £ = e[1].notify, and U = ().
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Line 90:

88. G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,*.find], ZV (lhs(€) CR),
ZV S18[S,*.find](R*), Soo[S|(E), Sor[x.find](L,e[l]), ec&, e X,
SoolZ, S, *.find)(e, R*,E — X, L —U,S*), (i,d) € L, (i,d) ¢U

89. TheoryUpdate;(e,d); | U = U U {(i,d)}; |

90. G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,x.find], TV (lhs(€) CR),

270.
271.
272.

379.
380.

ZV S18[S,*.find|(R*), Sa[S|(E), Sal+.find|(L,e[l]), ec&, e¢ X,
S»[Z,S, x.find/(e, R*,E — X,L—-U,S*)

G, P[®H,Z,N], S3[A,Z,x.find], Sog[*.find](i,d)

TheoryUpdate; (e, d)

G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A L, *.find, ZV(MCR), ZV(R'CR),
' =1

END TheoryUpdate,
G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[AZ,*find], ZV(MCR), ZV(R'CR),
I' =TI, S34[Z,S,*.find](d)

First, consider the preconditions of TheoryUpdate;.

Sog[*.find)(i,d): Suppose i = x. Since (i,d) € L and by Sy [*.find](L,e[l]) at 88,

we have hf(d) and Sg(d) and e[l] € 0,(d). Thus, it remains to show that
dc € 6,(d). (c.find # c). But e[l] € 6,(d) and since e[l1] must therefore be a
x-leaf, it follows from Sy[S](€) (and e € &) at 88 that e[1] € (hs(S). Thus, by
Gho, €[1].find # e[1].

Now consider the properties at 90. Note that —Z implies —Zgg since Z' — Z at 272.

G: By G at 272.

P-(F,lhs(S)): By Pc(F,lhs(S)) at 88 and 272.

Pl[@,H,I,N]: By Pl[@,H,I,N] at 272.

S3[ A, Z, *.find): By S3[A,Z,*.find] at 272.

ZV (lhs(€) € R): Suppose =Z. Then —Zgg, so hs(E) C Rgs. Then, since R' C R at

272, lhs(€) C R.
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IV Sig[S, *.find](R*): Suppose —Z. Then —Zgg, so Mgg — R* C Rgg. But Rgs C R

(by R g R at 272), SO Msg —R* Q R. Finally, M272 g R, SO M - Mgs g R
at 90, and thus M — R* C R.

520 [S] ((‘:):

By S9[S](€) at 88 and P (lhs(S)) at 272.

Sor[x.find] (L, e[1]): By S [*.find](L,e[l]) at 88 and P-(F) at 272.

ec&: Byee& at 88.

eZ X: Byed X at 88.

Soo|Z, S, x.find|(e, R*,E — X, L —U,S*): Suppose —Z, so that —Zgs. Then suppose

te R Ift € Rgg, then by R C R at 272, t € R. Otherwise, for convenience
let s = canon, (S*(t)) and note that by Sy |[Z, S, *.find|(e, R*, € — X, L—-U,S")
at 88, we have hfss(t), findgs(t) = s (and thus s.findgs = s), s is a compound
x-term, 0, (s) N lhs(E — Xgg) # 0, and e[1] € §,(s) = (x,s) € (L — Uss). We

consider two cases.

1.

Suppose (i,d) = (x,s). We first show that s € R. First note that since
i = x, we know that Ss34[Z, S, *.find)(d) at 272, so (since d = s) (s.find #
s)V (s € R). Now suppose that s ¢ R and (s.find #Z s). But recall that
s.findgg = s, so this means that s € May7s, and thus s € R since My C R.
Now, if s € R, then find*(s) = canon,(S(s)). But s = canon, (S*(t)), so
find"(s) = canony(S(canon, (S*(t)))), and thus find"(s) = canon, (S(t)) by
Corollary A.1. But since findg(t) = s, it follows by Pc(F) at 272 that
find*(s) = find"(t), and so find"(t) = canon,(S(t)), and thus t € R.

Suppose (i,d) # (x,s). If s.find Z s, then using the same reasoning
as in the previous case, we can conclude that s € R and thus ¢t € R.
Suppose on the other hand that s.find = s. We already know that s is a
compound x-term. Now, since findgs(t) = s, it follows by P-(F) at 272
that Af(t) and find"(t) = find"(s) = s. Also, X is unchanged from 88, so
0y (s) NIhs(€ — X) # 0. It remains to show that e[l1] € d,(s) = (x,s) €
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(L —U). But this follows trivially since e[1] € 0,(s) — (x, s) € (£ — Usg),
U=Uss U{(i,d)}, and (X, s) # (i, d).

Line 92:
86. G, Pc(F,lhs(S)), P [®,H,Z,N]|, S3[A, L, «.find], TV (Ihs(§) CR), e€ &,
v 518[5,*.ﬁ7ld](R*), 520[8](5), 521[*.ﬁ7ld](£,€[1]>, e €X,
Soo|Z, S, x.find](e, R*,E — X, L—U,S*)
87. FOREACH (i,d) € £ DO BEGIN
90. G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,.find], ZV (lhs(€) CR),
v S’lg[s, xﬁﬂd](R"), SQO[S](E), SQl[*.ﬁ'ﬂd](;C,e[l]) , e€l, eg X,
Sp|Z, S, x.find|(e, R*,E — X, L.—U,S*)

91. END [ X := X U {e}; |

92. G, Pc(F,hs(S)), P[®,H,Z,N], S3|A,Z, «find], ZV (lhs() CR),

TV S15[S, *.find(R*), TV Sio[S, +.find](R*,€ — X,S*), Sa0[S](€)

IV S8, *.find(R*,E — X,8"): Suppose —Z and let t € R*. Again, for convenience,

let s = canon, (S*(t)). If t ¢ R, then by Sy[Z, S, *.find](e, R*,E - X, L—-U,S¥)
at 86 or 90, we have s is a compound x-term, hf(t), find (t) = s, 6,(s) N lhs(E —
Xgo) # 0, and e[l] € 6,(s) — (x,s) € (L —U). It only remains to show
0y (s) N ihs(E — X) # 0. Suppose the contrary. The only way this could happen
is if e[1] € 0,(s). But this implies that (x, s) € (£ —U), and by the end-of-loop

condition, £ = U, so this is impossible.

Line 94:

81. [ X :=10; ]

82. G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,xfind], lhs(§) CR,
518[8,*.ﬁnd](7€*), Sm[S,*.ﬁ’ﬂd](R*,g—X,S*>, 520[5](5>

83. FOREACH e € £ DO BEGIN

92. G, Pc(F,lhs(S)), Pi[®,H,Z,N], S3[A,Z,*.find], ZV (lhs(€) CR),

vV 518[5,*.ﬁ7ld](R*), IVSlg[S,*.ﬁ7ld](R*,5—X,S*>, 520[5](5>
93. END
94 . G, Pc(F,hs(S)), Pi[®,H,Z,N], S3[A, I, +.find, TV(MCR),

IV (Ihs(€) CR), IV (R' CR)
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ZV (R'CR): Assume —Z, and suppose t € R*. By Siy[S, *.find|(R*, & — X,S*) at
82 or ZV Syy[S, *.find|(R*, € — X, S5%) at 92, either t € R or §,(canon, (S*(t)))N
Ihs(€ — X) # (. But by the end-of-loop condition, & = X, so we must have
teR.

IV (M CR): Assume =Z. Then by Si5[S, *.find|(R*) at 82 or TV S5[S, *.find|(R*)
at 92, M —R* C R. But as just shown, R* C R, so M CR.

A.5.5 AssertFormula

Line 101:

99. G, free(e) CV, fr(e), Pii(e), Py[H](®,e), S4[S,*.find](e)

100. AssertFormula(e) | Z := (; G{} := FALSE; |

101. G, P_(all), free(e) CV', fr(e), Pii(e), Pi7[®](D'), Py[H](P' €),
Poy[*.find], Psg[A,A](e), Sa[S,*.find](e)

P7[®@](®): Trivial since & = @'.
Py [x.find]: Trivial since e.find = e.find’ for all e.

Pss[ A, A](e): By Gyo at 99, if t € A; and j # T(t), then ¢ occurs j-alien in some
sub-term of A. Also, it follows by G; at 99 that Af(t).

Line 103:

... [ Z :=0; ]
101. G, P_(all), free(e) CV', fr(e), Pi1(e), Pi7[®](®'), Py[H](P' €e),
Polefind); Pisl A AJ(e), $4[S, v« find](c)
102. FOREACH maximal sub-term ¢ of e DO BEGIN
103. G, P_(A,H,S), Pc(®,V,N,F,R), freee) CV', fr(e), Pii(e),
Pi7[®@)(D"), Py[H|(D',e), Poi[x.find], Pylx.find|(Z), Py3(t), PaulA](Z,€),
Psg[ A, A(e), S4[S,*.findl(e), MCR, t<e

105. G, P_(AH,S), P(®,V,N,F,R), free(e) V', file), Pu(e),
Pi7[®](D"), Py[H|(D',e), Poi[x.find], Pylx.find|(Z), Pul[A:](Z,e),
Psg[ A, Ail(e), Si[S,*.find](e), M CR

106. END
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Pysl*.find)(Z): From 101: Z = (). From 105: follows trivially from Py[x.find](Z) at
105.

Py3(t): By the loop condition.

Po[A](Z,e): From 101: Z = (). From 105: follows trivially from Py[A.](Z,) at 105.

M C R: From 101: by P_(all) at 101. From 105: follows trivially from M C R at
105.

Line 105:

102. FOREACH maximal sub-term ¢ of e DO BEGIN

103. G, P_(A,H,S), Pc(®,V,N,F,R), free(e) CV', fr(e), Pi(e),
P17[(I)](q)l), PQQ[H](‘I),,(%), Pgl[*.ﬁnd], PQZ[*ﬁﬂd](Z), P23(t>, P24[A*](Z,€),
Pss[ A, A(e), S4[S,=.findl(e), MCR, t<e

104. SetupTerm(¢,7(e)); [ Z = Z U {t}; |

105. G, P_(AH,S), Pc(®,V,N,F,R), free(e) CV', fr(e), Pi(e),
Pi7[®@)(D"), Pyl[H|(D',e), Poilx.find], Pylx.find|(Z), Pul[A:](Z,e),
Pys[ A, A(e), Si[S,*.find](e), MCR

114. G, frlt), Pu(t), free(t) CV, SuS,+find)(t)

115. SetupTerm(t,?)

145. END SetupTerm

146. G: P:(A,H,S), Pg((I)w,VaNaA*aj:aR>: plT[(I)]((I),>: P24[A*](tf),
Pys[Ai](t,1), Por[x.find](t), Pog[x.find](t), t.find=1t, Pso[A](t), Pio[Ai](t,7),
MCR

First we consider the preconditions of SetupTerm.

fr(t): By fr(e) and G7 at 103, the definition of fr, and the fact that ¢ is a mazimal

sub-term of e.
free(t) C V: By free(e) C V', P(V), and t < e at 103.

S4[S, *.find](t): By S4[S, *.find](e) at 103, t < e.

Now we consider the properties at line 105.
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G: By G at 146.
P_(A,H,S): By P_(A,H,S) at 146.

Po(®,V,N,F,R): By P-(®,V,N,F,R) at 146.

free(e) C V't By free(e) C V' at 103.

fr(e): By fr(e), t <e at 103, Por[*.find|(t) and Pag[*.find|(t) at 146, and the definition
of fr.

Pl]_(@): By Pl]_(e) at 103.

P7[®](®'): By Pi7[®](®') at 103, we have T U®' = 37. ®193 and TNV’ = ), where
w = free(®qp3) — free(P') Then, by Pi7[®](P') at 146, we have T U o3 = I7. P
and 7N Vig3 = 0, where 7 = free(®) — free(®13). By Pc(®) at 103 and 146 and
Lemma A.4 it follows that TU®' = 3w.®, where W = TUY = free(®) — free(d’).
It then follows easily from Pc(V) at 146 that w NV ' = 0.

PQU[H]((I)’, 6): By PQU[H]((I)’, 6) at 103.
Pyi[x.find]: By Pop[*.find] at 103 and Par[*.find](t) and Psg|x.find](t) at 146.

Pyy[x.find|(Z): By Pal*.find|(Z) at 103, Vt € Zygs. t.findips = t. It then follows by
Pyr[x.find](t) and Pag[*.find|(t) at 146 that V¢ € Zyp3. t.find = t. Finally, since
Z = Zyp3 U {t}, and t.find =t at 146, we have Vt € Z.t.find = t.

Py[AL](Z,e): Suppose s <7, s <td De, and s occurs T (d)-alien in d. We must show
s € A5y A s € A(q). We consider four cases.

1. Suppose 5 J Zyp3. 5 € Ay(s) A5 € Ay(q) follows easily by Py[A.](Z,e) at
103.

2. Suppose s Zyp3 and d It. Then we have s <t and s <d <t, so s €
A7) N5 € Ay(q) follows by Poy[A](t,1) at 146.

3. Suppose s 4 Z103, d 4 t, and s <1t. Then by the definition of alien, s occurs
T (t)-alien in ¢, and thus s € Ay As € Ayq follows again by Pou[A,](2, 1)
at 146.
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4. Suppose s 4 Zyo3, dAt, and sdt. We know s 1 Z and Z = Zyp3 U {t},
so we must have s < ¢, and thus s = ¢t. Now, s <<d <d and e is a literal
(by Pyi(e)), so by the definition of literal, we must have e = d or e = —d.
In either case, we have 7 (d) = T (e) and thus 7 (t) # T (e). Thus, by
Pos[A](t, i) at 146, t € Ay At € Ay, and thus s € Ay As € Ayg

Pss[ A, AJ(e): Suppose s € Aj and j # T(s). If s4t, then by Ps[A,](t) at 146,
s € A; at 103. But then, by Pss[A, A.](e) at 103, s occurs j-alien in some
sub-term of Ajp3 U {e}. It follows from P_(().A) at 146 that s occurs j-alien
in some sub-term of AU {e}. Suppose on the other hand that s <¢. Then by
Pip[A](t, 1) at 146, either s € A, at 103 (the case we just handled above), or
s =t A j =i (in which case s occurs j-alien in e), or s occurs j-alien in some

sub-term of ¢, and thus in some sub-term of e.

Su[S, x.find|(e): By S4[S, *.find|(e) at 103, and P-(S) and Pc(F) at 146.

M CR: By M CR at 103 and 146 and P-(R) at 146.

Line 107:

101. G, P_(all), free(e) CV', frle), Pi1(e), Pi7[®](®'), Pao[H](D' €),
Poy[x.find], Psg[A, As](e), Sa[S,*.find](e)
102. FOREACH maximal sub-term ¢t of e DO BEGIN

105 P_(AH,S), Pc(®,V,N,F,R), free(e) CV', fr(e), Pii(e),
[ 2)(@1), Pao[H|(®' ), Por[x.find], Pyl+.find(Z), PulA](Z,e),
Pl Al (2), S48, find](e), MC R

106. END

107. ,(.A H,S), Pc(®,V,N,F,R), free(e) CV', Pii(e), Pi7[®](P'),
PZO[ ](( (i) 5 Pgl[ ﬁnd] 5 P24[A*]((’/1 C) 5 PQ}[*ﬁ'ﬂd](C) ’ ])38[./4, A*]((’> 5
MCR

Pyy[AL](e,e): From 101: trivial since there are no terms in e. From 105: since
the property is true for every sub-term of every maximal sub-term of e by
Py[A)(Z,e) at 105 (and the end-of-loop condition), it is therefore true for

every term in e.
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Pys[*.find](e): From 101: trivial since there are no terms in e. From 105: follows by
Pyy[*.find|(Z) at 105 and the end-of-loop condition.

Line 109:

107. P_(AH,S), Pc(®,V,N,F,R), free(e) CV', Pii(e), Pi7[®](P),
PZO[ ](( ) Pgl[*., ,72,(1], P24[A*]((31(3), Pg;[*.ﬁnd](c), p}S[.A.A*](C),
MCR

108. [ Ay = Ay U {e}; Gf§ := TRUE; |

109. Q, P:(H.S), Pg(‘i).vﬁNﬁfﬁR) f7(€( ) CV/ Pu((i), pLT[(I)]((I)/U{C}),
Py[H|(D',e), Por[x.find], Pysl*.find](e), ec ®, A=A U{e}, MCR

G: We must consider those global properties that depend on A or G

Gy: Follows trivially from Gy at 107 since @97 C ®.

Gj: Let {W, X, Z} be the partition of ® and Y the set containing e which exist
by Pyo[H](®',e) at 107. Also, by Py|[H](P',e) we have TUH = Jw. W,
where W = free(W) — free(H), and TUHUW =37, 7. (X UY), where 7 =
free(X) — free(HUW) and § = free(Y') — free(HUW U X)), so in particular,
TUHUW | 37,7. (X U{e}), where 7, = free(e) — free(HU W U X).
We also have T UW U X = 3%. Z, where Z = free(Z) — free(W U X)) and
zN free(H U {e}) = 0 (and thus z = free(Z) — free(H UW U X U {e}))
Putting these together we get 7 UH = Jw*. (W U X U {e} U Z), where
w* = free(W U X U{e} UZ)— free(H), but WU XUZ = P, so we
have T U H E Jw*. (' U {e}), where w* = free(®' U {e}) — free(H).
Now, by Pi7[®](®’) at 107 (and the fact that ® = ®15; U {e}), TU P |
dz*. (D — {e}) where z* = free(® — {e}) — free(P') and z* NV’ = (). Now,
since free(H) C V' (by Gg at 99 and P_(H) at 111) and free(e) C V'
at 111, we also have z* = free(® — {e}) — free(H U @' U {e}). We can
thus conclude TUH = Jy*. (¢’ U {e} U (P — {e})), where y* = free((® —
{e}) U @' U {e}) — free(H ) Since " C @ by Pc(®), this simplifies to
T UH = Jy*. &, where y* = free(P) — free(H).

G4: Follows trivially from Gy at 107 since @97 C P.

Gg: Follows from Gy, free(e) C V', and P-(V) at 107.



APPENDIX A. CORRECTNESS OF THE FRAMEWORK 159

Pi7[®

Gy: Suppose t occurs j-alien in some sub-term of ® U F. We must show ¢ €
Aj At € Ary. First, if t € @197 UF, then t € Aj At € Ay by Gy at 107.
The only other case is if ¢ <e. But then t € Aj At € Ay by Pou[A](e, €)
at 107.

Gio: By Pss[ A, A](e) at 107 and A = A;7r U {e}.

G1i: Follows from Gyy, Pysl+.find](e), and Gg at 107, and the fact that A =
A107 U {6}

Goo: By Gy and Pyq(e) at 107, and the fact that A = A7 U {e}.

[(®" U {e}): We must show T U P U {e} = Jw. ® and wN V' = (), where

w = free(®) — free(P" U {e}). Now, by Pi7[®](®') at 107, we have T U ®' |=
dw. (P — {e}) and wN V' = (), where W = free(® — {e}) — free(®'). It follows
that 7 U ®' U {e} | [Fw. (P — {e})) Ae]. But free(e) C V', free(e) Nw = 0,
so we can rewrite this as 7 U ®' U {e} = Jw. @, and we can also rewrite W as
w = free(®) — free(®' U {e}).

Line 111:
109. G, P-(H,S), Pc(®,V,N,F,R), free(e) CV', Pi7[®](®'U{e}),
Py[H|(D',e), Por[x.find], Pyslx.find](e), ec ®, A=A U{e}, MCR
110.  TheoryAsserty(,(e);
111. G, P-(H,S), Pc(®,V,N,F,R), Pi7[®|(2'U{e}), Poil*.find],
Pys[x.find|(e), ec @, A=A"U{e}, MCR
255. @,
256. TheoryAssert,(e)
257. G, Pg_l[&]]](l)

The preconditions of TheoryAssert are obvious, so we consider the properties at
line 111. For reference, Ps[all](i) at 257 implies P_(® — B;, H,Z,N, S, A, *.find),
P (Q, B;, V, x.notify), T, Uv(®, =3w. B) AwnV' = OAw C V, where w =

free(B

;) — free(®h), and T; U (P E (Q — Q') A free(Q — Q') C V.

G By G at 257.
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P_(H,S): By P_(H,S) at 109 and 257.

P (®,V,N,F,R): By P.(®,V,N,F,R) at 109 and P_(N, x.find) and Pc(®,V) at
257.

Pi7[®](®" U {e}): By Pi7[®](®' U {e}) at 109, we have T U ®' U {e} = Jw. P199 and
wNV' = (), where W = free(P199) — free(d'U{e}). Let & denote the value of @;
at 109. Then, by Ps4[all](7), where i = T (e), we have ;(7; U ®f = 3. B;) and
TNVig9 = 0 (and thus TNV’ = 0 by P-(V) at 109), where T = free(B;) — free(®;).
It follows that 7 U @} = 3. B;, and thus T U @19 = 3T. By, s0 TUD' U {e} =
3w, 7. (P1g9 U B;). But & = $y99 U B; (by P=(® — B;) and Pc(B;) at 257), so
Tud U{e} =3Jw,z. . As shown, (WUZ)NV' = 0. It remains to show that
wWUT = free(®) — free(®" U {e}). We know that free(®) = free(Pig9) U free(B;)
and W = free(Pg9) — free(P' U {e}). Now, T = free(B;) — free(®}), but we also
know that Z N Vigg = 0, free(®109) € Vige (by Gg at 109), and free(e) C Vigo
(by free(e) C V' and Pc(V) at 109), so T = free(B;) — free(®199 U {e}), and thus
wUT = free(®) — free(P' U {e}).

Py [x.find]: By Py [*.find) at 109 and P—(x.find) at 257.
Pys[«.find|(e): By Pys[*.find|(e) at 109 and P—(x.find) at 257.
e € ®: By e € ® at 109 and P-(®) at 257.

A=AU{e}: By A= A"U{e} at 109 and P_(P — B;) at 257.

M C R: By M CR at 109 and P_(x.find) at 257.

A.5.6 SetupTerm

Line 116:

114. G, fr(t), Pas(t), free(t) CV, Sa[S,x*.find](t)
115. SetupTerm(t,?)
116. G, P_(all), fr(t), Pss(t), free(t) CV, Pi7[®)(D'), Si[S,*.find)(t)

P7[®@](®"): Trivial since &' = ®.
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Line 120:

118. G, P_(all), fr(t), Pus(t), free(t) CV, Py7[®|(®"), T(t) #1,
S41S, = find)(1)

119. [A () = AT U {IL} ]

120. G, P_(AHN,S,*find), Pc(®,V,N,A), fr(t), Pu(t), free(t) CV,
PR@)(®), T(0) £, 1€ Argys PoolAal(t), Pul[Ad(ti), SilS, «find)(t

G: We must consider those global properties that depend on A.

Gg: By Gy and free(t) CV at 118.
Gy: By Gy at 118 and the fact that nothing was removed from A; for any j.
Gio: By definition, =G?¢ inside of SetupTerm.

Psy[AL](t): By P_(all) at 118, Ps9[A,](t) holds at 118. Then, since the only change

to A; for any j is the addition of ¢ to Ay and clearly ¢ ¢, it follows that
P3o[A](t) holds at 120.

Py [A](t,7): By P_(all) at 118, we have A; = A'; at 118, so Pyp[A,](t,7) holds at
118. Now, suppose s It, s € A;, and j # T(t). If s € A; at 118, then the
property holds by Pyo[A.](¢,7) at 118. The only other possibility is that s = ¢
and j = T(t). But we assumed that j # T (t), so this is not possible. Thus
Pyo[AL](t,7) holds at 120.

Line 122:

120. G, P-(AH,S,x.find), Pc(®,V,N,A,), fr(t), Pas(t), free(t) CV,
Pr[®@](®), T(t) #i, t € Ay, Poo[Ai](t), Paz[As](t,7), Su[S,=.find](t)

121. TheoryAddSharedTermy ;) () ;

122. G, P_(AH,S,x.find), Pc(®,V,N,A,), fr(t), Pas(t), free(t) CV,

Pr[®](@), T(6) £i, L€ Ay, Prolh](t), Prh(t,i), S4S,«find)(t)

252. G, free(e) CV
253. TheoryAddSharedTerm, (e)
254. G, Psalall](n)

The preconditions for TheoryAddSharedTerm are trivial, so we consider the properties
at line 122. Recall that Ps[all](i) at 254 implies P_(® — B;, H,Z,N, S, A, *.find),
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P(Q, B;, V,x.notify), T, U (P, =3w.B;) AwnNV' = OAw C V, where w =
free(B;) — free(®}), and T; U v;(®; = (Q — Q') A free(Q — Q') C YV

G: By G at 254.

P_(A,H,S,x.find): By P_(A,H,S,*.find) at 120 and at 254.

P-(®,V,N,A,): By Pc(®,V,N,A,) at 120 and P_(N,A,) and Pc(®,V) at 254.

fr(t): By fr(t) at 120 and P-(x.find) at 254.
P23(t): By ng(t) at 120.
free(t) C V: By free(t) CV at 120 and Pc (V) at 254.

Pi7[®](®"): By Pi7[®](®') at 120, T U ®' | Jw. $1990 and wN V' = (), where w =
free(®199) — free(®'). Then, by Psy[all](i) at 254, TUP 9 = IT.P and TNVy9y =
(), where T = free(®) — free(®199). Thus, by Pc(®) at 120 and & = Py U B; at
254, we can use Lemma A.4 to get T U ®' = 37. ¢, where 7 = W U Tfree(P) —
free(®'). It follows easily (by Pc(V) at 120) that gNV' = .

T(t) #1d: By T(t) # i at 120.

t € Ayy: By t € Ay at 120 and P_(A,) at 254.
Psy[AL](t): By Pso[A,](t) at 120 and P_(A,) at 254.
Pip[A](t,7): By Pio[A](t,4) at 120 and P—(A,) at 254.

S4[8, *.find](t): By S4[S, *.find](t) at 120 and P—(S, *.find) at 254.

Line 124:
122. P_(A,H, S x.find), Pc(®,V,N,A.), fr(t), Pas(t), free(t) CV,
[(P] ) t) #i, t € Arpy, Pso[A](t), Pua[A(t,1), Su[S,*.find](t)
123. [A,; = u {f} ]
124, G, P_(AH,S,*find), Pc(®,V,N,A), fr(t), P(t), free(t) CV, t e Ay,

Py7[®](® ) T(t) # i, t € Ay, PaolA ](1‘), Pip[AJ(E,2), Su[S, x.find](t)
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G: We must consider those global properties that depend on A.

Gs: By Gg and free(t) CV at 122.
Gy: By Gy at 122 and the fact that nothing was removed from A; for any j.
Gio: By definition, =G?¢ inside of SetupTerm.

P3o[A,](t): We have Pso[A,](t) at 122. Then since the only change to A; for any j is

the addition of ¢ to Ay and clearly ¢ ¢, it follows that Pso[A,](t) holds at
124.

Pio[AL](t,i): We have Pyo[A,](t,4) at 122, and the only change from 122 is the addition
of t to A;. But this is covered by the case s = t A j = i in Pyp[A](t,1), so
Pyo[AL](t,7) holds at 124.

Line 126:

124. G, P-(AH,S,find), Pc(®,V,N,A), fr(t), Pus(t), free(t) CV,t e A,
Pir[®@(@), T(t) #i, t€ Ay, PiolAJ(t), Po[AEti), SiS,«find)(t)

125. TheoryAddSharedTerm, (¢) ;

126. G, P_(AH,S,*find), Pc(®,V,N,A.), fr(t), Ps(t), free(t) CV, t € A;,

P[@(@7), T(&) #1, t € Mgy, Pao[A(®), Pr[A](t0), SilS,*find](t)

This case is almost identical to that for line 122. The only difference is that there is

one additional property, ¢t € A; which is preserved trivially by P_(A,) at 254.

Line 128:

116. G, P_(all), fr(t), Pss(t), free(t) CV, Pi7[®)(D'), Si[S,*.find](t)
117.  IF T(t) #4¢ THEN BEGIN

126 P_(AH,S,xfind), Pc(®,V,N,A), fr(t), P(t), free(t) CV,t e A,
[‘I’] '), T(t) #i, t € Arys Peo[A](t), Paa[A](2,6), Sa[S, *.find](t)

127. END

128. P_(A,H,S,*.find), Pc(®,V,N,A,), fr(

(A t), PB() free(t) CV,
[]q)), on[ (1), Pso[Ai](t), Paa[Ad](t,

i), S4[S,*.find](t)

Pys[A](t,i): Follows from 116 by if-condition, and from 126 by T(t) # i, t € Arq
and t € A;.
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Pso[AL](t): Follows from 116 by P—(all) and follows trivially from 126.

Pis[AL](t,7): Follows from 116 by P_(all) and follows trivially from 126.

Line 130:

128. G, P-(A,H,S,«.find), Pc(®,V,N,A,), fr(t
Py [@)(@'), Pa[A)(t3), Po[A](), PuofAd(t,

129.  IF HasFind({) THEN BEGIN
130. G, P-(AH,S,x.find), Pc(®,V,N,A,), fr(t), Pi7[®|(D), hf(t),
Pou[As](8,1) s Pog[As](t,2), Pso[A](2), Pao[Ai](t,4), Su[S, *.find](t

)s PB( ), free(t) CV,
t,i), Su[S,*.find)(t)

Pyy[AL](t,t): Suppose s <d <t and s occurs T (d)-alien in d. Then since hf(t), it
follows by G that hf(d), so d = d € F. Thus, by Gy, (s € Ay@y A s € Ay(y)).

Line 132:
130. P_(A,H,S,+.find), Pc(®,V,N,A,), fr(t), Pi7[®](®), hf(t),
lbd |(t,1), Pas[As](t, 1), Pso[Ai](t), Pao[Ai](t,0), Sa[S,=.find|(2)
131. RETURN;
132. G, P_(A,H,S), Pc(®,V,N,A,,F,R), Pi7[®](D'), Pou[A.](t,1),
Pys[A](t,17), Pﬁ[x find|(t), Pos[x.find](t), t.find=1t, Pso[A.](t),
Ppp[A](t,i), MCR

Pc(F,R): By P—(S, *.find) at 130.
Pyr[*.find)(t): By P_(x.find) at 130.
Pys[*.find](t): By P_(x.find) at 130.
t.find = t: By fr(t) and hf(t) at 130.

M C R: By P_(x.find) at 130.
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Line 136:

134¢. G, P-(AH,S,xfind), Pc(®,V,N,A,), free(t) CV, fr(t), Pi7[®](2'),
Py3(t), Pos[A](t,4), —hf(t), Pso[A](t), Pao[Ai](t,7), Sa[S,*.find](t)

135. FOR k := 1 TO Arity(t) DO BEGIN

136. G, P_(AH,S), PC(CDVN,A*,}"R) free(t) €V, Pral@)(@),

=
N#

=hf(t), Pag[Ai](t,1), Par[*.find](t), Pog[*.find](t), Pag[* ﬁnd]
Pl find)(1, Avity(®) + 1), PolAJ(F)> PrlAr](D) PralAJ(E.
Su[S, x.find)(t), MCR

138. G, P_(AKS), Po(®,V,N,A.F.R), free(t) CV, pn[q)](cp
=hf(t), Pos[Ai](t 1), Por[*.find|(t), Pog[x.find|(t), Pao[*.find](t,k
Pyl find|(t, Arity(t) + 1), Pso[A](t,k +1), PsolA, ]( ), Paa[A.

S4[S, *.find)(t), M CR
139. END

P (F,R): From 134: by P_(S, *.find) at 134. From 138: trivial.
Py;[x.find|(t): From 134: by P_(x.find) at 134. From 138: trivial.

Pyg[.find|(t): From 134: by P_(x.find) at 134. From 138: trivial.

Pyg[*.find|(t, k): From 134: k=1. From 138: by Pyy[*.find|(t,k + 1) at 138.

165

Py[x.find|(t, Arity(t) + 1): From 134: by fr(t) and —hf(t) at 134. From 138: trivial.

Pso[AL](t, k): From 134: k=1. From 138: by Pso[A.](¢,k + 1) at 138.

M C R: From 134: by P_(x.find) at 134. From 138: trivial.
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Line 138:

136. G, P_(AH,S), Pc(®,V,N,A,F,R), free(t) CV, Pi7[®](D'), Pas(t),
—hf(t), Pos[Ai](t,1), Por[x.find|(t), Pos[x.find](t), Paglx.find](t,k),
Pyo[x.find](t, Arity(t) + 1), Pao[A](t, k), Pso[A](t), Pao[Ai](t,4),

S4[S, *.find)(t), M CR
137. SetupTerm(t[k], T () ;
138. G, P_(A,H,S), Pc(®,V,N,A,F,R), free(t) CV, Pi7[2](2'), P>

3(t),
=hf(t), Pag[Ai](t,1), Par[*.find](t), Pagl*.find](t), Pog[+.find](t,k+ 1),
Psy[x.find)(t, Arity(t) + 1), Pso[AL(t,k + 1), Psg[A](t), Pa2[AL](t,i),
Sa[S, *.find)(t), MCR

114. G, fr(t), Ps(t), free(t) CV, Si[S,*.find](t)
115. SetupTerm(t,?)

145. END SetupTerm
146. G, P:(.A,H,S), PC(@,V,N,A*,F,R), Pl7[q)](q),)’ P24[A*](t7t)’

P26 [A*](t L) ’ P27[>sﬁ7ld] (f) ) ng[xﬁnd] (f) s fﬁﬂd =1, P}Q[A*](f) ’ P_Q [A*](t L) ’
MCR

First we must show the preconditions of SetupTerm are met.
fr(t[k]): By Pso[*.find)(t, Arity(t) + 1) at 136.
Pys(tlk]): By Pys(t) at 136.

S4[S, *.find](t[k]): By S4[S, =.find|(t) at 136.

Now we consider the properties at line 138.

G: By G at 146.
P_(A,H,S): By P_(A,H,S) at 136 and 146.

P-(®,V,N,A,,F,R): By Pc(®,V,N,A,,F,R) at 136 and 146.

free(t) C V: By free(t) CV at 136 and Pc (V) at 146.
Pi7[®](®'): By Pi7[®](®') and Pc(P) at 136 and 146, Lemma A.4, and Pc(V) at 136.

P23(t): By P23(t) at 136.
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Shf(t): By =hf(t) at 136 and Py[+.find)(t) at 146.
Py[A.](t,7): By Pa[A.](t,7) at 136 and Pc(A,) at 146,

Pyr[*.find|(t): By Py[+.find|(t) at 136 and Py;[«.find)(t) at 146.

Pyg[*.find|(t): By Pyg|+.find|(t) at 136 and Py[.find](t) and Pys[.find)(t) at 146.

Pog[*.find|(t, k + 1): By Pagl*.find|(t, k) at 136, Pa[*.find|(t) and Pag|*.find](t) at 146,
and t.find =t at 146.

Pso[.find|(t, Arity(t) + 1): By Pso[x.find](t, Arity(t)+1) at 136, and Py;[*.find](t) and
Pog[*.find|(t) at 146.

ng[A*](t,k—l- 1). By P32[A*](t, k) at 136 and PQ(A*) at 146, and P24[A*](t, t) and
PQ@[A*](t, Z) at 146.

P3o[AL](t): By Pso[AL](t) at 136 and 146 and the fact that t[k] < t.

Pip[A](t,7): Suppose s <t, s € Aj, and j # T(s). We must show that s € A';,
s =tAj =1, or s occurs j-alien in some sub-term of ¢. First note that if
s € Aj at 136, then the required property follows by Py[A,](¢,4) at 136. Now,
if s A4 t[k], then by Pso[A,](t) at 146, s € A; at 136. Finally, we consider the
case where s < ¢[k]. In this case, by Pi[A.](t,7) at 146, we have s € Aj136
(i.e. s in A; at line 136 in which case the required property follows as shown
above), s = tlk] A j = T (t), or s occurs j-alien in some sub-term of ¢[k| (and
thus, clearly in some sub-term of ¢). The only non-trivial case is the middle
one: s = t[k] A j = T(t). But we know that j # T (s), so T (t[k]) # T(t), and
thus t[k] is j-alien in ¢. Since s = t[k], it follows that s occurs j-alien in some

sub-term of ¢ (in this case, the sub-term is ¢ itself).

S4[S, *.find)(t): Suppose s <t. We must show —hf(t) — (¢ = canony(S(t))). If
s <t[k], then hf(s) by t.find = t at 146 and Gg. Otherwise, s.find = s.find, 3¢ by
Pyr[*.find)(t) at 146, so t = canon, (S(t)) by Si[S, *.find|(t) at 136 and P_(S)
at 146.
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M CR: By M CR at 136 and 146 and P-(R) at 146.

Line 140:

134. G, P-(AH,S,xfind), Pc(®,V,N,A,), free(t) CV, fr(t), Pi7[®](2'),
Pos(t), PaglM(t3)s —hf®), PaolAul(t), Pulhu(ti), SulS, = find(t)
135. FOR k := 1 TO Arity(t) DO BEGIN

138. G, P:(A1H18>, Pg((I),VﬁNﬁA*,fﬁR), f7‘ec( ) V, l{[q)](q)l), PQg(f),
—hf(t), Pos[Ai](t 1), Por[*.find](t), Pos[x.find|(t), Pyol[*.find](t,k+1),
Pyo[x.find|(t, Arity(t) + 1), Pao[A](t,k+1), PylA ](ﬂ: Pyo[A](¢,9),

S4[S, *.find)(t), M CR
139. END
140. P_(AH,S), Pc(®,V,N,A,,F,R), free(t) CV, Pi7[®)(D'), Pas(t),
PA[ (t, 1), Pas[As](t,0), —hf(E ): Por[x.find)(t), Pos[x.find|(t), Psi[*.find](t),
Pyo[A](t), Pi2[A(ti), Sa[S,*.find](t), M CR

Poy[AL](t,t): From 134: trivial since ¢ has no sub-terms. From 138: suppose s <d <t
and s occurs 7 (d)-alien in d. We must show s € Ay As € Apq). 1f d<t, then
for some child ¢ of ¢, d J¢, s0 s € Ay A's € Aygy by Pos[A](c, ¢) which holds
by Psy[A](t, k+1) at 138 and the end-of-loop condition. If d = ¢ and s is not a
child of ¢, then there exists a child ¢ of ¢ such that s <c¢ and s occurs T (d)-alien
in ¢, so by the same argument as above, s € Ay, As € Ayy. Finally, if d =1
and s is a child of ¢, then s € Ay(s) A's € Ay by Pos[As](s, T(d)) which holds
by Pso[A](t, k + 1) at 138 and the end-of-loop condition.

Py;[x.find|(t): From 134: By P_(x.find) at 134. From 138: trivial.
Pyg[x.find|(t): From 134: By P—(x.find) at 134. From 138: trivial.

Py [*.find](t): From 134: trivial since ¢ has no children. From 138: by Pyy[*.find](t, k+
1) at 138 and the end-of-loop condition.



APPENDIX A. CORRECTNESS OF THE FRAMEWORK 169

Line 142:

140. G, P_(A, P (®,V,N,A, F,R), free(t) CV, Pi7[®(D'), Poslt),
Py [A](t, ), Pz(,[A 1(t,i), —hf(t ), Pyr[x.find](t), Pog[.find](t), Psi[x.find](t),
Psg[A, ](z‘), Pyo[A)(t,3), Sa[S,x*.find](t), M CR

141. tﬁn = t; [Gm := FALSE; |

142. G,

:( ), Pg(‘I), V,/\/,A*,f, R) s ])17[‘1)](‘1)/) s PQ_}[A*](ILWIL/) s
Pys[A](t, ) Pz{[ Jind|(t), Pogl*.find|(t), t.find=1t, Psg[A](t), Pio[AL](t,7),
M C R, Sys[*.find, x.notify|(t)

G: We consider the global properties that depend on find. Note that by —hf(t) at
140, it follows that HF = HF140 U {t} and F = f140 U {t == t}

Gy:

By Gy at 140, T U ® = Fiy. Also, since T includes equality, and in
particular reflexivity, 7 U ® = {¢t = t}. Thus, since F = Fiq U {t = t},
TUD EF.

: By —hf(t) and the execution of line 141, Af(s) = hfiso(s) and find"(s) =

findy ,(s) for all s £ t. But find*(t) = t, so G5 holds at 142.

: By G and P [*.find|(t) at 140.
: By G and Py;(t) at 140.
: By Gg and free(t) C V at 140.

: Suppose r occurs j-alien in some sub-term s in ® U F. We must show that

(re AjAT € Apyy). If s (P U Fryg), then (r € AjAr € Apy) by Gy at
140. Otherwise, since F = Fiyo U {t = t}, it must be the case that s <.
Thus, by Pou[A](t,t) at 140, (r € Aj Ar € Apgyy).

Gt By GH at 140 since A = A140 and HF140 g HF.

Gyge By G14 at 140 since f140 g F.

G152 By Gys at 140, T, U7, (S) = 7y (Frao). Also, since T, includes reflexivity,

Ty F ot =1). But F = Fry U {t = t}, 50 T U (S) | il F).
: By definition, =G ¢ at 142.

: By G17 at 140 and since HF 49 C HF.



APPENDIX A. CORRECTNESS OF THE FRAMEWORK 170

G1s: Notice that fris(t) by P [*.find](t) at 140 and fri4(t) at 142 since ¢.find =
t. It is not hard to see that as a result fr(e) <> friqo(e) for all expressions
e. Thus G,z follows from G5 at 140.

D

-

: Suppose s is a y-leaf. If s # ¢, then by G9 at 140, hf(s) — (s.find #
s <> s € hs(S)) and s IS — hf(s) since s.find = s.findyyy and S = Siyp.
Suppose s = t. Clearly hf(s) and s.find = s. It remains to show that
s & lhs(S). Now, by Gg at 140, s IS — hfi7o(s). But we know —hfizo(s),
so it follows that s 4 S, and thus s & lhs(S).

P-(F,R): Given Pc(F,R) at 140, we must simply show Fiq9 € F and Ryg C R.
We already showed that F = Fi40 U {t = t}. To show that Ri4 C R, note that
S0 = S and s.findyo = s.find for s # t. Thus, it only remains to show that
t € R. But this follows by Af(t) and —hf(t) and S,[S, =.find|(t) at 140.

Py;[x.find|(t): Follows by Py[*.find](t) at 140 since s.find 4 = s.find for s # t.
Pyg[.find|(t): By Pas[*.find|(t) at 140, s.find 4 = s.find for s # t, and t.find = t.

M C R: M differs from M4 only by the addition of t. We know M4 C R4 and,
as shown above, R4 € R. But we also know that t € R (also shown above),
so M CR.

Sos[*.find, *.notify|(t): By Gis at 140 and s.find 4 = s.find for s # t.
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Line 144:

142.

143.
144.

264.
265.
266.
366.
367.

G’ P:(’A',‘/H',‘S)’ Pg((l)vvaNaA*afaR)’ Pl7[(1)]((1),>’ PZl[AA](tt)’
Pys[Ai](t,1), Por[x.find|(t), Pog[x.find|(t), t.find=1t, Pso[Ai](t), Pio[AL](t,7),
M C R, Sos[.find, x.notify](t)

TheorySetupy(;, () ; | G¢t := TRUE; |

G, P_(AH,S), Pc(®,V,N,A,,F,R), Pi7[®](®'), PaulA](t,1),
Pys[Ai](t,7), Por[x.find|(t), Pog[x.find|(t), t.find=1t, Pso[Ai](t), Pio[A](t,7),
MCR

G, hf(e)
TheorySetup; (e)
G, Pg4[&ll](i)

END TheorySetup,
G, Psalall](x), Sss[*.notify](e)

The only nontrivial precondition is hf(t) which is true by t.find = t at 142. Con-
sider now the properties at 144. Recall that Psy[all](i) at 266 implies P_(® —
Bi,H,Z,N,S, A, *.find), Pc(Q,B;,V,*.notify), T, Uv(®=3w.B;) ANwnNY' =
OAw C V, where w = free(B;)—free(®}), and T,Uv;(®; = (Q — Q') Afree(Q—Q') C V.

G: All but G4 follow from G at 266. To show, G, suppose s is a compound x-term

and hf(s). We must show Ve € 6,(s). (x,s) € c.notify). If s # ¢, then this
follows by Sos[*.find, *.notify|(t) at 142 and P_(x.find) and Pc(*.notify) at 266.
If s = ¢, then s must be a compound x term, and thus TheorySetup, is called.
Thus, by Sss[x.notify(e) at 367, Ve € 0,(s). (x,s) € c.notify).

P_(A,H,S): By P_(A,H,S) at 142 and 266.

Pc(®,V, N, A, F,R): By P-(®,V,N,A,, F,R) at 142 and P_(N, S, A,, x.find) and

Pc(®,V) at 266.

P7[®](®"): By Pi7[®](®') at 142, T U ®' |= Jw. P49 and wN V' = (), where w =

free(®149) — free(®'). Then, by Psy[all](i) at 266, TUP 149 = IT.P and TNVyy4p =
(), where T = free(®) — free(®142). Thus, by P-(®) at 142 and ® = 14, U B; at
266, we can use Lemma A.4 to get T U ®' = 37. ¢, where 7 = W U Tfree(P) —
free(®"). It follows easily (by Pc(V) at 142) that N V' = 0.
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Poy[A](t,t): By Poy[A](t,t) at 142 and P_(A,) at 266.
Pys[AL](t,1): By Pys[AL](t,7) at 142 and P_(A,) at 266.
Pyr[x.find|(t): By Pyr[x.find|(t) at 142 and P—(x.find) at 266.
Pyg[«.find|(t): By Pag[*.find|(t) at 142 and P—(x.find) at 266.
t.find = t: By t.find =t at 142 and P_(x.find) at 266.
Pso[AL](t): By Pso[AL](t) at 142 and P_(A,) at 266.
Pio[A](t,1): By Ppf[AL](t, i) at 142 and P_(A,) at 266.

M CR: By M CR at 142 and P_(S, *.find) at 266.

A.5.7 Simplify

Line 153:
151. G, P_(all), TU® E€ ~e, hfle)
152. RETURN Find(e);
153. G, P_(AH,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),

TU® = e ~retval, Pi7[®](P"), S4[S,x*.find]|(retval), Ss(retval)

237. G, hf(t)
238. Find(¢)

250. END Find
251. G, P_(all), retval.find = retval, t ~ retval

G: By G at 251.

P_(AH,Z,N,S, *.find): By P—(all) at 151 and 251.

Pc(®,V): By P_(all) at 151 and 251.

172

free(retval) C V: retval = retval € F by retval.find = retval at 251, so free(retval) C 'V

by Gg.

fr(retval): By retval.find = retval at 251.
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TU® e ~ retval: We know TU®5; | €’ >~ e. Then, F = e = retval by t ~ retval
at 251. But @15 = ® by P_(®) at 251 and TU® = F by Gy, 50 TUP e ~
retval and thus 7 U @ |= e’ ~ retval.

P7[®@](®"): Trivial since & = @' by P_(®) at 151 and P_(®) at 251.

S4[S, *.find](retval): We know hf(retval) by retval.find = retval at 251, and thus hf(t)
for all t < retval by Gg. S4[S, *.find|(retval) follows trivially.

Ss(retval): As just shown, hf(retval), so by G, retval is a term, and thus Op(retval) #

3 ?

Line 157:

155. G, P_(all), free(e) CV, TUD ¢ ~e, —hf(e)

156. FOR k := 1 to Arity(e) DO BEGIN

157. G, P_(A,H,Z,N,S,*.find), Pc(®,V), free(e) CV, TUPR =€ ~e,
Pi7[®)(®"), Psg[*.find](e, k), So4[S,x*.find](e, k)

159. G, P_(A,H,I,N,S,x.find), Pc(®,V), free(e) CV, TUD e ~e,
Pi7[®)(®"), Psg[*.find](e,k + 1), Sou[S,*.find](e,k + 1)
160. END

It is easy to see that all properties are satisfied by the transition from 159. Thus it

suffices to consider the transition from 155.
P7[®@](®"): Trivial since ® = @' by P_(all) at 155.

Pso[x.find|(e, k): Trivial since k=1.

So4[S, *.find|(e, k): Trivial since k=1.
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Line 159:
157. P_(AH,I,N,S,x.find), Pc(®,V), free(e) CV, TUD =€ ~e,
[‘I)]( Vs Pyl find(e,k), SulS, «find](e, k)
158. [k] := Simplify (e[k]);
159. P_(AH,I,N,S,x.find), Pc(®,V), free(e) CV, TUD =€ ~e,

[ JICHR Pgo[ ﬁnd]((,/erl), S24[S, *.find](e, k + 1)

147. G, free(e) CV
148. Simplify(e)

164. END Simplify
165. G, P_(A,H,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),

TU® =€ ~retval, Pi7[®](®'), SaS,*.find](retval), Ss(retval)

G: By G at 165.

P_(AH,Z,N,S, x.find): By P_(A,H,Z,N,S,«.find) at 157 and 165.

Pc(®,V): by P(®,V) at 157 and 165.

free(e) C V: By the execution of 158 and free(retval) C V at 165 together with
free(e) €V at 157 and P-(V) at 165.

T U® =€ ~e: By the execution of 158, T U ® |= €' ~ retval at 165, together with
TU® e ~eat 158 and P-(P) at 165 and the properties of substitution.

P7[®|(®"): By Pi7[®|(®") and Pc(®) at 157 and 165, Lemma A .4, and Pc (V) at 165.

Pyo[«.find|(e, k + 1): By Pyo[x.find](e, k) at 157, fr(retval) at 165, and P—(x.find) at
165.

S94[S, x.find|(e, k + 1): By So4[S, .find](e, k) at 157, S4[S, *.find](retval) at 165, and
P_(S, x.find) at 165.
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Line 161:

165. G, P_(all), free(e) CV, TU® e ~e, —hfle)
156. FOR k := 1 to Arity(e) DO BEGIN

159. P_(AH,I,N,S,x.find), Pc(®,V), free(e) CV, TUD =€ ~e,
[ 1(@'), Pgo[ ﬁnd](e,kJrl), S24[S, *.find](e, k + 1)

160. END

161. P_(A,H,Z,N,S,*.find), Pc(®,V), free(e) CV, TUP e ~e,

[ (@), Rso[ Jind)(e, Arity(e) + 1), So4[S, x.find|(e, Arity(e) + 1)

Pi7[®](®"): From 155: by P_(all) at 155. From 159: trivial.

Pyo[x.find](e, Arity(e) + 1): From 155: trivial since e has no children. From 159: by

end-of-loop condition.

So4[S, *.find| (e, Arity(e) + 1): From 155: trivial since e has no children. From 159:

by end-of-loop condition.

Line 163:

161. P_(AH,Z,N,S,*.find), Pc(®,V), free(e) CV, TUP ¢ ~e,
Pl{[ (@), Pso[*.find](e, Arity(e) + 1), So4[S, *.find](e, Arity(e) + 1)

162. RETURN Rewrite(e);

163. G, P_(AH,Z,N,S,.find), Pc(®,V), free(retval) CV, fr(retval),
TU® e ~ retval, Pi7[®(D'), Si[S,*.find](retval), Ss(retval)

166 G, free(e) CV, fr(e) V hfle), Sa5[S,*.find](e)
167. Rewrite(e)

185. END Rewrite
186. G, P_(AH,Z,N,S,x.find), Pc(®,V), free(retval) CV, fr(retval),
TU® = e~retval, Pi7[®)(D'), S4[S,*.find](retval), Ss(retval)

First we consider the preconditions of Rewrite.

fr(e) V hf(e): Suppose —hf(e). By Psylx.find|(e, Arity(e) + 1) at 161, fr(c) for all chil-
dren ¢ of e. Thus fr(e).

So5[S, *.find|(e): By So4[S, *.find|(e, Arity(e) + 1) at 161.
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Now we consider the properties at line 163.

G: By G at 186.

P_(A,H,Z,N,S, «.find): By P-(A,H,Z,N,S, *.find) at 161 and 186.

P-(®,V): By Pc(®,V) at 161 and 186.

free(retval) C V: By free(retval) C 'V at 186.

fr(retval): By fr(retval) at 186.

TUD e ~retval: By T U® e ~ retval at 161, T U ® = e ~ retval at 186, and
P-(®) at 186.

P7[®|(®"): By P7[®|(®") and Pc(®) at 161 and 186, Lemma A.4, and Pc (V) at 186.

Sy4[S, .find](retval): By S4[S, *.find](retval) at 186.

Ss(retval): By Ss(retval) at 186.

A.5.8 Rewrite

Line 172:

170. G, P_(all), free(e) CV, hf(e)

171. RETURN Find(e);

172. G, P_(AH,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),

TU® = e~ retval, Py7[®](D') , Si [S, *.find](retval), Ss(retval)

237. G, hf(t)
238. Find(¢)

250. END Find
251. G, P_(all), retval.find = retval, t ~ retval

The preconditions of Find are satisfied trivially, so we just consider the properties
at 172.

G: By G at 251.
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P_(AH,Z,N,S, *.find): By P—(all) at 170 and 251.

P-(®,V): By P-(all) at 170 and 251.

free(retval) C V: retval = retval € F by retval.find = retval at 251, so free(retval) C 'V
by Gg.

fr(retval): By retval.find = retval at 251.

TU® e~ retval: F = e = retval by t ~ retval at 251 and T U @ = F by G, so
T U E e~ retval

P7[®@](®"): Trivial since ® = @' by P_(all) at 170 and P_(all) at 251.

S4[S, *.find](retval): We know hf(retval) by retval.find = retval at 251, and thus hf(t)
for all t < retval by Gg. S4[S, *.find|(retval) follows trivially.

Ss(retval): As just shown, hf(retval), so by G, retval is a term, and thus Op(retval) #

3 ?

Line 176:

174. G, P_(all), free(e) CV, fr(e), S5[S,*.find](e)
175. €* := OpRewrite(e);
176. G, P_(A,H,Z,N,S,x.find), Pc(®,V), free(e*) CV, TUD Ee~ec*,

fr(’e*), Py7[®](D"), So6[S, *.find](e,e*), Sar(e,e”)

187. G, free(e) CV, fr(e), Sa5[S,*.find](e)
188. OpRewrite (e)

210. END OpRewrite

211. G, P_(A,H,I,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),
TU®D e~ retval, Pi7[®](D"), Si6[S, *.find](e, retval), Sa7(e, retval)

The preconditions of OpRewrite are satisfied trivially, so we just consider the prop-
erties at 176.

G: By G at 211.
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P_(A,H,IZ,N,S, .find): By P-(all) at 174 and P_(A, H,Z,N,S, *.find) at 211.

P-(®,V): By P-(all) at 174 and Pc(®,V) at 211.
free(e*) C Vi By free(retval) C 'V at 211.

TU® Eex~e': By TU® = e~ retval at 211.

fr(e*): By fr(retval) at 211.
Py[®](®'): By @' = @174 and V' = Vi, at 174 (by P(all)) and Py7[®](®') at 211.

So6[S, *.find| (e, €*): By Sa[S, *.find|(e, retval) at 211.

Sor(e,e*): By Sor(e, retval) at 211.

Line 178:

176. G, P_(A,H,Z,N,S,.find), Pc(®,V), free(e*) CV, TUP e ~e*,
fr(e*), Pi7[®(D'), So[S,*.find](e,e*), S2z(e,e*)
177. IF e¢ # ¢* THEN BEGIN
178. G, P_(AH,Z,N,S,find), Pc(®,V), free(e*) CV, TUP |=ex~e*,
fr(e*), Pi7[@)(®), S3s5[S, *.find](e)

Sos]S, x.find|(e): By Sa[S, x.find|(e, e*) at 176 and the if-condition.

Line 180:

178. G, P_(A,H,I,N,S,«find), Pc(®,V), free(e*) CV, TUP |=ex~e*,
fr(e*), Pi7[®](D"), So5[S,*.find](e)
179. e* := Rewrite(e®);

180. G, P_(A,H,Z,N,S,x.find), Pc(®, ) free(e*) CV, TU® =ex~e”,

fr(e*), Pi7[®](®"), S4[S,*.find](e*), Ss(e*)

166 G, free(e) CV, fr(e) V hfle), Sa5[S,*.find](e)
167. Rewrite(e)

185. END Rewrite

186. G, P_(A,H,Z,N,S,x.find), Pc(®,V), free(retval) CV, fr(retval),
TU®D = e~ retval, Pi7[®](P"), S4[S,x*.find](retval), Ss(retval)

The preconditions of Rewrite are satisfied trivially, so we just consider the properties
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at 180.

G: By G at 186.

P_(A,H,Z,N,S, «.find): By P_(A,H,Z,N,S,*.find) at 178 and 186.

P-(®,V): By Pc(®,V) at 178 and 186.
free(e*) C Vi By free(retval) C 'V at 186.

TUPEex~e: By TU® Eex~e®at 178, T U = e ~ retval at 186, and P (®P)
at 186.

fr(e*): By fr(retval) at 186.
Py7[@](9"): By Py7[®](®') and Pc(®) at 178 and 186, Lemma A.4, and P (V) at 186.

S4[S, *.find)(e*): By Sa[S, *.find|(retval) at 186.

Ss(e*): By Ss(retval) at 186.

Line 182:

176. G, P_(A,H,Z,N,S,.find), Pc(®,V), free(e’) CV, TUP |me~e*,
fr(e*), Pi7[®(D'), Sa[S,*.find](e,e*), Soz(e,e*)
177. IF 6;7§ e¢* THEN BEGIN

180. G, P_(A,H,Z,N,S,.find), Pc(®,V), free(e*) CV, TUP |Fe~e*,
frle"), Pl®l(®), Si[S, . find(e"), S5(e")
181. END
182. @, P(A H,I,N,S,x.find), Pc(®,V), free(e*) CV, TUD ex~e,
frle")s Pl@l(@), Su[S, = find("), Safe)

The transition from 180 is trivial. Thus we consider only the transition from 176.

S4[S, *.find](e*): By So6[S, *.find|(e, €*) at 176 and the if-condition.

Ss(e*): By Sar(e, e*) at 176 and the if-condition.
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A.5.9 OpRewrite

Line 191:

189. G, P_(all), free(e) CV, fr(e), Su5[S,*.find](e)
190. IF Op(e) =’ THEN BEGIN
191. G, P_(all), free(e) CV, fr(e), Op(e) ='=", S4[S,x*.find](e), Ss(e)

Sy[S, *.find](e): By Sys[S, *.find](e) at 189 and the fact that e itself is not a term
(since Op(e) ="=).

Ss(e): Trivial since Op(e) # ‘=".

Line 193:

191. G, P_(all), free(e) CV, fr(e), Op(e) ='=", S4[S,x*.find](e), Ss(e)
192. RETURN RewriteNegation(e);
193. G, P_(AH,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),

T U® |= e~ retval, Pi7[®](P") . S% [S, *.find](e, retval), So7(e, retval)

212. G, free(e) CV, fr(e), Op(e) ="=", S4[S,*.find](e)
213. RewriteNegation(e)

235. END RewriteNegation

236. G, P_(all), free(retval) CV, TU® [ e~ retval, fr(retval),
S4[S, *.find](retval)

The preconditions of RewriteNegation are satisfied trivially, so we just consider the

properties at 193.

G: By G at 236.

P_(AH,Z,N,S, *.find): By P—(all) at 191 and 236.

P-(®,V): By P_(all) at 191 and 236.

free(retval) C V: By free(retval) CV at 236.

fr(retval): By fr(retval) at 236.

TU®P = e~ retval: By TU® = e ~ retval at 236.
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Pi7[®](®"): By P—(all) at 191 and 236.

So6[S, *.find|(e, retval): By S4[S, *.find|(e) at 236.

Soz(e, retval): By Ss(e) at 191.

Line 199:

197. G, P-(all), Op(e) =‘=", €[l] =¢€[2]
198. RETURN {rue;
199. G, P_(AH,Z,N,S,*.find), Pc(®,V), free(retval) CV, fr(retval),

T U® |= e~ retval, Pi7[®)(P"), Sa6[S, *.find|(e, retval), Sar(e, retval)

P7[®](®"): By P-(all) at 197.

So6[S, *.find|(e, retval): Sy[S, *.find|(true) is trivially true since true has no sub-terms.

Soz(e, retval): Ss(retval) is true since Op(true) # *=’

Line 201:

195. P_(all), free(e) CV, fr(e), Ss[S,*.find](e)
196. IF Op(e) = ‘=" AND e[1] = e[2] THEN BEGIN

198. RETURN t{rue;
200. END
201. G, P-(all), free(e) TV, fr(e), Ss(e), Sas[S,*.find(e)

Ss(e): Ss(e) is the negation of the if-condition.

Line 203:

201. G, P-(all), free(e) TV, fr(e), Ss(e), Sas[S,*.find(e)
202. IF e is a term or an atomic formula THEN BEGIN
203. G, P-(all), free(e) CV, fr(e), Pss(e), Ss(e), Sa5[S,*.find](e)

Ps5(e): By the if-condition.
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Line 205:

203. G, P_(all), free(e) CV, fr(e), Psz(e), Ss(e), S2s[S,*.find](e)
204. RETURN TheoryRewriter(,(e);
205. G, P_(A,H,Z,N,S,x.find), Pc(®,V), free(retval) CV, fr(retval),

T UQ® |= e~ retval, Pi7[®)(P"), Su6[S, *.find|(e, retval), Sar(e, retval)

261. G, free(e) CV, fr(e), Pss(e), So5[S,*.find](e)

262. TheoryRewrite,(e)

263. G, TU® |=e~retval, fr(retval), free(retval) CV, Psglall](i),
Sa6[S, *.find](e, retval)

The preconditions of TheoryRewrite,; are satisfied trivially, so we consider the prop-
erties at 205. Recall that Psy[all](i) at 263 implies P_(® — B;, H,Z,N, S, A, *.find),
P (Q,B;, V, x.notify), T, Uv(®,=3w. B;) AwnV' = OAw C V, where w =
free(B;) — free(®}), and T; U v;(®; = (Q — Q') A free(Q — Q') C V.

G: By G at 263.

P_(AH,Z,N,S, *.find): By P—(all) at 203 and P—(A, H,Z,N,S, .find) at 263.

P-(®,V): By P_(all) at 203, ® = ®993 U B;, and P-(V) at 263.

free(retval) C V: By free(retval) C 'V at 263.

fr(retval): By fr(retval) at 263.

TU® e~ retval: By TU® k= e ~ retval at 263.

P7[®@](®"): By P_(all) at 203 and Py7[®](®') at 263 (which, as we have shown before,
follows from Psy[all](i)).

So6[S, *.find|(e, retval): By Sy6S, *.find|(e, retval) at 263.

Sar(e, retval): By Ss(e) at 203.
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Line 207:

201. G, P_(all), free(e) CV, fr(e), Ss(e), S25[S,*.find|(e)
202. IF ¢ is a term or an atomic formula THEN BEGIN

204. RETURN ...
206. END
207. G, P-(all), free(e) TV, fr(e), Si[S,*.find](e), Ss(e)

Sy[S, *.find](e): By Sas[S, *.find](e) at 201 and the fact that e itself is not a term by

the if-condition.

Line 209:

207. G, P-(all), free(e) TV, fr(e), Si[S,*.find](e), Ss(e)

208. RETURN e¢;

209. G, P_(AH,I,N,S,xfind), Pc(®,V), free(retval) CV, fr(retval),
TU® = e~ retval, Pi7[®](D'), Si6[S, *.find](e, retval), Sar(e, retval)

P7[®](®"): By P—(all) at 207.

So6[S, *.find(e, retval): By S4[S, *.find|(e) at 207.

Sar(e, retval): By Ss(e) at 207.

A.5.10 RewriteNegation

Line 218:

216. G, P-(all), free(e) CV, fr(e), Op(e) =", e[l] = true
217. RETURN false;
218. G, P-(all), free(retval) CV, T U® |=e ~ retval, fr(retval),

S4[S, *.find](retval)

S4[S, *.find](retval): S4[S, *.find|(false) is trivially true since false has no sub-terms.
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Line 224:
222. G, P_(all), free(e) CV, fr(e), Op(e) ==, e[l] = false
223. RETURN true;
224, G, P-(all), free(retval) CV, T U® |=e ~ retval, fr(retval),

S4[S, *.find](retval)

Sy[S, *.find](retval): Sy[S, *.find](true) is trivially true since true has no sub-terms.

A.5.11 Find

Line 247:

245. G, P_(all), hf(t)
246. RETURN Find(t.find) ;
247. G, P_(all), retval.find = retval, t ~ retval

237. G, hf(t)
238. Find(¢)

250. END Find
251. G, P_(all), retval.find = retval, t ~ retval

We first consider the preconditions of Find

hf(t.find): Follows from G5 at 245.

We now consider the properties at 247.
G: By G at 251.
P_(all): By P—(all) at 245 and 251.

retval.find = retval: By retval.find = retval at 251.

t ~ retval: By hf(t), G5, and the definition of find" and ~, t ~oys5 t.findyys. Then, by
P_(all) at 251, t ~ t.find Finally, by the Find postcondition, t.find ~ retval, so
by the definition of ~, t ~ retval.
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A.5.12 Theory-Specific Code for a Nelson-Oppen Theory 7;

TheoryAddSharedTerm

273. G, free(e) CV
274. TheoryAddSharedTerm, (e)
275. G, Pdl[(Lll](’L)

Ps,[all](7): TheoryAddSharedTerm, does nothing, so P—(all) holds at 275, and thus,
by Lemma A.5, so does Ps4[all](7).

TheoryAssert

276. (7,
277. TheoryAssert,(e)
278. G, Pdl[(Lll](’L)

Ps4lall](i): TheoryAssert, does nothing, so P-(all) holds at 278, and thus, by Lemma
A.5, so does Psylall](i).

TheoryCheckSat
Line 283:
281. G, P-(dl), P[®H,Z,N], Q=0, =T, conver, So|Z,S,*.find],
S3[ A, Z, x.find]
282.  IF —Sat;(®; UE.,) THEN BEGIN
283. G, P_(all), P[®,H,Z,N], Q=10, —Z, conver, —Pss[®, A, *.find](i)

— P3| ®, A, x.find|(i): By the if-condition.

Line 285:

283. G, P_(all), P[®,H,Z,N], Q=10, =T, conver, —Pss[®, A,,*.find(i)
284 . 71 := TRUE;

285. G, P_(all —{Z}), P[®,H,I,N], Py|®,I,N,Q,A,,*.find|(i),

SoZ, S, x.find], S3[A,ZL,x*.find]

G: Only Gy depends on Z. Since line 284 sets Z to be TRUE, we must show that
T UH E false. By —Pss|®, Ay, *.find|(i) at 283, we have T; U~;(®; UE.,) =
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false. 1t follows that TUQUE., |= false. But by the definition of E,, F = E.,,
and TU® |= F by G, at 283, so TU® |= false. Finally, by G at 283, if TUH is
satisfiable, then 7 UH U® is also satisfiable. Therefore, 7 U®H is not satisfiable.

P[®,H,Z,N]: Trivial since Z = TRUE;

Po[®,Z, N, Q, A, *.find](i): Trivial since Z = TRUE;

So[Z, S, +.find]: Trivial since Z = TRUE;

Ss3[A,Z, x.find]: Trivial since Z = TRUE;

Line 287:

281. G, P_(al), P[®,H,Z,N], Q=0, —I, conver, So|Z,S,*.find],
Ss3[A,Z, *.find]
282.  IF —Sat;(®; UE., ) THEN BEGIN

286. END ELSE IF ﬁSati(@i UAT‘Ni) THEN BEGIN
287. G, P_(all), P[®,H,Z,N], Q=0, =T, conver, —P;[®,A,,*.find)(i),
Pys[®, Ay, x.find](7), So|Z,S,*.find], S3|A,Z,x*.find)

—P;[®, A,, *.find](7): By the if-condition on line 286.

Psg[®, A, *.find](i): By the if-condition on line 282.

Line 289:

287. G, P_(all), P[®,H,Z,N], Q=10, =T, conver, —P;[®, A, *.find|(i),
Pss[®, Ay, x.find](7), So|Z,S,*.find], S3|A,Z,x*.find)

288. Choose A C D, such that —Sat;(®; UE., UA);

289. G, P_(all), P[®,H,Z,N], Q=10, =Z, conver, —P;[®, A, *.find|(i),

Py [, Ay, x.find] (i), Ps7[®, Ay, *.find](i,—A), So[Z,S,*.find], S3[A,Z,*.find]

A note on line 288: It is always possible to choose an appropriate set for A. In
particular, D, always works since E., U D.. = Ar.. by definition and —Sat;(®; U

i

Ar.,) by 2P [®, Ay, x.find|(i) at 287.
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Ps:[®@, A, *.find] (i, —~A): By execution of line 288, 7; U ;(®; U E., U A) is not satis-
fiable, so any model and variable assignment satisfying 7; U 7;(®; U E..) must
not satisfy v;(A). Thus, 7; Uvi(®; U EL,) E 7:(—A).

Line 291:

289. G, P_(all), P[®,H,Z,N], Q=0, =L, convex, —P7[®, A, *.find](i),
Psg[®, A, +.find](i), P37[®, Ay, x.find)(i,=A), So|Z,S,x.find], S3[A,Z,x.find]

290. Q := {-A};

201. G, P_(all — {T,Q)), P[®,H.T,N]|, Ps[®,T,N,Q,A.,«find(i),
SoZ, S, x.find], S3[A,ZL,x*.find]

G: We must consider only those global properties which depend on Q.

@: By P37[(I), A*, *ﬁnd](z, _lA) at 289, 7;U’}/Z((I)Z U sz) ): ’}/Z(_|A), so TUdU
E., = —A. But by the definition of E.,, F E E.., and TU® = F by G
at 289, so TU® = -A. Gy follows by G4 at 289 and the execution of line
290.

Gs: By Gy at 289, free(A) C V. But free(A) C free(A), so free(Q) C V. The
rest follows by Gy at 289.

Po[®,Z, N, Q, A, *.find](i): Trivial, since Q # ().

Line 293:

281. G, P-(dl), P[®H,Z,N], Q=0, =T, conver, So|Z,S,*.find],
S3[A,Z, *.find]
282.  IF —Sat;(®; UE. ) THEN BEGIN

285. G, P_(all = {1}), P[®,H,I,N], P[P, I,N,Q, A, *.find|(i),
So[Z, S, *.find], S3[A,Z,x*.find]
286. END ELSE IF ﬁSaU(@iLJAﬂNJ THEN BEGIN

291. G, P_(all —{Z,Q}), P [®,H,Z,N]|, Py[®,Z,N,Q,A,,xfind](i),
So[Z, S, *.find], S3[A,Z,x*.find]
292. END

293. G, P_(all —{Z,Q}), P[®,H,Z,N]|, Py[®,I,N,Q,A,,x*.find(i),
SolZ, S, x.find], Ss3[A,Z,x*.find]
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Po[®,Z, N, Q, A, *.find](i): The transitions from 285 and 291 are trivial. But if nei-
ther if-branch is taken, then by the if-condition of 286, 7; U v;(®; U Ar..) is
satisfiable, from which Py[®,Z, N, Q, A,, .find|(i) follows easily.

TheoryRewrite

296. G, free(e) CV, fr(e), Pss(e), So5[S,*.find](e)

297. TheoryRewrite,(e)

298. RETURN e;

299. G, TU® [=e~retval, fr(retval), free(retval) CV, Psalall](i),
So6[S, *.find|(e, retval)

Ps,[all](7): Since no state variables change, P_(all) holds at 299, so by Lemma A.5,
so does Psy[all] (7).

So6]S, x.find|(e, retval): Since e = retval, we must show Sy[S, *.find](e). Suppose tJe.
If t # e, then by Sy5[S, *.find|(e) at 296, t = canon, (S(t)). Suppose t = e and
—hf(t), We must show ¢ = canon, (S(t)). First note that since 7T (e) = 4, and
7T; is a Nelson-Oppen theory, ¢ is not a y-term, and thus ¢ is a x-leaf. Thus,
by Gig, t 4 S, so S(t) = t. But by property 4 of canon, canon, (t) = t. Thus,

t = canon, (S(1)).

TheorySetup

300. G, hfle)
301. TheorySetup, (e)
302. G, Pgl[(Lll](Z)

Ps4lall](i): TheorySetup,; does nothing, so P—(all) holds at 302, and thus, by Lemma
A5, so does Psylall](i).
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TheorySolve

303. G, P[P, H,Z,N]|(e), ~I, Ps[®,H](e) fr(c( ) CV, fr(e), Pii(e),
Op(e) = ‘=", e[l] #e€[2], S2[Z,S,* jmd] S3[A, L, *.find], S4[S, .find|(e)

304. TheorySolve(e)

305. RETURN {e};

306. G, P_(H,Z,N,x.find), Pc(®
Pi7[®](®"), Pss[®](e, retval),

), free(retval) CV, Piy[x.find](retval),
S9|Z, S, x.find], S3[A,Z,x*.find], S7[S,x*.find|(retval)

Note that this (the default) implementation of TheorySolve is only used if there is
no Shostak theory, since otherwise, the Shostak theory provides the implementation

for TheorySolve.

Pyy[x.find|(retval): We know that retval = {e}. Ve € retval. fr(e) follows by fr(e) at
303, and P3(retval) follows from Py (e) and Op(e) = ‘=" at 303.

Py7[®](®"): Follows easily since &' = ®.

P35[®](e, retval): Trivial since retval = {e}.

S7[S, *.find|(retval): Given that retval = {e}, it is easy to see that S4[S, *.find|(retval)
follows from Sy[S, .find|(e) at 303. Then, since there is no Shostak theory, e[1]

and e[2] are not x-terms, and thus, since e[l] # e[2], {e} is in x-solved form

(strictly speaking, this property isn’t even needed if there is no Shostak theory).

TheoryUpdate

307. G, P, H,I,N], S3[A,Z, «find], Sos[x.find](i,d)

308. TheoryUpdate,(e,d)

309. G, Pc(F,Ihs(S)), Pi[®,H,I,N], Ss[A,Z,*find], IV(MCR), IV(R'CR),
AR

IV (M CR): TheoryUpdate; does nothing, so M = ().

A.5.13 Theory-Specific Code for Shostak Theory 7,
TheoryAddSharedTerm and TheoryAssert

These are exactly the same as for the Nelson-Oppen theory-specific code, shown

above.
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TheoryCheckSat

Line 320:

318.
319.
320.
326.

327.

[ X :=10; ]

G, P_(all), P[®,H,IZ,N], So|Z,S,x.find], S5[A,ZL,x.find

FOREACH e in ‘AX DO BEGIN
G, P_(all), P\[®,H,I,N], ec A, S2[Z,S,x*.find], S3[A,L,x*.find],
529[118](X7X)

G, P_(all), P[®,H,Z,N], So|Z,S,x.find], S3[A,ZL,x*.find],
S29[Z, S](X, x)
END

Sa9[Z, S](X, x): From 318: X = (). From 326: by Sx[Z, S](X, x) at 326.

Line 322:

320. G, P_(all), P\[®,H,I,N], ec A, S2[Z,S,x*.find], S3[A,ZL,x*.find],
529[118 (Xax

321. IF Op(e) == AND Find(e[1][1]) = Find(e[1][2]) THEN BEGIN

322. G, P_(dll), P[®,H,Z,N], Op(e[l]) =‘=’, Op(e) ="',

e[l][1] ~ e[1][2], e€ Ay, So[Z,S, *.find]

237. G, hi(t)

238. Find(t)

250. END Find

251. G, P_(all), retval find = retval, t ~ retval

190

We first consider the preconditions of the calls to Find. We assume that the calls to

Find are not made unless Op(e) = "= (i.e. C-like semantics). Since e € A, we know

e is a literal by Gy9. Now, since e is in A,, e is a x-literal, so e[1] must be an equation

between two terms since Shostak theories do not have predicate symbols. Finally, we
know hf(e[1][1]) and hf(e[1][2]) by G11 at 320.

G: By G at 320 and 251.

P_(all): By P—(all) at 320 and 251.

P[®,H,Z,N]: By P[®, H,Z,N] at 320 and P_(all).
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Op(e[1]) = *=": See above paragraph.

Op(e) = ’—’: By the if-condition.

e[l][1] ~ e[1][2]: By t ~ retval at 251, the if-condition, and the definition of ~.

ec A Byee A, at 320 and P_(all).

So|Z, S, *.find]: By S2[Z, S, *.find] at 320 and P—(all).

Line 324:
322. G, P_(all), P[®,H,Z,N], Op(e[l]) =‘=’, Op(e) =7,
e[l][1] ~e[1]2], e€ Ay, So[Z,S, *.find]
323. 7 := TRUE; RETURN;
324. G, P:((L” o {ZN Q})’ Pl[(I)T/HTI,’N:I’ RJ[(I)TZ‘,‘N‘,‘ QAA *'ﬁ”d](X):

S9[Z, S, *.find], S3[A,Z,x*.find]

G: Only Gy depends on Z. Since line 284 sets Z to be TRUE, we must show that
T UH [ false. Let s = e[1][1] and t = e[1][2]. We know that s ~ ¢, so by
the definition of ~ and S,[Z, S, x.find] at 322, canon,(S(s)) = canon,(S(t)).
Then, by property 1 of canon, T; |= v, (S(s) = S(t)). Then, by Proposition 2.1,
Ti U (S) = (s =1), and thus TUS =s =t But TUF =S by G4 and
TUPEFbyGeyysoTUPEs=t Buts#te AC ®,s0T UD = false.
Thus, by G3, T UH = false.

Pi[®,H,Z,N]: Trivial since Z = TRUE.

Po[®,Z, N, Q, A, *.find](x): Trivial since Z = TRUE.

So|Z, S, *.find]: Trivial since Z = TRUE.

Ss3[A,Z, .find]: Trivial since Z = TRUE.
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Line 326:

320. G, P_(all), Pl[ﬂ[),?-l,I,N], ec Ay, So[I,S,.find], S3[A,T,x.find],
S29[Z, S](X, x

321. IF Op(e) =’—’ AND Find(e[l][1]) = Find(e[1][2]) THEN BEGIN

RETURN;

325. END | X := X U {e}; |

326. G, P:((L”) P[®,H,Z,N], S2[Z,8,*.find], S3|A,Z,x.find],
Sa[Z, S|(X, x)

192

So9[Z, S](X, x): Assume —Z, d € X, and Op(d) # *=°. We must show 7; U ;(S) £
vi(d[1]). If d € X390, then this follows by Sy[Z, S](X, x) at 320. Otherwise,
d = e, and thus d[1] is an equation and d[1][1] ¢ d[1][2] (see comments for
line 322, above). Let s = d[1][1] and ¢ = d[1][2]. Since s ¢ t, it follows
from S,[Z, S, *.find] that canon,(S(s)) # canon,(S(t)). Thus, by property 1
of canon, T; = 1,(S(s) = S(t)), and thus, by Proposition 2.1, 7; U 7,(S)

Ty(s =1).

Line 328:

... [ X :=0; ]
318. G, P_(all), P[®,H,I,N]|, S2|Z,S,x.find], S3[A,Z,x*.find]
319. FOREACH e in AX DO BEGIN

326. G, P_(all), PL[<I) H,Z,N], S3[Z,8,x*.find], S3[A,Z,x.find],
S[Z, S|(X, x
327. END

328. G, P_(all—{Z,N,Q}), P[®,H,Z,N], P|®,Z,N,Q, A, *.find(x),

So|Z, S, x.find], S3[A,Z,x.find]

Py[®,Z, N, Q, A, *.find](x): Suppose Q@ = (), =Z, and conver. We must show that
T U (@ U Ar ) is satisfiable. First, note that since A, contains only x-

literals (by definition and by G4p), every formula in A, is either an equation or
a disequation. Let A be the set of all equations in A and Af the set of all
disequations in A,. Now, 7, U, (S) is satisfiable by Corollary 2.1 since S is in
x-solved form by G13. We next show that 7, U, (S U Af U D.,) is satisfiable.
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Suppose it is not, then 7, U 7 (S) E 7y (~(A7 UD. )). But then, since Ty
is convex, it must be the case that 7, U7, (S) E (s =1) where s # t €
(A7UD.,). Butif s #t € A7, then by Sy[Z, S](X, x) (which holds vacuously
at 318 where X = () and the end-of-loop condition, 7, U 7, (S) ¥ vi(s =1).
Suppose on the other hand that s # ¢ € D. . By definition of D , hf(s) A
hf(t) A find (s) # find"(t), so by S3|Z,S, *.find], canon,(S(s)) # canon, (S(t)).
Then, by property 1 of canon and Proposition 2.1, T;U7,(S) ¥ v, (s = t). Thus,
T, Uy (SU Af U D., ) is satisfiable. Finally, suppose s =t € A UE., . Then,
by S3[A,Z, x.find] or by the definition of E. , hf(s) A hf(t) A find"(s) = find"(t),
and thus, by S;[Z, S, x.find|, canon,(S(s)) = canon,(S(t)). It then follows by
property 1 of canon and Proposition 2.1 that 7; U v,(S) = 7,(s =t). Thus,
Ty U (SUAUAr. ) is satisfiable. But B, = 0 by G, so it follows that
T Uy (@ U Ar ) is satisfiable.

TheoryRewrite

Line 335:

333. G, P_(all), free(e) TV, fr(e), Psz(e), S5[S,*.find](e)
334. IF e is not a term THEN BEGIN
335. G, P-(all), free(e) CV, fr(e), Pss(e), —Pas(e), Sui[S,x*.find|(e)

—Py3(e): By the if-condition.

Sy4[S, *.find|(e): Since e is not a term, if a term ¢ < e, then ¢ < ¢ for some child ¢ of
e. S4[8, x.find](e) then follows from Sa5[S, *.find](€).

Line 337:

335. G, P_(all), free(e) CV, fr(e), Pss(e), —Ps(e), S4[S,*.find](e)
336. RETURN e;
337. G, TU® | e~retval, fr(retval), free(retval) CV, Psqlall](x),

Sa6[S, *.find) (e, retval) , Si2[S](e, retval)

Ps,[all](x): By P-(all) and Lemma A.5.

So6[S, *.find|(e, retval): By S4[S, *.find|(e) since e = retval.
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Sy2[S] (e, retval): e is not a term by —Ps3(e) at 335.

Line 339:

333.
334.

336.
338.
339.

G, P-(all), free(e) CV, fr(e), Ps3(e), Sa25[S,*.find](e)
IF ¢ is not a term THEN BEGIN

RETURN e;

END
G, P-(all), free(e) CV, fr(e), Pos(e), Sa25[S,*.find](e)

Pys(e): By the if-condition.

Line 341:

339.
340.
341.

381.
382.
410.
411.

G, P_(all), free(e) TV, fr(e), Pas(e), S5[S,*.find](e)
e* := RewriteHelper(e);
G, P_(all), free(e*) CV, Py(e*), TU® |=ex~e*, Syl[.find(e*),

Su1[S, +Jind](c"), SalSIe), SslSI(e,e)

G, free(t) CV, Pas(t), fr(t)V hf(t), Sas[S,x*.find](t)
RewriteHelper (1)

END RewriteHelper
G, P_(all), free(retval) CV, TU® =t ~ retval, Pas(retval),
Sso[*.find](retval), S31[S, *.find](retval), Sso[S](retval), Ss3[S](retval,t’)

G: By G at 411.

P_(all): By P_(all) at 339 and 411.

free(e*) C Vi By free(retval) C 'V at 411.

Pys(e*): By Pas(retval) at 411.

TU® Eex~e': By TU® =1t ~ retval at 411.

Sso[*.find](e*): By Sso[x.find|(retval) at 411.

S31[S, *.find|(e*): By S31[S, *.find|(retval) at 411.
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S32[S](e*): By Ss2[S](retval) at 411.

Ss3[S](e*, e): By Ss3[S](retval, t') at 411.

Line 343:

341. G, P-(all), free(e*) CV, Pos(e*), TUD Eex~e*, Ss[+.find](e*),
S31[S, x.find](e*), S32[S]|(e*), S33[S](e*,e€)

342.  RETURN canony (e*);

343. G, TU® Ee~retval, fr(retval), free(retval) CV, Psglall](x),
Sa6[S, *.find](e, retval), Si2[S](e, retval)

Note that the only requirement needed to be able to apply canon, to an expression

is that the expression be a term. This is guaranteed by Py3(e*) at 341.

TU® Eex~retval: By TU® |=e >~ e* at 341 and properties 1 and 2 of canon.

fr(retval): By Sso[.find|(e*) at 341 and property 3 of canon, we know that Ve €
dy (retval).fr(c). Then, by Gis, it follows that fr(retval).

free(retval) C V: By free(e*) CV at 341 and property 3 of canon.

Ps,[all](x): By P-(all) at 341 and Lemma A.5.

So6[S, *.find|(e, retval): We will show Sy[S, .find|(retval). It is easy to see that this
property implies Sa[S, *.find|(e, retval). Consider t <retval, and suppose —hf(t).

We must show ¢ = canon, (S(t)). First suppose that ¢t<Jc for some ¢ € §, (retval).
We know that ¢ € 6, (e*) by property 3 of canon. Then, by S5 (S, *.find](e*) at
341, we have S4[S, .find|(c). Thus, since tJc, t = canon, (S(t)). Suppose on the
other hand that ¢ 4 ¢ for any ¢ € ¢, (retval). Then ¢ must be a compound x-term
an it must be the case that d,(¢) C 6, (retval). But again by property 3 of canon,
Sy (retval) C 6, (retval), so 6, (t) C d,(e*). Thus, by Sso[S](e*) at 341, S(t) = ¢.
Also, by property 5 of canon, canon,(t) =t, and thus ¢ = canon, (S(t)).

Si2[S](e, retval): By Ss3(S](e*, e) at 341, canon,(e*) = canon,(S(e)).
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TheorySolve

Line 350:

348. G, P_(all), P®,H,Z,N]|(e), -, Ps[®,H|(e), free(e) CV, fr(e), Pii(e),
Op(e) = =", e[l] £ e[2], S2[Z,S,*.find], S3]A,ZL,*.find], S4[S,*.find](e)
349.  RETURN solvey(e); [V =V U free(retval) |
350. G, P—(®,H,Z,N,x.find), free(retval) CV, Pis[x.find](retval),
P7[®)(D"), Ps5[®|(e, retval), Si[Z,S,x*.find], S3[A,Z,x.find],
S7[S, *.find](retval)

Note that by the definition of solve, either retval = {false}, retval = 0, or retval is a set
of equations in x-solved form. In each case, we have T, = v, (e <> Jw.retval), where
W = free(retval)— free(e) and wNV ' = ) (recall that when used as a formula, the empty
set is equivalent to true). Also, if retval is a set of equations, then canon, (d[2]) = d[2]

for each d € retval.

Pyy[*.find](retval): Suppose retval # {false}. If retval = (), then Ve € retval. fr(e)
and Py3(retval) follow trivially. Otherwise, Py3(retval) follows from the fact

that retval is in x-solved form. It remains to show Ve € retval. fr(e). We
first show Ve € 6, (retval). fr(c). First note that by the definition of solve,
dy(retval) C 0,(e) Uw. Also, the variables in w are fresh, so w N HF = 0.
Suppose ¢ € §,(d). If ¢ € W, then ¢ has no children and —hf(c), so it follows
that fr(c). If ¢ ¢ w, then ¢ € J,(e). We consider two cases.

1. Suppose —hf(c). ¢ is a sub-term of e, so by Gg there is a path from e
to ¢ such that for every expression d in the path, —hf(d). Thus, every
highest find-initialized sub-expression of d is also a highest find-initialized

sub-expression of e. Thus, since e is find-reduced, so is c.

2. Suppose hf(c), and suppose ¢ is not find-reduced, so that c.find # ¢. Then
because ¢ € d,(e) and e is find-reduced, there must a term ¢ < e such
that ¢ € 0,(¢) and t.find = t. Then, by =7 and S2[Z, S, *.find], t =
canon, (S(t)). Now, since ¢ is a x-leaf and hf(c) and c.find # ¢, it follows
from Gyg that ¢ € Ihs(S), and thus ¢ € 6,(S(t)). But 6, (canon, (S(t))) C
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5, (S(t)) by property 3 of canon, so ¢ & 6, (canon, (S(t))) which is a con-

tradiction since canon, (S(t)) = t.

We have shown that V¢ € §,(retval). fr(c). Now, suppose d € retval. We know
that V¢ € 6,(d). fr(c). Thus, by Gs, fr(d).

P7[®](®"): @ is unchanged by 349, so & = @'

P35 ®|(e, retval): We have T, = 7, (e <> Jw.retval), where W = free(retval) — free(e)
and wNV' = (. It follows that 7 U ® | e <> Jw.retval. Also, free(®) C V' by
P_(®) at 350, and P—(all) and Gy at 348, so w N (V' U free(®)) = 0.

S7[S, *.find](retval): Suppose retval # {false}. If retval = (), then S4[S, *.find](retval)

and Sg(retval) follow trivially. Otherwise, Sg(retval) clearly holds since retval is

in x-solved form. It remains to show S,[S, *.find](retval). Consider t < retval.

There are two cases.

1. Suppose t < ¢ for some ¢ € §,(retval). Then, as shown above, ¢, (retval) C
dy(e) U, so t € wor t < ¢ for some ¢ € 0,(e). If t € w, then ¢ is a y-leaf
and —Af(t), and thus t 4 S by Gig, so S(t) = t. Also, by property 4 of
canon, canony(t) = t, so canon,(S(t)) = t. If t < ¢ for some ¢ € 0,/(e),
then canon, (S(t)) =t by S4[S, *.find|(e) at 348.

2. Suppose t 9 ¢ for any ¢ € 6, (retval) and suppose t I d where d € retval.
Then t A d[1] since retval is in y-solved form and thus d[1] is a y-leaf. Thus
t must be a compound x-term and there must be a path of compound -
terms from d[2] to t. Clearly, then, §,(¢f) C 0,(d[2]). Now, as shown
above, V¢ € 0, (retval). fr(c). It follows that V¢ € §,(retval). S(c) = ¢. To
see this, notice that if =Af(c), then ¢4 S by Gig, and if hf(c), then since
c.find = ¢, it follows (also by G19) that ¢ & lhs(S). Thus, S(t) = t. Also,
since there is a path of compound x-terms from d[2] to ¢t and we know
that canon, (d[2]) = d[2], it follows by repeated application of property 5
of canon that canony(t) =t. Thus canon, (S(t)) = t.
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TheorySetup

Line 357:

355. G, P_(all), hf(e)
356. IF e is a compound y-term THEN BEGIN | Z := (); |
357. G, P_(all), hf(e), Ss(e)

Sg(e): By the if-condition.

Line 359:

[ Z :=0; ]

357. G, P_(all), hf(e), Ss(e)

358. FOREACH c € 6, (¢) DO BEGIN

359. G, P_(all = {*.notify}), Pc(*.notify), hf(e), Sg(e), Szel*.notify](Z)
361. G, P_(all — {+.notify}), Pc(*.notify), hf(e), Sg(e), Sze[*.notify](Z)
362. END

Sse[*.notify](Z): From 357: trivially true since Z = (). From 361: by Sss[*.notify|(Z)
at 361.

Line 361:

359. G, P_(all — {*.notify}), Pc(*.notify), hf(e), Sg(e), Sze[*.notify](Z)
360. c.notify := cnotifyU{(x,e)}; | Z = Z U {c}; |
361. G, P_(all — {*x.notify}), Pc(x.notify), hf(e), Ss(e), Szs[*x.notify](Z)

G: We must consider only those global properties which depend on *.notify.

Gig: By Gig at 359 and *.notifyssg C *.notify.

G172 By Gir, Ss(e), hf(e) and ¢ € 6,(e) at 359.

Sse[*.notify|(Z): By Sse[*.notify|(Z) at 359, the execution of line 360, and Z = Z359 U

{c}.
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Line 363:

357. G, P_(all), hf(e), Ss(e)

358. FOREACH c € 6, (¢) DO BEGIN

361. G, P_(all — {*.notify}), Pc(*.notify), hf(e), Sg(e), Sze[*.notify](Z)
362. END

363. G, Psqlall](x), Sss[*x.notifyl(e)

Ps,[all](x): From 357: by P_(all) at 357 and Lemma A.5. From 361: by P—(all —
{*.notify}) and Pc(*.notify) at 361 and a similar argument as that found in
Lemma A.5.

Sss[*.notify](e): From 358: holds vacuously since d,(e) = (). From 361: by Ss(e) and
Sse[*.notify](Z) at 361 and the end-of-loop condition, Z = 4, (e).

Line 365:

355. G, P—(all), hf(e)
356. IF e is a compound x-term THEN BEGIN

363. G, Psslall](x), Sss[*.notify](e)
364. END
365. G, Pslall](x), Sss[*.notify](e)

Ps,[all](x): From 355: by P_(all) and Lemma A.5. From 363: trivial.

Sss[*.notify](e): From 355: =Sg(e) by the if-condition. From 363: trivial.
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TheoryUpdate

Line 374:

372. G, P_(all), P[®,H,Z,N], =T, d.find=d, S3[A,Z,x*.find], Ss(d),

So[.find](d)

373. d* := TheoryRewrite, (d);

374. G, P_ (S Jind) , Pl[q) H,Z,N|, -, =T', fr(d*), Py3(d*), d.find=d,
S1[S)(d*,d), S3[A,Z,x.find], S4[S,*.find](d*), Ss(d), Sy[x.find|(d)

331. G, free(e) CV, fr(e), Psz(e), S2s[S,*.find|(e)

332. TheoryRewrite, (e)
344. END TheoryRewrite,

345. G, TU® = e~ retval, fr(retval), free(retval) CV, Psalall](x),
So6[S, *.find(e, retval), S42[S](e, retval)

We first consider the preconditions of TheoryRewrite, .

free(d) C V: By d.find = d at 372, d < F, so by Gy, free(d) C V.
fr(d): By d.find = d at 372, d.find = d, so fr(d).

Ps3(d): By d.find = d at 372, hf(d), so by Gz, d is a term.

Sos[S, +.find)(d): By d.find = d at 372, hf(d), so by Ge, if t < d, hf(t). It follows that
Sy4[S, *.find|(d) and thus also Sys[S, *.find|(d) at 372.

We now consider the properties at 374. Recall that P34[all](7) at 345 implies P_(® —
Bi,H,Z,N,S, A, x.find), Pc(Q, B;,V, *.notify), T; Uy (P; = 3w. B) AwnV' =0 A
w C V, where W = free(B;) — free(®}), and T;U;(®; = (Q — Q) A free(Q— Q') C V.

G: By G at 345.

P_(R,S,*.find): By P_(all) at 372 and P_(Eq, *.find) at 345.

PO, H,Z,N|: By Pi[®,H,T,N] at 372 and P_(H,Z,N) and Pc(®) at 345.

—Z: By —Z at 372 and P_(Z) at 345.

—Z': By =7 and P_(all) at 372.
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fr(d*): By fr(retval) at 345.

d.find = d: By d.find = d at 372 and P_(x*.find) at 345.

S1[8](d*,d): By d.find = d and G7 at 372, d is a term, so by Sy[S](e, retval) at 345,
d* = canon, (S(d)).

Py3(d*): Since d* = canon, (S(d)), and canon is a function from terms to terms, d* is

a term.

S3[A,Z, x.find]: By S3[A,Z,*.find] at 372, P_(A,Z, x.find) at 345.

S4[S, *.find)(d*): Suppose t I d* and —hf(t). If t # d*, then t = canon,(S(t)) by
So6(S, x.find| (e, retval) at 345. Otherwise, we know that ¢ = canon, (S(d))
(shown above). So, by Lemma A.1, §(t) = t. Furthermore, by property 2

of canon, canony(t) = t. Thus, t = canon, (S(t)).

Sol*.find](d): By Sy[*.find](d) at 372 and P_(x.find) at 345.

Line 376:

374. G, P_(S,*.find), P [®,H,Z,N]|, =L, =T', fr(d*), Py3(d*), d.find=d,
S1[S|(d*,d), S3[A,Z,x*.find], S4[S,*.find|(d*), Ss(d), So[x.find|(d)

375. AssertEqualities({d = d*});

376. G, Pc(F,lhs(S)), Pi[®,H,Z,N]|, -I', S3|A, L, *.find], TV(MCR),

IV(R'CR), ZV(d€eTR)

58. G, Py[®,H,Z,N]|(E), —I, Pi2[®,H](E), Pusl*.find)(E), free(E) CV,
S3[A,Z, x.find], Si2[S,*.find](E)
59. AssertEqualities(¢&)

97. END AssertEqualities
98. G, Pc(F,ins(S)), Pi[®,H,IZ,N], S3[A, I, «.find, TV(MCR),
ZV (lhs(E) CR), ZV(R' CR)

We first consider the preconditions of AssertEqualities. First note that since d* =
canony(S(d)), TUS f=d = d*. Then, since TU® = F by Gy and TUF = S by
G4, it follows that 7 U @ = d = d*.
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Py[®,H,Z,N|({d=d*}): By -Z and P,[®,H,Z,N], T UN U ® | H. Then, since
TU® Ed=d*, it follows that -Z — (TUN UPU{d = d*} E H).

Ppo[®, H]|({d = d*}): Trivial, since as mentioned above, T U® = d = d*.

Piy[x.find|({d = d*}): Pi3({d = d*}) is true by construction (note that d* is a term
by Py3(d*) and d is a term by d.find = d and G7). Then, Ve € {d = d*}. fr(e)
follows by d.find = d and fr(d*).

free({d = d*}) C V: Suppose c is a x-leaf in d = d*. We will show Af(c). Then, since
every free variable is also a y-leaf, free({d = d*}) C V follows by Gs. To show

hf(c), we consider two cases. Suppose first that ¢ <d. Then since d.find = d, it
follows from Gy that hf(c). Suppose on the other hand that ¢ < d*. We know
that d* = canon, (S(d)). By property 3 of canon, ¢ € 6,(S(d)). It follows that
c € 0y(d) or ¢c € §,(S). But if ¢ € 0,(d), then as we just showed, hf(c). If
c € 0,(S), then by G, hf(c).

S12[S, x.find|({d = d*}): Si[S, *.find|({d = d*}) follows from Sg(d), the fact that
d.find = d, Si[S|(d*,d), and Sy[*.find](d). We now show S1[S,*.find|({d =
d*}). To show d* = canon, (S(d*)), note that since d* = canon, (S(d)), it follows
from Lemma A.1 that S(d*) = d*. Using property 2 of canon, it also follows
that canon, (d*) = d*. Thus, d* = canon, (S(d*)). fr(d = d*) follows by fr(d*)
and d.find = d. Finally, S,4[S, x.find|({d = d*}) follows from S4[S, *.find|(d"),
and d.find = d and G.

We now consider the properties at line 376.

G: By G at 98.
P-(F,lhs(S)): By P-(S,*.find) at 374 and Pc(F, lhs(S)) at 98.

Pl[(I),H,I,N]: By Pl[(I),H,I,N] at 98.

—Z': By =Z' at 374.

S3[A,Z, x.find]: By S3[A,Z, .find] at 98.
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IV (M CR): By P_(x.find) at 374 and ZV (M C R) at 98.
IV (R'CR): By P_(x.find) at 374 and ZV (R' C R) at 98.
IV (deR): ByZV (lhs(€) CR) at 98.

Line 378:

370. G, P_(dall), P[®,H,Z,N]|, hf(d), S3[A,Z,x.find], Ss(d), So[x.find](d)
371. IF =7 AND Find(d) = d THEN BEGIN

376. G, Pc(F,lhs(S)), Pi[®,H,Z,N], -T', S3|A,Z,*.find], TV(MCR),
IV(R'CR), IV(dER)
377. END

378. G, Pc(F,hs(S)), P®,H,I,N], S3[AL, xfind, TV(MCR),
IV(R'CR), T =T, SslT,S,find|(d)

S34|Z, S, *.find|(d): From 370: By the if-condition, Z V (d.find # d). From 376: by
IV (deR).

RewriteHelper

Line 385:

383. G, P_(all), free(t) CV, t'= t, Pas(t), fr(t) V hf(t), Sas[S,*.find)(t)

384. IF ¢t is a x—-leaf THEN BEGIN

385. G, P_(all), free(t) CV, t' = t, Pyl(t), fr(t) VvV hf(t), —Ss(t),
So5[S, *.find](t)

—Sg(t): By the if-condition.

Line 387:

8. G, P(all), freelt) SV, = 1, Pult), f(0) V), Ssld),
Sa5[S, . find)(t)

386. IF —HasFind(¢) OR t.find= ¢ THEN BEGIN

387. G, P_(all), free(t) CV, t'= t, fr(t), Ps(t), —Ss(t),

531[8, Xﬁlld](t) 5 532 [S](t) 5 533 [S](t, Tf’)
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S51[S, *.find|(t): Since t is a x-leaf by —Sg(t), we simply must show S,[S, *.find|(t).
Suppose s <t and —Af(s). We must show that s = canon, (S(s)). If s <t, then
this follows by Sy5(S, *.find](t). Otherwise, s = t. Since s is a x-leaf and —hf(s),
it follows from Gig that s 4 S, and thus S(s) = s. But by property 4 of canon,

canony(s) = s, so s = canon, (S(s)).

S32[S](t): By —Ss(t), t is a x-leaf, so we simply must show S(¢) = ¢t. We showed this

above for the case when —hf(t). Otherwise, we know that ¢.find = t. Thus, by
G, t & lhs(S), and thus S(t) = t.

Ss3[S](¢,t'): We know that ¢ = ¢. As shown above, S(t) = t, so canony(t) =
canony (S(t)).

Line 389:

387. G, P_(all), free(t) CV, t'= t, fr(t), Pa(t), —Ss(t),
S31[S, +.find)(t), S32[S](t), Ss3[S(t,t')

388. RETURN ¢;

389. G, P_(all), free(retval) CV, TU® =t ~ retval, Paz(retval),

Sso[*.find](retval), S31[S, *.find](retval), Sso[S](retval), Ss3[S](retval,t’)

Sso[*.find|(retval): Trivial since ¢ is a x-leaf by —Ss(t) (and thus d,(t) = {t}) and
fr(t)-

Line 393:

391. G, P_(all), free(t) CV, t'= t, Py(t), hf(t), Sos[S,*.find](t)
392. t := Find(®);
393. G, P_(all), free(t) CV, t'~ t, Py(t), fr(t), Sos[S,*.find](t)

237. G, hf(t)
238. Find(t)

250. END Find
251. G, P—_(all), retvalfind = retval, t ~ retval

G: By G at 251.

P_(all): By P_(all) at 391 and 251.
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free(t) C V: By retval.find = retval at 251, retval < F, so free(retval) CV by Gs.
t' ~t: By t' = t39; and t ~ retval at 251.

Py3(t): By retval.find = retval and G at 251.

fr(t): By retval.find = retval at 251.

So5]S, x.find|(t): Trivial since hf(s) for all s <t by retval.find = retval at 251 and Gg.

Line 395:

393. G, P_(all), free(t) CV, t' ~ t, Py(t), fr(t), Sos[S,*.find](t)
394. RETURN RewriteHelper(t*);
395. G, P_(all), free(retval) CV, TU® =t ~ retval, Pas(retval),

Sso[x.find|(retval), S31[S, *.find](retval), Ssa[S](retval), S33[S|(retval,t’)

381. G, free(t) CV, Psl(t), fr(t) VvV hf(t), Sos[S,*.find|(t)
382. RewriteHelper(t)

410. END RewriteHelper
411. G, P_(all), free(retval) CV, TU® |=t' ~ retval, Py3(retval),
Sso[*.find](retval), S31[S, *.find](retval), Sso[S](retval), Ss3[S](retval,t’)

G: By G at 411.
P_(all): By P_(all) at 393 and 411.

free(retval) C V: By free(retval) CV at 411.

TU P ): t' ~ retval: By ' ~393 t393 and G2 at 393, TU (13393 ): t = t393. ThUS, by
T U® E ¢ ~retval and P-(all) at 411, T U ® E ¢’ ~ retval.

Pys(retval): By Pyz(retval) at 411.

Sso[*.find] (retval): By Sso[*.find](retval) at 411.

S31[S, *.find|(retval): By S31[S, *.find](retval) at 411.

Ss2[S](retval): By Sso[S|(retval) at 411.



APPENDIX A. CORRECTNESS OF THE FRAMEWORK 206

Ss3[S](retval, t'): We must show that canon, (retval) = canon, (S(t')). First of all,
by Ss3(S](retval,t') at 411, canon,(retval) = canon,(S(tsg3)). Thus, by prop-
erty 1 of canon, T, = v (retval = S(tsg3)). It follows that 7, U v, (S) =
Yy (retval = t393). Then, by the fact that ¢ ~s95 393 and Gy at 411, we
have that 7, U 7, (S) = 7y (' = t393). Thus, T, U, (S) [ vy (retval =t'). By
Proposition 2.1, T, = 7, (S(retval) = S(t')). Now, note that by Ss,[S](retval),
S(retval) = retval, so we have T, = v, (retval = S(t')), and thus, by property 1

of canon, canony(retval) = canon, (S(t')).

Line 399:

384. IF ¢t is a x—leaf THEN BEGIN

398. END ELSE BEGIN

399. G, P_(all), free(t) CV, t' = t, Pus(t), fr(t) vV hf(t), Ss(t),
So5[S, *.find](t)

Ss(t): By the if-condition.

Line 401:

399. G, P_(all), free(t) CV, t'= t, Pos(t), fr(t) VvV hf(t), Ss(t),
So95[S, *.find](t)
400. FOR k := 1 to Arity(t) DO BEGIN
401. G, P_(all), free(t) CV, TUD =t ~t, Pos(t), Ss(t), Ss7[*.find](t),

Sgg[ ﬁn([](f /i) 539[51 >:<.ﬁ7l(l](t, /i?) N 5_10[51 >:<.ﬁ7l(l](t, /i?) N S_ﬂ [S] (t, k’) N
Op(t) = Op(t')

402. t[k] := RewriteHelper (t[k]);

403. G, P_(all), free(t) CV, TU® Et ~t, Py(t), Ss(t), Ss7[+.find](t),
Sgg[ ﬁn([](f k+ ), 539[8, xﬁﬂ(l] (t, k+ 1) ’ 54() [S. xﬁﬂ(l] (t, k+ 1) N
Su[S](t,k+1), Op(t) = Op(t')

404 . END

The transition from 403 is trivial, so we consider only the transition from 399.

Ssr[x.find)(t): If hf(t), then hf(c) for each child of ¢ by Gs. Otherwise, —Af(t) and thus
fr(t). But this means that each child must be find-reduced.

Sss[*.find)(t, k): Trivial, since k = 1.
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S39[S, *.find|(t, k): Trivial, since k = 1.

Syo[S, *.find|(t, k): By Sas[S, *.find](t) and ¢’ =t at 399.

Sy [S](t, k): Trivial, since k = 1.

Line 403:

401. G, P_(all), free(t) CV, TU® Et ~t, Py(t), Ss(t), Ss7[+.find](t),
Ssg[*.find](t, k), Sso[S,*.find](t,k), Si[S,*.find](t,k), Su[S](t k),
Op(t) = Op(t')

402. t[k] := RewriteHelper (t[k]);

403. G, P_(all), free(t) CV, TU® Et ~t, Py(t), Ss(t), Ssr[+.find](t),
Ssr-find](E,  + 1), SyolS, = find)(t ki + 1), SulS,wfind](E,k + 1),
Su[S](t, k+ 1), Op(t) = Op(t)

381. G, free(t) CV, Ps(t), fr(t) VvV hf(t), Sos[S,*.find|(t)
382. RewriteHelper(t)

410. END RewriteHelper
411. G, P_(all), free(retval) CV, TU® =t ~ retval, Py3(retval),
Sso[*.find|(retval), S31[S, *.find](retval), Sso[S](retval), Ss3[S](retval,t’)

We first consider the preconditions of RewriteHelper.
free(t[k]) C V: By free(t) CV at 401.
P23(t[k]): By ng(t) at 401.

fr(t[k]) Vv hf(t[k]): By Ssr[*.find)(t) at 401.

So5[S, *.find|(t[k]): By Syo[S, *.find)(t, k) at 401.

Now we consider the properties at line 403.

G: By G at 411.

P_(all): By P_(all) at 401 and 411.

free(t) C V: By free(t) CV at 401 and P—_(V) and free(retval) C V at 411.
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TU® Et ~t: We know that T U @41 =t = ty01. Also, T U D |= typi[k] = t[k].
But by P_(all), P40y =P, s0 TUD =1 =1.

P23(t): By P23(t) at 401, P23(’/’€t1)(ll) at 411.

Ss(t): By Ss(t) at 401 since the operator of ¢ has not changed.

Syr[*.find)(t): Let ¢ be a child of t. We must show hf(c) V fr(c). If ¢ # t[k], then
this follows from Ss;[+.find](t) at 401 and P_(all) at 411. If ¢ = t[k], then by
Sso[*.find|(retval) at 411, Vd € 0,/(c).fr(d). Thus, by Gis, fr(c).

Sss[*.find)(t, k + 1): Suppose 1 <1 < k+ 1. If | # k, then we have S3[*.find|(t[l]) by
Sss[*.find)(t, k) at 401 and P—(all) at 411. Otherwise, if [ = k, we must show
Sso[*.find) (t[k]). But this follows by Sso[*.find|(retval) at 411.

S39[S, *.find|(t, k + 1): Follows by property Sso[S, *.find|(t, k) at 401, and by P_(all),
S31[S, *.find|(retval), and Ss[S](retval) at 411.

Syo[S, x.find|(t,k + 1): By Syo[S, *.find)(t, k) at 401 and P—(all) at 411.

Sy [S](t, k 4+ 1): Suppose 1 <1 < k+ 1. If | # k, then Ss3[S](t[l], '[l]) by Su[S](t, k)
at 401 and P-(all) at 411. Otherwise, by Sy[S, *.find](t, k) at 401, t401 ] = ¢'[1],
and thus, by Ss3[S|(retval, t') at 411, S33[S|(t[l], ¢'[1]).

Op(t) = Op(t'): By Op(t) = Op(t') at 401.
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Line 405:
399.

400.
403.

404.
405.

G, P_(all), free(t) CV, €= 1, Py(t), fitt) VIf(E), Ss(t),
S95[S, *.find)(t)
FOR k := 1 to Arity(t) DO BEGIN

G, P_(all), free(t) CV, TUD =t ~t, Pss(t), Ss(t), Ss7[*.find](t),
Sag[*.find|(t,k + 1), Ss9[S,*.find|(t,k+ 1), Sil[S,*.find](t,k + 1),
Su1[S](t,k+ 1), Op(t) = Op(t')

END

G, P_(all), free(t) CV, TUD =t ~t, Pos(t), Sso[*.find|(t),

531[5, >:<.ﬁnd] (ZL) s 552[8](t) s S;;;;[S](t, t,)

Note that no transition from 399 is possible: ¢ is a compound term by Sg(t), so it

must have at least one child.

Sso[*.find|(t): By Ss(t), t € d,(t), so Sso[.find|(t) follows from Sss[*.find|(t,k+ 1) at

403 and the end-of-loop condition, k = Arity(t).

S51[S, *.find|(t): As above, we have by Ss(t) that ¢ & d,(t), so S31[S, *.find|(t) follows

from Sso(S, *.find|(t,k + 1) at 403 and the end-of-loop condition.

Ss0[S](t): By t & 0,(t), Sso[S, *.find|(t, k + 1) at 403, and the end-of-loop condition.

Ss3[S](t,t'): We must show canon,(t) = canony(S(t')). Let n = Arity(t) and let

f = Op(t). Note that f = Op(t') as well. The proof is as follows:

canony(t)

= canon, (f(t[1],...,t[n]) def. of ¢

= canon,(f(canon,(t[1]),..., canon,(t[n]))) Lemma A.3

= canon,(f(canon, (S(t'(1])),..., canon, (S(t'[n])))) SulS|(t,k+1)
= canon, (f(S(T[1]),...,S('[n]))) Lemma A.3

= canony(S(f(H[L], ..., ¥[n]))) T(f) =x

= canon,(S(t')) def. of ¢/
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A.6 Partial Correctness

As stated before, partial correctness means that if the program terminates, it gives
the correct result. For a validity checker, partial correctness can further be divided
into soundness and completeness. In order to show that the framework guarantees
soundness and completeness, we must first show that the preconditions of AddFact
are always satisfied. We then show that the postconditions of AddFact guarantee

soundness and completeness.

A.6.1 Preconditions of AddFact

We first consider the initial call to AddFact. Given the initial values of all the global
state variables, it is not hard to see that initially, all preconditions of AddFact are
trivially true. The only one which does not follow immediately is P,(e) which requires
that the parameter to AddFact be a Y-formula. Clearly, we expect this precondition
to be satisfied by any user of the framework.

Now, consider subsequent calls to AddFact. As long as the user code does not
change any of the global state of the framework, every precondition of AddFact is
guaranteed by the postconditions of AddFact except for P3[®,H](e) and Py(e). As
mentioned, P»(e) is a reasonable expectation for any call to AddFact. The other case,
Ps[®, H](e) is more interesting. Basically, P3[®, #](e) requires that free variables in
the formula passed to AddFact either be free variables appearing in the assumption
history # (i.e. in previous calls to AddFact) or fresh variables not being used by the
framework. This seems reasonable, since it is easy to enforce that the framework and
the user code generate different sets of fresh variables.

However, there is a potential difficulty with this precondition. If the user code
uses the Simplify procedure to simplify formulas, the two sets of fresh variables may
get mixed up. It seems reasonable for the user code to use parts of formulas returned
to it by Simplify to construct new facts to pass to AddFact. This may violate the
precondition.

This problem can be overcome by redefining H as the value of ® at the beginning

of a call to AddFact and removing the precondition P3[®,H](e). Essentially, what
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this does is change the functionality of AddFact. Instead of collecting a set of facts
in H, each call to AddFact transforms the current fact database ® into a new fact
database which is equisatisfiable with ® U {e}.

A.6.2 Soundness

At a high level, a validity checker such as CVC is sound if, whenever it reports that
a formula is valid, the formula really is valid. This can be guaranteed if we know
that whenever the framework sets Z to be TRUE, the assumption history H is truly

inconsistent.

Theorem A.1. If a call to AddFact respects the preconditions and AddFact termi-
nates with T set to TRUE, then T U H = false.

Proof. T — (T UH = false) is the first global invariant. Thus, soundness is ensured
by the fact that GG is a postcondition of AddFact. O

A.6.3 Completeness

A validity checker is complete if, whenever a valid formula is provided as input, the
validity checker reports that the formula is valid. This can be guaranteed as long as
we know that whenever Z is FALSE, the assumption history # is actually satisfiable.

In reality, because we are allowing non-convex theories (see Section 3.5.1), we
can’t prove something quite this strong. Instead, we can show that whenever Z is
FALSE and conver is true, the assumption history is satisfiable. With the additional
assumption that every branch of the decision tree eventually reaches a point at which
convex holds, it follows that CVC is complete. We now give a proof of this based on

postconditions of AddFact.

Theorem A.2. If a call to AddFact respects the preconditions, AddFact terminates
with T = FALSE, and convez is true, then T UH 1is satisfiable.

Proof. By Py[®,Z, N, A, x.find], we have that T; U v;(®; U Ar.,) is satisfiable for
each theory 7;. We first show that this implies that 7; U ~;(®; U Ary) is satisfiable
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for each 7;, where & is the restriction of ~ to A (recall that A = UA;). Suppose
M =, T; U~i(®;UAr.,), and consider the difference in the domains of Ar., and
Ary. The domain of Ary, includes all terms in A, while Ar_, includes only the terms
in A;. Thus, if ¢ is in the domain of Ary but not the domain of Ar.,, then it must
be the case that ¢ ¢ A; and ¢ € A; where j # i. Now, if 7(¢) = ¢, then by G, and
Gy, it follows that ¢t € A;, so we must have T (t) # i. Similarly, if ¢ occurs i-alien
in some formula e € ®;, then by Gy, t € A;. Thus, 7(t) # ¢ and ¢ does not occur
i-alien in any formula in ®;. It follows that ~;(¢) is a variable and does not appear in
7:(®;). Now, we can modify p so that it also satisfies 7;(Ary). To do so, we simply
associate a different element of M with each equivalence class of ~ as follows: if the
equivalence class contains a term ¢ such that v;(t) appears in v;(®; U Ar,), then we
associate the element assigned to this term by M and p. Otherwise, we associate
a new element of M (we can assume M has infinitely many elements because 7; is
stably infinite). Then, for each term ¢ such that ¢ is in the domain of Ar,, but not in
the domain of Ar.,, we modify p to assign to 7;(t) the element associated with the
equivalence class of ¢. Call the modified assignment p’. Since, as shown above, v;(¢)
does not appear in v;(®; U Ar.,), it is not hard to see that M =, 7,(®; U Ary).
Now, since v;(®; U Ary) is satisfiable in 7; for each i, it follows by Theorem 2.3
that 7 U @ is satisfiable. By P[®, H,Z,N], TUN U® = H. But because convex
holds, it follows that T U ® =N, so T U® = H and thus 7 U H is satisfiable. O
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