
CHECKING VALIDITY OF QUANTIFIER-FREEFORMULAS IN COMBINATIONS OF FIRST-ORDERTHEORIES
a dissertationsubmitted to the department of computer scienceand the committee on graduate studiesof stanford universityin partial fulfillment of the requirementsfor the degree ofdoctor of philosophy

Clark Wayne BarrettSeptember 2002

c
 Copyright by Clark Wayne Barrett 2003All Rights Reserved

ii

I certify that I have read this dissertation and that inmy opinion it is fully adequate, in scope and quality, asa dissertation for the degree of Doctor of Philosophy.David L. Dill(Principal Adviser)
I certify that I have read this dissertation and that inmy opinion it is fully adequate, in scope and quality, asa dissertation for the degree of Doctor of Philosophy.Zohar Manna
I certify that I have read this dissertation and that inmy opinion it is fully adequate, in scope and quality, asa dissertation for the degree of Doctor of Philosophy.John Mitchell
Approved for the University Committee on GraduateStudies:

iii

AbstractAn essential component in many veri�cation methods is a fast decision procedure forvalidating logical expressions. This thesis presents several advances in the theory andimplementation of such decision procedures, developed as part of ongoing e�orts toimprove the Stanford Validity Checker. We begin with the general problem of com-bining satis�ability procedures for individual theories into a satis�ability procedurefor the combined theory. Two known approaches, those of Shostak and Nelson andOppen, are described. We show how to combine these two methods to obtain thegenerality of the Nelson-Oppen method while retaining the e�ciency of the Shostakmethod. We then present a general framework for combining decision procedureswhich includes features for enhancing performance and
exibility. Finally, validitychecking requires that a heuristic search be built on top of the core decision proce-dure for satis�ability. We discuss strategies for e�cient heuristic search and showhow to adapt several powerful techniques from current research on Boolean satis�a-bility. Since these algorithms can be extremely subtle, a detailed proof of correctnessis provided in the appendix.

iv

AcknowledgmentsI would like to thank my adviser David Dill for his support and guidance over manyyears. I would also like to thank the other members of my reading committee: ZoharManna and John Mitchell. Many others have contributed to the success of thiswork, including Aaron Stump, Jeremy Levitt, Satyaki Das, Je�rey Xsu, Robert Jones,Natarajan Shankar, Cesare Tinelli, SVC and CVC users, and my friends and family.

v

Contents
Abstract ivAcknowledgments v1 Introduction 11.1 First-Order Logic . 21.1.1 Basic De�nitions . 21.1.2 Theories and Models . 41.1.3 Validity Checking . 51.2 Some History . 61.2.1 The Burch-Dill Method . 61.2.2 The Evolution of SVC . 71.3 Validity Checking: Top-Level Algorithm 81.4 Organization . 102 Combining Satis�ability Procedures 112.1 Shostak's Method . 112.1.1 Equations in Solved Form . 122.1.2 Algorithm S1 . 132.1.3 An Example . 172.1.4 Combining Shostak Theories 202.2 The Nelson-Oppen Combination Method 202.2.1 Tinelli and Harandi's Approach 202.2.2 A Variation of the Nelson-Oppen Procedure 22vi

2.2.3 A Deterministic Implementation for Convex Theories 232.3 Combining Nelson-Oppen and Shostak 262.3.1 The Combined Algorithm . 272.3.2 An Example . 312.4 Comparison with Shostak's Original Method 322.4.1 Requirements on the Theory 322.4.2 Level of Abstraction . 333 A Framework for Combining Theories 353.1 An Overview of the Framework . 363.1.1 The Interface to the User Code 373.1.2 The Interface to the Theory-Speci�c Code 383.1.3 A Comparison With Algorithm N-O 393.2 Data structures . 393.2.1 Expressions . 403.2.2 Expression Attributes . 413.2.3 Global Variables . 423.3 The Framework . 423.3.1 The Framework Code . 463.3.2 Theory-Speci�c Code . 493.3.3 Correctness of the Framework 513.4 Using the Framework . 513.4.1 Default Implementation . 523.4.2 Nelson-Oppen Theories . 523.4.3 Shostak Theories . 533.5 Extensions to the Framework . 573.5.1 Non-convex Theories . 573.5.2 Allowing Theories to Introduce Fresh Variables 604 Incremental Translation to SAT 624.1 Propositional Satis�ability . 634.2 The Problem . 64vii

4.3 Checking Satis�ability of Arbitrary Formulas using SAT 654.3.1 Computing an Abstraction Formula 664.3.2 Re�ning the Abstraction . 684.4 The Di�cult Path to Success . 684.4.1 Redundant Clauses . 684.4.2 Lazy vs. Eager Noti�cation 704.4.3 Decision Heuristics . 704.4.4 SAT Heuristics and Completeness 714.4.5 Theory-speci�c Challenges . 714.5 Related Work . 724.6 Results . 734.6.1 Comparing Di�erent Strategies 755 Conclusions 775.1 Contributions . 775.2 Some Observations on Program Veri�cation 795.2.1 Organizing a Large Veri�cation E�ort 795.2.2 Veri�cation: the Cost and the Bene�t 805.3 Future Work . 815.3.1 Quanti�ed Formulas . 815.3.2 Restrictions on the Theories 825.3.3 Performance . 82A Correctness of the Framework 83A.1 Approach . 83A.2 De�nitions and Notation . 85A.2.1 The Shostak Theory . 85A.2.2 Nelson-Oppen Theories . 86A.2.3 Variable Name Conventions 86A.2.4 Program State . 86A.2.5 Other De�nitions . 88A.3 Properties . 91viii

A.3.1 Global Properties . 91A.3.2 Preservation Properties . 94A.3.3 Other Properties . 94A.4 Annotated Code . 100A.4.1 Framework Code . 102A.4.2 API for Theory-Speci�c Code 112A.4.3 Theory-Speci�c Code for a Nelson-Oppen Theory Ti 113A.4.4 Theory-Speci�c Code for Shostak Theory T� 114A.5 Detailed Proof . 118A.5.1 Lemmas . 119A.5.2 AddFact . 122A.5.3 Assert . 128A.5.4 AssertEqualities . 134A.5.5 AssertFormula . 154A.5.6 SetupTerm . 160A.5.7 Simplify . 172A.5.8 Rewrite . 176A.5.9 OpRewrite . 180A.5.10 RewriteNegation . 183A.5.11 Find . 184A.5.12 Theory-Speci�c Code for a Nelson-Oppen Theory Ti 185A.5.13 Theory-Speci�c Code for Shostak Theory T� 189A.6 Partial Correctness . 210A.6.1 Preconditions of AddFact . 210A.6.2 Soundness . 211A.6.3 Completeness . 211Bibliography 213
ix

List of Tables4.1 Results comparing CVC without Cha� to CVC combined with Cha� 744.2 Results comparing SVC to CVC . 754.3 Results comparing naive, lazy, and eager implementations 754.4 Variable selection by Cha� vs. by depth-�rst search 76

x

List of Figures1.1 Burch-Dill Commuting Diagram . 71.2 Top-level Validity Checking Algorithm 81.3 Case-Splitting Tactic . 92.1 Algorithm S1: based on a simple subset of Shostak's algorithm 152.2 Algorithm N-O: an implementation of the Nelson-Oppen variation fortwo convex theories . 242.3 Algorithm S2: a generalization of Shostak's algorithm 283.1 The Framework Context . 373.2 Modi�ed Top-level Validity Checking Algorithm 383.3 The Framework: arrows indicate caller-callee relationships 433.4 Basic Framework . 443.5 Basic Framework, continued . 453.6 Default implementation of theory-speci�c code for theory Ti 523.7 Theory-speci�c code for a Nelson-Oppen theory Ti 533.8 Code for Implementing a Shostak theory Ti 543.9 Extensions for Handling Non-Convex Theories 594.1 Propositional logic and CNF . 634.2 A quanti�er-free fragment of �rst-order logic 644.3 Case-Splitting Tactic . 66
xi

Chapter 1IntroductionAn automated tool to check validity of formulas is of great interest because of itsversatility. Many practical problems can be reduced to the question of whether someformula is valid in a given logical theory. Our experience with the Stanford ValidityChecker (SVC) [1, 2], a tool for checking validity of quanti�er-free formulas in a com-bination of �rst-order theories, con�rms the need for and interest in such a tool. SVChas been used internally at Stanford for processor veri�cation [23, 24, 25], symbolicsimulation [39], software speci�cation checking [32], and in�nite-state model check-ing [11, 12]. In addition, since its public release in 1998, SVC has been downloadedand used in many other applications all over the world including model checking [6],theorem-prover proof assistance [21], programming language enhancements [13], andeven the veri�cation of an automobile airbag controller [4].However, these applications revealed not only the need for such a tool, but alsomany limitations of the 1998 implementation. Our subsequent attempts to enhanceand modify SVC revealed unnecessary constraints in the underlying theory, as wellas gaps in our understanding of it. This thesis is an outcome of our attempt tore-architect SVC to resolve these di�culties. The primary goal has been to placeSVC on a �rm theoretical foundation without sacri�cing the e�ciency which made itsuccessful.Before describing the validity checking problem in more detail, we �rst give a briefoverview of relevant concepts from �rst-order logic.1

CHAPTER 1. INTRODUCTION 21.1 First-Order LogicFor those already familiar with basic �rst-order logic, this section may be skipped.1.1.1 Basic De�nitionsFirst-order logic is a widely used mathematical language for making precise state-ments [16, 22]. The \alphabet" of statements in �rst-order logic includes two distinctkinds of symbols: logical symbols and non-logical symbols. Logical symbols are com-mon to all applications of �rst-order logic. They include parentheses, quanti�ers,Boolean operators, and the equality operator. Note that although it is possible touse �rst-order logic without equality, we will make the assumption that equality isalways included. Also, to simplify discussion, we will include the constant formulastrue and false as logical symbols.Non-logical symbols are symbols which vary depending on the application. Theyinclude variables, constant symbols, function symbols, and predicate (or relation)symbols. The symbols of �rst-order logic are summarized below.1. Logical Symbols(a) Parentheses: (;)(b) Quanti�ers: 8 (for all), 9 (there exists)(c) Boolean operators: : (not), ^ (and), _ (or)(d) Constant formulas: true, false(e) Equality: =2. Non-logical Symbols(a) Variables(b) Constant symbols(c) Function symbols: Each function symbol has an associated arity, a positiveinteger that indicates how many arguments it requires.

CHAPTER 1. INTRODUCTION 3(d) Predicate symbols: Each predicate symbol also has an associated arity.A symbol with arity 1, 2, or 3, is said to be a unary, binary, or trinary symbolrespectively. In general, a symbol with arity n is said to be an n-ary symbol.The \alphabet" of logical symbols and non-logical symbols is used to form termsand formulas (the rough logical equivalent of \words" and \phrases"). A term is avariable, a constant, or an application of an n-ary function symbol to n other terms.An atomic formula is either an equality between terms or an n-ary predicate symbolapplied to n terms. A literal is either an atomic formula or its negation.A formula is de�ned as follows.(a) Constant formulas are formulas.(b) Atomic formulas are formulas.(c) If � is a formula, then :� is a formula.(d) If � and are formulas, then � ^ and � _ are formulas.(e) If � is a formula and x is a variable, then 8 x: � and 9 x: � are formulas.In each case, x is said to be bound in �.Occurrences of variables which are not bound are said to be free. free(�) indicatesthe set of variables which occur free in �. If a formula � contains no free variables(i.e. free(�) = ;), it is called a sentence. If it contains no quanti�ers, it is said to bequanti�er-free.Terms and formulas collectively are called expressions. To avoid confusion with thelogical symbol =, we will use � to indicate that two logical expressions are identical.Similarly, when discussing Boolean values outside the context of logical expressions,TRUE and FALSE are used, so as not to confuse them with the logical formulas trueand false.Example 1.1. The non-logical symbols for an application involving simple arithmeticmight be as follows.1. Variables: x; y; z; v0; v1; : : :

CHAPTER 1. INTRODUCTION 42. Constant symbols: : : : ;�1; 0; 1; : : :3. Function symbols: unary minus: �, binary plus: +4. Predicate symbols: binary less-than: <, binary greater-than: >Using these additional symbols, �rst-order logic can be used to precisely state variousarithmetic properties:1. Adding 0 to an integer does not change it: 8 x: (x + 0 = x).2. Addition is commutative: 8 x: 8 y: (x+ y = y + x).3. There is always a larger number: 8 x: 9 y: (y > x).1.1.2 Theories and ModelsA theory is a set of �rst-order sentences. For the purposes of this thesis, all theoriesare assumed to include the axioms of equality. The signature of a theory is the set offunction, predicate, and constant symbols appearing in those sentences. The languageof a signature � is the set of all expressions whose function, predicate, and constantsymbols come from �. The language of a theory is the language of its signature.Terms or formulas in the language of a signature � are called �-terms or �-formulas.Given a signature �, a modelM of � is a structure including the following four items:1. A set called the domain of M , written dom(M). Elements of the domain arecalled elements of the model M .2. A mapping from each constant c in � to an element cM of M .3. A mapping from each n-ary function symbol f in � to fM , an n-ary functionfrom (dom(M))n to dom(M).4. A mapping from each n-ary predicate symbol p in � to pM , an n-ary relationon the set dom(M).

CHAPTER 1. INTRODUCTION 5For a given model, M , a variable assignment � is a function which assigns to eachvariable an element of M . We say that M and � satisfy � and write M j=� � if � istrue in the model M with variable assignment �. A formula � is satis�able if thereexists some model M and variable assignment � such that M j=� �. If � is a set offormulas and � is a formula, then � j= � means that for every model and variableassignment satisfying each formula in �, the same model and variable assignmentalso satisfy �. A formula � is valid if all models and variable assignments satisfy �(i.e. ; j= �). If T is a theory, we say � is valid in T if T j= �. Often, we will usesets of formulas where a logical formula is expected. The intended meaning is theconjunction of the formulas in the set. The conjunction of an empty set of formulasis de�ned to true.A set S of literals is convex in a theory T if T [S does not entail any disjunctionof equalities between variables without entailing one of the equalities itself. A theoryT is convex if every set of literals in the language of the theory is convex in T . Atheory T is stably in�nite if any quanti�er-free formula is satis�able in some modelof T i� it is satis�able in a model of T whose domain is in�nite.1.1.3 Validity CheckingGiven a theory T and a formula �, the validity checking problem is simply the prob-lem of determining whether T j= �. It is a well-known fact that in general, thisproblem is undecidable. There are at least two possible approaches to dealing withthis undecidability. The �rst is to apply heuristics which will work well on someproblems but give no result on others. The other is to restrict T and � in such away that the problem becomes decidable. Because we want a decision procedure, andbecause the applications in which we are interested can be handled without using thefull expressive power of �rst-order logic, we take the second approach.In the restricted domain we consider, � is required to be quanti�er-free, and thetheory T is required to be the union of one or more theories Ti whose signatures arepairwise disjoint. Additionally, in each theory Ti, the question of whether Ti j= ,where is a quanti�er-free formula in the language of Ti must be decidable.

CHAPTER 1. INTRODUCTION 61.2 Some HistorySVC has its roots in a ground-breaking paper by Burch and Dill on processor veri�-cation [9]. In order to better motivate the need for a validity checker, a brief overviewof its role in the Burch-Dill veri�cation methodology is given.1.2.1 The Burch-Dill MethodThe Burch-Dill method is used to verify that an implementation of a piece of hard-ware matches its speci�cation. It also requires an abstraction function for matchingimplementation states with their corresponding speci�cation states.More concretely, suppose that for a given veri�cation problem, Qi is the set ofpossible states for the implementation and Qs is the set of possible states for thespeci�cation, and that Abs is a function from Qi to Qs. Furthermore, suppose thatFi is the implementation transition function (from Qi to Qi) and that Fs is thespeci�cation transition function (From Qs to Qs).In order to verify that the implementation is correct (with respect to the speci�-cation), consider a single transition starting from an arbitrary implementation stateqi. The result, Fi(qi), should correspond to a single transition of the speci�cationstarting from Abs(qi). In other words, the implementation is correct if1.1. Fs(Abs(qi)) = Abs(Fi(qi)):A diagram of this correctness condition is shown in Figure 1.1.Traditional simulation techniques attempt to verify equation 1.1 for as many statesin Qi as possible. Unfortunately, for large and complex designs, exhaustive coverageis impossible. Formal veri�cation techniques take a di�erent approach: they attemptto prove that equation 1.1 is valid.The theory in which this proof takes place depends on the transition and ab-straction functions. Burch and Dill proposed a theory which included uninterpretedfunctions and predicates. They found that uninterpreted functions could be used torepresent portions of the datapath that were common to both the implementationand the speci�cation, greatly reducing the di�culty of checking formula 1.1. Thus,

CHAPTER 1. INTRODUCTION 7

Fi

Fs

qi Fi qi()

qiAbs() =
?

Abs Abs

Figure 1.1: Burch-Dill Commuting Diagramthe �rst incarnation of what later became SVC was a simple validity checker for thelogic of pure equality with uninterpreted functions.1.2.2 The Evolution of SVCThis �rst validity checker was successfully applied to several designs [25]. Thoughthese results were impressive, attempts to extend this initial work to more di�cultdesigns revealed that the simple theory of pure equality with uninterpreted functionswas insu�cient. As time went on, a number of additional interpreted functions wereadded, including arithmetic, array, and bit-vector functions [1, 3].The addition of these functions increased the expressive power of the logic. How-ever, it also required a strategy for combining decision procedures for individual theo-ries. The 1998 release of SVC included a number of theories combined in a somewhatad hoc way, loosely based on Shostak's method for combining theories [1, 27, 35].As mentioned, the 1998 release, though very successful by many standards, pre-sented a number of di�culties. Perhaps the most fundamental di�culty was thatour understanding of the underlying theory was limited. Decision procedures wererequired to conform to rigid requirements which limited the kinds of theories thatcould be included. Some theories which did not meet these requirements were in-cluded anyway, with the result that our con�dence in the correctness of the entire

CHAPTER 1. INTRODUCTION 8CheckValid(h,c)IF c � true THEN RETURN TRUE;IF :Satisfiable(h) THEN RETURN TRUE;IF c � false THEN RETURN FALSE;subgoals := ApplyTactic(h; c);FOREACH (h0; c0) 2 subgoals DOIF :CheckValid(h0; c0) THEN RETURN FALSE;RETURN TRUE; Figure 1.2: Top-level Validity Checking Algorithmsystem was diminished.There were other di�culties with the 1998 release. The system had outgrownits original software architecture with the result that attempts to modify or extendit in any way often broke the system in unpredictable ways. In particular, it wasdi�cult to experiment with certain algorithmic changes which had the potential todramatically increase performance.This thesis is the result of e�orts to address these issues. The theoretical andarchitectural contributions contained herein form the foundation for the successorto SVC, a system called CVC (Cooperating Validity Checker), which is signi�cantlymore robust, while remaining as useful as its predecessor.1.3 Validity Checking: Top-Level AlgorithmIn order to better understand the theoretical issues involved in validity checking, aswell as to lay the foundation for a more detailed implementation, we here describe ata high level the algorithm used to check validity.Figure 1.2 shows pseudocode for CheckValid, the top-level validity checking algo-rithm. The formula whose validity is to be determined is provided to CheckValid inthe form of two arguments: a set h of formulas, the hypotheses, and a formula c, theconclusion. The pair (h; c) is called a sequent, and implicitly represents the formulah ! c. If the sequent is not obviously true or false, CheckValid applies a tacticwhich returns a set of subgoals (also represented as sequents). If the set is empty,that means the tactic has successfully proved the sequent. Otherwise, CheckValid is

CHAPTER 1. INTRODUCTION 9ApplyTactic(h; c)Let � be an atomic formula appearing in c;h1 := AddFact(h; �);c1 := Simplify(h1; c);h2 := AddFact(h;:�);c2 := Simplify(h2; c);RETURN f(h1; c1); (h2; c2)g;Figure 1.3: Case-Splitting Tacticcalled recursively on each subgoal. A failure to prove any subgoal indicates that theoriginal formula is not valid.The strategy of representing goals as sequents and using tactics to break themdown into subgoals is a common one used by many other theorem provers includingHOL [20] and PVS [31]. Obviously, there is a lot of freedom in the choice of whichtactics to use and how to choose between them. We focus on one particular tactic, acase-splitting tactic, which is su�cient to produce a decision procedure. Figure 1.3shows pseudocode for a case-splitting tactic. This tactic makes use of two additionalsubroutines: AddFact and Simplify. AddFact(h; �) simply adds � to the hypothesesin h, and Simplify(h; c) simpli�es c with respect to h1.This tactic is su�cient as long as Simplify satis�es certain conditions. A call toSimplify(h; c) must replace each atomic formula � in c for which � or :� appearsin h by true or false respectively. It is also required to evaluate purely propositionalsentences to either true or false. Given these requirements, it is not hard to seethat by repeatedly applying the case-splitting tactic, any quanti�er-free formula willeventually reduce to true or false. Since the case-splitting tactic can only be applieda �nite number of times to a �nite formula, this means that the algorithm will alwaysterminate.Notice that our validity checking algorithm is built on top of an algorithm for de-termining the satis�ability of a conjunction of literals. This is the problem addressedin the bulk of the thesis. In particular, an e�cient implementation of the functions1From a proof-theoretic point of view, this simple top-level algorithm implements a classicalGentzen-style deductive system, and the case-splitting tactic is essentially a version of the cut in-ference rule.

CHAPTER 1. INTRODUCTION 10AddFact, Simplify, and Satisfiable is the subject of chapter 3.1.4 OrganizationIn chapter 2, we discuss the theoretical issues involved in combining satis�abilityprocedures for di�erent theories. Two approaches which have been used in the pastare those of Shostak [35] and Nelson-Oppen [29]. We present and prove the correctnessof three new algorithms. The �rst is a simple subset of Shostak's algorithm. The nextis a variation on Nelson-Oppen. The last is an instance of the Nelson-Oppen variationwhich generalizes the original Shostak algorithm.Chapter 3 describes a detailed and e�cient framework for combining theories.The framework includes a number of important features, such as a simpli�er and a
exible interface for adding new theories. We show how the framework can be used toe�ciently implement the abstract algorithms of chapter 2. We also describe a coupleof important extensions which make the framework more powerful and give greater
exibility when adding new theories.Chapter 4 revisits the top-level case-splitting algorithm and shows how it can beimproved by using techniques from related work on Boolean satis�ability. We describethe results of combining our new system, CVC, with the Cha� Satis�ability solver[28]. The result is a combined system which on average requires far fewer decisionsto successfully check the validity of formulas.Chapter 5 summarizes the contributions of this thesis, o�ers some observationson veri�cation, and describes future work, including one promising extension whichcan handle quanti�ed formulas in some cases.Finally, the appendix contains a detailed proof of the correctness of the algorithmpresented in chapter 3.

Chapter 2Combining Satis�abilityProceduresIn this chapter, we consider the problem of determining the satis�ability of a conjunc-tion of literals in a combined theory, given a satis�ability procedure for each theoryindividually. Two main approaches to this problem have emerged: Shostak's methodand the Nelson-Oppen method. We will discuss each of these in turn.In the process, we will also give a new simple presentation of Shostak's methodwithout uninterpreted functions and a new variation of the Nelson-Oppen procedure.We then show how these two algorithms can be combined.2.1 Shostak's MethodIn 1984, Shostak introduced a clever and subtle algorithm which decides the satis�a-bility of quanti�er-free formulas in a combined theory which includes a �rst-order the-ory (or combination of �rst-order theories) with certain properties and the theory ofequality with uninterpreted function symbols [35]. But despite the fact that Shostak'smethod is less general than its predecessor, the Nelson-Oppen method [29, 30], it hasgenerated considerable interest and is the basis for decision procedures found in sev-eral tools, including PVS [31], STeP [5, 17], and SVC [1, 2, 27].There are several good reasons for this. First of all, it is easier to implement:11

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 12the Nelson-Oppen method provides a framework for combining decision procedures,but gives no help on how to construct the individual decision procedures. But as wewill show below, at the core of Shostak's procedure is a simple recipe for generatingdecision procedures for a large class of theories. A second reason for the success ofShostak's method is that despite requiring more restrictive conditions in order toaccommodate a theory, a wide variety of useful theories have been shown to satisfythese conditions [5, 35]. Finally, empirical studies have claimed that implementationsbased on Shostak's method are up to an order of magnitude more e�cient than theNelson-Oppen method [10].Unfortunately, the original paper describing Shostak's method is di�cult to follow,due in part to the fact that it contains several errors, and despite an ongoing e�ortto understand and clarify the method [10, 34, 42], it remains di�cult to understand.In the past, Shostak's algorithm has been presented either as a monolithic wholeor as an extension of an algorithm for deciding just the the theory of pure equalitywith uninterpreted functions. We take a di�erent approach by presenting a simplenew algorithm (Algorithm S1 below) based on a subset of Shostak's algorithm, inparticular, the subset which decides formulas without uninterpreted functions. Thisalgorithm provides considerable insight into how Shostak's algorithm works. It is alsointeresting in its own right because it is easily proved correct and can be used directlyto produce decision procedures. Finally, the simpli�ed algorithm forms the basis for amore general algorithm described in Section 2.3. A few de�nitions are required beforeproceeding.2.1.1 Equations in Solved FormA set S of equations is said to be in solved form i� the left-hand side of each equationin S is a variable which appears only once in S. We will refer to these variables whichappear only on the left-hand sides as solitary variables. A set S of equations in solvedform de�nes an idempotent substitution: the one which replaces each solitary variablewith its corresponding right-hand side. If S is an expression or set of expressions,we denote the result of applying this substitution to S by S(S). Another interesting

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 13property of equations in solved form is that the question of whether such a set Sentails some formula � in a theory T can be answered simply by determining thevalidity of S(�) in T .Proposition 2.1. If T is a theory with signature � and S is a set of �-equations insolved form, then T [S j= � i� T j= S(�).Proof. Clearly, T [S j= � i� T [S j= S(�). Thus we only need to show thatT [S j= S(�) i� T j= S(�). The \if" direction is trivial. To show the otherdirection, assume that T [S j= S(�). Any model of T can be made to satisfy T [Sby assigning any value to the non-solitary variables of S, and then choosing the valueof each solitary variable to match the value of its corresponding right-hand side. Sincenone of the solitary variables occur anywhere else in S, this assignment is well-de�nedand satis�es S. By assumption then, this model and assignment also satisfy S(�),but none of the solitary variables appear in S(�), so the initial arbitrary assignmentto non-solitary variables must be su�cient to satisfy S(�). Thus it must be the casethat every model of T satis�es S(�) with every variable assignment. utBy setting � to false, the following corollary is obtained.Corollary 2.1. If T is a satis�able theory with signature � and S is a set of �-equations in solved form, then T [S is satis�able.2.1.2 Algorithm S1We �rst give the conditions that a theory must meet in order for Algorithm S1 tobe applicable. We call a theory that meets these conditions a Shostak theory.De�nition 2.1. A consistent theory T with signature � is a Shostak theory if thefollowing conditions hold.1. � does not contain any predicate symbols.2. T is convex.

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 143. There exists a canonizer canon, a computable function from �-terms to �-terms,with the property that T j= a = b i� canon(a) � canon(b).4. There exists a solver solve, a computable function from �-equations to sets offormulas de�ned as follows:(a) If T j= a 6= b, then solve(a = b) � ffalseg.(b) Otherwise, solve(a = b) returns a set S of equations in solved form suchthat T j= [(a = b) $ 9w: S], where w is the set of variables which appearin S but not in a or b. Each of these variables must be fresh.These requirements are slightly di�erent from those given by Shostak and others.These di�erences are discussed in Section 2.4 below. In the rest of this section, T isassumed to be a Shostak theory with signature �, canonizer canon, and solver solve.As we will show, the solver can be used to convert an arbitrary set of equations into aset of equations in solved form. The canonizer is used to determine whether a speci�cequality is entailed by a set of equations in solved form, as shown by the followingproposition.Proposition 2.2. If S is a set of �-equations in solved form, then T [S j= a = bi� canon(S(a)) � canon(S(b)).Proof. By Proposition 2.1, T [S j= a = b i� T j= S(a) = S(b). But T j= S(a) = S(b)i� canon(S(a)) � canon(S(b)) by the de�nition of canon. utAlgorithm S1 (shown in Fig. 2.1) makes use of the properties of a Shostak theory tocheck the joint satis�ability of an arbitrary set of equalities, �, and an arbitrary set ofdisequalities, �, in a Shostak theory with canonizer canon and solver solve. Since thesatis�ability of any quanti�er-free formula can be determined by �rst converting it todisjunctive normal form, it su�ces to have a satis�ability procedure for a conjunctionof literals. Since � contains no predicate symbols, all �-literals are either equalitiesor disequalities. Thus, Algorithm S1 is su�cient for deciding the satis�ability ofquanti�er-free �-formulas. Termination of the algorithm is trivial since each step

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 15S1(�; �; canon; solve)1. S := ;;2. WHILE � 6= ; DO BEGIN3. Remove some equality a = b from �;4. a� := S(a); b� := S(b);5. S� := solve(a� = b�);6. IF S� = ffalseg THEN RETURN FALSE;7. S := S�(S) [S�;8. END9. IF canon(S(a)) � canon(S(b)) for some a 6= b 2 � THEN RETURN FALSE;10. RETURN TRUE;Figure 2.1: Algorithm S1: based on a simple subset of Shostak's algorithmterminates and each time line 3 is executed the size of � is reduced. The followinglemmas are needed before proving correctness.Lemma 2.1. If T 0 is a theory, � and � are sets of formulas, and S is a set ofequations in solved form, then for any formula �, T 0 [� [� [S j= � i� T 0 [� [S(�) [S j= �.Proof. Follows trivially from the fact that �[S and S(�)[S are satis�ed by exactlythe same models and variable assignments. utLemma 2.2. If � is any set of formulas, then for any formula �, and �-terms a andb, T [� [fa = bg j= � i� T [� [solve(a = b) j= �.Proof.): Given that T [� [fa = bg j= �, suppose that M j=� T [� [solve(a = b). It iseasy to see from the de�nition of solve thatM j=� a = b and hence by the hypothesis,M j=� �.(: Given that T [�[solve(a = b) j= �, suppose that M j=� T [�[fa = bg. Then,since T j= (a = b) $ 9w: solve(a = b), there exists a modi�ed assignment �� whichassigns values to all the variables in w and satis�es solve(a = b) but is otherwiseequivalent to �. Then, by the hypothesis, M j=�� �. But the variables in w are freshvariables, so they do not appear in �, meaning that changing their values cannota�ect whether � is true. Thus, M j=� �. ut

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 16Lemma 2.3. If �, fa = bg, and S are sets of �-formulas, with S in solved form, andif S� = solve(S(a = b)) then if S� 6= ffalseg, then for every formula �, T [� [fa =bg [S j= � i� T [� [S� [S�(S) j= �.Proof.T [� [fa = bg [S j= � , T [� [fS(a = b)g [S j= � Lemma 2.1, T [� [S� [S j= � Lemma 2.2, T [� [S� [S�(S) j= � Lemma 2.1 utLemma 2.4. During the execution of Algorithm S1, S is always in solved form.Proof. Clearly, S is in solved form initially. Consider one iteration. By construction,a� and b� do not contain any of the solitary variables of S, and thus by the de�nition ofsolve, S� doesn't either. Furthermore, if S� = ffalseg then the algorithm terminatesat line 6. Thus, at line 7, S� must be in solved form. Applying S� to S guaranteesthat none of the solitary variables of S� appear in S, so the new value of S is also insolved form. utLemma 2.5. Let �n and Sn be the values of � and S after the while loop in AlgorithmS1 has been executed n times. Then for each n, and any formula �, the followinginvariant holds: T [�0 j= � i� T [�n [Sn j= �.Proof. The proof is by induction on n. For n = 0, the invariant holds trivially. Nowsuppose the invariant holds for some k � 0. Consider the next iteration.T [�0 j= � , T [�k [Sk j= � Induction Hypothesis, T [�k+1 [fa = bg [Sk j= � Line 3, T [�k+1 [S� [S�(Sk) j= � Lemmas 2.3 and 2.4, T [�k+1 [Sk+1 j= � Line 7 utNow we can show the correctness of Algorithm S1.Theorem 2.1. Suppose T is a Shostak theory with signature �, canonizer canon,and solver solve. If � is a set of �-equalities and � is a set of �-disequalities, thenT [� [� is satis�able i� S1(�;�; canon; solve) = TRUE.

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 17Proof. Suppose S1(�;�; canon; solve) = FALSE. If the algorithm terminates at line 9,then, canon(S(a)) � canon(S(b)) for some a 6= b 2 �. It follows from Proposition2.2 and Lemma 2.5 that T [� j= a = b, so clearly T [� [� is not satis�able. Theother possibility is that the algorithm terminates at line 6. Suppose the loop hasbeen executed n times and that �n and Sn are the values of � and S at the end ofthe last loop. It must be the case that T j= a� 6= b�, so T [fa� = b�g is unsatis�able.Clearly then, T [fa� = b�g [Sn is unsatis�able, so by Lemma 2.1, T [fa = bg [Snis unsatis�able. But fa = bg is a subset of �n, so T [�n [Sn must be unsatis�able,and thus by Lemma 2.5, T [� is unsatis�able.Suppose on the other hand that S1(�;�; canon; solve) = TRUE. Then the algorithmterminates at line 10. By Lemma 2.4, S is in solved form. Let � be the disjunction ofequalities equivalent to :(�). Since the algorithm does not terminate at line 9, T [Sdoes not entail any equality in �. Because T is convex, it follows that T [S 6j= �.Now, since T [S is satis�able by Corollary 2.1, it follows that T [S [� is satis�able.But by Lemma 2.5, T [� j= � i� T [S j= �, so in particular T [S j= �. ThusT [S [� [� is satis�able, and hence T [� [� is satis�able. ut2.1.3 An ExamplePerhaps the most obvious example of a Shostak theory is the theory of linear arith-metic with signature f0; S;+g (where S is the successor function) and domain thereal numbers. Terms in this theory can be more conveniently represented by us-ing some standard abbreviations: base 10 numerals instead of repeated applicationsof successor (i.e. 3 instead of S(S(S(0)))), multiplication by a constant instead ofrepeated applications of + (i.e. 3x instead of x + x + x). Division by a non-zeroconstant and the use of unary minus can also be included since equations involvingthese operations can always be converted into equivalent equations without them.A simple canonizer for this theory can be obtained by imposing an order onall variables (lexicographic or otherwise), and combining like terms. For example,canon(z+3y�x�5z) � �x+3y+(�4z). Similarly, a solver can be obtained simplyby solving for one of the variables in an equation.

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 18A well-known method for obtaining a solution to a system of equations in thistheory is simply to use Gaussian elimination and back-substitution. Interestingly,by using the solver and canonizer just described, Algorithm S1 actually implementsGaussian elimination with back-substitution.Consider the following system of equations:x + 3y � 2z = 1x� y � 6z = 1This system can be represented by a matrix and transformed to reduced row echelonform as follows.0@ 1 3 �21 �1 �6 ������ 11 1A) 0@ 1 3 �20 �4 �4 ������ 10 1A) 0@ 1 0 �50 1 1 ������ 10 1ACompare this with running Algorithm S1 on the same set of equations. The followingtable shows the values of �, S, S(a = b), and S� on each iteration of AlgorithmS1 starting with � = fx+ 3y � 2z = 1; x� y � 6z = 1g:� S S(a = b) S�x+ 3y � 2z = 1 ; x+ 3y � 2z = 1 x = 1� 3y + 2zx� y � 6z = 1x� y � 6z = 1 x = 1� 3y + 2z 1� 3y + 2z � y � 6z = 1 y = �z; x = 1 + 5zy = �zThe substitution for x in the second iteration corresponds to using x as a pivot variableto produce a zero in the second row of the matrix. Similarly, the last execution of line7 transforms x = 1 � 3y + 2z into x = 1 + 5z, corresponding to the transformationof the �rst row of the matrix due to back-substitution. Notice that the �nal solutionobtained by Algorithm S1 is the same as that obtained from the matrix in reducedrow echelon form.To make the example a little more interesting, suppose a third equation is added:

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 192x+ 8y � 2z = 3. Transforming the matrix yields:0BBB@ 1 3 �21 �1 �62 8 �2 ��������� 113 1CCCA) 0BBB@ 1 3 �20 �4 �40 2 2 ��������� 101 1CCCA) 0BBB@ 1 3 �20 1 10 0 0 ��������� 101 1CCCAAt this point, the last row indicates that the system of equations is unsatis�able.Suppose that the same new equation is processed by Algorithm S1. Note that ratherthan restarting the algorithm, the new equation can be placed in � and the algorithmcan continue from where it left o�. This illustrates a very nice property of the algo-rithm: it is incremental. If a new equation is added to � after some of the equationshave already been processed, the algorithm can continue without any di�culty. Theresult is as follows:� S S(a = b) S�2x+ 8y � 2z = 3 x = 1 + 5z 2(1 + 5z) + 8(�z)� 2z = 3 falsey = �zThe solver detects an inconsistency when it tries to solve the equation obtained afterapplying the substitution from S. The solver indicates this by returning ffalseg,which results in the algorithm returning FALSE.Finally, suppose that instead of the equation 2x + 8y � 2z = 3, the disequalityy + x 6= x� z is added. This is handled by line 9 of the algorithm:canon(S(y + x)) � canon(�z + 1 + 5z) � 1 + 4zcanon(S(x� z)) � canon(1 + 5z � z) � 1 + 4zSince y + x 6= x � z 2 � and canon(S(y + x)) � canon(S(x � z)), the algorithmreturns FALSE.There is no matrix analog to the case which includes the disequality. AlgorithmS1 may, in fact, properly be viewed as a generalization of Gaussian elimination. Notonly can it handle disequalities, but it can also introduce fresh variables or equationswhen solving. Also, the set of function symbols can be richer than those provided

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 20by a vector space. The key requirement is simply that an appropriate canonizer andsolver exist.2.1.4 Combining Shostak TheoriesIn [35], Shostak claims that two Shostak theories can always be combined to forma new Shostak theory. A canonizer for the combined theory is obtained simply bycomposing the canonizers from each individual theory. A solver for the combined the-ory is ostensibly obtained by repeatedly applying the solver for each theory (treatingterms in other theories as variables) until a true variable is on the left-hand side ofeach equation in the solved form. This does in fact work for many theories, providinga simple and e�cient method for combining Shostak theories. However, as pointedout in [27] and [34], the construction of the solver as described is not always possible.We do not address this issue here, but mention it as a question which warrants furtherinvestigation.2.2 The Nelson-Oppen Combination MethodNelson and Oppen [29, 30] described a method for combining decision procedures fortheories which are stably in�nite and have disjoint signatures. In this section, weassume T1 and T2 are two such theories with signatures �1 and �2 respectively (thegeneralization to more than two theories is straightforward). Furthermore, we letT = T1 [T2 and � = �1 [�2. The Nelson-Oppen procedure decides the satis�abilityin T of a set � of �-literals.2.2.1 Tinelli and Harandi's ApproachThere have been many detailed presentations of the Nelson-Oppen method. Tinelliand Harandi's approach is particularly appealing because it is rigorous and conceptu-ally simple [40]. Here we give a brief review of the method based on their approach.First, a few more de�nitions are required.

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 21Members of �i, for i = 1,2 are called i-symbols. In order to associate all termswith some theory, each variable is also arbitrarily associated with either T1 or T2. Avariable is called an i-variable if it is associated with Ti (note that an i-variable is notan i-symbol, as it is not a member of �i). A �-term t is an i-term if it is an i-variable,a constant i-symbol, or an application of a functional i-symbol. An i-predicate is anapplication of a predicate i-symbol. An atomic i-formula is an i-predicate or anequality whose left term is an i-term. An i-literal is an atomic i-formula or thenegation of an atomic i-formula. An occurrence of a j-term t in either a term or aliteral is i-alien if i 6= j and all super-terms (if any) of that occurrence of t are i-terms.An i-term or i-literal is pure if the only non-logical symbols it contains are i-symbolsand variables (i.e. only variables occur as i-alien sub-terms).Given an equivalence relation �, let dom� be the domain of the relation. Wede�ne the following sets of formulas induced by �:E� = fx = y j x; y 2 dom� and x � ygD� = fx 6= y j x; y 2 dom� and x 6� ygAr� = E� [D�.Let Ar be a set of equalities and disequalities. If Ar = Ar� for some equivalencerelation � with domain �, we call Ar an arrangement of �.The �rst step in determining the satis�ability of � is to transform � into anequisatis�able formula �1 ^ �2 where �i consists only of pure i-literals as follows.Let be some i-literal in � in which a non-variable j-term t occurs i-alien. Replaceall occurrences of t in with a fresh j-variable z and add the equation z = t to �.Repeat until every literal in � is pure. The literals can then easily be partitioned into�1 and �2. It is easy to see that � is satis�able if and only if �1 ^ �2 is satis�able.Now, let � be the set of all variables which appear in both �1 and �2. A simpleversion of the Nelson-Oppen procedure simply guesses an equivalence relation � on� nondeterministically, and then checks whether Ti [�i [Ar� is satis�able. Thecorrectness of the procedure is based on the following theorem from [40].Theorem 2.2. Let T1 and T2 be two stably in�nite, signature-disjoint theories andlet �i be a set of pure i-literals for i = 1; 2. Let � be the set of variables which appear

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 22in both �1 and �2. Then T1[T2[�1[�2 is satis�able i� there exists an arrangementAr of � such that Ti [�i [Ar is satis�able for i = 1; 2.2.2.2 A Variation of the Nelson-Oppen ProcedureThe �rst step in the version of the Nelson-Oppen procedure described above changesthe structure and number of literals in �. However, it is possible to give a version ofthe procedure which does not change the literals in � by instead treating occurrencesof alien terms as variables. This simpli�es the algorithm by eliminating the needfor the puri�cation step. But more importantly, this variation is required for thecombination of Shostak and Nelson-Oppen described next.First, we introduce a purifying operator which formalizes the notion of treatingoccurrences of alien terms as variables. Let v be a mapping from �-terms to variablessuch that for i = 1; 2, each i-term t is mapped to a fresh i-variable v(t). Then, forsome �-formula or �-term �, de�ne
i(�) to be the result of replacing all i-alienoccurrences of terms t by v(t). It is easy to see that as a result,
i(�) is i-pure. Since
i simply replaces terms with unique place-holders, it is injective. We will denote itsinverse by
�1i . We will also denote by
0(�) the result of replacing each maximalterm (i.e. terms without any super-terms) t in � by v(t). Thus, the only terms in
0(�) are variables.Our variation on the Nelson-Oppen procedure works as follows. Given a set ofliterals, �, �rst partition � into two sets �1 and �2, where �i is exactly the set ofi-literals in �. Let � be the set of all terms which occur i-alien (for some i) in someliteral in � or in some sub-term of some literal in �. � consists of exactly those termsthat would end up being replaced by variables in the original Nelson-Oppen method.� will also be referred to as the set of shared terms. As before, an equivalence relation� on � is guessed. If Ti[
i(�i [Ar�) is satis�able for each i, then T [� is satis�able,as shown by the following theorem.Theorem 2.3. Let T1 and T2 be two stably in�nite, signature-disjoint theories andlet � be a set of literals in the combined signature �. If �i is the set of all i-literals in� and � is the set of shared terms in �, then T1 [T2 [� is satis�able i� there exists

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 23an equivalence relation � on � such that for i = 1; 2, Ti [
i(�i [Ar�) is satis�able.Proof.): Suppose M j=� T [�. Let a � b i� (a; b 2 � and M j=� a = b). Then clearlyfor i = 1; 2, M j=� Ti [�i [Ar�. It is then easy to see that Ti [
i(�i [Ar�) issatis�able by choosing a variable assignment which assigns to each variable v(t) thecorresponding value of the term t which it replaces.(: Suppose that for each i, Ti [
i(�i [Ar�) is satis�able. Consider i = 1. Let�1 be the set of all equations v(t) = t, where t 2 � is a 1-term. Consider
1(�1).Since
1 never replaces 1-terms and each v(t) is a fresh variable, it follows that
1(�1)is in solved form, and its solitary variables are exactly the variables which are usedto replace 1-terms. Thus, by Corollary 2.1, T1 [
1(�1) is satis�able. Furthermore,since none of the solitary variables of
1(�1) appear in
1(�1 [Ar�), a satis�ableassignment for T1[
1(�1) can be constructed from the satisfying assignment for T1[
1(�1 [Ar�) (which exists by hypothesis) so that the resulting assignment satis�esT1[
1(�1 [Ar� [�1). Now, each term in
1(Ar�) which is not already a variable isthe right-hand side of some equation in
1(�1), so by repeatedly applying equationsfrom
1(�1) as substitutions,
1(Ar�) can be transformed into
0(Ar�), and thusT1 [
1(�1 [�1) [
0(Ar�) must also be satis�able. Applying the same argumentwith i=2, we conclude that T2 [
2(�2 [�2) [
0(Ar�) is satis�able. But for eachi,
i(�i [�i) is a set of i-literals. Furthermore,
0(Ar�) is an arrangement of thevariables shared by these two sets, so Theorem 2.2 can be applied to conclude thatT [� [�1 [�2, and thus T [�, is satis�able. ut2.2.3 A Deterministic Implementation for Convex TheoriesA deterministic version of our Nelson-Oppen variation for convex theories is shown inFig. 2.2. Algorithm N-O takes as input a set of literals � (partitioned into 1-literals�1 and 2-literals �2) and two decision procedures, Sat1 and Sat2 , where Sat i decidesthe satis�ability of literals in Ti. Formally, for any set of �i-literals �,

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 24N-O(�1; Sat1 ; �2 ; Sat2)1. done := FALSE;2. � := reflexive-only relation on the shared terms in �1 [�2;3. WHILE :done DO BEGIN4. done := TRUE;5. FOR i := 1,2 DO BEGIN6. IF :Sat i(�i [E�) THEN RETURN FALSE;7. IF :Sat i(�i [Ar�) THEN BEGIN8. Choose a 6= b 2 D� such that :Sat i(�i [E� [fa 6= bg);9 . � := symmetric-transitive closure of � [(a; b).10. done := FALSE;11. END12. END13. END14. RETURN TRUE;Figure 2.2: Algorithm N-O: an implementation of the Nelson-Oppen variation for twoconvex theories
Sat i(�) = TRUE i� Ti [
i(�) 6j= false:The algorithm seeks to discover an arrangement Ar� by successive re�nement of�. Initially, � is the re
exive-only relation on all shared terms. In each iteration, thesatis�ability of �i [Ar� is checked for each theory Ti. If both are satis�able, then �is satis�able and algorithm terminates. If the equalities in Ar� are su�cient to causethe unsatis�ability, then the algorithm terminates at line 6.If not, then it is possible to choose a single disequality of Ar� which, in the pres-ence of the equalities E� and the literals �i, is unsatis�able in Ti. This is becauseif the algorithm reaches line 8, then
i(�i [E� [D�) is not satis�able in Ti, but
i(�i [E�) is. It follows from convexity of Ti that there must be a disequality a 6= bin D� such that
i(�i [E� [fa 6= bg) is not satis�able in Ti. One simple implemen-tation of this step is as follows. Start with a set of literals consisting of �i [E�.Then, incrementally add disequalities from D� until the set becomes unsatis�able.The last disequality added has the desired property.It is easy to see that the algorithm terminates because each step terminates and

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 25the loop can only be executed a �nite number of times. To see why, notice that eachtime done is set to FALSE, two equivalence classes of � are merged together. Sincethe domain of � is �nite (the shared terms of �) and does not increase, equivalenceclasses can only be merged a �nite number of times.Lemma 2.6. Let �n be the value of � after line 9 in Algorithm N-O has been exe-cuted n times. Then for each n, if � is an equivalence on the shared terms of � suchthat for i = 1; 2, Ti [
i(�i [Ar�) is satis�able, then E�n � Ar�.Proof. The proof is by induction on n. For n = 0, E�n is empty, so the invariantholds trivially. Now assume it holds for k and consider the next execution of line 9.Suppose that � is an equivalence relation on the shared terms such that for i = 1; 2,Ti [
i(�i [Ar�) is satis�able. By the induction hypothesis, E�k � Ar�. By line 8,Ti [
i(�i [E�k [fa 6= bg) is not satis�able. Since either a = b or a 6= b must be inAr�, it must be the case that a = b 2 Ar�. It follows that E�k+1 � Ar�. utTheorem 2.4. Let T1 and T2 be two convex, stably in�nite, signature-disjoint the-ories and let � be a set of literals in the combined signature �. Furthermore, fori = 1; 2, let Sat i be a procedure for deciding satis�ability of conjunctions of literals inTi as de�ned above. If �i is the set of all i-literals in � and � is the set of sharedterms in �, then T1 [T2 [� is satis�able i� N-O(�1; Sat1 ;�2 ; Sat2) = TRUE.Proof. Suppose N-O(�1; Sat1 ;�2 ; Sat2) = FALSE. This can only happen if the algo-rithm terminates at line 6. Suppose there is an equivalence relation � on the sharedterms such that for i = 1; 2, Ti[
i(�i [Ar�) is satis�able. It follows from Lemma 2.6that E� � Ar�. But since the algorithm terminates at line 6, Ti [
i(�i [E�) mustbe unsatis�able. Thus no such equivalence relation � can exist. Thus, by Theorem2.3, T1 [T2 [� is unsatis�able.Suppose on the other hand that N-O(�1; Sat1 ;�2 ; Sat2) = TRUE. Then, it must bethe case that the if condition in line 7 is false for both i=1 and i=2 the last time thewhile loop is executed. This means that Ti [
i(�i [Ar�) is satis�able for i = 1; 2.Thus, by Theorem 2.3, T1 [T2 [� is satis�able. ut

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 262.3 Combining Nelson-Oppen and ShostakIn order to embed Shostak's algorithm in the more general Nelson-Oppen framework,we use the following result which relates convexity (a requirement for Shostak theo-ries) and stable in�niteness, (a requirement for applying the Nelson-Oppen method).Note that a trivial model is one whose domain contains only a single element.Theorem 2.5. A convex �rst-order theory with no trivial models is stably in�nite.Proof. Suppose U is a �rst-order theory which is not stably in�nite. Then there existssome quanti�er-free set of literals � which is satis�able in a �nite model of U , but notin an in�nite model of U . Let 9 x:� be the existential closure of �. Then 9 x:� is truein some �nite model, but not in any in�nite model, of U . It follows that U [f9 x:�gis a theory with no in�nite models. By �rst-order compactness, there must be some�nite cardinality n such that there is a model of U [f9 x: �g of cardinality n, butnone of cardinality larger than n. Clearly, U [� is satis�able in some model of sizen, but not in any models larger than n. It follows by the pigeonhole principle that ifyi; 0 � i � n are fresh variables, then U [� j= Wi 6=j yi = yj, but because U has notrivial models, U [� 6j= yi = yj for any i; j with i 6= j. Thus, U is not convex. utNow let T1; T2;�1;�2; T , and � be de�ned as in the previous section, with theadditional assumptions that T1 is a Shostak theory and that neither T1 nor T2 admitstrivial models (typically, theories of interest do not admit trivial models, or can beeasily modi�ed so that this is the case). The above theorem implies that both theoriesare also stably in�nite. As a result, they can be combined using the Nelson-Oppenmethod.One obvious way to combine the two theories is simply to use Algorithm N-O withAlgorithm S1 as the Sat1 parameter. Although this works, we next describe analgorithm which combines the two methods explicitly. Our purpose in doing this isto describe an algorithm which is still abstract enough that it can be understood andproved correct, but speci�c enough that it is not hard to see how to specialize it furtherto recover Shostak's original algorithm (this is described in Section 2.4.2, below). Thecombined algorithm not only sheds light on how Shostak's method can be seen as an

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 27e�cient re�nement of the Nelson-Oppen method, but also provides a starting pointfor achieving other e�cient re�nements. Indeed, the next chapter describes a detailedimplementation-level framework based on the combined algorithm.2.3.1 The Combined AlgorithmSuppose � is a set of �-literals. As in Section 2.2.2, divide � into �1 and �2 where�i contains exactly the i-literals of �. Let � be the set of shared terms. By Theorem2.3, T [�1 [�2 is satis�able i� there exists an equivalence relation � such that fori = 1; 2, Ti [
i(�i [Ar�) is satis�able.In order for the approach in Algorithm S1 to function in a multiple-theory en-vironment, it is necessary to generalize the de�nition of equations in solved form toaccommodate the notion of treating occurrences of alien terms as variables. A set S ofequations is said to be in i-solved form if
i(S) is in solved form. If S is a set of equa-tions in i-solved form and � is an expression or set of expressions in a mixed languageincluding �i, then we de�ne S(�) to be the result of replacing each i-alien occurrencein � of the left-hand sides of equations in S with the corresponding right-hand side.Formally, S(�) is rede�ned to be
�1i (
i(S)(
i(�))), i.e. the application of S to �should be equivalent to �rst replacing all i-alien occurrences of terms with variablesin both S and �, then doing the substitution, and then �nally restoring the i-alienterms to their places. We similarly need to extend the de�nitions of canon and solve.Let canon1(�) denote
�11 (canon(
1(�))) and solve1(�) denote
�11 (solve(
1(�))).Now, let � be the set of all equalities in �1 and � the set of disequalities in�1. Furthermore, as in Algorithm N-O, above, let Sat2 be a decision procedure forsatis�ability of literals in T2:Sat2 (�) = TRUE i� T2 [
2(�) 6j= false:Algorithm S2 combines Algorithms S1 and N-O . Essentially, lines 3 through 5 mimicthe Nelson-Oppen approach for T2, while the rest of the algorithm is identical to S1.Rather than being maintained explicitly as in AlgorithmN-O, the equivalence relation� on � is derived from S:

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 28S2(�; �; canon; solve; �2; Sat2)1. S := ;;2. WHILE � = ; OR :Sat2 (�2 [Ar�) DO BEGIN3. IF :Sat2 (�2 [Ar�) THEN BEGIN4. IF :Sat2 (�2 [E�) THEN RETURN FALSE;5. ELSE Choose a 6= b 2 D� such that :Sat2 (�2 [E� [fa 6= bg);6. END ELSE Remove some equality a = b from �;7. a� := S(a); b� := S(b);8. S� := solve1(a� = b�);9. IF S� = ffalseg THEN RETURN FALSE;10. S := S�(S) [S�;11. END12. IF a�b for some a 6= b 2 � THEN RETURN FALSE;13. RETURN TRUE;Figure 2.3: Algorithm S2: a generalization of Shostak's algorithm
a � b i� a; b 2 � ^ canon1(S(a)) � canon1(S(b))In each iteration of the while loop, an equation is processed and integrated with S.This equation is either the result of the current arrangement being inconsistent inT2 (lines 3 through 5) or simply an equation from � (line 6). As shown below, thede�nition of � ensures that S is consistent with Ar�. Similarly, equations are addedto S until Ar� is also consistent with �2. Thus, when the algorithm returns TRUE,both �1 and �2 are known to be consistent with the arrangement Ar�.Algorithm S2 terminates because each step terminates and in each iteration eitherthe size of � is reduced by one or two equivalence classes in � are merged. As before,the correctness proof requires a couple of preparatory lemmas.Lemma 2.7. Suppose S is a set of �-formulas in 1-solved form, � is a set of �-terms, and � is de�ned as above. If � is an equivalence relation on � such thatT1 [
1(Ar� [S) is satis�able, then E� � Ar�. In other words, every arrangementof � consistent with S must include E�.Proof. Consider an arbitrary equation a = b between terms in �. a = b 2 E� i�canon1(S(a)) � canon1(S(b)) i� (by Proposition 2.2) T1 [
1(S) j=
1(a = b). So

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 29
1(a = b) must be true in every model and assignment satisfying T1 [
1(S). Inparticular, if T1 [
1(Ar� [S) is satis�able, the corresponding model and assignmentmust also satisfy
1(a = b). Since either the equation a = b or the disequation a 6= bmust be in Ar�, it must be the case that a = b 2 Ar�. Thus, E� � Ar�. utLemma 2.8. Let �n and Sn be the values of � and S after the loop in AlgorithmS2 has been executed n times. Then for each n, the following invariant holds: T [�is satis�able i� there exists an equivalence relation � on � such that(1) T1 [
1(�n [� [Ar� [Sn) is satis�able, and(2) T2 [
2(�2 [Ar�) is satis�able.Proof. The proof is by induction on n. For the base case, notice that by Theorem2.3, T [� is satis�able i� there exists an equivalence relation � such that (1) and(2) hold with n = 0.Before doing the induction case, we �rst show that for some �xed equivalencerelation �, (1) and (2) hold when n = k i� (1) and (2) hold when n = k + 1. Noticethat (2) is independent of n, so it is only necessary to consider (1). There are twocases to consider.First, suppose that the condition of line 3 is true and line 5 is executed. We �rstshow that (1) holds when n = k i� the following holds:(3) T1 [
1(�k+1 [� [Ar� [fa = bg [Sk) is satis�able.Since line 6 is not executed, �k+1 = �k. The if direction is then trivial since theformula in (1) is a subset of the formula in (3). To show the only if direction, �rstnote that it follows from line 5 that T2[
2(�2 [E�) j=
2(a = b). But by Lemma 2.7,E� � Ar�, so it follows that T2[
2(�2 [Ar�) j=
2(a = b). Since either a = b 2 Ar�or a 6= b 2 Ar�, it must be the case that a = b 2 Ar� and thus (3) follows triviallyfrom (1). Now, by Lemma 2.3 (where � is false), if line 10 is reached, then (3) holdsi�(4) T1 [
1(�k+1 [� [Ar� [S�(Sk) [S�) is satis�able,

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 30where S� = solve1(S(a = b)). But Sk+1 = S�(Sk) [S�, so (4) is equivalent to (1)with n = k + 1.In the other case, line 6 is executed (so that �k+1 = �k � fa = bg). Thus, (1)holds with n = k i� T1 [
1(�k+1 [� [fa = bg [Ar� [Sk) is satis�able, which isequivalent to (3). As in the previous case, it then follows from Lemma 2.3 that (1)holds at k i� (1) holds at k + 1.Thus, given an equivalence relation, (1) and (2) hold at k + 1 exactly when theyhold at k. It follows easily that if an equivalence relation exists which satis�es (1)and (2) at k, then there exists an equivalence relation satisfying (1) and (2) at k + 1and vice-versa. Finally, the induction case assumes that T [� is satis�able i� thereexists an equivalence relation � such that (1) and (2) hold at k. It follows from theabove argument that T [� is satis�able i� there exists an equivalence relation �such that (1) and (2) hold at k + 1. utTheorem 2.6. Suppose that T1 is a Shostak theory with signature �1, canonizercanon, and solver solve, and that T2 is a convex theory with signature �2 disjointfrom �1 and satis�ability procedure Sat2 . Suppose also that neither T1 nor T2 admittrivial models, and let T = T1 [T2 and � = �1 [�2. Suppose � is a set of �-literals.Let � be the subset of � which consists of 1-equalities, � the subset of � which consistsof 1-disequalities, and �2 the remainder of the literals in �. T [� is satis�able i�S2(�;�; canon; solve;�2; Sat2) = TRUE.Proof. First note that by the same argument used in Lemma 2.4, S is always in1-solved form.Suppose S2(�;�; canon; solve;�2; Sat2) = FALSE. If the algorithm terminates atline 9 or 12, then the proof that � is unsatis�able is the same as that for AlgorithmS1 above. If it stops at line 4, then suppose there is an equivalence relation � satisfy-ing condition (1) of Lemma 2.8. It follows from Lemma 2.7 that E� � Ar�. But sincethe algorithm terminates at line 4, T2 [
2(�2 [Ar�) must be unsatis�able. Thuscondition (2) of Lemma 2.8 cannot hold. Thus, by Lemma 2.8, T [� is unsatis�able.Suppose on the other hand that S2(�;�; canon; solve;�2; Sat2) = TRUE. By thede�nition of � and Proposition 2.2, a = b 2 Ar� i� T1[
1(S) j=
1(a = b). It follows

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 31from the convexity of T1 and Corollary 2.1 that T1 [
1(S [Ar�) is satis�able. Itthen follows from the fact that S2 does not terminate at line 12 (as well as convexityagain) that T1 [
1(S [� [Ar�) is satis�able. This is condition (1) of Lemma 2.8.Condition (2) must hold because the while loop terminates. Thus, by Lemma 2.8,T [� is satis�able. ut2.3.2 An ExampleLet T1 be the theory of linear arithmetic described in Section 2.1.3 above. Let T2be the pure theory of equality with uninterpreted functions. Consider the followingformula from Shostak's original paper [35]:z = f(x� y) ^ x = z + y ^ �y 6= �(x� f(f(z))):For this example, if all variables are assumed to be 1-variables, we have the following:� = fz = f(x� y); x = z + yg� = f�y 6= �(x� f(f(z)))g�2 = ;� = fx� y; f(x� y); z; f(f(z))gRecall that a term is shared if it occurs i-alien in either a literal or a sub-term of aliteral in �. We will step through the execution of Algorithm S2 on this example.The table below shows the values of �, S, and the equivalence classes of � for eachiteration. On the �rst iteration, the test on line 3 fails, so line 6 is executed andz = f(x�y) is chosen, which is already in 1-solved form, so S becomes fz = f(x�y)g.As a result, the equivalence classes containing z and f(x � y) are merged, sincecanon1(S(z)) � canon1(S(f(x � y))) � f(x � y). On the next iteration, x = z + yis chosen. After applying S to the equation, we get x = f(x � y) + y, which isalready solved, so it is added to S. Now notice that canon1(S(x� y)) � canon(f(x�y) + y � y) � f(x � y), so x � y must be in the same equivalence class as f(x � y)and z. At this point, Ar� includes z = x � y; x � y = f(x � y), and z 6= f(f(z)).

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 32These three formulas are not satis�able in T2 since the �rst two imply the negationof the third. Thus z 6= f(f(z)) is chosen in line 5 and the algorithm continues.After executing line 8, S� = ff(x � y) = f(f(z))g, so as a result of executing line9, f(x � y) is replaced everywhere in S by f(f(z)). The loop exits since the whilecondition is no longer true. The �nal row of the table shows the �nal value of S.Now, observe that canon1(S(�(x� f(f(z))))) � canon1(�(f(f(z))+ y� f(f(z)))) ��y � canon1(S(�y)). Thus, since �y 6= �(x� f(f(z))) 2 �, the algorithm will haltat line 12 and report that the formula is unsatis�able.� S �z = f(x� y) ; ffx� yg; ff(x� y)g; fzg; ff(f(z))ggx = z + yx = z + y z = f(x� y) ffx� yg; ff(x� y); zg; ff(f(z))gg; z = f(x� y) ffx� y; f(x� y); zg; ff(f(z))ggx = f(x� y) + y; z = f(f(z)) ffx� y; f(x� y); z; f(f(z))ggx = f(f(z)) + yf(x� y) = f(f(z))2.4 Comparison with Shostak's Original MethodThere are two main ways in which this work di�ers from Shostak's original method,which is best represented by Ruess and Shankar in [34]. The �rst is in the set ofrequirements a theory must ful�ll. The second is in the level of abstraction at whichthe algorithm is presented.2.4.1 Requirements on the TheoryOf the four requirements given in our de�nition of a Shostak theory, the �rst two areclari�cations which are either assumed or not addressed in other work, and the lasttwo are similar to, but slightly less restrictive, than the requirements listed by others.The �rst requirement is simply that the theory contain no predicate symbols. This is

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 33a minor point which is included simply to be explicit about an assumption which isimplicit in other work. Shostak's method does not give any guidance on what to doif a theory includes predicate symbols. One possible approach is to encode predicatesas functions, but this only works if the resulting encoding admits a canonizer andsolver.The second requirement is that the theory be convex. This may seem overlyrestrictive since Shostak claims that non-convex theories can be handled [35]. Con-sider, however, the following simple non-convex theory with signature fa; bg: fa 6=b; 8 x: (x = a _ x = b)g. It is easy to see that this theory admits a (trivial) canonizerand a solver. However, for the unsatis�able set of formulas fx 6= y; y 6= z; x 6= zg,any version of Shostak's algorithm will fail to detect the inconsistency. Ruess andShankar avoid this di�culty by restricting their attention to the problem of whetherT [� j= a = b for some set of equalities �. However, the ability to solve this problemdoes not lead to a self-contained decision procedure unless the theory is convex.The third requirement on the theory is that a canonizer exist. Shostak gave severaladditional properties that must be satis�ed by the canonizer. These are not neededat the level of abstraction of our algorithms, though some e�cient implementationsmay require the additional properties.A similar situation arises with the requirements on the solver: only a subset of theoriginal requirements are needed. Note that although we require the set of equalitiesreturned by the solver to be equisatis�able with the input set in every model of T ,whereas Ruess and Shankar require only that it be equisatis�able with the input setin every �-model1, it is not di�cult to show that their requirements on the canonizerimply that every model of T must be a �-model.2.4.2 Level of AbstractionThough Algorithm S2 looks very di�erent from Shostak's original published algorithmas well as most other published versions, it is, in fact, closely related to them, di�eringprimarily in that it is more abstract. For example, an algorithm equivalent to that1In the notation of Ruess and Shankar, the canonizer is denoted by �, and a �-model M is onewhere M j= a = �(a) for any term a.

CHAPTER 2. COMBINING SATISFIABILITY PROCEDURES 34found in [34] can be obtained by making a number of re�nements. We do not describethese in detail, but we outline them brie
y below. We also describe some generalprinciples they exemplify which could be used in other re�nements.The most obvious re�nement is to replace T2 by the theory of equality with unin-terpreted function symbols. The data structure for S can be expanded to include allequations (not just the 1-equations), obviating the need to track �2 separately. Thecheck for satis�ability in T2 is replaced by a simple check for congruence closure overthe terms in S. The general principle here is that if S can be expanded to track theequalities in another theory, then equality information only needs to be maintainedin one place, which is more e�cient.Another re�nement is that a more sophisticated substitution can be applied atline 7 of Algorithm S2. The more sophisticated substitution considers each sub-termt, and if it is known to be equivalent to a term u already appearing in S, then allinstances of t are replaced with u. For terms in the Shostak theory, this is essentiallyaccomplished by applying the canonizer. For uninterpreted function terms, it is abit more subtle. For example, if x = y 2 S and f(x) appears in S, then if f(y) isencountered, it can be replaced by f(x). As a result, fewer total terms are generatedand thus fewer terms need to be considered when updating S or when performingcongruence closure. The general principle is that simpli�cations and substitutionswhich reduce the total number of terms can improve e�ciency. This is especiallyimportant in a natural generalization of Algorithm S2 to accommodate non-convextheories in which the search for an appropriate arrangement of the shared terms cantake time which is more than exponential in the number of shared terms [30].

Chapter 3A Framework for CombiningTheoriesIn this chapter, a concrete implementation framework is presented which allows satis-�ability procedures for disjoint theories to cooperate. The implementation is based onalgorithm N-O of the previous chapter but includes a number of additional features.First of all, it is an online algorithm, meaning that instead of checking satis�abilityof a set of formulas, the formulas are fed into the framework one at a time. Theframework tracks whether the set of formulas seen so far is satis�able, and only asmall amount of incremental work is needed to process each new formula. An onlinealgorithm is much more versatile and is especially useful in the context of our top-level validity checking algorithmwhich incrementally builds a set of formulas, checkingtheir satis�ability after each additional formula. Note that with an online algorithm,the set of shared terms may grow over time. The framework is designed to handlethis automatically.Another feature of the framework is its use of a union-�nd data structure toe�ciently maintain an equivalence relation on shared terms. The framework is struc-tured in such a way as to allow this same data structure to represent also the set ofequations in solved form which must be maintained for a Shostak theory. Using a sin-gle data structure keeps equality reasoning localized in one place avoiding redundantwork. 35

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 36Additionally, a simpli�cation phase has been added to the algorithm. Conceptu-ally, the simpli�er applies quick and easy rewrite rules which can reduce the numberof shared terms seen by the core algorithm. The simpli�er can also enforce certainsyntactical requirements on the terms which appear in the framework. For example,if a theory has a canonizer (as Shostak theories do), it can be applied during thesimpli�cation phase, ensuring that only the canonical form of each term appears.This makes it unnecessary to deduce and propagate equalities between terms withthe same canonical form.Finally, a
exible interface is provided for decision procedures for individual the-ories. This interface allows an individual theory to use the code and data structuresprovided by the framework (rather than having to provide its own) whenever possible.At the end of this chapter, we give several examples of how this interface can be used.3.1 An Overview of the FrameworkSuppose that T1; : : : ; TN are N �rst-order theories, with signatures �1; : : : ;�N . LetT = STi and � = S�i. We assume that the intersection of any two signatures isempty and that each theory is stably in�nite. The goal is to provide a framework for asatis�ability procedure which determines the satis�ability in T of a set of formulas inthe language of �. This is done by maintaining an implicit set of formulas � (initiallyempty) which we call the fact database and reporting if that database ever becomesinconsistent.As shown in Figure 3.1, the framework is intended for use within a context whichincludes three parts: user code, framework code, and theory-speci�c code. The usercode is the code which calls the framework. It could be a simple user-interface to theframework, or it could be an algorithm built on top of the framework (such as thetop-level algorithm of CVC described in chapter 1).

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 37

Theory-Specific Code

Framework Code

User Code

Figure 3.1: The Framework Context3.1.1 The Interface to the User CodeThe primary interface between the user code and the framework code is the procedureAddFact. The user calls AddFact in order to add a new formula to the fact database�. Another piece of the framework which is exported to the user is the Simplifyprocedure. If Simplify is called with argument e, the result is an expression whichis equivalent to (and hopefully simpler than) e modulo T [�. Finally, at any time,the user can also call Satisfiable which returns TRUE i� the current fact databaseis consistent.At this point, we should point out that the interface just described is slightly dif-ferent from the one required by the top-level algorithm described in Section 1.3. Theonly di�erence is that the top-level algorithm of �gures 1.2 and 1.3 passes an additionalargument to each of the procedures AddFact, Simplify, and Satisfiable. This ad-ditional argument corresponds to the fact database which the framework maintainsimplicitly. In order to make the interface compatible, it is necessary for the frameworkto provide two additional procedures: Save and Restore. Save returns the currentstate of the framework, and Restore restores the state of the framework from a pre-viously saved state. Figure 3.2 shows the modi�ed top level algorithm correspondingto the interface described in this chapter.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 38CheckValid(h,c)IF c � true THEN RETURN TRUE;Restore(h);IF :Satisfiable() THEN RETURN TRUE;IF c � false THEN RETURN FALSE;subgoals := ApplyTactic(h; c);FOREACH (h; c) 2 subgoals DOIF :CheckValid(h; c) THEN RETURN FALSE;RETURN TRUE;ApplyTactic(h; c)Restore(h);Let � be an atomic formula appearing in c;AddFact(�);c1 := Simplify(c);h1 := Save();Restore(h);AddFact(:�);c2 := Simplify(c);h2 := Save();RETURN f(h1; c1); (h2; c2)g;Figure 3.2: Modi�ed Top-level Validity Checking AlgorithmIn a practical implementation, saving and restoring the entire fact database isimpractical. Fortunately, the same functionality can be implemented using a stack asdiscussed by Jones [25]. Though this can be challenging to implement correctly, thebasic concept is straightforward, so we will not address the implementation of Saveand Restore here.3.1.2 The Interface to the Theory-Speci�c CodeThe interface between the framework code and the theory-speci�c code consists ofseveral procedures which are parameterized by theory, meaning that there is an in-stance of each of them for each theory. We indicate which theory's instance shouldbe called by subscripting the call with a theory index. Thus, if f is a theory-speci�cprocedure, fi denotes the instance of f associated with theory Ti.There are seven theory-speci�c procedures which can be called by the framework.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 39They are: TheoryAddSharedTerm, TheoryAssert, TheoryCheckSat, TheoryRewrite,TheorySetup, TheorySolve, and TheoryUpdate. These will be described in detailbelow.3.1.3 A Comparison With Algorithm N-OAs mentioned, the framework is loosely based on Algorithm N-O. To see the con-nection, compare Algorithm N-O to the main procedure of the framework, AddFact,shown below.AddFact(e)Q := feg;REPEATWHILE Q 6= ; AND :I DO BEGINChoose e� 2 Q;Q := Q� fe�g;Assert(e�);ENDFOR i := 1 TO N DOIF Q = ; AND :I THEN TheoryCheckSati();UNTIL Q = ; OR I;One main di�erence is that AddFact is online. Formulas are passed to AddFactone at a time. Assert is then responsible for assigning each new formula to oneof the theories. Assert is also responsible for maintaining an equivalence relation� on the terms shared among the sets �i. The equivalent of lines 6 through 11 ofalgorithmN-O are handled by the theory-speci�c procedure TheoryCheckSati, whichis required to check the satis�ability of �i in the arrangement of the shared termsinduced by �.AddFact is described in more detail in Section 3.3 below. But before describingthe framework in detail, we describe the data structures used by the framework.3.2 Data structuresThe most basic data structure in the framework is that used for representing logicalexpressions.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 403.2.1 ExpressionsAs de�ned earlier, an expression is either a term or a formula. A (quanti�er-free)expression is a leaf if it is a variable or constant. Otherwise, it can be viewed asa compound expression: an operator (a function, predicate, or Boolean connective)applied to one or more children (the operands of the operator). For a compoundexpression e, Op(e) refers to the operator of e, Arity(e) to the arity of the operator,and e[i] to the ith child of e, where e[1] is the �rst child, and the children are numberedfrom left to right.For example, suppose e � f(x), then Op(e) � f and e[1] � x. On the other hand,if e � (t = f(f(z))), then Op(e) � `=', while e[1] � t and e[2] � f(f(z)).We assume that expressions are represented using a labeled directed acyclic graph(DAG) data structure as follows. If an expression e is a compound expression, thenits DAG node is labeled with Op(e), and for each child of e, there is an edge fromthe node for e to a node representing the child. We assume maximal subexpressionsharing so that any two expressions which are syntactically identical are uniquelyrepresented by a single DAG node. We will refer to expressions and their associatedDAG nodes interchangeably.We will continue to use the concepts and notation introduced in Section 2.2.1.Recall that an expression which is either a term or literal in the language of � is ani-expression if it is a variable associated with Ti, its operator is a symbol in �i, or itis an equality or disequality and its left-hand side is an i-term. We use the notationT (e) to refer to the theory associated with an expression. Thus, if e is an i-expression,T (e) � i. A j-term t occurs as an i-leaf in an expression e if every super-term of thatoccurrence (not including t) is an i-term and t is a variable or i 6= j. Note that aterm t occurs as an i-alien of an expression e i� t is not an i-variable and occurs asan i-leaf of e. We say that a term t is an i-leaf if it occurs as an i-leaf in itself (i.e. itis a variable or a j-term, where i 6= j).

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 413.2.2 Expression AttributesIt is convenient to be able to annotate expressions with additional information. Forthis purpose, we de�ne expression attributes. An expression attribute a is a mappingfrom the set of expressions to a set of designated values for that attribute. Imple-menting attributes is fairly straightforward. Thus, we simply assume that such amechanism exists and use the notation e:a to refer to the value of attribute a associ-ated with the expression e. Two expression attributes are used by the framework.The �nd attribute (which we will also refer to as the �nd pointer) is used to im-plement a standard union/�nd data structure for maintaining an equivalence relationon terms. The co-domain for the �nd attribute is the set of terms plus a distinguishedinitial value, ?. The �nd attribute of non-terms is always ?. Terms also start withtheir �nd attributes set to ?, but when a term t is �rst used in an assertion by theframework, t:�nd is set to t, indicating that the term is in an equivalence class by itselfand is its own equivalence class representative. If two equivalence classes need to bemerged, this is done by setting the �nd pointer of one equivalence class representativeto point to the representative of the other class. At any time, the equivalence classrepresentative of a term can be found by following a chain of �nd pointers until aterm is reached that points to itself.We de�ne several abstract notions based on the �nd attribute: hf (short for \has�nd") is a predicate on expressions de�ned as hf(e) i� e:�nd 6�? (we also say that ehas a �nd pointer when hf(e) holds). We de�ne the set HF as fejhf(e)g. �nd� is apartial function de�ned only on expressions in HF, such that �nd�(e) is the equivalenceclass representative of e. Finally, the �nd attribute induces a relation on expressionswhich we will denote by �: a � b if and only if hf(a) ^ hf(b) ^ �nd�(a) � �nd�(b).This relation is an equivalence relation on the expressions in HF. As de�ned here,the relation � is analogous to the relation � described in algorithm N-O. The onlydi�erence is that the domain of � includes all terms, not just shared terms.The notify attribute (which we will also refer to as the notify list) is used toimplement a generic call-back mechanism which is activated when equivalence classesare merged. The co-domain for the notify attribute is a set of pairs. The �rst elementin each pair is a theory index i. The second is a piece of data speci�c to theory Ti.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 42When two equivalence classes are merged, the notify list of the representative whose�nd pointer changes is processed. For each (i; d) in the notify list, a call is made toa theory-speci�c procedure TheoryUpdatei with d as a parameter. Notify lists area convenient mechanism which can be used to help implement a variety of decisionprocedures. Initially, the notify list of each expression is ;.3.2.3 Global VariablesTwo global variables are used by the framework: the assertion queue Q and theinconsistent
ag I. Q is a set of formulas which are waiting to be passed to Assert.I is a Boolean variable which indicates whether the current fact database has becomeinconsistent. It is initially FALSE.3.3 The FrameworkFigure 3.3 shows a diagram of the framework. As mentioned, the primary interfacefrom the user code is AddFact. The user code can also call Satisfiable, whichsimply returns whether I is still FALSE. The user code can also call Simplify whichis the simpli�er mentioned earlier. The simpli�er is also called as the �rst step ofprocessing new formulas in Assert.Of the seven theory-speci�c procedures, only TheoryCheckSat, TheoryAssert,and TheoryAddSharedTerm are essential. As mentioned above, TheoryCheckSatiis responsible for checking the satis�ability of the literals assigned to Ti (providedby TheoryAssert) together with the arrangement of shared terms (provided byTheoryAddSharedTermi) induced by �. The other theory-speci�c procedures areprovided for convenience, and we will see examples of how they can be used below.We now proceed to explain the framework in detail. We will begin with theframework code and then move on to the theory-speci�c code.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 43

AddFact

SetupTerm Rewrite

Simplify

Assert
Formula

Assert
Equalities

Add
Shared
Term

Check
Sat

Theory-Specific Code

Satisfiable

User Code

Assert

RewriteAssertSetup Solve Update

Figure 3.3: The Framework: arrows indicate caller-callee relationships

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 44
AddFact(e)Q := feg;REPEATWHILE Q 6= ; AND :I DO BEGINChoose e� 2 Q;Q := Q� fe�g;Assert(e�);ENDFOR i := 1 TO N DOIF Q = ; AND :I THEN TheoryCheckSati();UNTIL Q = ; OR I;Assert(e)e� := Simplify(e);IF Op(e�) = `=' THEN AssertEqualities(TheorySolve(e�));ELSE IF e� � false THEN I := TRUE;ELSE IF e� 6� true THEN AssertFormula(e�);AssertEqualities(E)IF false 2 E THEN I := TRUE;ELSE BEGINFOREACH e 2 E DO AssertFormula(e);FOREACH e 2 E DO e[1]:�nd := e[2];FOREACH e 2 E DO FOREACH (i; d) 2 e[1]:notify DO TheoryUpdatei(e,d);ENDAssertFormula(e)FOREACH maximal sub-term t of e DO SetupTerm(t,T (e));TheoryAssertT (e)(e);SetupTerm(t,i)IF T (t) 6= i THEN BEGINTheoryAddSharedTermT (t)(t);TheoryAddSharedTermi(t);ENDIF HasFind(t) THEN RETURN;FOREACH child c of t DO SetupTerm(c,T (t));t:�nd := t;TheorySetupT (t)(t); Figure 3.4: Basic Framework

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 45
Simplify(e)IF HasFind(e) THEN RETURN Find(e);Replace each child c of e with Simplify(c);RETURN Rewrite(e);Rewrite(e)IF HasFind(e) THEN RETURN Find(e);e� := OpRewrite(e);IF e 6� e� THEN e� := Rewrite(e�);RETURN e�;OpRewrite(e)IF Op(e) = ':' THEN RETURN RewriteNegation(e);IF Op(e) = `=' AND e[1] � e[2] THEN RETURN true;RETURN TheoryRewriteT (e)(e);RewriteNegation(e)IF e[1] � true THEN RETURN false;IF e[1] � false THEN RETURN true;IF Op(e[1]) � ':' THEN RETURN e[1][1];RETURN e;HasFind(e)RETURN e:�nd 6�?;Find(t)IF t:�nd � t THEN RETURN t;ELSE RETURN Find(t:�nd);Satisfiable()RETURN :I; Figure 3.5: Basic Framework, continued

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 463.3.1 The Framework CodeFigures 3.4 and 3.5 show pseudocode for the basic framework. We will brie
y explaineach procedure.AddFactFormulas are incrementally processed from the assertion queue Q. Initially,Q is set tocontain only the new formula passed as a parameter to AddFact. Formulas are takenone by one from Q and passed to Assert which adds the formula to the fact database�. As in the previous chapter, the fact database � is composed of sets of formulas�i, each of which is associated with a single theory Ti (the formal de�nition of �and �i in the context of the framework is given in the description of AssertFormulabelow). Before Assert returns, new formulas to process may be added to Q, or aninconsistency may be detected, in which case I is set to TRUE.After all the formulas in the assertion queue Q have been processed, each theory isqueried by calling TheoryCheckSat, a theory-speci�c procedure which checks if the setof formulas allocated to that theory are consistent. As with Assert, TheoryCheckSatmay add new formulas to Q or set I to FALSE. AddFact loops until there are no newformulas to process or an inconsistency is detected.AssertAssert basically preprocesses formulas which are to be added to the fact database.It �rst calls Simplify which returns a simpli�ed formula which is equivalent modulothe current fact database. Then, if the formula e provided to Assert is an equation, itcalls TheorySolve (which must return an equisatis�able set of equations) and passesthe result to AssertEqualities. If e is a constant formula, it is handled directly: iffalse, I is set to TRUE indicating that the fact database has become inconsistent; iftrue, nothing needs to be done. Finally, if e is neither an equation nor a constantformula, it is passed to AssertFormula.The framework as shown in Figures 3.4 and 3.5 assumes that arguments of Assertare always literals. This assumption will be true as long as only literals are passed to

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 47AddFact by the user code and only literals are added to Q by the theory-speci�c code.For additional
exibility, an extension to the framework which handles non-literals isdiscussed below in Section 3.5.1.AssertEqualitiesTheorySolve may return ffalseg if it determines that the formula passed to it isinconsistent. Thus, AssertEqualities �rst checks for this case and sets I to TRUE ifit occurs. Otherwise, E is a set of equations. Each equation is sent to AssertFormula.Then, the �nd attribute of each left-hand side is set to its corresponding right-handside. This ensures that e[1] � e[2] for each e 2 E . Finally, the notify list of eachleft-hand side is traversed, and an appropriate call to TheoryUpdate is made for eachentry on the list. We will see how this mechanism is used in Section 3.4.3 below.AssertFormulaAssertFormula is called to o�cially add a formula to the fact database �. It �rstpasses the maximal sub-terms of its argument on to SetupTerm, which then traversesthem recursively. This ensures that SetupTerm has been called on every term in�, which enables the theory-speci�c code to maintain a number of invariants. Theformula is then sent on to TheoryAssert. This is the point at which the formula�nally is considered a part of the fact database. Formally, then, the set �i is de�nedto be the set of all formulas which have appeared as an argument to TheoryAsserti.The fact database � is de�ned to be the union of all the sets �i. As we show formallyin the appendix, the set of formulas passed to AddFact is satis�able if and only if theset � is satis�able if and only if I is FALSE.SetupTermAs just mentioned, SetupTerm is called on each term that appears in a formula sentto AssertFormula. It does several things. First of all, it identi�es terms whose par-ent expressions are associated with a di�erent theory: these are the shared terms.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 48Whenever this happens, both theories are noti�ed of the shared term. After recur-sively traversing the term, TheorySetup is called which ensures that theory-speci�ccode has a chance to process each term before it becomes part of the fact database.Finally, the �nd pointer of the term is set to point to itself. Thus, the term is addedto the domain of � and is initially in an equivalence class by itself.SimplifyAs mentioned above, Simplify is intended to perform quick and easy rewrites whichcan simplify an expression. Simplify traverses an expression recursively, performingrewrites at each node and rebuilding the expression from the bottom up. The mainrewrite applied (and the base case for the recursion) is to replace terms that havea �nd pointer with their equivalence class representatives. Expressions without �ndpointers are rewritten via a call to Rewrite.Rewrite, OpRewrite, RewriteNegationRewrite repeatedly calls an operator-speci�c rewrite function until the expressiondoesn't change (or an expression is obtained which has a �nd pointer in which casethe equivalence class representative is returned). Thus it is important that repeatedapplication of operator-speci�c rewrites eventually leave an expression unchanged.The operator-speci�c rewrites are handled by OpRewrite. Simple rewrites for equal-ity and negation are included. Theory-speci�c operators are handled by a call toTheoryRewrite.HasFind and FindHasFind and Find are simple implementations of the hf and �nd� functions describedearlier. Although not shown in the code (for the sake of simplicity), a useful opti-mization to Find is path compression in which each expression's �nd pointer is set tothe result of the recursive call before returning the result.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 49Satis�ableAfter each call to AddFact, the fact database is consistent unless I has been set toTRUE. Thus, this function simply returns whether I is FALSE.3.3.2 Theory-Speci�c CodeIn general, whenever a theory-speci�c procedure is called, the theory-speci�c codecan do whatever it wants as long as it does not alter the framework data structuresdirectly. The theory-speci�c code may use the global variables I and Q to communi-cate with the framework as follows. If at any time the theory-speci�c code determinesthat there is an inconsistency in the fact database, it may set I to TRUE. Addition-ally, if the theory-speci�c code ever needs to add a new fact to the fact database, thefact can simply be added to Q. It will then eventually be processed by the loop inAddFact. We now describe each of the theory-speci�c procedures.TheoryAddSharedTermTheoryAddSharedTermi noti�es a theory about a shared term which it needs to con-sider when checking satis�ability. Formally, TheoryAddSharedTermi adds its argu-ment to a set �i. The arrangement of �i induced by � is part of the set of formulaschecked for satis�ability by TheoryCheckSati.TheoryAssertThe purpose of TheoryAsserti is to notify theory Ti about a new formula for which itis responsible. Conceptually, TheoryAsserti adds its argument, an atomic i-formulato the set of formulas �i maintained by theory Ti. This set of formulas is part of theset that is checked for satis�ability in TheoryCheckSati.TheoryCheckSatTheoryCheckSati must guarantee that three conditions hold after it is called. If �iis the set of all formulas which have been arguments of TheoryAsserti, �i is the

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 50set of all terms which have been arguments of TheoryAddSharedTermi, and �i isthe equivalence relation on �i induced by the �nd attribute (equivalently, �i is theequivalence relation � de�ned above with its domain restricted to �i), then1. If Ti [
i(�i [E�i) is unsatis�able, then I is TRUE (this corresponds to line 6 ofalgorithm N-O).2. If Ti [
i(�i [Ar�i) is unsatis�able, but Ti [
i(�i [E�i) is satis�able, thena new formula a = b has been added to Q, where a 6= b 2 D�i and Ti [
i(�i [E�i [fa 6= bg) is not satis�able. This corresponds to line 8 of algorithmN-O and is always possible as long as Ti is convex. We will discuss the non-convex case in Section 3.5.1 below.3. Finally, if Ti [
i(�i [Ar�i) is satis�able, then I and Q are unchanged (corre-sponding to the case when the condition in line 7 of algorithm N-O is false).TheoryRewriteTheoryRewritei takes as input an i-expression, and returns an expression which isequivalent modulo Ti [�i. For a Shostak theory Ti, TheoryRewritei can be used toimplement the canonizer. TheoryRewritei can often be used to improve performance.One way in which this can be done is by having TheoryRewritei replace new termsby equivalent terms that have already been seen when possible, reducing the need todeduce and propagate equalities between terms that are trivially equivalent.TheorySetupThe framework guarantees that TheorySetupT (e) is called on a term t before it ap-pears in a formula sent to the theory-speci�c code (via TheoryAssert). Typically,TheorySetupi takes advantage of this fact by adding appropriate call-backs to thenotify list of such terms. Then, whenever a term appears as the left-hand side ofan equation, the theory-speci�c code for the theory associated with the term will benoti�ed. An example of how this mechanism is used is given in Section 3.4.3.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 51TheorySolveUnlike other theory-speci�c procedures, TheorySolve is not parameterized by theory.Thus, at most one theory can provide an instance of TheorySolve. The intended usemodel is that if one of the theories is a Shostak theory, it provides the implementationof TheorySolve (see Section 3.4.3 below). Otherwise, TheorySolve does nothing.TheoryUpdateTheoryUpdatei is called by AssertEqualities for each entry in the notify list of theleft-hand side of each equation. Typically, these entries are added by TheorySetup.Again, an example of this can be seen in Section 3.4.3.3.3.3 Correctness of the FrameworkAs has been mentioned, the framework is essentially an implementation of algorithmN-O with a number of features to enhance performance and
exibility. Not surpris-ingly, then, the correctness of the framework is based on reasoning similar to thatused for Theorem 2.4. In particular, if TheoryCheckSat ful�lls the requirementslisted above, then when AddFact terminates, either I is TRUE, indicating that thefact database is inconsistent, or the fact database is satis�able.This informal explanation gives some intuition as to why the framework is cor-rect. However, part of the motivation of this work was to provide a formally veri�edframework. The appendix gives a detailed proof of correctness. It also lists formalpreconditions and postconditions for each framework and theory-speci�c procedure.The proof guarantees that as long as theory-speci�c code respects these conditions,the result will be correct.3.4 Using the FrameworkIn this section we will show how to use the framework to implement decision proce-dures for speci�c kinds and combinations of theories.

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 52TheoryAddSharedTermi(e)�i := �i [feg;TheoryAsserti(e)�i := �i [feg;TheoryCheckSati()RETURN;TheoryRewritei(e)RETURN e;TheorySetupi(e)RETURN;TheorySolve(e)RETURN feg;TheoryUpdatei(e,d)RETURN;Figure 3.6: Default implementation of theory-speci�c code for theory Ti3.4.1 Default ImplementationFigure 3.6 presents a \default" implementation for the theory-speci�c code. Often, atheory only requires the functionality of a few of the theory-speci�c procedures. If nocode for a particular theory-speci�c procedure is given, it should be assumed that theimplementation of the other procedures is just the default implementation. Basically,the default procedures just do the bare minimum to keep the program
owing withoutlosing information.3.4.2 Nelson-Oppen TheoriesIn Section 2.2.3, we showed how the Nelson-Oppen method can be applied to combinetheories which provide decision procedures for conjunctions of literals. Such theoriescan easily be integrated into the framework if, as in Section 2.2.3, we assume that atheory Ti provides a satis�ability procedure Sat i satisfying the following speci�cation

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 53TheoryCheckSati()IF :Sat i(�i [E�i) THEN I := TRUE;ELSE IF :Sat i (�i [Ar�i) THEN BEGINChoose a 6= b 2 D�i such that :Sat i(�i [E�i [fa 6= bg);Q := Q [fa = bg;END Figure 3.7: Theory-speci�c code for a Nelson-Oppen theory Tifor an arbitrary set of �-literals �:Sat i(�) = TRUE i� Ti [
i(�) 6j= false:Figure 3.7 shows the theory-speci�c code needed to integrate such a theory Ti intothe framework. As might be expected, the implementation of TheoryCheckSati isvery similar to lines 6 through 11 of algorithm N-O and basically does exactly whatis needed to guarantee that the three conditions mentioned in the description ofTheoryCheckSati are satis�ed. Note that as in algorithm N-O, this implementationrequires the theory to be convex. A more general implementation for non-convextheories is described in Section 3.5.1 below. The additional functionality of the othertheory-speci�c procedures is not required. A formal justi�cation of the correctness ofthis implementation is contained in the appendix.3.4.3 Shostak TheoriesFigure 3.8 shows the theory-speci�c code needed to implement a Shostak theory Tiwith canonizer canon and solver solve. This implementation, while relying on thesame correctness arguments as Algorithm S2 from Section 2.3.1, is closer in spiritto Shostak's original algorithm [35, 10]. As a result, some additional requirements(essentially the same ones required by Shostak) on canon and solve are requiredbeyond those listed in 2.1.1. canon is a computable function from �i-terms to �i-terms, such that(a) Ti j= a = b i� canon(a) � canon(b)

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 54
TheoryCheckSati()FOREACH e in �i DOIF Op(e) = ':' AND Find(e[1][1]) � Find(e[1][2]) THEN BEGINI := TRUE;RETURN;ENDTheoryRewritei(e)IF e is not a term THEN RETURN e;e� := RewriteHelper(e);RETURN canoni(e�);TheorySolve(e)RETURN
�1i (solve (
i(e)));TheorySetupi(e)IF e is a compound i-term THENFOREACH c which occurs as an i-leaf in e DOc:notify := c:notify [f(i; e)g;TheoryUpdatei(e,d)IF :I AND Find(d) � d THEN BEGINd� := TheoryRewritei(d);AssertEqualities(fd = d�g);ENDRewriteHelper(e)IF e is an i-leaf THEN BEGINIF :HasFind(e) OR e:�nd � e THEN RETURN e;ELSE RETURN RewriteHelper(Find(e));END ELSE BEGINReplace each child c of e with RewriteHelper(c);RETURN e;END Figure 3.8: Code for Implementing a Shostak theory Ti

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 55(b) canon(canon(t)) � canon(t) for all terms t.(c) canon(t) contains only variables occurring in t.(d) canon(t) � t if t is a variable.(e) If canon(t) is a compound term, then canon(c) � c for each child c ofcanon(t).2. solve is a computable function from �i-equations to sets of �i-formulas de�nedas follows:(a) If Ti j= x 6= y then solve(x = y) � ffalseg.(b) If Ti j= x = y then solve(x = y) � ;.(c) Otherwise, solve(x = y) returns a set of equations E in solved form suchthat T j= [(a = b)$ 9w: E], where w is the set of variables which appearin E but not in a or b. Each of these variables must be fresh. We alsorequire that for each s = t 2 E , canon(t) � t.As in Section 2.3.1, we must use a slightly modi�ed version of canon and solvein a multi-theory environment. Thus, let canoni(�) denote
�1i (canon(
i(�))) andsolvei(�) denote
�1i (solve(
i(�))). We further de�ne the Shostak database to be aset S of equations in i-solved form as follows. Initially S is empty. Then, everytime AssertEqualities(E) is called from Assert, S is updated to be E(S) [E .This requires that E is in solved form and S(E) = E whenever AssertEqualitiesis called from Assert. Fortunately, these conditions are guaranteed by the call toTheorySolve which precedes the call to AssertEqualities (see the appendix fordetails).The correctness of the implementation in Figure 3.8 relies on the use of a clevertechnique used by Shostak's original algorithm. Speci�cally, the following invariantis maintained for all terms t 2 HF:Find(t) � canoni(S(t))

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 56Given this invariant, the implementation of TheoryCheckSat simply needs to checkwhether there is any disequality a 6= b in �i where Find(a) � Find(b). To see why,�rst consider the following proposition.Proposition 3.1. Suppose S is a set of equations in i-solved form. If for every termt 2 HF, Find(t) � canoni(S(t)), then for arbitrary terms s,t 2 HF, s � t if and onlyif Ti [
i(S) j=
i(s = t).Proof.s � t , Find(s) � Find(t) def. of �, canoni(S(s)) � canoni(S(t)) hypothesis,
�1i (canon(
i(S(s)))) �
�1i (canon(
i(S(t)))) def. of canoni, canon(
i(S(s))) � canon(
i(S(t))) def. of
�1i, Ti j=
i(S(s)) =
i(S(t)) def. of canon, Ti j= [
i(S)](
i(s = t)) def. of i-solved form, Ti [
i(S) j=
i(s = t) Prop. 2.1 utNow, consider a call to the theory-speci�c procedure TheoryCheckSati. It mustdetermine whether Ti [
i(�i [Ar�i) is satis�able. Consider an equation s = t 2�i[Ar�i . The framework guarantees that any such equation must have the propertythat s � t (this is by de�nition when s = t 2 Ar�i; for the case when s = t 2 �i,see the justi�cation of property S3 in the appendix). Thus, by the above proposition,Ti [
i(S) j=
i(s = t). Now consider a disequation s 6= t 2 �i [Ar�i . After thecompletion of TheoryCheckSati, if I has not been set, we know that s 6� t, and thusTi [
i(S) 6j=
i(s = t). It follows by convexity that since Ti [
i(S) is satis�able(by Corollary 2.1), Ti [
i(�i [Ar�i) must also be satis�able. More details on thiscorrectness argument can be found in the appendix.As just shown, the correctness of TheoryCheckSat relies on the fact that foreach term t 2 HF, Find(t) � canoni(S(t)). In order to maintain this invariant, theTheoryUpdate mechanism is used as follows: when an equation a = b is processedby AssertEqualities, a = b gets added to S. This means that a is now a solitaryvariable of S and any term t in which a occurs as an i-leaf has a new value for

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 57canoni(S(t)). These terms are updated while traversing the notify list of a. Toensure that this happens, TheorySetup puts a call-back on the notify list of eachterm that occurs as an i-leaf in a compound i-term.TheoryRewrite(e) simply calculates canoni(S(e)). However, because S is notexplicitly represented, a helper function is required. Essentially, this helper func-tion recursively traverses e replacing solitary variables of S with their correspondingright-hand sides. After calling the canonizer, the result is guaranteed to be equal tocanoni(S(e)).Again, a formal justi�cation of the correctness of this implementation is containedin the appendix.3.5 Extensions to the FrameworkIn this section, we discuss two extensions to the framework just presented. The �rstis an extension which allows the framework to handle non-convex theories.3.5.1 Non-convex TheoriesThe main di�culty with handling non-convex theories is that it may be impossibleto meet the conditions of TheoryCheckSat. Recall that Ar�i is the arrangement ofterms in �i induced by the � relation and that E�i is the set of equations in Ar�iand D�i is the set of disequations in Ar�i . Consider a call to TheoryCheckSati whereTi [
i(�i [Ar�i) is unsatis�able but Ti [
i(�i [E�i) is satis�able. In other words,the addition of D�i to E�i causes an inconsistency. Thus, Ti [
i(�i [E�i) j= :D�i .Now, since :D�i is a disjunction of equalities, it is possible to choose a single equalitya = b from :D�i such that Ti[
i(�i [E�i) j= a = b when Ti is convex. This equalitycan then be added to Q ful�lling the requirements for TheoryCheckSat described inSection 3.3.2.If the theory is not convex, it may not be possible to �nd a single equality in:D�i that ful�lls the requirement. The solution is to relax the requirement that onlyliterals be added to Q. The new requirement is that some expression e be added to

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 58Q where Ti [
i(�i [E�i) j= e and :D�i ! e. In particular, choosing e � :D�i willalways work.In order to extend the framework to handle non-literals, we add a new globalstate variable: a set of non-literals, N , which is initially ;. Whenever a non-literalis asserted, it is added to this set of formulas. We de�ne the predicate convex tobe true if and only if for each atomic formula � which is a sub-expression of someformula in N , either � 2 � or :� 2 �. The framework is only guaranteed to give theright answer if convex is true. The changes required by the framework as well as thetheory-speci�c code for a non-convex Nelson-Oppen style theory are shown in Figure3.9.Unfortunately, the result of these changes is that the framework does not knowif the fact database is consistent unless convex holds. Ensuring that convex is truewhenever the consistency needs to be checked becomes the responsibility of the usercode.One way to do this is to change the code for Satisfiable to recursively split onthe atomic formulas in N as follows.Satisfiable()IF convex THEN RETURN :I;Let � be an atomic formula in N such that � 62 � and :� 62 �;h := Save();AddFact(�);sat := Satisfiable();Restore(h);IF sat THEN BEGINAddFact(:�);sat := Satisfiable();ENDRestore(h);RETURN sat;Notice, however, that this code is very similar to that of the case-splitting tacticintroduced in Section 1.3. This suggests an alternate way to deal with the formulasin N . Rather than changing the code for Satisfiable, we can instead change the

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 59
AddFact(e)Q := feg;REPEATWHILE Q 6= ; AND :I DO BEGINChoose e� 2 Q;Q := Q� fe�g;Assert(e�);ENDFOR i := 1 TO N DOIF Q = ; AND :I AND convex THEN TheoryCheckSati();UNTIL Q = ; OR I;Assert(e)e� := Simplify(e);IF e� is not a literal THEN N := N [fe�g;ELSE IF Op(e�) = `=' THEN AssertEqualities(TheorySolve(e�));ELSE IF e� � false THEN I := TRUE;ELSE IF e� 6� true THEN AssertFormula(e�);OpRewrite(e)IF Op(e) = ':' THEN RETURN RewriteNegation(e);IF Op(e) = `=' AND e[1] � e[2] THEN RETURN true;IF e is a term or an atomic formula THEN RETURN TheoryRewriteT (e)(e);RETURN e;TheoryCheckSati()IF :Sat i(�i [E�i) THEN I := TRUE;ELSE IF :Sat i (�i [Ar�i) THEN BEGINChoose � � D�i such that :Sat i(�i [E�i [�);Q := f:�g;END Figure 3.9: Extensions for Handling Non-Convex Theories

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 60code for ApplyTactic as follows:ApplyTactic(h; c)Restore(h);IF :convex THEN BEGINc := c _ :N;N := ;;ENDLet � be an atomic formula appearing in c;AddFact(�);c1 := Simplify(c);h1 := Save();Restore(h);AddFact(:�);c2 := Simplify(c);h2 := Save();RETURN (h1; c1); (h2; c2);This modi�cation simply removes non-literals and adds them as part of the currentgoal formula. Essentially, it implements a simple inference rule for moving formulasfrom the hypothesis to the conclusion of a sequent. The advantage of this approach isthat there is only one piece of code choosing formulas on which to perform case splits.This can be very important since it is often necessary to use a sophisticated strategyto choose among all possible case splits, and a wrong choice can lead to signi�cantdegradation in performance. We discuss the problem of choosing case splits and onepossible solution in the next chapter.3.5.2 Allowing Theories to Introduce Fresh VariablesA second, and more subtle extension to the framework involves allowing theory-speci�c code to introduce fresh variables as long as the fact database is equisatis�able.Since this extension was motivated by a speci�c example, we will describe it. Oneof the theories implemented in CVC is a theory of in�nite arrays [38].Now suppose that � is a set of literals in this theory. If � contains a disequalitybetween two arrays, it is convenient to replace it with a disequality between elementsof the arrays. For example, if a and b are array terms, then the literal a 6= b can

CHAPTER 3. A FRAMEWORK FOR COMBINING THEORIES 61be replaced by a[k] 6= b[k], where k is a fresh variable. The result is a set of literalsequisatis�able with �, though not logically equivalent to �.In order to support such techniques, we allow a theory Ti to introduce a newformula � into �i as long as Ti [
i(�i) j= 9w:
i(�), where w are fresh variables andw = free(�)� free(�i).The appendix contains a proof of correctness for the framework code introducedin this chapter, including the extensions described in this section.

Chapter 4Incremental Translation to SATIn the past few years, general-purpose propositional satis�ability (SAT) solvers haveimproved dramatically in performance and have been used to tackle many new prob-lems. It has also been shown that certain simple fragments of �rst-order logic can bedecided e�ciently by �rst translating the problem into an equivalent SAT problemand then using a fast SAT solver. By using appropriate tricks to reduce the time andspace required for the translation, this approach seems to work well for simple theo-ries such as the theory of equality with uninterpreted functions [7, 33]. However, it isnot clear how or whether such an approach would work for other decidable theories.In this chapter, we propose a method designed to be more generally applicable:given a satis�ability procedure SatFO (like that described in previous chapters) fora conjunction of literals in some �rst-order theory, a fast SAT-based satis�abilityprocedure for arbitrary quanti�er-free formulas of the theory can be constructed byabstracting the formula to a propositional approximation and then incrementally re-�ning the approximation until a su�ciently precise approximation is obtained to solvethe problem. The re�nement is accomplished by using SatFO to diagnose con
ictsand then adding the appropriate con
ict clauses to the propositional approximation.We begin with a brief review of propositional satis�ability. We then describe theproblem in Section 4.2. Section 4.3 describes our approach to solving the problemusing SAT, and Section 4.4 describes a number of di�culties that had to be overcomein order to make the approach practical. Section 4.5 describes some related work,62

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 63propositional formula ::= true | false | propositional variable| propositional formula ^ propositional formula| propositional formula _ propositional formula| :propositional formulaCNF formula ::= (clause ^ : : : ^ clause)clause ::= (propositional literal _ : : : _ propositional literal)propositional literal ::= propositional variable| :propositional variableFigure 4.1: Propositional logic and CNFand in Section 4.6, we give results obtained using CVC [37], a new decision procedurefor a combination of theories in a quanti�er-free fragment of �rst-order logic whichincludes the SAT solver Cha� [28]. We compare with results using CVC withoutCha� and with our best previous results using SVC [1], the predecessor to CVC. Thenew method is generally faster, requires signi�cantly fewer decisions, and is able tosolve examples which were previously too di�cult.4.1 Propositional Satis�abilityThe SAT problem is the original classic NP-complete problem of computer science.A propositional formula is built as shown in Fig. 4.1 from propositional variables (i.e.variables that can either be assigned true or false) and Boolean operators (^, _, :).Given such a formula, the goal of SAT is to �nd an assignment of true or false toeach variable which results in the entire formula being true.Instances of the SAT problem are typically given in conjunctive normal form(CNF). As shown in Fig. 4.1, CNF requires that the formula be a conjunction ofclauses, each of which is a disjunction of propositional literals. In Section 4.3.1, wedescribe a well-known technique for transforming any propositional formula into anequisatis�able propositional formula in conjunctive normal form.Although the SAT problem is NP-complete, a wide variety of techniques have beendeveloped that enable many examples to be solved very quickly. A large number of

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 64formula ::= true | false | literal| term = term| predicate symbol(term, : : :, term)| formula ^ formula| formula _ formula| :formulaliteral ::= atomic formula | :atomic formulaatomic formula ::= atomic term = atomic term| predicate symbol(atomic term, : : :, atomic term)term ::= atomic term| function symbol(term, : : :,term)| ite (formula,term,term)atomic term ::= variable | constant symbol| function symbol(atomic term, : : :,atomic term)Figure 4.2: A quanti�er-free fragment of �rst-order logicpublicly distributed algorithms and benchmarks are available [36]. Cha� [28] is aSAT solver developed at Princeton University. As with most other SAT solvers, itrequires that its input be in CNF. It is widely regarded as one of the best performingSAT solvers currently available.4.2 The ProblemWe will show how to use SAT to aid in determining the satis�ability of a formula � ina language which is much more expressive than propositional logic: the basic variantof quanti�er-free �rst-order logic shown in Fig. 4.2. Note that in the remainder ofthis chapter, the term \literal" by itself will be used to refer to an atomic formula orits negation, as de�ned in Fig. 4.2. This di�ers from the term \propositional literal"which we will use as in the previous section to mean a propositional variable or itsnegation. A small di�erence between this logic and conventional �rst-order logic isthe inclusion of the ite (if-then-else) operator which makes it possible to compactlyrepresent a term which may have one of two values depending on a Boolean condition,

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 65a situation which is common in applications. An ite expression contains a formulaand two terms. The semantics are that if the formula is true, then the value of theexpression is the �rst term, otherwise the value of the expression is the second term.Note that while both formulas and terms may contain proper Boolean sub-expressions,atomic formulas and atomic terms do not.In previous chapters, we described a fast algorithm for determining the satis�abil-ity of conjunctions of literals with respect to some logical theory (or combination oftheories). We do not address the issue of constructing such decision procedures here,but rather assume that we are given a decision procedure SatFO for determining thesatis�ability, with respect to a theory of interest, of a conjunction of literals in thelogic of Fig. 2.The problem we will address is how to use such a decision procedure to constructan e�cient SAT-based decision procedure for the satis�ability of arbitrary formulas(i.e. not just conjunctions of literals).4.3 Checking Satis�ability of Arbitrary Formulasusing SATSuppose we have, as stated, a core decision procedure SatFO for determining thesatis�ability of conjunctions of literals, and we wish to determine whether an arbitraryformula � is satis�able.An obvious approach would be to use propositional transformations (such as dis-tributivity and DeMorgan's laws) to transform � into a logically equivalent disjunctionof conjunctions of literals and then test each conjunct for satis�ability using SatFO .Unfortunately, this transformation can increase the size of the formula exponentially,and is thus too costly in practice.As mentioned in the �rst chapter, the approach taken by CVC consists of a high-level proof search built on top of a core decision procedure for satis�ability. In Fig.1.3 (repeated here as Fig. 4.3 for convenience), an atomic formula is chosen from theconclusion c, but no guidance is given on how to choose that formula. It turns out

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 66ApplyTactic(h; c)Let � be an atomic formula appearing in c;h1 := AddFact(h; �);c1 := Simplify(h1; c);h2 := AddFact(h;:�);c2 := Simplify(h2; c);RETURN (h1; c1); (h2; c2);Figure 4.3: Case-Splitting Tacticthat the order in which atomic formulas are chosen can a�ect the performance of thealgorithm by several orders of magnitude.In previous work on SVC [1, 27], various heuristics were developed for choosingwhich formulas to split on. Though powerful and e�ective on many examples, theywere also somewhat ad hoc and not very robust: small changes or di�erences informulas can cause a dramatic change in the number of decisions made and theamount of time taken.The new approach described in this chapter is designed to be fast and robust. Thekey idea is to incrementally form a propositional abstraction of a �rst-order formula.Consider an abstraction function Abs which maps �rst-order formulas to propositionalformulas. It is desirable that the abstraction have the following two properties:1. For any formula �, if Abs(�) is unsatis�able, then � is unsatis�able.2. If Abs(�) is satis�able, then the abstract solution can either be translated backinto a solution for � or be used to re�ne the abstraction.We �rst describe a process for determining an appropriate initial propositionalabstraction Abs. We then describe how to re�ne the abstraction if the proof attemptis inconclusive.4.3.1 Computing an Abstraction FormulaThe basic idea of the process is to replace non-propositional formulas with proposi-tional variables. Each syntactically distinct atomic formula � is replaced with a fresh

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 67propositional variable, p�. Syntactically identical atomic formulas are replaced withthe same propositional variable.The result would be a purely propositional formula if not for the ite opera-tor. Handling this operator requires a bit more work. We use a transformationwhich preserves satis�ability and eliminates the ite expressions. First, each iteterm t is replaced with a fresh term variable vt . Again, syntactically identicalterms are replaced with the same variable. Then for each syntactically distinct termt � ite(a; b; c) that is replaced, the following formula is conjoined to the originalformula: (a! vt = b) ^ (:a ! vt = c). By repeating this process, all ite operatorscan be eliminated (in linear time), and in the resulting formula, all terms are atomic.Atomic formulas can then be replaced by propositional variables, as described above,and the resulting formula is purely propositional.To convert the resulting propositional formula to CNF in linear time, we employa standard technique [26]: a fresh propositional variable is introduced for each syn-tactically distinct non-variable sub-formula. Then, a set of CNF clauses is producedfor each sub-formula which describes the relationship of the formula to its children.The translations for each of the standard Boolean operators are as follows.a := :b �! (a _ b) ^ (:a _ :b)a := b ^ c �! (a _ :b _ :c) ^ (:a _ b) ^ (:a _ c)a := b _ c �! (:a _ b _ c) ^ (a _ :b) ^ (a _ :c)Now, suppose that Abs(�) is satis�able and that the solution is given as a con-junction of propositional literals. This solution can be converted into an equivalent�rst-order solution by inverting the abstraction mapping on the solution (replac-ing each propositional variable p� in with �). Call the result Abs�1 (). SinceAbs�1 () is a conjunction of literals, its satis�ability can be determined using SatFO .If Abs�1 () is satis�able, then in the interpretation which satis�es it, the originalformula � must reduce to true, and thus � is satis�able. Otherwise, the result ofthe experiment is inconclusive, meaning that the abstraction must be re�ned. Wedescribe how to do this next.

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 684.3.2 Re�ning the AbstractionAn obvious approach to re�ning the abstraction is to add a clause to the propositionalformula that rules out the solution determined to be invalid by SatFO . Since is a conjunction of propositional literals, applying de Morgan's law to : yields astandard propositional clause. Thus, Abs(�) ^ : is a re�nement of the originalabstraction which rules out the invalid solution . Furthermore, the re�nement isstill in CNF as required. We call the clause : a a con
ict clause because it capturesa set of propositional literals which con
ict, causing an inconsistency. This is inaccordance with standard SAT terminology. However, in standard SAT algorithms,con
ict clauses are obtained by analyzing a clause which has become false to see whichdecisions made by the SAT solver are responsible. In our approach, the con
ict clauseis obtained by an agent outside of the SAT solver. After re�ning the abstraction byadding a con
ict clause, the SAT algorithm can be restarted. By repeating thisprocess, the abstraction will hopefully be re�ned enough so that it can either beproved unsatis�able by the SAT solver or the solution provided by SAT can beshown to map to a satisfying assignment for the original formula.4.4 The Di�cult Path to SuccessThere are a surprising number of roadblocks on the way from the previous idea to apractical algorithm. In this section we describe some of these and our solutions.4.4.1 Redundant ClausesThe most severe problem with the naive approach outlined above is that it tendsto produce an enormous number of redundant clauses. To see why, suppose thatSAT computes a solution consisting of n+ 2 propositional literals, but that only thelast two propositional literals contribute to the inconsistency of the equivalent �rst-order set of literals. Then, for each assignment of values to the other n propositionalvariables which leads to a satisfying solution, the re�nement loop will have to addanother clause. In the worst case, the re�nement loop will have to add 2n clauses.

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 69This is particularly troubling because a single clause, one containing just the twocontributing propositional literals would su�ce.In order to avoid the problem just described, the re�nement must be more precise.In particular, when SatFO is given a set of literals to check for consistency, an e�ortmust be made to �nd the smallest possible subset of the given set which is stillinconsistent. Then, a clause derived from only these literals can be added to thepropositional formula.One possible way to implement this is to minimize the solution by trial and error:starting with n literals, pick one of the literals and remove it from the set. If the setis still inconsistent, leave that literal out; otherwise, return it to the set. Continuewith each of the other literals. At the end, the set will contain a minimal set ofliterals. Unfortunately, this approach requires having SatFO process O(n) literals ntimes for each iteration of the re�nement loop (where n is the number of variables inthe abstract formula). A few experiments with this approach quickly reveal that it isfar too costly to give a practical algorithm.A more practical solution, though one which is not trivial to implement, is to havethe decision procedure SatFO maintain enough information to be able to report di-rectly which subset of a set of inconsistent literals is responsible for the inconsistency.Fortunately, through a discussion with Cormac Flanagan [18], we realized thatthis is not di�cult to do in CVC. This is because CVC is a proof-producing decisionprocedure, meaning that it is possible to have CVC generate an actual proof of anyfact that it can prove. Using the infrastructure for proof production in CVC, weimplemented a mechanism for generating abstract proofs. In abstract proof mode,CVC just tracks the external assumptions that are required for each proof. The resultis that when a set of literals is reported by CVC to be inconsistent, the abstract proofof inconsistency contains exactly the subset of those literals that would be used togenerate a proof of the inconsistency. The abstract proof thus provides a subset whichis known to be inconsistent. This subset is not guaranteed to be minimal, but wefound that in most cases it is very close to minimal. Since the overhead required tokeep track of abstract proofs is small (typically around 20%), abstract proofs providean e�cient and practical solution for eliminating the problem of redundant clauses.

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 704.4.2 Lazy vs. Eager Noti�cationThe approach described in the previous section is lazy (see the note in Section 4.5below) in the sense that the SAT solver is used as a black box and the �rst-orderprocedure SatFO is not invoked until a solution is obtained from the SAT solver.Unfortunately, as shown in Table 4.3, the lazy approach becomes impractical forproblems which require many re�nements. In contrast, an eager approach is to notifythe �rst-order procedure SatFO of every decision that is made (or unmade) by the SATsolver. Then, if an inconsistency is detected by SatFO , it is immediately diagnosed,providing a new con
ict clause for SAT. The SAT algorithm then continues, neverhaving to be restarted.The performance advantages of the eager approach are signi�cant. The disadvan-tages are that it requires more functionality of both the SAT solver and the decisionprocedure SatFO . The SAT solver is required to give noti�cation every time it makes(or revokes) a decision. Furthermore, it must be able to accept new clauses in themiddle of solving a problem (CVC includes a modi�ed version of Cha� which has thisfunctionality). The eager approach also requires SatFO to be online: able quickly todetermine the consistency of incrementally more or fewer literals. Fortunately, CVChas this property.4.4.3 Decision HeuristicsThe decision heuristics used by Cha� and other SAT solvers consider every variablea possible target when choosing a new variable to do a case split on. However, inthe abstracted �rst-order formula, not all variables are created equally. For example,consider an ite expression: ite(�; t1 ; t2), and suppose that t1 and t2 are both largenon-atomic terms. If the propositional variable associated with � is set to true, thenall of the clauses generated by the translation of t2 can be ignored since they can nolonger a�ect the value of the original formula. Unfortunately, the SAT solver doesn'thave this information, and as a result it can waste a lot of time choosing irrelevantvariables. This problem has been addressed by others [15], and our solution is similar.We annotate the propositional variables with information about the structure of the

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 71original formula (i.e. parent/child relationships). Then, rather than invoking thebuilt-in heuristic for variable selection, a depth-�rst search (DFS) is performed onthe portion of the original formula which is relevant. The �rst variable correspondingto an atomic formula which is not already assigned a value is chosen. Althoughthis can result in sub-optimal variable orders in some cases, it avoids the problemof splitting on irrelevant variables. Table 4.4 compares results obtained using thebuilt-in Cha� decision heuristic with those obtained using the DFS heuristic. Theseare discussed in Section 4.6.4.4.4 SAT Heuristics and CompletenessA somewhat surprising observation is that some heuristics used by SAT solvers mustbe disabled or the method will be incomplete. An example of this is the \pure literal"rule. This rule looks for propositional variables which have the property that only oneof their two possible propositional literals appears in the formula being checked forsatis�ability. When this happens, all instances of the propositional literal in questioncan immediately be replaced with true, since if a solution exists, a solution will existin which that propositional literal is true.However, if the formula is an abstraction of a �rst-order formula, it may be thecase that a solution exists when the propositional literal is false even if a solutiondoes not exist when the propositional literal is true. This is because the propositionalliteral is actually a place-holder for a �rst-order literal whose truth may a�ect thetruth of other literals. Propositional literals are guaranteed to be independent of eachother, while �rst-order literals are not. Because of this, there is no obvious way totake advantage of pure literals and the rule must be disabled. Fortunately, this wasthe only such rule that had to be disabled in Cha�.4.4.5 Theory-speci�c ChallengesFinally, a particularly perplexing di�culty is dealing with �rst-order theories thatneed to do case splits in order to determine whether a set of literals is satis�able.For example, consider a theory of arrays with two function symbols, read and write.

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 72In this theory, read(a; i) is a term which denotes the value of array a at index i.Similarly, the term write(a; i ; v) refers to an array which is identical to a everywhereexcept possibly at index i, where its value is v. Now, consider the following set ofliterals in this theory: fread(write(a; i ; v); j) = x ; x 6= v ; x 6= a[i]g. In order forthe array decision procedure to determine that such a set of literals is inconsistent,it must �rst do a case split on i = j. However, such additional case splits by thetheories can cost a lot of time. Furthermore, they may not even be necessary tosolve the problem. We found it di�cult to �nd a strategy for integrating such casesplits without adversely a�ecting performance. Instead, we preprocess the formulasso that such case split formulas become part of the original formula and are onlysplit on when necessary. For the speci�c case of the array decision procedure, everyinstance of read(write(a; i ; v); j) is rewritten to ite(i = j ; v ; read(a; i)). Also, inorder to increase the likelihood of being able to apply this rewrite, every instanceof read(ite(a; b; c); v) is rewritten to ite(a; read(b; v); read(c; v)). These rewrites aresu�cient to obtain reasonable performance for our examples. However, we suspectthat for more complicated examples, something more sophisticated may be required.4.5 Related WorkFlanagan, Joshi, and Saxe at Compaq SRC independently developed a very similarapproach to combining �rst-order decision procedures with SAT [19]. Their transla-tion process is identical to ours. Furthermore, their approach to generating con
ictclauses is somewhat more sophisticated than ours. However, their prototype imple-mentation is lazy (the nomenclature of \lazy" versus \eager" is theirs). Also it onlyincludes a very limited language and its performance is largely unknown. Unfortu-nately, we have not been able to compare directly with their implementation.De Moura, Ruess, and Sorea at SRI have also developed a similar approach usingtheir ICS decision procedure [14]. However, ICS is unable to produce minimal con
ictclauses, so they use an optimized variation of the trial and error method described inSection 4.4.1 to minimize con
ict clauses. Also, as with the Compaq approach, theirimplementation is lazy and its performance unknown. Though they do not report

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 73execution times, they do provide their benchmarks, and our implementation usingCVC with Cha� was able to solve all of them easily.It would also be interesting to compare with the approach for solving problemsin the logic of equality with uninterpreted functions by translating them (up front)to SAT problems. We made an attempt to perform direct comparisons with [33],but their benchmarks are not provided in the language of equality with uninterpretedfunctions, and unfortunately, it is not clear how to translate them. As a result,we were unable to run their benchmarks. We suspect that our approach would becompetitive with theirs. However, since the logic is so simple, it is not clear that amore general approach like ours would be better.4.6 ResultsWe implemented the approach described above in the CVC decision procedure usingthe Cha� SAT solver, and tested it using a suite of processor veri�cation benchmarks.The �rst three benchmarks are purely propositional formulas from Miroslav Velev'ssuper-scalar suite (http://www.ece.cmu.edu/�mvelev). The next three are also fromVelev's DLX veri�cation e�orts, but they include array and uninterpreted functionoperations. The rest are from our own e�orts in processor veri�cation and also includearray and uninterpreted function operations.These were run using gcc under linux on an 800MHz Pentium III with 2GB ofmemory. The best overall results were obtained by using an eager noti�cation strategyand the DFS decision heuristic. Table 4.1 compares these results to results obtainedby using CVC without Cha� (using the recursive algorithm of Fig. 1.2). As canbe seen, the results are better, often by several orders of magnitude, in every casebut one (the easiest example which is solved by both methods very quickly). Theseresults show that CVC with Cha� is a signi�cant improvement over CVC alone.Our goal in integrating Cha� into CVC was not only to test the feasibility of theapproach, but also to produce a tool which could compete with and improve upon thebest results obtained by our previous tool, SVC. SVC uses a set of clever but somewhatad hoc heuristics to improve on the performance obtained by the algorithm of Fig.

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 74Table 4.1: Results comparing CVC without Cha� to CVC combined with Cha�Example CVC without Cha� CVC+Cha�Decisions Time (s) Decisions Time (s)bool-dlx1-c ? > 10000 2522 1.14bool-dlx2-aa ? > 10000 792 0.81bool-dlx2-cc-bug01 ? > 10000 573387 833v-dlx-pc 8642456 5082 6137 6.10v-dlx-dmem 2888268 2820 2184 3.48v-dlx-reg�le 29435 37.6 3833 6.64dlx-pc 515 0.68 529 1.04dlx-dmem 6031 4.50 1276 1.90dlx-reg�le 6386 5.27 2739 4.12pp-bloaddata-a 93714 79.1 1193 1.80pp-bloaddata 345569 338 4451 4.51pp-dmem2 367877 338 2070 1.521.2 by learning which atomic formulas are best to split on [27]. Table 4.2 comparesthe results obtained by SVC with the results obtained by CVC with Cha�.SVC performs particularly well on the last 6 examples, a fact which is not toosurprising since these are old benchmarks that were used to tune SVC's heuristics.However, SVC's performance on the �rst six examples shows that it's heuristics aresimply not
exible enough to handle a large variety of formulas. CVC, on the otherhand produces good results fairly consistently. Even in the four cases where CVCis slower than SVC, the number of decisions is comparable, and in all other casesthe number of decisions required by CVC is much less. This is encouraging becauseit means that CVC is �nding shorter proofs, and additional performance gains canprobably be obtained by tuning the code. Thus, overall, CVC seems to perform betterand to be more robust than SVC, which is the goal we set out to accomplish.

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 75Table 4.2: Results comparing SVC to CVCExample SVC CVC+Cha�Decisions Time (s) Decisions Time (s)bool-dlx1-c 11228452 776 2522 1.14bool-dlx2-aa ? > 10000 792 0.81bool-dlx2-cc-bug01 ? > 10000 573387 833v-dlx-pc 4620149 503 6137 6.10v-dlx-dmem 199540 31.7 2184 3.48v-dlx-reg�le 74600 18.2 3833 6.64dlx-pc 384 0.15 529 1.04dlx-dmem 655 0.21 1276 1.90dlx-reg�le 936 0.27 2739 4.12pp-bloaddata-a 902 0.66 1193 1.80pp-bloaddata 35491 5.35 4451 4.51pp-dmem2 47989 7.54 2070 1.52Table 4.3: Results comparing naive, lazy, and eager implementationsExample Naive Lazy EagerIterations Time (s) Iterations Time (s) Time (s)read0 77 0.14 17 0.09 0.07pp-pc-s2i ? > 10000 82 1.36 0.10pp-invariant ? > 10000 239 5.81 0.22v-dlx-pc ? > 10000 6158 792 3.22v-dlx-dmem ? > 10000 ? > 10000 4.124.6.1 Comparing Di�erent StrategiesFinally, we show experimental results for some of the di�erent strategies discussed inthe previous section. First, just to drive the point home, we show a simple compari-son of the naive (lazy without minimal con
ict clauses), lazy (with minimal con
ictclauses), and eager (with minimal con
ict clauses) implementations on some simpleexamples. As can be seen, the naive and lazy approaches quickly become impractical.Next, we compare two versions of the eager approach with minimal con
ict clauses:one using the standard Cha� decision heuristics, and one using the DFS heuristic

CHAPTER 4. INCREMENTAL TRANSLATION TO SAT 76Table 4.4: Variable selection by Cha� vs. by depth-�rst searchExample Cha� DFSDecisions Time (s) Decisions Time (s)bool-dlx1-c 1309 0.69 2522 1.14bool-dlx2-aa 4974 2.36 792 0.81bool-dlx2-cc-bug01 10903 11.4 573387 833v-dlx-pc 4387 3.22 6137 6.10v-dlx-dmem 5221 4.12 2184 3.48v-dlx-reg�le 6802 5.85 3833 6.64dlx-pc 39833 19.0 529 1.04dlx-dmem 34320 18.8 1276 1.90dlx-reg�le 47822 35.5 2739 4.12pp-bloaddata-a 8695 5.47 1193 1.80pp-bloaddata 9016 5.56 4451 4.51pp-dmem2 3167 2.24 2070 1.52discussed in Section 4.4.3. The results are shown in Table 4.4. As can be seen,DFS outperforms the standard technique on all but four examples. Two of these arepurely Boolean test cases, and so the DFS method wouldn't be expected to provideany advantage. For purely propositional formulas, then, (or �rst-order formulas thatare mostly propositional), the standard Cha� technique is probably better. It isparticularly interesting to note how badly DFS does on the example \bool-dlx2-cc-bug01". One area for future work is trying to �nd a way to automatically choosebetween or combine these two methods.

Chapter 5Conclusions
5.1 ContributionsThe main goal of this research was to address the limitations in the Stanford ValidityChecker (SVC). The most fundamental limitation of SVC was that it lacked a solidtheoretical foundation. This was a signi�cant problem, manifesting itself wheneverwe tried to extend or modify the program.Partly as a result of our incomplete grasp of the theory, the requirements on de-cision procedures for speci�c theories in SVC were quite restrictive and rigid. Forexample, every theory was required to provide a solver which would rewrite an equa-tion into an equisatis�able set of equations. Furthermore, this new set of equationswas required to comply with a total ordering on expressions: the right-hand sideof each equation was required to be simpler than the left-hand side. This orderingrequirement was often very challenging to meet and led to ine�ciencies and compli-cations in the code.Perhaps the most severe consequence of the theoretical de�ciencies of SVC wasthat it diminished our con�dence in the correctness of the tool. Since SVC was beingused as a veri�cation tool, it was important that our con�dence in its correctness behigh.As mentioned, the ordering requirement was one source of complexity in SVC.Another di�culty was simply the fact that SVC had evolved signi�cantly and had77

CHAPTER 5. CONCLUSIONS 78thus outgrown its original software architecture. As is common with such systems,new features became increasingly di�cult to add. For example, one desirable newfeature was the ability to suspend the proof e�ort for a formula, check the validity ofa di�erent formula, and then return to the proof of the original formula. Because ofthe complexity of the state in SVC, this turned out to be impossible to do reliably.Finally, although SVC performed well on many examples, there were also manyexamples for which we knew better performance was possible.The limitations in theory, software architecture, and performance mentioned aboveare addressed by the work of this thesis (roughly in chapters 2, 3, and 4 respectively).The theoretical contribution of this thesis includes new variations of both the Shostakand Nelson-Oppen methods for combining procedures. These are used to show thatShostak's method is actually an instance of the Nelson-Oppen method. Part of thise�ort includes a new theorem relating convex and stably in�nite �rst-order theories.Building upon this increased theoretical understanding, this thesis proposes a newframework for combining decision procedures for individual theories. The architectureof the new framework was designed to be signi�cantly more
exible than that usedfor SVC. For example, there is much more freedom when adding a new theory. Thereare no ordering requirements, and the theory can be implemented using a Shostakinterface, a more general Nelson-Oppen interface, or its own customized interface.Probably the most signi�cant accomplishment of this thesis is the proof providedin the appendix, showing the correctness of the framework. The proof not onlyprovides great con�dence in the correctness of the framework (which is essential for averi�cation tool), but also serves as documentation of the interfaces and assumptionsmade by the framework. This is very helpful when trying to add or optimize theory-speci�c code.Finally, this thesis presents a new technique for dramatically improving the per-formance of cooperating decision procedures by drawing upon the con
ict diagnosistechniques of Boolean satis�ability procedures. As described in chapter 4, a numberof additional enhancements were required in order to turn this promising idea intoa working solution, but eventually we were able to obtain results which were betterthan any previous e�ort.

CHAPTER 5. CONCLUSIONS 79The results presented in this thesis have been incorporated in a new tool calledCVC (Cooperating Validity Checker), the successor to SVC. A lot of the credit forCVC goes to my colleague, Aaron Stump, who wrote most of the actual code basedon the ideas and architecture proposed in this thesis. CVC has proven to be muchmore robust and
exible than SVC.5.2 Some Observations on Program Veri�cationBy far the most di�cult part of this thesis was producing the proof of correctnessfound in the appendix. The most obvious question in my mind after completingthis task is whether having a veri�ed algorithm is really worth the enormous e�ortrequired.Certainly, the veri�ed algorithm is of great value in providing a solid foundationfor CVC. But it's not clear whether this value alone really justi�es the the yearsof e�ort required to produce the algorithm and proof. On the other hand, once wecombine this value with the fact that it provides an interesting case study in programveri�cation, perhaps the e�ort is more easily justi�ed.5.2.1 Organizing a Large Veri�cation E�ortOne of the di�culties was simply coming up with an approach for the proof e�ort.At �rst, I tried to prove correctness without using a line by line approach. ThoughI was able to come up with a proof, it often required temporal reasoning, i.e. if acertain event happens, then another event must have happened earlier, etc. I becameconvinced that this introduced too much complexity.I reworked the proof to come up with a line-by-line proof, where the properties arelisted that are true before and after each line of code. The advantage of this approachis that the proof for each line of code can be checked without referring to any otherpart of the code. This makes the proof easier to read as well as less prone to errors.Still, presenting the proof is a challenge. The ideal medium for presenting sucha proof would be an interactive program which would could be con�gured to show

CHAPTER 5. CONCLUSIONS 80more or less detail, highlight which parts of the proof are dependent on which otherparts, and so forth. Perhaps this would be a good future research project.5.2.2 Veri�cation: the Cost and the Bene�tProbably the most important thing I gained from this e�ort is an appreciation ofhow di�cult program veri�cation is. Certainly, this was not unexpected, as programveri�cation has long been known to be a di�cult problem. While I would argue thatthis algorithm is uncharacteristically complex for its size, it is remarkable how muchcomplexity can be hidden in relatively few lines of code.Probably the single most di�cult part of the proof was coming up with the appro-priate loop invariants. Of course, it's well known that this is supposed to be hard, butI was able to verify it by my own experience. One reason they are hard is that theyoften represent a complex intermediate state between two simpler states. PropertyS16(see appendix) is a good example of a particularly tricky loop invariant.The good news is that producing a loop invariant really just requires understand-ing how and why the loop works. In fact, I found this to be true of the veri�catione�ort in general. Of course, veri�cation requires a level of detailed understandingrarely (if ever) achieved when writing code. Often, even when I thought I knew howpart of the program worked, I discovered that my understanding was incomplete.Completing the gaps in my understanding was where real e�ort was required. Once Ihad a complete understanding, producing the proof was largely a mechanical exercise.This is not such a tragic conclusion. Verifying an algorithm forces a level ofunderstanding that I would argue is impossible to achieve in any other way. Especiallyif the code is complex or the correctness of the code is essential, there is nothing ase�ective as veri�cation.Can the veri�cation e�ort be made easier? I am con�dent that it can be. Certainly,my e�ort would have bene�ted from some sort of proof assistant which could trackprogress and do bookkeeping.However, perhaps a more e�ective way to simplify the e�ort would be to write codewhich does not require as much e�ort to understand. The algorithm I veri�ed was

CHAPTER 5. CONCLUSIONS 81written with e�ciency and compactness as its primary goals. It may have been worthsacri�cing some of this to make the proof more straightforward. On the other hand,much of the complexity of this algorithm is inherent, and it's probably another majorresearch e�ort to understand how such an algorithm could be modi�ed to simplifythe proof.5.3 Future WorkHopefully, the framework presented here is general and
exible enough to be usefulfor a wide class of applications. However, there are certainly applications which arebeyond the scope of the current framework. A signi�cant limitation which shows upin a variety of applications is the inability to handle quanti�ed formulas.5.3.1 Quanti�ed FormulasThe formulas given to CVC are assumed to be quanti�er-free. CVC must then deter-mine if the formula is valid. If a formula is valid, this means that it is true regardlessof the value of any variables in the formula. Another way to look at this is to considerall variables appearing in the formula to be implicitly universally quanti�ed. Thus,in some sense, CVC can handle a very limited set of quanti�ed formulas: formulasin which every variable is universally quanti�ed. However, often it is desirable to in-clude existential or nested quanti�ers. In general, inclusion of such quanti�ers oftenrenders the theory undecidable, but there are examples of theories, such as Pres-burger arithmetic [8], for which the validity of arbitrarily quanti�ed formulas is stilldecidable.For such theories, it is theoretically possible to extend the framework to handleexistential quanti�ers in some cases. A foundation for this extension is in a paperby Tinelli and Ringeissen [41], which shows that Theorem 2.2 can be extended tonon-literals, even quanti�ed formulas, as long as the set of formulas are pure in theirrespective theories. The question then becomes: how and under what circumstancescan a formula containing quanti�ers in a combination of theories be puri�ed?

CHAPTER 5. CONCLUSIONS 82A �rst result is that as long as quanti�ed variables associated with one theory donot appear as proper sub-terms of terms alien to that theory, it is possible to purifythe formulas in the usual way, simply by replacing occurrences of alien terms withfresh variables (see Section 2.2.1).A more general solution seems to require instantiating selected quanti�ed variablesusing some kind of heuristic guidance. This is a promising area of future research.5.3.2 Restrictions on the TheoriesThere are two main restrictions on the kinds of theories that can be accommodatedby the framework presented in chapter 3. The �rst is that each theory must be stablyin�nite. The other is that the signatures of the theories be disjoint.Although we have not found either of these requirement to be prohibitive, a naturalquestion is whether they can be further relaxed. Tinelli and Ringeissen have somework on combining theories with non-disjoint signatures [41], but it can only beapplied to a fairly narrow range of theories.The requirement that theories be stably in�nite is known to be more general thanrequired. In fact, it is only necessary that all theories have a model of the samecardinality. Stable in�niteness is simply an easy way to guarantee this condition.Investigating variations on relaxing these theory requirements seems to be an-other possible area of future research, although it may be more compelling if speci�capplications can be identi�ed which require these requirements to be relaxed.5.3.3 PerformanceThough the techniques of chapter 4 make a signi�cant improvement to the perfor-mance of CVC, there is still more to be done. First of all, CVC is young compared toSVC, so there is still more tuning that can be done to improve the implementation.From an algorithmic point of view, there is also more that can be done. As men-tioned in chapter 4, the method for choosing which variable to split on can probablybe improved. It is likely that some combination of the built-in Cha� heuristic andour depth-�rst search heuristic could work better than either one individually.

Appendix ACorrectness of the Framework
A.1 ApproachCorrectness consists of two important parts: partial correctness and termination.Partial correctness means that if the program terminates, the result is correct. Ter-mination means that the program always eventually terminates (i.e. there is no wayfor it to run forever). Although both of these are important, we present only a proofof partial correctness. This is mainly because the proof of partial correctness wasalready so challenging that it would have been too much e�ort to produce an addi-tional proof of termination. However, from a more pragmatic standpoint, we havefound that termination problems are much easier to detect and deal with than partialcorrectness problems. And in any case, it is very useful just to be able to say that ifthe program terminates, the result is correct.Partial correctness is shown by giving preconditions and postconditions for eachprocedure in the framework as well as each theory-speci�c procedure. Each proce-dure is then shown to guarantee its postconditions under the assumption that thepreconditions hold when it is called.Since procedures may call each other recursively, for each proof of each procedure,we assume that all other procedures are correct with respect to their preconditionsand postconditions. The following argument shows that this methodology is stillsu�cient to guarantee partial correctness.83

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 84Proposition A.1. Let P1; : : : ; Pn be a set of procedures which may call each otherrecursively. Suppose we can prove partial correctness of each Pi assuming that anycalls made by Pi to any other procedure Pj (where possibly i = j) are correct. Theneach Pi is partially correct.Proof. De�ne the procedure call tree for the execution of a procedure Pi as follows.Initially, there is one node in the tree, the root node, labelled by Pi. The root nodeis also initially the current node. During the execution of the program, whenever aprocedure call is made, say to procedure Pj, a new child labelled by Pj is added to thecurrent node, and that child becomes the current node. When a procedure �nishes,the parent of the current node becomes the current node. Note that the procedurecall tree has a node for each procedure call made during the run of the program andthat if a procedure is called more than once, it will label more than one node in thecall tree.Clearly, if a call to Pi terminates, then its call tree is �nite. We prove by inductionon the height of the procedure call tree that every such call must be correct. For thebase case, consider a tree of height zero. This means that Pi does not call any otherprocedures. Thus, the assumption that all other procedures Pj are correct is notnecessary to justify the correctness of Pi. It follows that such calls to Pi are correct.For the induction step, suppose that all calls to procedures Pi are correct if theircall tree has height k or less. Consider a call to a procedure Pi with call tree heightk + 1. By the induction hypothesis, the result of each procedure call made by Pi iscorrect. Since every procedure called by Pi is correct, it must be the case that Pi iscorrect. utPresenting a proof of an algorithm of this complexity is a signi�cant challenge,and so every e�ort has been made to simplify the presentation. The approach is toidentify the properties that are true between lines of code and then show that forevery line of code, the preconditions of that line together with the execution of theline imply the postconditions.We �rst de�ne the notation used in the proof and give a list of properties used.Following that is a copy of the code annotated with the appropriate properties before

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 85and after each line. Then, a detailed proof is presented for each line. Finally, we showhow the postconditions of the main procedure, AddFact, guarantee that a decisionprocedure which uses the framework is sound and complete.A.2 De�nitions and NotationA.2.1 The Shostak TheorySome de�nitions and properties are only required (and only make sense) if a Shostaktheory is included. For the purposes of this proof, we assume that a single Shostaktheory T� with signature �� is included with solver solve and canonizer canon. Wewill indicate which parts of the proof are dependent on this assumption (and couldtherefore be omitted if a Shostak theory is not included). We also assume that ifmultiple Shostak theories are to be included, they are �rst combined into a singleShostak theory. As discussed in Section 2.1.4, this is not always possible, but it oftenis for theories of interest. For convenience, we repeat the de�nitions of solve andcanon from Section 3.4.3 here:1. canon is a computable function from ��-terms to ��-terms, such that(a) T� j= a = b i� canon(a) � canon(b)(b) canon(canon(t)) � canon(t) for all terms t.(c) canon(t) contains only variables occurring in t.(d) canon(t) � t if t is a variable.(e) If canon(t) is a compound term, then canon(c) � c for each child c ofcanon(t).2. solve is a computable function from ��-equations to sets of ��-formulas de�nedas follows:(a) If T� j= x 6= y then solve(x = y) � ffalseg.(b) If T� j= x = y then solve(x = y) � ;.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 86(c) Otherwise, solve(x = y) returns a set of equations E in solved form suchthat T j= [(a = b) $ 9w:E], where w is the set of variables which appearin E but not in a or b. Each of these variables must be fresh. We alsorequire that for each s = t 2 E , canon(t) � t.As in Section 3.4.3, we de�ne canon�(�) as
�1� (canon(
�(�))) and solve�(�) as
�1� (solve(
�(�))).A.2.2 Nelson-Oppen TheoriesWe assume an arbitrary number of Nelson-Oppen style theories are included. EachNelson-Oppen theory Ti provides a satis�ability procedure Sat i satisfying the follow-ing speci�cation for an arbitrary set of literals �:Sat i(�) = TRUE i� Ti [
i(�) 6j= false:A.2.3 Variable Name ConventionsIn the discussion and formulas that follow, we will consistently use the followingvariable conventions. Terms are represented by r, s, and t. The variables c, d, and e,are used to represent expressions (which could be formulas or terms). Theory indicesare represented by i and j, and k and l are used as expression children indices. Thevariables W , X, Y , and Z are used for sets of formulas. Z is also used for sets ofterms. Finally, sets of variables are often represented as a lowercase letter with a lineover it, such as w.A.2.4 Program StateThe state of the program is characterized by a number of variables which are ab-stractions of the program data structures and the program history. These are listedbelow.1. The assertion queue Q is a set of formulas which are waiting to be asserted.Each call to AddFact initializes Q to a set containing the formula given as an

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 87argument to AddFact. Theory-speci�c code may then add additional formulasto Q. The formulas in Q are removed by one by AddFact and passed to Assert.Initially, Q is assumed to be empty.2. As described in Section 3.5.1, the non-literal set N is a set of formulas whichare not literals. It is initially empty.3. The inconsistent
ag I is a variable which indicates whether an inconsistencyhas been detected. It is initially FALSE.4. The �nd and notify attributes for each expression are part of the program state.Initially, the �nd attribute of every expression is ?, and the notify attribute ofevery expression is ;.5. The assumption history, H, is the set of all formulas which have appeared asan argument to AddFact.6. The assertion database, A is de�ned as the set of all formulas which have ap-peared as an argument to TheoryAssert. Ai denotes the subset consisting ofthe i-formulas in A. Notice that Ai is exactly the set of formulas which appearas arguments to TheoryAsserti.7. As mentioned in Section 3.5.2, The code associated with an individual theorymay introduce new formulas locally. To model this, we de�ne for each theory atheory-speci�c database Bi which is an optional set of formulas maintained bythe theory-speci�c code for theory i, with B = SBi. We assume that initiallyBi is empty for each i.8. The fact database � is composed of the assertion database together with thetheory-speci�c databases. Formally, �i = Ai [Bi, and � = A [B = S�i.9. We de�ne the set of shared terms � as S�i, where �i is the set of all expressionswhich have appeared as arguments to TheoryAddSharedTermi.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 8810. The Shostak database is a set S of equations de�ned as follows. Initially, S isempty. Then, every time line 77 of AssertEqualities (according to the line-numbering of Section A.4) is executed (when e[1] is not a compound �-term), Sis updated to be feg(S)[feg. Note that feg(S) refers to the result of applyinge as a substitution to S as described in Section 2.1.1. This piece of the programstate is only required if a Shostak theory is included.11. The variable set V is a set of variables which includes all the variables currentlyappearing in any program state. By representing this set explicitly, it is easyto express the fact that a fresh variable is di�erent from any variable already inuse.In addition to these global state variables, there may be local state variables withina procedure. Local state variables include the arguments to the procedure and mayinclude additional helper variables introduced within the procedure. The values ofglobal and local state variables, together with the location of the program withinthe code form a su�cient description of the state of the program for the proof whichfollows. It is often necessary to compare the current state to the state at the beginningof a procedure. The current state will always be denoted just by the state variableitself. The state at the beginning of the procedure will be denoted by a primed versionof the variable. Thus, � is the current state of the fact database, and �0 refers to thestate of the fact database at the beginning of the current procedure.A.2.5 Other De�nitionsThe following de�nitions are either independent of the program state or derived fromit. For convenience, we also repeat some de�nitions found in earlier chapters.1. T1; : : : ; TN are N stably in�nite �rst-order theories, with signatures �1; : : : ;�N .T = STi and � = S�i.2. d � e indicates that two expressions are syntactically identical. To expresslogical equivalence, we follow conventional notation, writing d = e if d and e are

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 89terms, and d $ e if d and e are formulas. For convenience, we also introducethe notation d ' e to indicate logical equivalence of arbitrary expressions. Inother words, d ' e means d $ e if d and e are formulas, and d = e if d and eare terms.3. A path from an expression d to a sub-expression e of d is a sequence of expres-sions e0; e1; : : : ; en such that e0 � d, ei+1 is a child of ei for each i; 0 � i < n,and e is a child of en (in the degenerate case when d � e, the path from d to eis the empty sequence).4. d� e denotes that d is a sub-expression of e. Similarly, d� e denotes that d isa proper sub-expression of e.5. Members of �i are called i-symbols. A variable is called an i-variable if it isassociated with Ti. A �-term t is an i-term if it is an i-variable, a constanti-symbol, or an application of a functional i-symbol. An i-predicate is an appli-cation of a predicate i-symbol. An atomic i-formula is an an i-predicate or anequality whose left term is an i-term. An i-literal is an atomic i-formula or thenegation of an atomic i-formula. An occurrence of a j-term t in either a term ora literal is i-alien if i 6= j and all super-terms (if any) of that occurrence of t arei-terms. An i-term or i-literal is pure if the only non-logical symbols it containsare i-symbols and variables (i.e. only variables occur as i-alien sub-terms).6. A j-term t occurs as an i-leaf in an expression e if every super-term of thatoccurrence (not including t) is an i-term and t is a variable or i 6= j. Note thata term t occurs as an i-alien of an expression e i� t is not an i-variable andoccurs as an i-leaf of e. We say that a term t is an i-leaf if it occurs as an i-leafin itself (i.e. it is a variable or a j-term, where i 6= j).7. �i(e) is the set fc j c occurs as an i-leaf in eg.8. v is a mapping from �-terms to variables such that each i-term t is mappedto an i-variable v(t) chosen from a set of variables not used anywhere else (i.e.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 90always disjoint from V).
i(�) is the result of replacing all i-alien occurrencesof terms t by v(t).
�1i denotes the inverse operation.9. Given an equivalence relation � with domain dom�, we de�ne E� = fs =t j s; t 2 dom� and s � tg, D� = fs 6= t j s; t 2 dom� and s 6� tg, andAr� = E� [D�.10. We de�ne the predicate convex to be true if and only if T [� j= N and foreach atomic formula � which is a sub-expression of some formula in N , either� 2 � or :� 2 �.11. The left-hand side function lhs returns the set of all left-hand sides of a set ofequations: lhs(E) = ft j 9 e 2 E : t � e[1]g.12. Some procedures return an expression. In order to express properties whichshould hold for the returned expression, we use retval to denote the expressionreturned.13. For an expression e, we de�ne hf(e) (short for \has �nd") as follows: hf(e) i�e:�nd 6�?.14. The set HF is de�ned as HF = fe j hf(e)g.15. The partial function �nd� is de�ned to be the expression obtained by followingthe �nd attributes of e until an expression is obtained whose �nd attributeis itself. If no such expression is obtained, then �nd� is unde�ned. A globalinvariant requires that �nd� be de�ned for all expressions in HF (see G5, de�nedin Section A.3.1 below).16. The relation � is de�ned as follows. For expressions d and e, d � e if and onlyif hf(d) ^ hf(e) ^ �nd�(d) � �nd�(e).17. The relation �i is the restriction of � to elements of �i.18. A sub-expression e of an expression d is called a highest �nd-initialized sub-expression of d if hf(e) and there exists a path from d to e such that for eachexpression e� on the path, :hf(e�).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 9119. Let fr (short for \�nd-reduced") be a predicate on expressions de�ned as follows:fr(d) i� �nd�(e) � e for each highest �nd-initialized sub-expression e of d.20. The �nd database, F , is a set of equalities derived from the relation � inducedby the �nd attribute. It is de�ned as follows: s = t 2 F i� s � t.21. The set of �nd-modi�ed terms M is ft j t:�nd 6� t:�nd'g.22. If a Shostak theory is included, then the set of normal terms, R is de�ned tobe ft j hf(t) ^ �nd�(t) � canon�(S(t))g.As with the state variables, it is sometimes convenient to refer to the value ofderived variables at the beginning of a procedure. Again, this is done by using aprimed version of the variable.A.3 PropertiesA.3.1 Global PropertiesGlobal properties are properties which are required to hold at every point in the code.Properties G1 through G11 are required regardless of what theory-speci�c code is inuse. Properties G12 through G20 are only required if theory-speci�c code for a Shostaktheory is included. Since these global properties capture much of the intuition abouthow the algorithm works, a few words of explanation are included for each of them.G1. I ! (T [H j= false).This is the main soundness property. It states that the inconsistent
ag is onlyset when the assumption history is in fact inconsistent.G2. T [� j= F .This property expresses soundness of the �nd database. The set of facts repre-sented in the �nd database should be entailed by the fact database.G3. T [H j= 9w: �, where w = free(�)� free(H).The framework allows fresh variables to be introduced at various places, so the

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 92fact database is not logically equivalent to the assumption history, but it isrequired to be equisatis�able as expressed by this property.G4. T [H [� j= Q [N .This property expresses soundness of the assertion queue and the non-literalset. They should be entailed by the assumption history together with the factdatabase.G5. 8 e: hf(e)! �nd�(e) is de�ned.This property requires the �nd data structure to be well-de�ned. Chains of�nd attributes should always be de�ned and end at an expression whose �ndattribute is itself.G6. 8 e: hf(e)! hf(c) for each child c of e.This property requires that the children of expressions with �nd pointers alwayshave �nd pointers as well.G7. 8 e: hf(e)! e is a term.Only terms are allowed to have �nd pointers.G8. free(Q[N [� [H [F [�) � V.The set V should include all free variables appearing in the program state.G9. 8 t; j: if t occurs j-alien term in any sub-term of �[F , then (t 2 �j ^ t 2 �T (t)).Every theory knows about any of its own terms that are shared as well as anyshared terms appearing in any of its terms or literals. Notice that this propertyalso implies that all terms which occur as aliens are contained in �.G10. If Gok10 then 8 t; j: if t 2 �j, where j 6= T (t), then t occurs j-alien in somesub-term of A.This is essentially the converse of part of the previous property. If t is identi�edas a shared term by theory Tj, then t had better really occur as a j-alienterm somewhere in the assertion database. Unfortunately, this property is notquite global. To compensate for this, we introduce a state variable, Gok10 which is

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 93de�ned to be true everywhere except at lines 101 through 107, lines 114 through146, and inside any call to TheoryAddSharedTerm or TheorySetup.G11. 8 t�A: hf(t).All terms in the assertion database have �nd pointers.G12. B� = ;.The Shostak theory does not maintain any theory-speci�c formulas.G13. S is in �-solved form.The Shostak database is in solved form.G14. T [F j= S.The Shostak database is entailed by the �nd database.G15. T� [
�(S) j=
�(F).The (Shostak-pure) �nd database is entailed by the (Shostak-pure) Shostakdatabase.G16. If Gok16 then8 t: [(hf(t) ^ t is a compound �-term) ! (8 c 2 ��(t): (�; t) 2 c:notify)].Each compound term in the Shostak theory that has a �nd pointer is requiredto be on the notify list of all terms which occcur as a �-leaf in the term. Thisensures that if any of these leaves is asserted equal to something else, the ShostakTheoryUpdate method will be called. Again, this property is not quite global,so we introduce the state variable Gok16 which is de�ned to be true everywhereexcept at line 142 and inside any call to TheorySetup.G17. 8 t; c: [(�; t) 2 c:notify)! (t is a compound �-term ^ c 2 ��(t) ^ hf(t)].This property expresses essentially the converse of the above property, limit-ing the Shostak data on the notify list to only the cases covered in the aboveproperty.G18. 8 e: [(8 c 2 ��(e): fr(c))! fr(e)].A non-obvious invariant for Shostak terms is that if all terms which occur as

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 94leaves in them are �nd-reduced, then they are also �nd-reduced. This invariantmakes it easy to guarantee that Shostak terms are �nd-reduced.G19. 8 t: if t is a �-leaf, then[(hf(t)! (t:�nd 6� t$ t 2 lhs(S))) and (t� S ! hf(t))].Each term with a �nd pointer which is foreign to the Shostak theory has theproperty that it points to itself if and only if it does not appear on the left-handside of an equation in S (i.e. it is not a solitary variable of
�(S)). Also, allterms in S have �nd pointers.G20. 8e 2 A:e is a literal.The assertion database A consists only of literals.A.3.2 Preservation PropertiesP=(X; Y; : : :). This is a special property which expresses that each state variable inits parameter list currently has the same value that it had at the beginning ofthe procedure: X 0 = X ^ Y 0 = Y : : :.P�(X; Y; : : :). This property is similar to the above property, except that it expressesthat each state variable in its parameter list is a superset of what it was at thebeginning of the procedure: X 0 � X ^ Y 0 � Y : : :.A.3.3 Other PropertiesWe now list the other properties which will be used to annotate the code. Theyexpress conditions on the global and local state which are required to hold at speci�cpoints in the program.Each item in the following list consists of a property abbreviation followed by theproperty de�nition. The property abbreviation is used to refer to the property in thecode which follows and consists of the letter \P" with a numeric subscript followedby a list of the global state (if any) on which the property depends in square brackets.For convenience, we use the notation �:�nd to refer to all �nd pointers, �:notify to

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 95refer to all notify lists, and �� to refer to �i for all i. We also use all to denote all ofthe global state variables.Most properties also depend on local state variables. To enable reuse of such prop-erties, the property list below is parameterized. The variables shown in parenthesesnext to the property abbreviation are parameters to the properties. Thus, when theproperties are used in context, the actual local state variables appearing as argumentsto the properties should be substituted for the parameters.P1[�;H; I;N]. :I ! (T [N [� j= H).P2(e). e is a �-formula.P3[�;H](e). free(e) \ free(��H) = ;.P4[�;H; I;N](e). :I ! (T [N [� [feg j= H).P5[�;H; I;N ;Q](e). (P4[�;H; I;N](e) ^Q = feg) _ (P1[�;H; I;N] ^ Q 6= ;).P6[�;H](e). T [H [� j= e.P7[�;��; �:�nd](i). Ti [
i(�i [Ar�i) is satis�able.P8[�; I;N ;Q;��; �:�nd](i).(Q = ; ^ :I ^ convex)! (8 j; 0 < j < i: P7[�;��; �:�nd](j)).P9[�; I;N ;Q;��; �:�nd](i). (Q = ; ^ :I ^ convex)! P7[�;��; �:�nd](i)).P10[�; I;N ;��; �:�nd]. (:I ^ convex)! (8 i; 0 < i � N: P7[�;��; �:�nd](i)).P11(e). e is a literal.P12[�;H](e). T [H [� j= 9w: e, where w = free(e)� free(H [�).P13(X). 8 d 2 X:[P11(d)^Op(d) = `='^(8 e 2 X:d 6� e! (d[1] 6� e[1]^d[1] 6� e[2]))].P14[�:�nd](X). false 2 X _ (8 e 2 X : fr(e) ^ P13 (X)).P15[�;N](W;X; Y). W � � ^X � N ^ Y � �.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 96P16[�:�nd](X; Y).8 e 2 Y: [(e 2 X ! (e[1]:�nd � e[1] ^ e[2]:�nd � e[2])) ^ (e 62 X ! fr(e))].P17[�](X). For w = free(�)� free(X), T [X j= 9w: � and w \ V 0 = ;.P18[�:�nd](X). 8 e 2 X: (e[1]:�nd � e[1] ^ e[2]:�nd � e[2]).P19[�:�nd](X; Y).8 e 2 Y: [e[2]:�nd � e[2] ^ (e 2 X ! e[1]:�nd � e[2]) ^(e 62 X ! e[1]:�nd � e[1])].P20[H](W �; e).9W;X; Y; Z: fW;X;Zg is a partition of W � ^T [H j= 9w: W; where w = free(W)� free(H) ^T [H [W j= 9 x; y: (X [Y);where x = free(X)� free(H [W)and y = free(Y)� free(H [W [X) ^T [W [X j= 9 z: Z ^ z \ free(H [feg) = ;;where z = free(Z)� free(W [X) ^e 2 Y:P21[�:�nd]. 8 e: (e:�nd � e _ e:�nd � e:�nd').P22[�:�nd](Z). 8 t 2 Z: t:�nd � t.P23(e). e is a term.P24[��](Z; e).8 t; d: [(t� Z ^ t� d� e ^ t occurs T (d)-alien in d)! (t 2 �T (t) ^ t 2 �T (d))].P25[�:�nd](e). 8 t; t a maximal sub-term of e: t:�nd � t.P26[��](e; i). T (e) 6= i! (e 2 �T (e) ^ e 2 �i).P27[�:�nd](t). 8 s: (s 6� t! s:�nd � s:�nd').P28[�:�nd](t). 8 s: [s� t! (s:�nd � s _ s:�nd � s:�nd')].

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 97P29[�:�nd](e; k). 8 l; 1 � l < k: e[l]:�nd � e[l].P30[�:�nd](e; k). 8 l; 1 � l < k: fr(e[l]).P31[�:�nd](e). 8 k; 1 � k � Arity(e): e[k]:�nd � e[k].P32[��](e; k). 8 l; 1 � l < k: P24[��](e[l]; e[l]) ^ P26[��](e[l]; T (e)).P33(e). e is a term or e is an atomic formula.P34[all](i). P=(�� Bi;H; I;N ;S;��; �:�nd) ^ P�(Q;Bi;V; �:notify) andTi [
i(�0i j= 9w: Bi) ^ w \ V 0 = ; ^ w � V, where w = free(Bi)� free(�0i) andTi [
i(�i j= (Q�Q0)) ^ free(Q�Q0) � V.P35[�](d; e). For w = free(e)� free(d), T [� j= d$ 9w:e and w\(V 0[free(�)) = ;.P36[�;��; �:�nd](i). Ti [
i(�i [E�i) is satis�able.P37[�;��; �:�nd](i; e). Ti [
i(�i [E�i) j=
i(e).P38[A;��](e). 8 j:8 t 2 �j:[j 6= T (t)! (t occurs j-alien in some sub-term of A[feg].P39[��](t). 8 j: 8 s 6� t:(s 2 �j $ s 2 �0j).P40(s; t; i; j). (s 2 �0j) _ (s � t ^ j = i) _ (s occurs j-alien in some sub-term of t).P41[��](s; t; i; j). (s 2 �j ^ j 6= T (s))! P40(s; t; i; j).P42[��](t; i). 8 s� t: 8 j:P40(s; t; i; j).The following properties are only required if theory-speci�c code for a Shostak theoryis included. To distinguish them from the previous properties, they use the letter \S"instead of \P".S1[S](s; t). s � canon�(S(t)).S2[I;S; �:�nd]. :I ! [8 e: (hf(e)! S1[S](�nd�(e); e))].S3[A; I; �:�nd]. :I ! [8 e 2 A: (Op(e) = `='! e[1] � e[2])].

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 98S4[S; �:�nd](e). 8 t� e: (:hf(t)! S1[S](t; t)).S5(e). Op(e) = `='! e[1] 6� e[2].S6(X). X is in �-solved form.S7[S; �:�nd](X). false 2 X _ (S4 [S; �:�nd](X) ^ S6 (X)).S8(t). t is a compound �-term.S9[�:�nd](e). 9 c 2 ��(e): (c:�nd 6� c).S10[S; �:�nd](X). 9 e: [X = feg^S8(e[1])^hf(e[1])^S1[S](e[2]; e[1])^S9[�:�nd](e[1])].S11[S; �:�nd](X). 8 e 2 X: [S1[S](e[2]; e[2]) ^ fr(e) ^ S4[S; �:�nd](e)].S12[S; �:�nd](X). false 2 X _ ((S6 (X) _ S10 [S; �:�nd](X)) ^ S11 [S; �:�nd](X)).S13[�:�nd](X). 8 e 2 X: (Op(e) = `='! e[1] � e[2]).S14[�:�nd](R�; X). (M�R�) � lhs(X).S15[S; �:�nd](X; Y). S10[S; �:�nd](X) _ [S6(X) ^ (8 e 2 (X � Y): S(e) � e) ^(8 e 2 X: S1[S](e[2]; e[2]))].S16[S; �:�nd](R�; X; Y;S�).8 t 2 R�: [hf(t) ^(��(canon�(S�(t))) \ lhs(Y) = ; _ :S6(X)!�nd�(t) � canon�(S�(t)) � canon�(S(t))) ^(��(canon�(S�(t))) \ lhs(Y) 6= ; ^ :S8(canon�(S�(t)))!�nd�(t) � canon�(S(t)) ^ ��(canon�(S(t))) \ lhs(X) = ;) ^(��(canon�(S�(t))) \ lhs(Y) 6= ; ^ S8(canon�(S�(t)))!�nd�(t) � canon�(S�(t)))].S17(X; Y). (S6(X)! (Y � S)) ^ (Y � X).S18[S; �:�nd](R�). M�R� � R.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 99S19[S; �:�nd](R�; X;S�).8 t 2 R�: [t 2 R _ (S8(canon�(S�(t))) ^ hf(t) ^ �nd�(t) � canon�(S�(t)) ^��(canon�(S�(t))) \ lhs(X) 6= ;)].S20[S](X). 8 e 2 X: (e[1] 2 lhs(S) _ S8(e[1])).S21[�:�nd](L; c). 8 t: [((�; t) 2 L)! (hf(t) ^ S8(t) ^ c 2 ��(t))].S22[I;S; �:�nd](e;R�; X;U ;S�). I _[8 t 2 R�: t 2 R _ (S8(canon�(S�(t))) ^ hf(t) ^ �nd�(t) � canon�(S�(t)) ^��(canon�(S�(t))) \ lhs(X) 6= ; ^e[1] 2 ��(canon�(S�(t)))! (�; canon�(S�(t))) 2 U)].S23[�:�nd; �:notify](e).8 t 6� e: [(hf(t) ^ S8(t))! (8 c 2 ��(t): (�; t) 2 c:notify)].S24[S; �:�nd](e; k). 8 l; 1 � l < k: S4[S; �:�nd](e[l]).S25[S; �:�nd](e). 8 l; 1 � l � Arity(e): S4[S; �:�nd](e[l]).S26[S; �:�nd](d; e).(d � e! S4[S; �:�nd](e)) ^ (d 6� e! S25[S; �:�nd](d)).S27(d; e). d 6� e _ S5(e).S28[�:�nd](i; e). i = �! (hf(e) ^ S8(e) ^ S9[�:�nd](e)).S29[I;S](X; i). I _ [8 e 2 X: (Op(e) = ':'! (Ti [
i(S) 6j=
i(e[1])))].S30[�:�nd](e). 8 c 2 ��(e):fr(c).S31[S; �:�nd](e). 8 c 2 ��(e):S4[S; �:�nd](c).S32[S](e). 8 c 2 ��(e):S(c) � c.S33[S](d; e). canon�(d) � canon�(S(e)).S34[I;S; �:�nd](d). I _ (d:�nd 6� d) _ (d 2 R).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 100S35[�:notify](e). S8(e)! 8 c 2 ��(e):(�; e) 2 c:notify.S36[�:notify](Z). 8 c 2 Z:(�; e) 2 c:notify.S37[�:�nd](e). 8 k; 1 � k � Arity(e): hf(e[k]) _ fr(e[k]).S38[�:�nd](e; k). 8 l; 1 � l < k: S30[�:�nd](e[l]).S39[S; �:�nd](e; k). 8 l; 1 � l < k: S31[S; �:�nd](e[l]) ^ S32[S](e[l]).S40[S; �:�nd](e; k). 8 l; k � l � Arity(e): (S4[S; �:�nd](e[l]) ^ e0[l] � e[l]).S41[S](e; k). 8 l; 1 � l < k: S33[S](e[l]; e0[l]).S42[S](d; e). If e is a term then d � canon�(S(e)).A.4 Annotated CodeThe code shown below includes the framework code with non-convex extensions,and the theory-speci�c code for Nelson-Oppen and Shostak theories, including thedefault implementations (see Figure 3.6) of the procedures not explicitly provided(note that the modi�cation of global state variables by TheoryAddSharedTermi andTheoryAsserti has been moved to the framework code|see the note on \virtual"code below). The actual code shown below is equivalent in function to that given inChapter 3, but in some cases it is slightly modi�ed to be more explicit or give moredetail.Before and after each line of code is a list of properties which should hold at thatpoint in the execution of the program. Since the global properties always hold, asingle capital \G" at each line is used to represent all of them.Also, it is often helpful to add \virtual" lines of code which describe how somepiece of local or global state is modi�ed by executing a particular line of code. Thesevirtual pieces of code are shown in square brackets. To aid readability, everythingthat is not an actual part of the code is shown in half-tone gray. This makes it easierto separate the code from the annotations.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 101Following the presentation of the code, we give proofs for the properties betweeneach line of code. However, since many of the proofs are trivial, only those propertieswhich do not follow trivially are proved in detail. These properties are underlined inthe annotated code to make it easy to see at a glance which properties require proof.Note that all global properties depend only on global states variables, so they arealways trivially preserved unless some global state is modi�ed. Also, when verifyingthe properties following a procedure call, we also verify that the preconditions of theprocedure are satis�ed. Because the proofs of properties following a procedure callcan often be subtle, we always justify each of them (and thus, all properties followingprocedure calls are always underlined).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 102A.4.1 Framework Code0. G, P1[�;H;I;N], P2(e), P3[�;H](e), S2[I;S; �:�nd], S3[A;I; �:�nd]1. AddFact(e) [H := H [feg; V := V [free(e);]2. G, P4[�;H;I;N](e), e 2 H, S2[I;S; �:�nd], S3[A;I; �:�nd]3. Q := feg;4. G, P4[�;H;I;N](e), Q = feg, S2[I;S; �:�nd], S3[A;I; �:�nd]5. REPEAT6. G, P5[�;H;I;N ;Q](e), S2[I;S; �:�nd], S3[A;I; �:�nd]7. WHILE Q 6= ; AND :I DO BEGIN8. G, Q 6= ;, :I, P5[�;H;I;N ;Q](e), S2[I;S; �:�nd], S3[A;I; �:�nd]9. Choose e� 2 Q;10. G, P4[�;H;I;N](e�), Q 6= ;, :I, e� 2 Q,P6[�;H](e�), free(e�) � V, S2[I;S; �:�nd], S3[A;I; �:�nd]11. Q := Q� fe�g;12. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V,S2[I;S; �:�nd], S3[A;I; �:�nd]13. Assert(e�);14. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]15. END16. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]17. FOR i := 1 TO N DO BEGIN18. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd],S3[A;I; �:�nd]19. IF Q = ; AND :I AND convex THEN BEGIN20. G, P1[�;H;I;N], Q = ;, :I, P8[�;I;N ;Q;��; �:�nd](i), convex,S2[I;S; �:�nd], S3[A;I; �:�nd]21. TheoryCheckSati();22. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](i),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]23. END24. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](i),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]25. END26. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](N + 1),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]27. UNTIL Q = ; OR I;28. G, P1[�;H;I;N], P10[�;I;N ;��; �:�nd], S2[I;S; �:�nd], S3[A;I; �:�nd]29. END AddFact30. G, P1[�;H;I;N], P10[�;I;N ;��; �:�nd], S2[I;S; �:�nd], S3[A;I; �:�nd]

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 10331. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, S2[I;S; �:�nd],S3[A;I; �:�nd]32. Assert(e)33. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, S2[I;S; �:�nd],S3[A;I; �:�nd]34. e� := Simplify(e);35. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, T [� j= e ' e�,fr(e�), S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�), S5(e�)36. IF e� is not a literal THEN BEGIN37. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, fr(e�),S2[I;S; �:�nd], S3[A;I; �:�nd]38. N := N [fe�g;39. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]40. END ELSE IF Op(e�) = `=' THEN BEGIN41. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, fr(e�), P11(e�),Op(e�) = `=', e�[1] 6� e�[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�)42. E := TheorySolve(e�);43. G, P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), P14[�:�nd](E),S2[I;S; �:�nd], S3[A;I; �:�nd], S7[S; �:�nd](E)44. AssertEqualities(E);45. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]46. END ELSE IF e� � false THEN BEGIN47. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), T [� j= e ' e�, fr(e�),e� � false, S2[I;S; �:�nd], S3[A;I; �:�nd]48. I := TRUE;49. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]50. END ELSE IF e� 6� true THEN BEGIN51. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, fr(e�), P11(e�),Op(e�) 6= `=', S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�)52. AssertFormula(e�);53. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]54. END55. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]56. END Assert57. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 10458. G, P4[�;H;I;N](E), :I, P12[�;H](E), P14[�:�nd](E), free(E) � V,S3[A;I; �:�nd], S12[S; �:�nd](E)59. AssertEqualities(E)60. G, P=(all), P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), P14[�:�nd](E),S3[A;I; �:�nd], S12[S; �:�nd](E)61. IF false 2 E THEN BEGIN62. G, P=(all), P4[�;H;I;N](E), P12[�;H](E), false 2 E, P14[�:�nd](E)63. I := TRUE;64. G, P=(all � fIg), P1[�;H;I;N], I65. END ELSE BEGIN [A� := A; �� := �; N � := N; X := ;]66. G, P=(all), P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), false 62 E,8 e 2 E : fr(e), P13(E), S3[A;I; �:�nd], S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E)67. FOREACH e 2 E DO BEGIN68. G, P=(H;S), P�(V;F ;R), P15[�;N](��;N �;X), P13(E), X � E,P16[�:�nd](X; E), P17[�](�� [X), free(E) � V 0, S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E), A = A� [X, S13[�:�nd](A�), M�R, e 2 E, e 62 X69. AssertFormula(e); [X := X [feg;]70. G, P=(H;S), P�(V;F ;R), P15[�;N](��;N �;X), P13(E), X � E,P16[�:�nd](X; E), P17[�](�� [X), free(E) � V 0, S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E), A = A� [X, S13[�:�nd](A�), M�R71. END72. G, P=(S), P�(F ;R), P1[�;H;I;N], P13(E), P18[�:�nd](E), A = A� [E,S6(E) _ S10[S; �:�nd](E), S11[S; �:�nd](E), S13[�:�nd](A�), M�R, E � �73. [X := ;; R� := R; S� := S]74. G, P=(S), P�(F ;R), P1[�;H;I;N], P13(E), P18[�:�nd](E), A = A� [E,S6(E) _ S10[S; �:�nd](E), S11[S; �:�nd](E), S13[�:�nd](A�), M�R, E � �75. FOREACH e 2 E DO BEGIN76. G, P�(F ; lhs(S)), P1[�;H;I;N], P13(E), E � �, P19[�:�nd](X; E),A = A� [E, S13[�:�nd](A� [X), S14[�:�nd](R�;X), lhs(X) � R,S15[S; �:�nd](E ;X), S16[S; �:�nd](R�; E ;X;S�), S17(E ;X), e 2 E, e 62 X77. e[1]:�nd := e[2]; [X:=X [feg; IF :S8(e[1]) THEN S:=feg(S) [feg;]78. G, P�(F ; lhs(S)), P1[�;H;I;N], P13(E), E � �, P19[�:�nd](X; E),A = A� [E, S13[�:�nd](A� [X), S14[�:�nd](R�;X), lhs(X) � R,S15[S; �:�nd](E ;X), S16[S; �:�nd](R�; E ;X;S�), S17(E ;X)79. END

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 10580. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], lhs(E) � R,S16[S; �:�nd](R�; E ; E ;S�), S18[S; �:�nd](R�), S20[S](E)81. [X := ;;]82. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], lhs(E) � R,S18[S; �:�nd](R�), S19[S; �:�nd](R�; E �X;S�), S20[S](E)83. FOREACH e 2 E DO BEGIN84. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R), e 2 E,I _ S18[S; �:�nd](R�), I _ S19[S; �:�nd](R�; E �X;S�), S20[S](E), e 62 X85. L := e[1]:notify; [U := ;;]86. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R), e 2 E,I _ S18[S; �:�nd](R�), S20[S](E), S21[�:�nd](L; e[1]), e 62 X,S22[I;S; �:�nd](e;R�; E �X;L � U ;S�)87. FOREACH (i; d) 2 L DO BEGIN88. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R),I _ S18[S; �:�nd](R�), S20[S](E), S21[�:�nd](L; e[1]), e 2 E, e 62 X,S22[I;S; �:�nd](e;R�; E �X;L � U ;S�), (i; d) 2 L, (i; d) 62 U89. TheoryUpdatei(e,d); [U := U [f(i; d)g;]90. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R),I _ S18[S; �:�nd](R�), S20[S](E), S21[�:�nd](L; e[1]), e 2 E, e 62 X,S22[I;S; �:�nd](e;R�; E �X;L � U ;S�)91. END [X := X [feg;]92. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R),I _ S18[S; �:�nd](R�), I _ S19[S; �:�nd](R�; E �X;S�), S20[S](E)93. END94. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R),I _ (lhs(E) � R), I _ (R0 � R)95. END96. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R),I _ (lhs(E) � R), I _ (R0 � R)97. END AssertEqualities98. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R),I _ (lhs(E) � R), I _ (R0 � R)

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 10699. G, free(e) � V, fr(e), P11(e), P20[H](�; e), S4[S; �:�nd](e)100. AssertFormula(e) [Z := ;; Gok10 := FALSE;]101. G, P=(all), free(e) � V 0, fr(e), P11(e), P17[�](�0), P20[H](�0; e),P21[�:�nd], P38[A;��](e), S4[S; �:�nd](e)102. FOREACH maximal sub-term t of e DO BEGIN103. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, fr(e), P11(e),P17[�](�0), P20[H](�0; e), P21[�:�nd], P22[�:�nd](Z), P23(t), P24[��](Z; e),P38[A;��](e), S4[S; �:�nd](e), M�R, t� e104. SetupTerm(t,T (e)); [Z := Z [ftg;]105. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, fr(e), P11(e),P17[�](�0), P20[H](�0; e), P21[�:�nd], P22[�:�nd](Z), P24[��](Z; e),P38[A;��](e), S4[S; �:�nd](e), M�R106. END107. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, P11(e), P17[�](�0),P20[H](�0; e), P21[�:�nd], P24[��](e; e), P25[�:�nd](e), P38[A;��](e),M�R108. [AT (e) := AT (e) [feg; Gok10 := TRUE;]109. G, P=(H;S), P�(�;V;N ;F ;R), free(e) � V 0, P17[�](�0 [feg),P20[H](�0; e), P21[�:�nd], P25[�:�nd](e), e 2 �, A = A0 [feg, M�R110. TheoryAssertT (e)(e);111. G, P=(H;S), P�(�;V;N ;F ;R), P17[�](�0 [feg), P21[�:�nd],P25[�:�nd](e), e 2 �, A = A0 [feg, M�R112. END AssertFormula113. G, P=(H;S), P�(�;V;N ;F ;R), P17[�](�0 [feg), P21[�:�nd],P25[�:�nd](e), e 2 �, A = A0 [feg, M�R

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 107114. G, fr(t), P23(t), free(t) � V, S4[S; �:�nd](t)115. SetupTerm(t,i)116. G, P=(all), fr(t), P23(t), free(t) � V, P17[�](�0), S4[S; �:�nd](t)117. IF T (t) 6= i THEN BEGIN118. G, P=(all), fr(t), P23(t), free(t) � V, P17[�](�0), T (t) 6= i,S4[S; �:�nd](t)119. [�T (t) := �T (t) [ftg;]120. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)121. TheoryAddSharedTermT (t)(t);122. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)123. [�i := �i [ftg;]124. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V, t 2 �i,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)125. TheoryAddSharedTermi(t);126. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V, t 2 �i,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)127. END128. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), P26[��](t; i), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)129. IF HasFind(t) THEN BEGIN130. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P17[�](�0), hf(t),P24[��](t; t), P26[��](t; i), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)131. RETURN;132. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t),P42[��](t; i), M�R133. END134. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), free(t) � V, fr(t), P17[�](�0),P23(t), P26[��](t; i), :hf(t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)135. FOR k := 1 TO Arity(t) DO BEGIN136. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),:hf(t), P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), P29[�:�nd](t; k),P30[�:�nd](t;Arity(t) + 1), P32[��](t; k), P39[��](t), P42[��](t; i),S4[S; �:�nd](t), M�R137. SetupTerm(t[k],T (t));138. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),:hf(t), P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), P29[�:�nd](t; k + 1),P30[�:�nd](t;Arity(t) + 1), P32[��](t; k + 1), P39[��](t), P42[��](t; i),S4[S; �:�nd](t), M�R139. END

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 108140. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),P24[��](t; t), P26[��](t; i), :hf(t), P27[�:�nd](t), P28[�:�nd](t), P31[�:�nd](t),P39[��](t), P42[��](t; i), S4[S; �:�nd](t), M�R141. t:�nd := t; [Gok16 := FALSE;]142. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t), P42[��](t; i),M�R, S23[�:�nd; �:notify](t)143. TheorySetupT (t)(t); [Gok16 := TRUE;]144. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t), P42[��](t; i),M�R145. END SetupTerm146. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t), P42[��](t; i),M�R147. G, free(e) � V148. Simplify(e)149. G, P=(all), free(e) � V, T [� j= e0 ' e150. IF HasFind(e) THEN BEGIN151. G, P=(all), T [� j= e0 ' e, hf(e)152. RETURN Find(e);153. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e0 ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)154. END155. G, P=(all), free(e) � V, T [� j= e0 ' e, :hf(e)156. FOR k := 1 to Arity(e) DO BEGIN157. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e; k), S24[S; �:�nd](e; k)158. e[k] := Simplify(e[k]);159. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e; k + 1), S24[S; �:�nd](e; k + 1)160. END161. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e;Arity(e) + 1), S24[S; �:�nd](e;Arity(e) + 1)162. RETURN Rewrite(e);163. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e0 ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)164. END Simplify165. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e0 ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 109166. G, free(e) � V, fr(e) _ hf(e), S25[S; �:�nd](e)167. Rewrite(e)168. G, P=(all), free(e) � V, fr(e) _ hf(e), S25[S; �:�nd](e)169. IF HasFind(e) THEN BEGIN170. G, P=(all), free(e) � V, hf(e)171. RETURN Find(e);172. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)173. END174. G, P=(all), free(e) � V, fr(e), S25[S; �:�nd](e)175. e� := OpRewrite(e);176. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S26[S; �:�nd](e; e�), S27(e; e�)177. IF e 6� e� THEN BEGIN178. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S25[S; �:�nd](e)179. e� := Rewrite(e�);180. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S4[S; �:�nd](e�), S5(e�)181. END182. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S4[S; �:�nd](e�), S5(e�)183. RETURN e�;184. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)185. END Rewrite186. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)187. G, free(e) � V, fr(e), S25[S; �:�nd](e)188. OpRewrite(e)189. G, P=(all), free(e) � V, fr(e), S25[S; �:�nd](e)190. IF Op(e) = ':' THEN BEGIN191. G, P=(all), free(e) � V, fr(e), Op(e) = ':', S4[S; �:�nd](e), S5(e)192. RETURN RewriteNegation(e);193. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)194. END

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 110195. G, P=(all), free(e) � V, fr(e), S25[S; �:�nd](e)196. IF Op(e) = `=' AND e[1] � e[2] THEN BEGIN197. G, P=(all), Op(e) = `=', e[1] � e[2]198. RETURN true;199. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)200. END201. G, P=(all), free(e) � V, fr(e), S5(e), S25[S; �:�nd](e)202. IF e is a term or an atomic formula THEN BEGIN203. G, P=(all), free(e) � V, fr(e), P33(e), S5(e), S25[S; �:�nd](e)204. RETURN TheoryRewriteT (e)(e);205. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)206. END207. G, P=(all), free(e) � V, fr(e), S4[S; �:�nd](e), S5(e)208. RETURN e;209. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)210. END OpRewrite211. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)212. G, free(e) � V, fr(e), Op(e) = ':', S4[S; �:�nd](e)213. RewriteNegation(e)214. G, P=(all), free(e) � V, fr(e), Op(e) = ':', S4[S; �:�nd](e)215. IF e[1] � true THEN BEGIN216. G, P=(all), free(e) � V, fr(e), Op(e) = ':', e[1] � true217. RETURN false;218. G, P=(all), free(retval) � V, T [� j= e ' retval, fr(retval),S4[S; �:�nd](retval)219. END220. G, P=(all), free(e) � V, fr(e), Op(e) = ':', S4[S; �:�nd](e)221. IF e[1] � false THEN BEGIN222. G, P=(all), free(e) � V, fr(e), Op(e) = ':', e[1] � false223. RETURN true;224. G, P=(all), free(retval) � V, T [� j= e ' retval, fr(retval),S4[S; �:�nd](retval)225. END

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 111226. G, P=(all), free(e) � V, fr(e), Op(e) = ':', S4[S; �:�nd](e)227. IF Op(e[1]) � ':' THEN BEGIN228. G, P=(all), free(e) � V, fr(e), Op(e) = ':', Op(e[1]) = ':',S4[S; �:�nd](e)229. RETURN e[1][1];230. G, P=(all), free(retval) � V, T [� j= e ' retval, fr(retval),S4[S; �:�nd](retval)231. END232. G, P=(all), free(e) � V, fr(e), S4[S; �:�nd](e)233. RETURN e;234. G, P=(all), free(retval) � V, T [� j= e ' retval, fr(retval),S4[S; �:�nd](retval)235. END RewriteNegation236. G, P=(all), free(retval) � V, T [� j= e ' retval, fr(retval),S4[S; �:�nd](retval)237. G, hf(t)238. Find(t)239. G, P=(all), hf(t)240. IF t:�nd � t THEN BEGIN241. G, P=(all), t:�nd � t242. RETURN t;243. G, P=(all), retval:�nd � retval, t � retval244. END ELSE BEGIN245. G, P=(all), hf(t)246. RETURN Find(t:�nd);247. G, P=(all), retval:�nd � retval, t � retval248. END249. unreachable250. END Find251. G, P=(all), retval:�nd � retval, t � retval

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 112A.4.2 API for Theory-Speci�c Code252. G, free(e) � V253. TheoryAddSharedTermi(e)254. G, P34[all](i)255. G,256. TheoryAsserti(e)257. G, P34[all](i)258. G, P1[�;H;I;N], Q = ;, :I, convex, S2[I;S; �:�nd], S3[A;I; �:�nd]259. TheoryCheckSati()260. G, P=(all � fI;N ;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]261. G, free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)262. TheoryRewritei(e)263. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](i),S26[S; �:�nd](e; retval)264. G, hf(e)265. TheorySetupi(e)266. G, P34[all](i)267. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, fr(e), P11(e),Op(e) = `=', e[1] 6� e[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e)268. TheorySolve(e)269. G, P=(H;I;N ; �:�nd), P�(�), free(retval) � V, P14[�:�nd](retval),P17[�](�0), P35[�](e; retval), S2[I;S; �:�nd], S3[A;I; �:�nd], S7[S; �:�nd](retval)270. G, P1[�;H;I;N], S3[A;I; �:�nd], S28[�:�nd](i; d)271. TheoryUpdatei(e,d)272. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R), I _ (R0 � R),I 0 ! I

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 113A.4.3 Theory-Speci�c Code for a Nelson-Oppen Theory Ti273. G, free(e) � V274. TheoryAddSharedTermi(e)275. G, P34[all](i)276. G,277. TheoryAsserti(e)278. G, P34[all](i)279. G, P1[�;H;I;N], Q = ;, :I, convex, S2[I;S; �:�nd], S3[A;I; �:�nd]280. TheoryCheckSati()281. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, S2[I;S; �:�nd],S3[A;I; �:�nd]282. IF :Sat i(�i [E�i) THEN BEGIN283. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P36[�;��; �:�nd](i)284. I := TRUE;285. G, P=(all � fIg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]286. END ELSE IF :Sat i(�i [Ar�i) THEN BEGIN287. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P7[�;��; �:�nd](i),P36[�;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]288. Choose � � D�i such that :Sat i(�i [E�i [�);289. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P7[�;��; �:�nd](i),P36[�;��; �:�nd](i), P37[�;��; �:�nd](i;:�), S2[I;S; �:�nd], S3[A;I; �:�nd]290. Q := f:�g;291. G, P=(all � fI;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]292. END293. G, P=(all � fI;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]294. END TheoryCheckSati295. G, P=(all � fI;N ;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 114296. G, free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)297. TheoryRewritei(e)298. RETURN e;299. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](i),S26[S; �:�nd](e; retval)300. G, hf(e)301. TheorySetupi(e)302. G, P34[all](i)303. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, fr(e), P11(e),Op(e) = `=', e[1] 6� e[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e)304. TheorySolve(e)305. RETURN feg;306. G, P=(H;I;N ; �:�nd), P�(�), free(retval) � V, P14[�:�nd](retval),P17[�](�0), P35[�](e; retval), S2[I;S; �:�nd], S3[A;I; �:�nd], S7[S; �:�nd](retval)307. G, P1[�;H;I;N], S3[A;I; �:�nd], S28[�:�nd](i; d)308. TheoryUpdatei(e,d)309. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R), I _ (R0 � R),I 0 ! IA.4.4 Theory-Speci�c Code for Shostak Theory T�310. G, free(e) � V311. TheoryAddSharedTermi(e)312. G, P34[all](i)313. G,314. TheoryAsserti(e)315. G, P34[all](i)

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 115316. G, P1[�;H;I;N], Q = ;, :I, convex, S2[I;S; �:�nd], S3[A;I; �:�nd]317. TheoryCheckSat�() [X := ;;]318. G, P=(all), P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]319. FOREACH e in A� DO BEGIN320. G, P=(all), P1[�;H;I;N], e 2 A�, S2[I;S; �:�nd], S3[A;I; �:�nd],S29[I;S](X;�)321. IF Op(e) = ':' AND Find(e[1][1]) � Find(e[1][2]) THEN BEGIN322. G, P=(all), P1[�;H;I;N], Op(e[1]) = `=', Op(e) = ':',e[1][1] � e[1][2], e 2 A�, S2[I;S; �:�nd]323. I := TRUE; RETURN;324. G, P=(all � fI;N ;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](�),S2[I;S; �:�nd], S3[A;I; �:�nd]325. END [X := X [feg;]326. G, P=(all), P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd],S29[I;S](X;�)327. END328. G, P=(all � fI;N ;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](�),S2[I;S; �:�nd], S3[A;I; �:�nd]329. END TheoryCheckSat�330. G, P=(all � fI;N ;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](�),S2[I;S; �:�nd], S3[A;I; �:�nd]331. G, free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)332. TheoryRewrite�(e)333. G, P=(all), free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)334. IF e is not a term THEN BEGIN335. G, P=(all), free(e) � V, fr(e), P33(e), :P23(e), S4[S; �:�nd](e)336. RETURN e;337. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](�),S26[S; �:�nd](e; retval), S42[S](e; retval)338. END339. G, P=(all), free(e) � V, fr(e), P23(e), S25[S; �:�nd](e)340. e� := RewriteHelper(e);341. G, P=(all), free(e�) � V, P23(e�), T [� j= e ' e�, S30[�:�nd](e�),S31[S; �:�nd](e�), S32[S](e�), S33[S](e�; e)342. RETURN canon�(e�);343. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](�),S26[S; �:�nd](e; retval), S42[S](e; retval)344. END TheoryRewrite�345. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](�),S26[S; �:�nd](e; retval), S42[S](e; retval)

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 116346. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, fr(e), P11(e),Op(e) = `=', e[1] 6� e[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e)347. TheorySolve(e)348. G, P=(all), P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, fr(e), P11(e),Op(e) = `=', e[1] 6� e[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e)349. RETURN solve�(e); [V := V [free(retval)]350. G, P=(�;H;I;N ; �:�nd), free(retval) � V, P14[�:�nd](retval),P17[�](�0), P35[�](e; retval), S2[I;S; �:�nd], S3[A;I; �:�nd],S7[S; �:�nd](retval)351. END TheorySolve352. G, P=(H;I;N ; �:�nd), P�(�), free(retval) � V, P14[�:�nd](retval),P17[�](�0), P35[�](e; retval), S2[I;S; �:�nd], S3[A;I; �:�nd],S7[S; �:�nd](retval)353. G, hf(e)354. TheorySetup�(e)355. G, P=(all), hf(e)356. IF e is a compound �-term THEN BEGIN [Z := ;;]357. G, P=(all), hf(e), S8(e)358. FOREACH c 2 ��(e) DO BEGIN359. G, P=(all � f�:notifyg), P�(�:notify), hf(e), S8(e), S36[�:notify](Z)c 2 ��(e)360. c:notify := c:notify [f(�; e)g; [Z := Z [fcg;]361. G, P=(all � f�:notifyg), P�(�:notify), hf(e), S8(e), S36[�:notify](Z)362. END363. G, P34[all](�), S35[�:notify](e)364. END365. G, P34[all](�), S35[�:notify](e)366. END TheorySetup�367. G, P34[all](�), S35[�:notify](e)

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 117368. G, P1[�;H;I;N], hf(d), S3[A;I; �:�nd], S8(d), S9[�:�nd](d)369. TheoryUpdate�(e,d)370. G, P=(all), P1[�;H;I;N], hf(d), S3[A;I; �:�nd], S8(d), S9[�:�nd](d)371. IF :I AND Find(d) � d THEN BEGIN372. G, P=(all), P1[�;H;I;N], :I, d:�nd � d, S3[A;I; �:�nd], S8(d),S9[�:�nd](d)373. d� := TheoryRewrite�(d);374. G, P=(S; �:�nd), P1[�;H;I;N], :I, :I 0, fr(d�), P23(d�), d:�nd � d,S1[S](d�; d), S3[A;I; �:�nd], S4[S; �:�nd](d�), S8(d), S9[�:�nd](d)375. AssertEqualities(fd = d�g);376. G, P�(F ; lhs(S)), P1[�;H;I;N], :I 0, S3[A;I; �:�nd], I _ (M�R),I _ (R0 � R), I _ (d 2 R)377. END378. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R),I _ (R0 � R), I 0 ! I, S34[I;S; �:�nd](d)379. END TheoryUpdate�380. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R), I _ (R0 � R),I 0 ! I, S34[I;S; �:�nd](d)381. G, free(t) � V, P23(t), fr(t) _ hf(t), S25[S; �:�nd](t)382. RewriteHelper(t)383. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), S25[S; �:�nd](t)384. IF t is a �-leaf THEN BEGIN385. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), :S8(t),S25[S; �:�nd](t)386. IF :HasFind(t) OR t:�nd � t THEN BEGIN387. G, P=(all), free(t) � V, t0 � t, fr(t), P23(t), :S8(t),S31[S; �:�nd](t), S32[S](t), S33[S](t; t0)388. RETURN t;389. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)390. END ELSE BEGIN391. G, P=(all), free(t) � V, t0 � t, P23(t), hf(t), S25[S; �:�nd](t)392. t := Find(t);393. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t), S25[S; �:�nd](t)394. RETURN RewriteHelper(t�);395. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)396. END397. unreachable

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 118398. END ELSE BEGIN399. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), S8(t),S25[S; �:�nd](t)400. FOR k := 1 to Arity(t) DO BEGIN401. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S8(t), S37[�:�nd](t),S38[�:�nd](t; k), S39[S; �:�nd](t; k), S40[S; �:�nd](t; k), S41[S](t; k),Op(t) = Op(t0)402. t[k] := RewriteHelper(t[k]);403. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S8(t), S37[�:�nd](t),S38[�:�nd](t; k + 1), S39[S; �:�nd](t; k + 1), S40[S; �:�nd](t; k + 1),S41[S](t; k + 1), Op(t) = Op(t0)404. END405. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S30[�:�nd](t),S31[S; �:�nd](t), S32[S](t), S33[S](t; t0)406. RETURN t;407. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)408. END409. unreachable410. END RewriteHelper411. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)A.5 Detailed ProofFinally, we present a detailed, line-by-line proof of each underlined property listedin the annotated code. For each line, the code together with the properties before(preconditions) and after (postconditions) are reproduced for convenience. Then, foreach underlined postcondition, a justi�cation is given.It is often necessary to refer to the value of state variables before the line isexecuted. This is done by subscripting the variable with the line number of thepreconditions. For example, in the proof for line 2, H0 refers to the value of theassumption history just before entering AddFact, while H refers to the value at line2, after entering and executing the virtual code which changes H.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 119A.5.1 LemmasWe start with a few general-purpose lemmas.Lemma A.1. Suppose t is a �-term, S is a set of equations in �-solved form,and canon� is a generalized canonizer as described in Section A.2.1. Then if s �canon�(S(t)), then S(s) � s.Proof. Suppose that S(s) 6� s. Then since S is in �-solved form, there must besome c 2 lhs(S) such that c 2 ��(s). Then, by property 3 of canon, this meansthat c 2 ��(S(t)). But because S is in �-solved form, ��(S(t)) \ lhs(S) = ; whichcontradicts the fact that c 2 lhs(S). Thus, S(s) � s. utLemma A.2. Suppose T� is a Shostak theory with signature �� and canonizer canon,t is a ��-term, and S 0, S, and feg are sets of ��-equations in solved form such thatS = feg(S 0) [feg. Then canon(S(canon(S 0(t)))) � canon(S(t)).Proof.T� j= t = t T� includes re
exivity.T� [S 0 j= S 0(t) = t S 0 in solved form.T� [S 0 j= canon(S 0(t)) = t Properties 1 and 2 of canonT� [S 0 [S j= S(canon(S 0(t))) = S(t) S in solved form.T� [S j= S(canon(S 0(t))) = S(t) S j= S 0.T� j= S(canon(S 0(t))) = S(t) Proposition 2.1.canon(S(canon(S 0(t)))) � canon(S(t)) Property 1 of canon. utCorollary A.1. Suppose T� is a Shostak theory which is part of a combined theoryT with signature �, and suppose canon� is a generalized canonizer as described inSection A.2.1. Then, if t is a �-term, and S0;S1; : : :Sn are sets of equations in �-solved form, where for each i; 1 � i � n, there exists e such that feg is in �-solvedform and Si = feg(Si�1) [feg, then canon�(Sn(canon�(S0(t)))) � canon�(Sn(t)).Lemma A.3. Suppose T� is a Shostak theory which is part of a combined theoryT , and suppose canon� is a generalized canonizer as described in Section A.2.1. If

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 120f(s1; : : : ; sn) is a compound �-term, thencanon�(f(s1; : : : ; sn) � canon�(f(canon�(s1); : : : ; canon�(sn))):Proof. By property 1 and 2 of canon, T� j= canon(si) = si for each si. It followsthat T� j= f(canon(s1); : : : ; canon(sn)) = f(s1; : : : ; sn) by substitution. Thus, byproperty 1 of canon, canon(f(canon(s1); : : : ; canon(sn))) � canon(f(s1; : : : ; sn). Thegeneralization to canon� is straightforward. utLemma A.4. Suppose T [W j= 9 x:X, where x = free(X)� free(W) and T [X j=9 y: Y , where y = free(Y) � free(X). Suppose also that W � X and X � Y . ThenT [W j= 9w: Y , where w = x [y = free(Y)� free(W).Proof. Suppose M j=� W . Then, because T [W j= 9 x: X, it follows that thereexists a variable assignment �� which di�ers from � only on x such that M j=�� X.Similarly, it follows from T [X j= 9 y: Y that there exists a variable assignment ���which di�ers from �� only on y such that M j=��� Y . Thus, M j=� 9 x; y: Y . Butx = free(X)� free(W), y = free(Y)� free(X), and W � X and X � Y , so it followsthat x [y = free(Y)� free(W). utLemma A.5. If all global properties hold at the beginning of a procedure, and P=(all)is true at some line of the procedure, then G and P34[all](i) (for all i) also hold atthat line.Proof. The global properties depend only on global state, so if the global state is un-changed, then clearly the global properties still hold. We now consider the propertiesin P34[all](i).P=(�� Bi;H; I;N ;S;��; �:�nd): By P=(all).P�(Q;Bi;V; �:notify): By P=(all).Ti [
i(�0i j= 9w: Bi): By B0i = Bi and B0i � �0i. Note also that w = free(Bi) �free(�0i), so w = ;, and thus, clearly, w \ V 0 = ; ^ w � V.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 121Ti [
i(�i j= (Q�Q0)): Q�Q0 = ;.free(Q�Q0) � V: Q�Q0 = ;. utLemma A.6. If all global properties hold at the beginning of a procedure, and theproperty P34[all](i) holds at the end of a procedure, then all global properties exceptfor G9, G12 and G17 are automatically satis�ed.Proof. Recall that property P34[all](i) implies that P=(��Bi;H; I;N ;S;��; �:�nd),P�(Q;Bi;V; �:notify), Ti [
i(�0i j= 9w: Bi) ^ w \ V 0 = ; ^ w � V, where w =free(Bi)� free(�0i), and Ti[
i(�i j= (Q�Q0))^ free(Q�Q0) � V. We now show thatthe global properties hold.G1: By P=(H; I).G2: By � = �0 [Bi and P=(�:�nd).G3: By G3 at the start of the procedure and P=(H), we have T [H j= 9w:�0, wherew = free(�0) � free(H). Then, by P34[all](i), we have
i(Ti [�0i j= 9 x: Bi),where x = free(Bi) � free(�0i). It follows that T [�0i j= 9 x: Bi, and thusT [�0 j= 9 x:Bi, so T [H j= 9w; x:(�0[Bi). But � = �0[Bi (by P=(��Bi) andP�(Bi)), so T [H j= 9w; x:�. It remains to show that w[x = free(�)�free(H).We know that free(�) = free(�0) [free(Bi) and w = free(�0) � free(H). Now,x = free(Bi)� free(�0i), but we also know that x\V 0 = ; and free(H[�0) � V 0(by G8 at the start of the procedure), so x = free(Bi)� free(H [�0), and thusw [x = free(�)� free(H).G4: By G4 at the start of the procedure and P=(H;N) and � = �0 [Bi, we haveT [H[� j= Q0 [N . It remains to show that T [H[� j= (Q�Q0). But thisfollows from Ti [
i(�i j= (Q�Q0)).G5: By P=(�:�nd).G6: By P=(�:�nd).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 122G7: By P=(�:�nd).G8: By P=(N ;H;��; �:�nd) and P�(V), free(N [H[F [�) � V. It remains to showthat free((Q�Q0) [(�� �0)) � V. But this follows easily from P34[all](i).G11: By P=(A; �:�nd).G13: By P=(S).G14: By P=(S; �:�nd).G15: By P=(S; �:�nd).G16: By de�nition, P=(Gok16). G16 then follows by P=(�:�nd) and P�(�:notify).G18: By P=(�:�nd).G19: By P=(S; �:�nd).G20: By P=(A). utA.5.2 AddFactLine 2:0. G, P1[�;H;I;N], P2(e), P3[�;H](e), S2[I;S; �:�nd], S3[A;I; �:�nd]1. AddFact(e) [H := H [feg; V := V [free(e);]2. G, P4[�;H;I;N](e), e 2 H, S2[I;S; �:�nd], S3[A;I; �:�nd]G: Only those global properties which depend on H or V need be considered:G1: By G1 at 0, I0 ! T [H0 j= false. Since I is unchanged and H0 � H, itfollows that I ! T [H j= false.G3: By G3 at 0, T [H0 j= 9w: �, where w = free(�) � free(H0). SinceH = H0 [feg, it follows that T [H j= 9w: �. But P3[�;H](e) at 0ensures that free(e) \ free(��H0) = ;, so w = free(�)� free(H).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 123G4: By G4 at 0, T [H0 [� j= Q [N . But since H0 � H, it follows triviallythat T [H0 [� j= Q [N .G8: By G8 at 0, free(Q [N [� [H0 [F [�) � V0. But H = H0 [feg andV = V0 [free(e), so it follows that free(Q [N [� [H [F [�) � V.P4[�;H; I;N](e): By P1[�;H; I;N] at 0, :I ! (T [N [� j= H). Then, sinceH = H0 [feg, it follows that :I ! (T [N [� [feg j= H).Line 4:2. G, P4[�;H;I;N](e), e 2 H, S2[I;S; �:�nd], S3[A;I; �:�nd]3. Q := feg;4. G, P4[�;H;I;N](e), Q = feg, S2[I;S; �:�nd], S3[A;I; �:�nd]G: Only those global properties which depend on Q need be considered:G4: By G4 at 2, T [H [� j= Q0 [N . Then, since e 2 H and Q = feg, itfollows that T [H [� j= Q[N .G8: By G8 at 2, free(Q0 [N [� [H [F [�) � V, but again, e 2 H andQ = feg, so Q � H, and thus free(Q) � V.Line 6:4. G, P4[�;H;I;N](e), Q = feg, S2[I;S; �:�nd], S3[A;I; �:�nd]5. REPEAT6. G, P5[�;H;I;N ;Q](e), S2[I;S; �:�nd], S3[A;I; �:�nd]...26. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](N + 1),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]27. UNTIL Q = ; OR I;P5[�;H; I;N ;Q](e): We must show (P4[�;H; I;N](e)^Q = feg)_(P1[�;H; I;N]^Q 6= ;). From 4, this is clear since P4[�;H; I;N](e)^Q = feg at 4. From 26 itis also trivial since P1[�;H; I;N] holds at 26 and Q 6= ; by the loop condition.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 124Line 8:6. G, P5[�;H;I;N ;Q](e), S2[I;S; �:�nd], S3[A;I; �:�nd]7. WHILE Q 6= ; AND :I DO BEGIN8. G, Q 6= ;, :I, P5[�;H;I;N ;Q](e), S2[I;S; �:�nd], S3[A;I; �:�nd]...14. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]15. ENDP5[�;H; I;N ;Q](e): We must show (P4[�;H; I;N](e)^Q = feg)_(P1[�;H; I;N]^Q 6= ;). From 6, it follows trivially. From 14, it follows since P1[�;H; I;N]holds at 14 and Q 6= ; by the loop condition.Line 10:8. G, Q 6= ;, :I, P5[�;H;I;N ;Q](e), S2[I;S; �:�nd], S3[A;I; �:�nd]9. Choose e� 2 Q;10. G, P4[�;H;I;N](e�), Q 6= ;, :I, e� 2 Q,P6[�;H](e�), free(e�) � V, S2[I;S; �:�nd], S3[A;I; �:�nd]P4[�;H; I;N](e�): By P5[�;H; I;N ;Q](e) at 8, either P4[�;H; I;N](e) ^ Q = fegor P1[�;H; I;N]^Q 6= ;. Consider the �rst case: P4[�;H; I;N](e)^Q = feg.Since Q = feg and e� 2 Q, it follows that e � e�. Thus, P4[�;H; I;N](e�)follows from P4[�;H; I;N](e). In the other case, we have P1[�;H; I;N]^:Q =;. But P1[�;H; I;N] implies P4[�;H; I;N](e�).P6[�;H](e�): ByG4 at 8, T [H[� j= Q. But e� 2 Q, so it follows that T [H[� j= e�.free(e�) � V: Follows by G8 at 8 since e� 2 Q.Line 12:10. G, P4[�;H;I;N](e�), Q 6= ;, :I, e� 2 Q,P6[�;H](e�), free(e�) � V, S2[I;S; �:�nd], S3[A;I; �:�nd]11. Q := Q� fe�g;12. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V,S2[I;S; �:�nd], S3[A;I; �:�nd]

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 125G: Only those global properties which depend on Q need be considered. These areG4 and G8, and they follow from G4 and G8 respectively at 10 and the fact thatQ � Q10.Line 14:12. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V,S2[I;S; �:�nd], S3[A;I; �:�nd]13. Assert(e�);14. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]...31. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, S2[I;S; �:�nd],S3[A;I; �:�nd]32. Assert(e)...56. END Assert57. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]We must verify that the preconditions of Assert are met and that the postconditionsof Assert imply the conditions at line 14. However, it is not hard to see that thepreconditions of Assert match the properties at line 12 and that the postconditionsof Assert are equivalent to the properties at 14.Line 16:6. G, P5[�;H;I;N ;Q](e), S2[I;S; �:�nd], S3[A;I; �:�nd]7. WHILE Q 6= ; AND :I DO BEGIN...14. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]15. END16. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]P1[�;H; I;N]: From 6: By the loop condition, Q = ; or I. If Q = ;, thenP1[�;H; I;N] follows from P5[�;H; I;N ;Q](e) at 6. If I, then P1[�;H; I;N]is trivially true. From 14: trivial.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 126Line 18:16. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]17. FOR i := 1 TO N DO BEGIN18. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd],S3[A;I; �:�nd]...24. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](i),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]25. ENDP8[�; I;N ;Q;��; �:�nd](i): We must show that (Q = ; ^ :I ^ convex) ! (8 j; 0 <j < i: P7[�;��; �:�nd](j)). From line 16, this is trivial since i = 1. For thetransition from line 24, note that i = i24+1. P8[�; I;N ;Q;��; �:�nd](i) followseasily by P8[�; I;N ;Q;��; �:�nd](i24) and P9[�; I;N ;Q;��; �:�nd](i24).Line 22:20. G, P1[�;H;I;N], Q = ;, :I, P8[�;I;N ;Q;��; �:�nd](i), convex,S2[I;S; �:�nd], S3[A;I; �:�nd]21. TheoryCheckSati();22. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](i),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]...258. G, P1[�;H;I;N], Q = ;, :I, convex, S2[I;S; �:�nd], S3[A;I; �:�nd]259. TheoryCheckSati()260. G, P=(all � fI;N ;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]The conditions at 20 and 22 match the preconditions and postconditions of the theory-speci�c procedure TheoryCheckSat. The only exception is P8[�; I;N ;Q;��; �:�nd](i)at 22 which follows from P8[�; I;N ;Q;��; �:�nd](i) at 20 and the postconditionP=(all � fI;N ;Qg) of TheoryCheckSat.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 127Line 26:16. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]17. FOR i := 1 TO N DO BEGIN...24. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](i),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]25. END26. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](N + 1),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]We assume there is at least one theory, so there is no possible transition from 16.P8[�; I;N ;Q;��; �:�nd](N + 1): This follows easily from P8[�; I;N ;Q;��; �:�nd](i)and P9[�; I;N ;Q;��; �:�nd](i) at 24 and the loop termination condition: i =N .Line 28:26. G, P1[�;H;I;N], P8[�;I;N ;Q;��; �:�nd](N + 1),P9[�;I;N ;Q;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]27. UNTIL Q = ; OR I;28. G, P1[�;H;I;N], P10[�;I;N ;��; �:�nd], S2[I;S; �:�nd], S3[A;I; �:�nd]P10[�; I;N ;��; �:�nd]: By P8[�; I;N ;Q;��; �:�nd](N + 1) at 26, (Q = ; ^ :I ^convex)! (8 j; 0 < j � N: P7[�;��; �:�nd](j)). Then, by the loop terminationcondition, we have: Q = ; _ I. Suppose Q = ;, then we have (:I ^ convex)!(8 j; 0 < j � N:P7[�;��; �:�nd](j)), which is exactly P10[�; I;N ;��; �:�nd]. If,on the other hand, I is TRUE, then P10[�; I;N ;��; �:�nd] follows trivially.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 128A.5.3 AssertLine 35:33. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, S2[I;S; �:�nd],S3[A;I; �:�nd]34. e� := Simplify(e);35. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, T [� j= e ' e�,fr(e�), S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�), S5(e�)...147. G, free(e) � V148. Simplify(e)...164. END Simplify165. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e0 ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)The preconditions of Simplify follow easily from the properties at 33. Thus, wesimply must show that the postconditions imply the properties at 35.G: Follows by G at 165.T [� j= e ' e�: By T [� j= e0 ' retval at 165.P4[�;H; I;N](e�): To show that :I ! (T [N [� [fe�g j= H), suppose :I andM j=� T [N [� [fe�g. We must show that M j=� H. First notice thatby T [� j= e ' e� at 35 (which we just showed), it follows that M j=�T [N [� [feg. Now, by P=(I;N) and P�(�) at 165, we have :I33 andM j=� T [N33 [�33 [feg, so it follows from P4[�;H; I;N](e) at 33 thatM j=� H33. But by P=(H) at 165, H33 = H, so M j=� H.:I: By :I at 33 and P=(I) at 165.P6[�;H](e�): To show that T [H[� j= e�, supposeM j=� T [H[�. We must showthatM j=� e�. Now, by P=(H) and P�(�) at 165, we haveM j=� T [H33[�33.Then, by P6[�;H](e) at 33,M j=� e. Finally, by T [� j= e ' e� at 35, it followsthat M j=� e�.free(e�) � V: By free(retval) � V at 165.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 129T [� j= e ' e�: By T [� j= e0 ' retval at 165.fr(e�): By fr(retval) at 165.S2[I;S; �:�nd]: By S2[I;S; �:�nd] at 33, P=(I;S; �:�nd) at 165.S3[A; I; �:�nd]: By S3[A; I; �:�nd] at 33, P=(A; I; �:�nd) at 165.S4[S; �:�nd](e�): By S4[S; �:�nd](retval) at 165.S5(e�): By S5(retval) at 165.Line 39:37. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, fr(e�),S2[I;S; �:�nd], S3[A;I; �:�nd]38. N := N [fe�g;39. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]G4: By G4 at 37, T [H [� j= Q[N37. But T [H [� j= e� by P6[�;H](e�) at 37,so it follows that T [H [� j= Q[N .G8: Follows from G8 at 37 and free(e�) � V at 37.P1[�;H; I;N]: By :I and P4[�;H; I;N](e�) at 37, T [N37 [� [fe�g j= H. Thus,T [N [� j= H, from which P1[�;H; I;N] follows easily.Line 41:35. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, T [� j= e ' e�,fr(e�), S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�), S5(e�)36. IF e� is not a literal THEN BEGIN...40. END ELSE IF Op(e�) = `=' THEN BEGIN41. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, fr(e�), P11(e�),Op(e�) = `=', e�[1] 6� e�[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�)P11(e�): By the if-condition at 36, e� is a literal.e�[1] 6� e�[2]: By S5(e�) at 35, we have Op(e�) = `=' ! e�[1] 6� e�[2]. Then, sinceOp(e�) = `=' at 41 (by the if-condition), e�[1] 6� e�[2].

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 130Line 43:41. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, fr(e�), P11(e�),Op(e�) = `=', e�[1] 6� e�[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�)42. E := TheorySolve(e�);43. G, P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), P14[�:�nd](E),S2[I;S; �:�nd], S3[A;I; �:�nd], S7[S; �:�nd](E)...267. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, fr(e), P11(e),Op(e) = `=', e[1] 6� e[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e)268. TheorySolve(e)269. G, P=(H;I;N ; �:�nd), P�(�), free(retval) � V, P14[�:�nd](retval),P17[�](�0), P35[�](e; retval), S2[I;S; �:�nd], S3[A;I; �:�nd], S7[S; �:�nd](retval)The preconditions for TheorySolve match exactly the properties at line 41. We nowshow that the postconditions imply the properties at line 43.G: By G at 269.:I: By :I at 41 and P=(I) at 269.P12[�;H](E): We must show that T [H[� j= 9w:E , where w = free(E)�free(H[�).First note that by P6[�;H](e�) at 41, T [H41 [�41 j= e�. Then, by P=(H)and P�(�) at 269, it follows that T [H [� j= e�. Now, by P35[�](e; retval)at 269, we have T [� j= e� $ 9 x: E , where x = free(E) � free(e�) andx \ (V41 [free(�)) = ;. It follows that T [H [� j= 9 x: E . Now, note thatx = free(E)�free(e�) = free(E)�free(e�)�free(H[�) since free(H) � V41 by G8at 41 and P=(H) at 269. But then x � w, so it follows that T [H[� j= 9w:E .P4[�;H; I;N](E): To show that :I ! (T [N [� [E j= H), note that we havealready shown :I and then suppose that M j=� T [N [�[E . We must showthat M j=� H. As above, we have by P35[�](e; retval) at 269 that T [� j=e� $ 9 x: E , where x = free(E)� free(e�). Since M j=� E , clearly M j=� 9 x: E ,so therefore M j=� e�. Then, by P=(N) and P�(�) at 269, we can concludethat M j=� T [N41 [�41 [fe�g. It then follows from P6[�;H](e�) at 41 thatM j=� H41. Finally, by P=(H) at 269, we conclude that M j=� H.free(E) � V: By free(retval) � V at 269.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 131P14[�:�nd](E): By P14[�:�nd](retval) at 269.S2[I;S; �:�nd]: By S2[I;S; �:�nd] at 269.S3[A; I; �:�nd]: By S3[A; I; �:�nd] at 269.S7[S; �:�nd](E): By S7[S; �:�nd](retval) at 269.Line 45:43. G, P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), P14[�:�nd](E),S2[I;S; �:�nd], S3[A;I; �:�nd], S7[S; �:�nd](E)44. AssertEqualities(E);45. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]...58. G, P4[�;H;I;N](E), :I, P12[�;H](E), P14[�:�nd](E), free(E) � V,S3[A;I; �:�nd], S12[S; �:�nd](E)59. AssertEqualities(E)...97. END AssertEqualities98. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R),I _ (lhs(E) � R), I _ (R0 � R)First, consider the preconditions of AssertEqualities. All preconditions except forS12[S; �:�nd](E) are trivial.S12[S; �:�nd](E): We must show that at 43, false 2 E _ ((S6 (E) _ S10 [S; �:�nd](E)) ^S11 [S; �:�nd](E)). If false 2 E , then S12[S; �:�nd](E) follows trivially. Supposefalse 62 E . Then, by S7[S; �:�nd](E) at 43, S4[S; �:�nd](E) ^ S6(E), and byP14[�:�nd](E) at 43, 8 e 2 E : fr(e)^ P13(E) S12[S; �:�nd](E) will follow if we canshow S11[S; �:�nd](E). To this end, suppose e 2 E . We have fr(e) by 8 e 2E : fr(e) and S4[S; �:�nd](e) by S4[S; �:�nd](E). Finally, we must show e[2] �canon�(S(e[2])). Suppose hf(e[2]). Then, since fr(e), we must have e[2]:�nd �e[2]. It then follows from :I and S2[I;S; �:�nd] that e[2] � canon�(S(e[2])). If:hf(e[2]), then e[2] � canon�(S(e[2])) by S4[S; �:�nd](e).We now show that the postconditions imply the properties at 45.G: By G at 98.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 132P1[�;H; I;N]: By P1[�;H; I;N] at 98.S2[I;S; �:�nd]: Assume :I. We must show 8 e: (hf(e) ! �nd�(e) � canon�(S(e))).Suppose then that e is an expression e 2 HF. Now consider two cases. Ife 2 HF43, then e 2 R43 by S2[I;S; �:�nd] and :I at 43. Then, by I _ (R0 � R)at 98 (and because we have assumed :I), e 2 R, so �nd�(e) � canon�(S(e)).Suppose on the other hand that e 62 HF43. Then since e 2 HF, e 2 M at 98. Itfollows by I _ (M� R) that e 2 R, which implies �nd�(e) � canon�(S(e)).S3[A; I; �:�nd]: By S3[A; I; �:�nd] at 98.Line 49:47. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), T [� j= e ' e�, fr(e�),e� � false, S2[I;S; �:�nd], S3[A;I; �:�nd]48. I := TRUE;49. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]G: Only G1 is a�ected. We must show that T [H is unsatis�able. Suppose T [His satis�able. Then there exists a model M and interpretation � such thatM j=� T [H. Then, by G3 at 47, we can construct �� so thatM j=�� T [H[�.But, by P6[�;H](e�) and e� � false at 47, it then follows that M j=�� false,which is a contradiction. Thus, it must be the case that T [H is unsatis�able.P1[�;H; I;N],S2[I;S; �:�nd],S3[A; I; �:�nd]: These are trivial since I is TRUE.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 133Line 53:51. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, fr(e�), P11(e�),Op(e�) 6= `=', S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�)52. AssertFormula(e�);53. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]...99. G, free(e) � V, fr(e), P11(e), P20[H](�; e), S4[S; �:�nd](e)100. AssertFormula(e)...112. END AssertFormula113. G, P=(H;S), P�(�;V;N ;F ;R), P17[�](�0 [feg), P21[�:�nd],P25[�:�nd](e), e 2 �, A = A0 [feg, M�RFirst consider the preconditions of AssertFormula.P20[H](�; e�): Let W = �, X = ;, Y = fe�g, and Z = ;. Clearly, fW;X;Zg is apartition of �. T [H j= 9w: �, where w = free(�) � free(H) by G3. Also,T [H[� j= 9 x; y: (X [Y) simply reduces to T [H[� j= 9 y:e� which followsfrom P6[�;H](e�) at 51.Now we consider the properties at line 53.G: By G at 113.P1[�;H; I;N]: Suppose :I and M j=� T [N [�. We must show that M j=� H.First note that by P�(�;N) at 113, we have M j=� T [N51 [�51. Also, bye 2 � at 113, e� 2 �, so M j=� e�, and thus M j=� T [N51 [�51 [fe�g. Then,by P4[�;H; I;N](e�) at 51, M j=� H51. Finally, by P=(H) at 113, M j=� H.S2[I;S; �:�nd]: Assume :I. We must show 8 e: (hf(e) ! �nd�(e) � canon�(S(e))).Suppose then that e is an expression e 2 HF. Now consider two cases. Ife 2 HF51, then e 2 R51 by S2[I;S; �:�nd] and :I at 51. Then, by P�(R)at 113, e 2 R, so �nd�(e) � canon�(S(e)). Suppose on the other hand thate 62 HF51. Then since e 2 HF, e 2 M at 113. It follows byM� R that e 2 R,which implies �nd�(e) � canon�(S(e)).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 134S3[A; I; �:�nd]: Assume :I. We must show 8 e 2 A: (Op(e) = `=' ! e[1] � e[2]).Consider d 2 A. Suppose d 2 A51. Then Op(d) = `=' ! d[1] �51 d[2]. Butby P�(F) at 113 it follows that Op(d) = `=' ! d[1] � d[2]. Suppose on theother hand that d 62 A51. Then since A = A0 [feg at 113, it follows thatA = A51 [fe�g at 53, so it must be the case that d � e�. Since we knowOp(e�) 6= `=', it follows trivially that Op(d) = `='! d[1] � d[2].Line 55:35. G, P4[�;H;I;N](e�), :I, P6[�;H](e�), free(e�) � V, T [� j= e ' e�,fr(e�), S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e�), S5(e�)36. IF ...39. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]40. END ELSE IF ...45. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]46. END ELSE IF ...49. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]50. END ELSE IF e� 6� true THEN BEGIN...53. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]54. END55. G, P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]Note that the conditions at line 55 follow trivially from the conditions at the endof each if-block. Thus, the only case which is not obvious is when none of theif-conditions are true. In this case, S2[I;S; �:�nd] and S3[A; I; �:�nd] follow triv-ially from 35. To show P1[�;H; I;N], note that e� � true. Thus, by :I andP4[�;H; I;N](e�) at 35, T [N [� j= H, from which P1[�;H; I;N] follows easily.A.5.4 AssertEqualitiesLine 64:62. G, P=(all), P4[�;H;I;N](E), P12[�;H](E), false 2 E, P14[�:�nd](E)63. I := TRUE;64. G, P=(all � fIg), P1[�;H;I;N], I

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 135G: Only G1 is a�ected. We must show that T [H is unsatis�able. Suppose T [His satis�able. Then there exists a model M and interpretation � such thatM j=� T [H. Then, by G3 at 62, we can construct �� so thatM j=�� T [H[�.But, by P12[�;H](E) and false 2 E at 62, it then follows thatM j=�� false, whichis a contradiction. Thus, it must be the case that T [H is unsatis�able.P1[�;H; I;N]: Trivial since I is TRUE.Line 66:60. G, P=(all), P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), P14[�:�nd](E),S3[A;I; �:�nd], S12[S; �:�nd](E)61. IF false 2 E THEN BEGIN...65. END ELSE BEGIN [A� := A; �� := �; N � := N; X := ;]66. G, P=(all), P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), false 62 E,8 e 2 E : fr(e), P13(E), S3[A;I; �:�nd], S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E)8 e 2 E : fr(e): By P14[�:�nd](E) at 60 and false 62 E at 66.P13(E): By P14[�:�nd](E) at 60 and false 62 E at 66.S6(E) _ S10[S; �:�nd](E): By S12[S; �:�nd](E) at 60 and false 62 E at 66.S11[S; �:�nd](E): By S12[S; �:�nd](E) at 60 and false 62 E at 66.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 136Line 68:65. END ELSE BEGIN [A� := A; �� := �; N � := N; X := ;]66. G, P=(all), P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), false 62 E,8 e 2 E : fr(e), P13(E), S3[A;I; �:�nd], S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E)67. FOREACH e 2 E DO BEGIN68. G, P=(H;S), P�(V;F ;R), P15[�;N](��;N �;X), P13(E), X � E,P16[�:�nd](X; E), P17[�](�� [X), free(E) � V 0, S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E), A = A� [X, S13[�:�nd](A�), M�R, e 2 E, e 62 X...70. G, P=(H;S), P�(V;F ;R), P15[�;N](��;N �;X), P13(E), X � E,P16[�:�nd](X; E), P17[�](�� [X), free(E) � V 0, S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E), A = A� [X, S13[�:�nd](A�), M�R71. ENDThe variables A�, ��, N �, and X are helper variables which aid the proof. A�, ��,and N � simply store for future reference the value of their respective state variablesat line 65. X is used to track which elements of E have been processed by the loop atlines 67 to 71. Since the properties at 68 and 70 are identical (except for the trivialones which mention e), we only need to consider the transition from line 66 to 68.P15[�;N](��;N �; X): Trivial since �� = �, N � = N , and X = ; at 66.P16[�:�nd](X; E): Since X = ; at 66, this follows trivially from 8 e 2 E : fr(e) at at 66.P17[�](�� [X): Trivial since �� = � and X = ; at 66.A = A� [X: Trivial since A = A� and X = ; at 66.S13[�:�nd](A�): By :I, S3[A; I; �:�nd], and A = A� at 66.M� R: By P=(all) at 66, M = ;.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 137Line 70:68. G, P=(H;S), P�(V;F ;R), P15[�;N](��;N �;X), P13(E), X � E,P16[�:�nd](X; E), P17[�](�� [X), free(E) � V 0, S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E), A = A� [X, S13[�:�nd](A�), M�R, e 2 E, e 62 X69. AssertFormula(e); [X := X [feg;]70. G, P=(H;S), P�(V;F ;R), P15[�;N](��;N �;X), P13(E), X � E,P16[�:�nd](X; E), P17[�](�� [X), free(E) � V 0, S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E), A = A� [X, S13[�:�nd](A�), M�R...99. G, free(e) � V, fr(e), P11(e), P20[H](�; e), S4[S; �:�nd](e)100. AssertFormula(e)...112. END AssertFormula113. G, P=(H;S), P�(�;V;N ;F ;R), P17[�](�0 [feg), P21[�:�nd],P25[�:�nd](e), e 2 �, A = A0 [feg, M�RFirst we consider the preconditions of AssertFormula.free(e) � V: Follows from free(E) � V 0, P�(V), and e 2 E at 68.fr(e): By P16[�:�nd](X; E) and e 62 X at 68.P20[H](�; e): Let W = ��, X = X���, Y = E �X, and Z = �� (��[X). It is nothard to see that f��; X���;��(��[X)g is a partition of �: the sets are clearlydisjoint (by construction). Then, their union is � because �� � � and X � �(by P15[�;N](��;N �; X) at 68). Next we must show that T [H j= 9w: ��,where w = free(��)� free(H). But this follows easily from G3 at 66 and P=(H)at 66 and 68. Next, we must show that T [H[�� j= 9 x; y:((X���)[(E�X))where x = free(X � ��) � free(H [��) and y = free(E � X) � free(H [�� [(X � ��)). With some e�ort and the the fact that X � E at 68, it can beshown that this is equivalent to T [H [�� j= 9 x: (E � (�� \ X)) wherex = free(E � (�� \X))� free(H[��). This certainly follows from the strongerrequirement T [H [�� j= 9 x: E where x = free(E) � free(H [��). But byP=(H) at 66 and 68, this follows from P12[�;H](E) at 66. Finally, we mustshow that T [�� [(X � ��) j= 9 z: (�� (�� [X)) and z \ free(H[feg) = ;,

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 138where z = free(� � (�� [X)) � free(�� [(X � ��)). This follows from thestronger condition T [�� [X j= 9 z: � and z \ free(H [feg) = ;, wherez = free(�) � free(�� [X) which follows from P17[�](�� [X) at 68, togetherwith e 2 E and free(E) � V 0 at 68, and P=(H) at 68 and G8 at 58. The lastcondition, e 2 (E �X) follows easily from e 2 E and e 62 X at 68.S4[S; �:�nd](e): By S11[S; �:�nd](E) and e 2 E at 68.Now we consider the properties at line 70.G: By G at 113.P=(H;S): By P=(H;S) at 68 and 113.P�(V;F ;R): By P�(V;F ;R) at 68 and 113.P15[�;N](��;N �; X): By P15[�;N](��;N �; X) at 68 and P�(�;N) at 113.P13(E): By P13(E) at 68.X � E: By X68 � E , e 2 E , and X = X68 [feg.P16[�:�nd](X; E): We must show 8 e 2 E : [(e 2 X ! (e[1]:�nd � e[1] ^ e[2]:�nd �e[2])) ^ (e 62 X ! fr(e))]. Suppose e 2 E . Suppose further that e 2 X. Ife 2 X68, then e[1]:�nd68 � e[1] and e[2]:�nd68 � e[2], so by P21[�:�nd] at 113,e[1]:�nd � e[1] and e[2]:�nd � e[2]. If e 62 X68, then by the de�nition of X, emust have been the argument to the call to AssertFormula, so e[1]:�nd � e[1]and e[2]:�nd � e[2] by P25[�:�nd](e) at 113. Finally, suppose that e 62 X. Itfollows that e 62 X68, so fr(e) was true at 68. By P21[�:�nd] at 113, fr(e) is trueat 70 as well.P17[�](�� [X): We must show that T [�� [X j= 9w: � and w \ V 0 = ;, wherew = free(�) � free(�� [X). Suppose that M j=� T [�� [X. Now, byP17[�](�� [X) at 68, we have T [�� [X68 j= 9 x: �68 and x \ V 0 = ;, wherex = free(�68) � free(�� [X68). It follows that T [�� [X j= 9 x: �68 sinceX = X68 [feg. Further, x = free(�68) � free(�� [X) since x \ V 0 = ; and

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 139free(e) � V 0. Thus M j=� 9 x: �68, so there is a variable assignment �� suchthat M j=�� T [�� [X [�68 where �� di�ers from � at most only on thevalues of x. Now, by P17[�](�0 [feg) at 113, we have T [�68 [feg j= 9 y: �and y \ V68 = ;, where y = free(�) � free(�68 [feg). It then follows thatM j=�� 9 y: �. Thus, we can conclude that M j=� 9 x; y: �. Finally, we showthat if w = x [y, then w \ V 0 = ;, and w = free(�) � free(�� [X). Firstnote that we already have x \ V 0 = ;. It is easy to see that y \ V 0 = ;since y \ V68 = ; and P�(V) at 68. Now, let W = �� [X, then w = x [y =(free(�68)�free(W))[(free(�)�free(�68[feg)). But �68[feg = �68[W , since�� � �68 and X68 � �68 by P15[�;N](��;N �; X) at 68 (and X = X68 [feg),so w = (free(�68)� free(W))[(free(�)� free(�68[W)). Finally, since �68 � �by P�(�) at 113, it is not hard to see that w = free(�) � free(W) = free(�) �free(�� [X).free(E) � V 0: By free(E) � V 0 at 68.S6(E) _ S10[S; �:�nd](E): Suppose S6(E) at 68. Then S6(E) at 70 since E does notchange. Suppose on the other hand that S10[S; �:�nd](E) holds at 68 andsuppose that e is the witness. Then we will show that e is also a witnessfor S10[S; �:�nd](E) at 70. In fact, it is easy to see that all conditions ofS10[S; �:�nd](E) except for S9[�:�nd](e[1]) follow from S10[S; �:�nd](E) at 68and P=(S) and P�(F) at 113. Now, by S9[�:�nd](e[1]) at 68, there is a c suchthat c 2 ��(e) ^ c:�nd68 6� c. Also, by hf(e[1]) at 68, it follows that hf(c) at68 (by G6 at 68). It then follows from G19 at 68 that c 2 lhs(S68). But sinceS = S68 by P=(S) at 113, it follows by G19 at 70 that c:�nd 6� c.S11[S; �:�nd](E): Suppose e 2 E . We must show that S1[S](e[2]; e[2]) ^ fr(e) ^S4[S; �:�nd](e). S1[S](e[2]; e[2]) follows from S11[S; �:�nd](E) at 68 and P=(S)at 113. fr(e) follows from P16[�:�nd](X; E) at 70 which we showed above. Fi-nally, consider S4[S; �:�nd](e). Let t�e and suppose :hf(t). We must show thats � canon�(S(t)). But by P�(F) at 113, :hf(t) at 68, so s � canon�(S68(t)),from which it follows (by P=(S) at 113) that s � canon�(S(t)).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 140A = A� [X: By A = A� [X68 at 68, A = A0 [feg at 113, and X = X68 [feg.S13[�:�nd](A�): By S13[�:�nd](A�) at 68 and P�(F) at 113.M� R: We know that,M68 � R68, so by P�(R) at 113,M68 � R. But byM� Rat 113, we also know that (M�M68) � R.Line 72:... [A� := A; �� := �; N � := N; X := ;]66. G, P=(all), P4[�;H;I;N](E), :I, free(E) � V, P12[�;H](E), false 62 E,8 e 2 E : fr(e), P13(E), S3[A;I; �:�nd], S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E)67. FOREACH e 2 E DO BEGIN...70. G, P=(H;S), P�(V;F ;R), P15[�;N](��;N �;X), P13(E), X � E,P16[�:�nd](X; E), P17[�](�� [X), free(E) � V 0, S6(E) _ S10[S; �:�nd](E),S11[S; �:�nd](E), A = A� [X, S13[�:�nd](A�), M�R71. END72. G, P=(S), P�(F ;R), P1[�;H;I;N], P13(E), P18[�:�nd](E), A = A� [E,S6(E) _ S10[S; �:�nd](E), S11[S; �:�nd](E), S13[�:�nd](A�), M�R, E � �P1[�;H; I;N]: By :I and P4[�;H; I;N](E) at 66, T [N � [�� [E j= H66. From66, E = ;, N � = N , �� = �, and H66 = H, so it follows that T [N [� j= H.From 70, by P15[�;N](��;N �; X) at 70 and the end-of-loop condition X = E ,it follows that T [N [� j= H66. Then, by P=(H) at 70 and 66, T [N [� j= H.P18[�:�nd](E): From 66: trivial since E = ;. From 70: by P16[�:�nd](X; E) and theend-of-loop condition X = E .S13[�:�nd](A�): From 66: by S3[A; I; �:�nd], :I, andA� = A at 66. From 70: trivial.E � �: From 66: trivial since E = ;. From 70: by P15[�;N](��;N �; X) and theend-of-loop condition X = E .

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 141Line 76:73. [X := ;; R� := R; S� := S]74. G, P=(S), P�(F ;R), P1[�;H;I;N], P13(E), P18[�:�nd](E), A = A� [E,S6(E) _ S10[S; �:�nd](E), S11[S; �:�nd](E), S13[�:�nd](A�), M�R, E � �75. FOREACH e 2 E DO BEGIN76. G, P�(F ; lhs(S)), P1[�;H;I;N], P13(E), E � �, P19[�:�nd](X; E),A = A� [E, S13[�:�nd](A� [X), S14[�:�nd](R�;X), lhs(X) � R,S15[S; �:�nd](E ;X), S16[S; �:�nd](R�; E ;X;S�), S17(E ;X), e 2 E, e 62 X...78. G, P�(F ; lhs(S)), P1[�;H;I;N], P13(E), E � �, P19[�:�nd](X; E),A = A� [E, S13[�:�nd](A� [X), S14[�:�nd](R�;X), lhs(X) � R,S15[S; �:�nd](E ;X), S16[S; �:�nd](R�; E ;X;S�), S17(E ;X)79. ENDOther than the trivial property e 2 E , the properties at 76 and 78 are identical andnone of them depend on e, so it su�ces to consider only the transition from 74.P19[�:�nd](X; E): By P18[�:�nd](E) at 74 and the fact that X = ;.S14[�:�nd](R�; X): M� R at 74, so M�R� = ;.lhs(X) � R: Trivial since X = ;.S15[S; �:�nd](E ; X): If S10[S; �:�nd](E) at 74 then we also have S10[S; �:�nd](E) at76, from which S15[S; �:�nd](E ; X) follows easily. Otherwise, S6(E) by S6(E) _S10[S; �:�nd](E) at 74. It then remains to show that 8 e 2 E :S(e) � e and 8 e 2E :S1[S](e[2]; e[2]). Consider e 2 E . S1[S](e[2]; e[2]) follows from S11[S; �:�nd](E)at 74. We now show that S(e) � e. First, we know that e[1] is a �-leaf by S6(E).Also, e[1]:�nd � e[1] by P18[�:�nd](E) at 74. It follows by G19 that e[1] 62 lhs(S),so S(e[1]) � e[1]. Now, we know that e[2] � canon�(S(e[2])) by S11[S; �:�nd](E)at 74. Thus, by Lemma A.1, S(e[2]) � e[2].S16[S; �:�nd](R�; E ; X;S�): Consider t 2 R�. Since at this point X = ;, R = R�,and S = S�, we know that hf(t), �nd�(t) � canon�(S�(t)) � canon�(S(t)),and ��(canon�(S(t))) \ lhs(X) = ;. This is su�cient to satisfy the propertyS16[S; �:�nd](R�; E ; X;S�).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 142S17(E ; X): Trivial since X = ;.Line 78:76. G, P�(F ; lhs(S)), P1[�;H;I;N], P13(E), E � �, P19[�:�nd](X; E),A = A� [E, S13[�:�nd](A� [X), S14[�:�nd](R�;X), lhs(X) � R,S15[S; �:�nd](E ;X), S16[S; �:�nd](R�; E ;X;S�), S17(E ;X), e 2 E, e 62 X77. e[1]:�nd := e[2]; [X:=X [feg; IF :S8(e[1]) THEN S:=feg(S) [feg;]78. G, P�(F ; lhs(S)), P1[�;H;I;N], P13(E), E � �, P19[�:�nd](X; E),A = A� [E, S13[�:�nd](A� [X), S14[�:�nd](R�;X), lhs(X) � R,S15[S; �:�nd](E ;X), S16[S; �:�nd](R�; E ;X;S�), S17(E ;X)G: We consider the global properties that depend on �nd or S. First note thatHF76 = HF. This is because e[1] is the only expression whose �nd pointer haschanged, but hf(e[1]) at 76 by P19[�:�nd](X; E) since e 2 E .G2: Since e[1]:�nd76 � e[1] and e[2]:�nd76 � e[2] (by P19[�:�nd](X; E), e 2 E ,and e 62 X at 76), the result of executing line 77 is to merge the �-equivalence classes whose representatives are e[1] and e[2] respectively. Itis not hard to see, then, that F is the symmetric-transitive closure of(F76 [feg). Now, T [� j= F76 by G2 at 76. Also, e 2 � by E � � ande 2 E . Thus, since T includes the properties of equality, T [� j= F .G5: Since G5 holds at 76 and since (as we showed above) e[1]:�nd76 � e[1] ande[2]:�nd76 � e[2], setting e[1]:�nd to e[2]:�nd cannot cause �nd�(d) to beunde�ned for any expression d for which �nd�(d) is de�ned at 76.G6: By G6 at 76 and HF76 = HF.G7: By G7 at 76 and HF76 = HF.G8: As shown above, F is the symmetric-transitive closure of (F76 [feg). Butsince e[1]:�nd76 � e[1] and e[2]:�nd76 � e[2], (e[1] = e[1]) 2 F76 and(e[2] = e[2]) 2 F76. Thus, free(F76)=free(F). G8 then follows by G8 at 76.G9: The above argument also shows that there are no new terms in F that werenot in F76, so G9 follows from G9 at 76.G11: By G11 at 76 and HF76 = HF.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 143G13: Suppose S10[S; �:�nd](E) at 76. Then e[1] is a compound �-term, so S isunchanged. Thus, S is in �-solved form by G13 at 76. If :S10[S; �:�nd](E)at 76, then by S15[S; �:�nd](E ; X) at 76, E is in �-solved form and S76(e) �e. It is thus easy to see that since S76 is in �-solved form (by G13 at 76),feg(S76) [feg is also in �-solved form.G14: As described above, F is the symmetric-transitive closure of F76 [feg.Thus, in particular, F j= F76 [feg. By G14 at 76, T [F76 j= S76, and�nally, by de�nition, T [S76 [feg j= S. Putting these together, we getT [F j= S.G15: We �rst show that T�[
�(S) j=
�(e). If e[1] is a �-leaf, then this is trivialsince e 2 S. Otherwise, e[1] is a compound �-term, and thus E is not in�-solved form. Then, by S15[S; �:�nd](E ; X) at 76, S10[S; �:�nd](E) mustbe true at 76 which implies that e[2] � canon�(S(e[1])), from which itfollows that T�[
�(S) j=
�(e[1] = e[2]). Next, we note that by de�nition,
�(S) j=
�(S76), so it follows that T�[
�(S) j=
�(F76) by G15 at 76. ButF is the symmetric-transitive closure of F76[feg. Thus, since T� includessymmetry and transitivity of equality, T� [
�(S) j=
�(F).G16: By G16 at 76 and HF76 = HF.G17: By G17 at 76 and HF76 = HF.G18: A little thought reveals that for this property to false, there would haveto be a compound �-term t such that hf(t) ^ t:�nd 6� t and c:�nd � c forall c 2 ��(t). By G18 at 76, there is no such term t at 76. There are twoways that the execution of line 77 could create such a term:1. The �rst way is if e[1] is the term t. For this to be the case, e[1]would have to be a compound �-term with c:�nd76 � c for all c 2��(e[1]). But, by S15[S; �:�nd](E ; X) at 76, either S10[S; �:�nd](E)or S6(E) must hold at 76. If S10[S; �:�nd](E) holds, then the lastcondition of S10[S; �:�nd](E) states that 9 c 2 ��(e): (c:�nd76 6� c),which contradicts our assumption. If, on the other hand, S6(E), thene[1] must be a �-leaf, which also contradicts an assumption.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 1442. The other possibility is that e[1] is a �-leaf of some term t wheret:�nd76 6� t and e[1] � e[2]. Again, by S15[S; �:�nd](E ; X) at 76, eitherS10[S; �:�nd](E) or S6(E) must hold at 76. If S10[S; �:�nd](E) holds,then e[1] is not a �-leaf which contradicts our assumption, and if S6(E)holds at 76, then we cannot have e[1] � e[2] since then E would notbe in �-solved form.G19: Suppose S10[S; �:�nd](E) at 76. Then e[1] is a compound �-term, so Sis unchanged. Also, the �nd attributes of no �-leaves are changed andHF76 = HF, so G19 follows from G19 at 76. If :S10[S; �:�nd](E) at 76, thenby S15[S; �:�nd](E ; X) at 76, E is in �-solved form and S = feg(S76)[feg(which is in �-solved form as shown above). Thus lhs(S) = lhs(S76)[fe[1]g.Now, note that for t 6� e[1], t:�nd76 � t:�nd and t 2 lhs(S76) $ t 2lhs(S). For t = e[1], clearly t 2 lhs(Eq), but since e[1] 6� e[2] (otherwiseE would not be in �-solved form), t:�nd 6� t. Finally, the only terms in Sthat are not in S76 are those in e, but hf(t) for every sub-term t of e byP19[�:�nd](X; E) at G6 at 76 and HF = HF76. G19 thus follows from G19at 76.P�(F ; lhs(S)): As described above, F is the symmetric-transitive closure of F76[feg,so clearly F76 � F . F 0 � F then follows from P�(F) at 76. To show thatlhs(S76) � lhs(S), assume that :S8(e[1]) (otherwise, S = S76, so it is trivial) andnote that as shown above in the proof ofG13, S76(e) � e. Thus, ��(e)\lhs(S76) =;, and so lhs(feg(S76)) = lhs(S76). Then, since S = feg(S76) [feg, it followsthat lhs(S76) � lhs(S).P19[�:�nd](X; E): Follows easily by P19[�:�nd](X; E) at 76, the execution of line 77,and X = X76 [feg.S13[�:�nd](A� [X): We must show 8 e 2 X: (Op(e) = `=' ! e[1] � e[2]). Supposed 2 X. If d 2 X76, then Op(e) = `='! e[1] � e[2] by S13[�:�nd](A� [X) at 76and P�(F) (shown above). Otherwise, d � e, but e[1] � e[2] by the executionof line 77 and the de�nition of �.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 145S14[�:�nd](R�; X): We must show (M�R�) � lhs(X). Suppose t 2 (M�R�). Ift 2 (M76 � R�), then t 2 lhs(X) by S14[�:�nd](R�; X) at 76 and X76 � X.Otherwise, since M =M76 [fe[1]g, we must have t � e[1]. But e[1] 2 lhs(X)since X = X76 [feg.S17(E ; X): Clearly, X � E since X76 � E by S17(E ; X) at 76, e 2 E , and X =X76[feg. Now, suppose that E is in �-solved form. Then X76 � S by S17(E ; X)at 76. Also, e[1] is a �-leaf, so S = feg(S76) [feg. Now, feg(X76) = X76 sinceX76 � E and e 2 E and E is in �-solved form. Thus we have S = feg(S76)[feg,X76 � S, feg(X76) = X76, and X = X76 [feg. It follows that X � S.S15[S; �:�nd](E ; X): We must show that S10[S; �:�nd](E) or[S6(E) ^ (8 e 2 (E �X): S(e) � e) ^ (8 e 2 E : S1[S](e[2]; e[2]))].1. Suppose S10[S; �:�nd](E) at 76. Then we can show that S10[S; �:�nd](E)also holds at 78. Let e be the witness for S10[S; �:�nd](E) at 76. Wewill show that e is the witness at 78 as well. Clearly, E = feg ^ S8(e[1])at 78 follows from S10[S; �:�nd](E) at 76. Also, hf(e[1]) follows since, ashas been shown above, HF76 = HF. Then, since e[1] is a compound �-term, S is unchanged from 76, so e[2] � canon�(S(e[1])). Finally, the onlyexpression whose �nd attribute changed from 76 to 78 was not a �-leaf, so9 c 2 ��(e): (c:�nd 6� c) must hold at 78 since it holds at 76.2. Suppose on the other hand that :S10[S; �:�nd](E) at 76. Then it followsfrom S15[S; �:�nd](E ; X) at 76 that S6(E) holds, 8 e 2 (E�X76):S76(e) � e,and 8 e 2 E : e[2] � canon�(S76(e[2])). We must show that these conditionsalso hold at 78.S6(E): By S6(E) at 76.8 e 2 (E �X): S(e) � e: Consider d 2 (E �X). Since X = X76 [feg, weknow that d 2 (E �X76), so S76(d) � d and thus ��(d)\ lhs(S76) = ;.Also, because E is in �-solved form and e 2 E (and e 6� d sincee 2 X), e[1] 62 ��(d). Now, as we showed above, (in the proof of G19),

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 146lhs(S) = lhs(S76) [fe[1]g, so it follows that ��(d) \ lhs(S) = ;, andthus S(d) � d.8 e 2 E : e[2] � canon�(S(e[2])): Let d 2 E . From S15[S; �:�nd](E ; X) at76, we know that d[2] � canon�(S76(d[2])), so S76(d) � d by LemmaA.1. But as shown above, lhs(S) = lhs(S76) [fe[1]g and since E isin �-solved form, e[1] 62 ��(d[2]), so S(d[2]) � d[2]. Thus, d[2] �canon�(S(d[2])).lhs(X) � R: Consider d 2 X. In order to show d 2 R, we must show hf(d[1]) ^�nd�(d[1]) � canon�(S(d[1])). We know that d 2 E by S17(E ; X) at 78 (shownabove). Then, by P19[�:�nd](X; E) at 78 (also shown above), d[1]:�nd � d[2], sohf(d[1]) ^ �nd�(d[1]) � d[2]. Now, if S10[S; �:�nd](E) at 78, then we know thatd[2] � canon�(S(d[1])). Otherwise, E is in �-solved form (by S15[S; �:�nd](E ; X)at 78, shown above), so again by S17(E ; X), d 2 S. It then follows by G13 thatS(d[1]) � d[2]. But, by S15[S; �:�nd](E ; X), d[2] � canon�(S(d[2])), so byproperty 2 of canon, canon�(d[2]) � d[2], and thus canon�(S(d[1])) � d[2].S16[S; �:�nd](R�; E ; X;S�): Suppose t 2 R�. We know that hf(t) since hf(t) at 76(by S16[S; �:�nd](R�; E ; X;S�) at 76) and HF = HF76. Now, we must considerthree cases.1. Suppose ��(canon�(S�(t))) \ lhs(X) = ; _ :S6(E). We must show that�nd�(t) � canon�(S�(t)) � canon�(S(t)). Since lhs(X76) � lhs(X), itmust be the case that ��(canon�(S�(t)))\ lhs(X76) = ;_:S6(E). Thus, byS16[S; �:�nd](R�; E ; X;S�), �nd�76(t) � canon�(S�(t)) � canon�(S76(t)).We consider two sub-cases.(a) Suppose S10[S; �:�nd](E) at 76. Then since e must be a compound�-term, we know that S76 = S, and thus it follows trivially thatcanon�(S76(t)) � canon�(S(t)). Now, if �nd�(t) � �nd�76(t), thenclearly �nd�(t) � canon�(S�(t)) � canon�(S(t)). If, on the otherhand, �nd�(t) 6� �nd�76(t), then it must be the case that �nd�76(t) � e[1]and �nd�(t) � e[2]. But then e[1] � canon�(S76(t)) � canon�(S(t)).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 147Furthermore, e[2] � canon�(S(e[1])) by S15[S; �:�nd](E ; X) (shownabove), so e[2] � canon�(S(t)) by Corollary A.1, and thus e[1] � e[2]which contradicts the assumption that �nd�(t) 6� �nd�76(t).(b) Suppose :S10[S; �:�nd](E) at 76. Then E is in �-solved form (byS15[S; �:�nd](E ; X)) and thus ��(canon�(S�(t))) \ lhs(X) = ;. Bute 2 X and e[1] is a �-leaf, so in particular canon�(S�(t)) 6� e[1]. Thus,since �nd�76(t) � canon�(S�(t)), it follows that �nd�(t) � �nd�76(t).Thus, �nd�(t) � canon�(S�(t)) � canon�(S76(t)). Finally, we showcanon�(S76(t)) � canon�(S(t)). First note that S(canon�(S76(t))) �canon�(S76(t)). To show this, suppose it is not true. Then therewould have to be some c 2 ��(canon�(S76(t))) such that c 2 lhs(S).But S = feg(S76) [feg, so c 2 S76 or c � e[1]. But if c 2 lhs(S76),then c 62 ��(canon�(S76(t))) by property 3 of canon, which is a con-tradiction. Also, c � e[1] would imply c 62 ��(canon�(S76(t))) be-cause canon�(S76(t)) � canon�(S�(t)), e 2 X and ��(canon�(S�(t)))\lhs(X) = ;. Thus S(canon�(S76(t))) � canon�(S76(t)), and so it thenfollows from property 2 of canon that canon�(S(canon�(S76(t)))) �canon�(S76(t)). But by Corollary A.1, canon�(S(canon�(S76(t)))) �canon�(S(t)).2. Suppose that E is in �-solved form, ��(canon�(S�(t))) \ lhs(X) 6= ;, andcanon�(S�(t)) is a �-leaf. We must show that �nd�(t) � canon�(S(t)) ^��(canon�(S(t))) \ lhs(E) = ;. Since canon�(S�(t)) is a �-leaf, it followsby S16[S; �:�nd](R�; E ; X;S�) at 76 that �nd�76(t) � canon�(S76(t)). Thereare two cases.(a) Suppose canon�(S�(t)) � e[1]. Note that X = X76 [feg and theleft-hand sides of X are all distinct (since X � E and E is in �-solved form), so ��(canon�(S�(t)))\ lhs(X76) = ;. It then follows fromS16[S; �:�nd](R�; E ; X;S�) at 76 that canon�(S�(t)) � canon�(S76(t)).Now, since �nd�76(t) � canon�(S76(t)), it follows that �nd�76(t) �canon�(S�(t)) and thus �nd�76(t) � e[1]. So, after the execution ofline 77, �nd�(t) � e[2]. But we know that S(canon�(S�(t))) � e[2]

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 148since canon�(S�(t)) � e[1], e 2 X and X � S (by S17(E ; X) at 78,shown above). Finally, we also know that e[2] � canon�(S(e[2])) byS15[S; �:�nd](E ; X) (also shown above), so by substitution, we havethat e[2] � canon�(S(S(canon�(S�(t))))) which further reduces tocanon�(S(canon�(S�(t)))) which, �nally, is equivalent to canon�(S(t))by Corollary A.1. Thus, �nd�(t) � canon�(S(t)). It is then easy to seethat ��(canon�(S(t))) \ lhs(E) = ; since canon�(S(t)) � e[2], e 2 E ,and E is in �-solved form.(b) Suppose that canon�(S�(t)) 6� e[1]. Then, since ��(canon�(S�(t))) \lhs(X) 6= ;, it must be the case that ��(canon�(S�(t)))\ lhs(X76) 6= ;(since, as mentioned above, X = X76 [feg and the left-hand sidesof X are all distinct). Thus, by S16[S; �:�nd](R�; E ; X;S�) at 76,��(canon�(S76(t))) \ lhs(E) = ;. In particular, we have that e[1] 62��(canon�(S76(t))), and so, since �nd�76(t) � canon�(S76(t)), it followsthat �nd�(t) � canon�(S76(t)). Also, since S = feg(S76) [feg, it fol-lows by property 3 of canon that S(canon�(S76(t))) � canon�(S76(t)).It then follows that canon�(S(canon�(S76(t)))) � canon�(S76(t)) byproperty 2 of canon. But we also know from Corollary A.1 thatcanon�(S(canon�(S76(t)))) � canon�(S(t)), so we can conclude that�nd�(t) � canon�(S76(t)) � canon�(S(t)). Finally, it is easy to seethat ��(canon�(S(t)))\ lhs(E) = ;, since ��(canon�(S76(t)))\ lhs(E) =; and canon�(S76(t)) � canon�(S(t)).3. Finally, suppose E is in �-solved form, ��(canon�(S�(t))) \ lhs(X) 6= ;,and canon�(S�(t)) is a compound �-term. We must show that �nd�(t) �canon�(S�(t)). Since canon�(S�(t)) is a compound �-term, it follows fromS16[S; �:�nd](R�; E ; X;S�) at 76 that �nd�76(t) � canon�(S�(t)). But, italso follows that canon�(S�(t)) 6� e[1] since e[1] must be a �-leaf (becausee 2 E and E is in �-solved form), so �nd�(t) � �nd�76(t) � canon�(S�(t)).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 149Line 80:73. [X := ;; R� := R; S� := S]74. G, P=(S), P�(F ;R), P1[�;H;I;N], P13(E), P18[�:�nd](E), A = A� [E,S6(E) _ S10[S; �:�nd](E), S11[S; �:�nd](E), S13[�:�nd](A�), M�R, E � �75. FOREACH e 2 E DO BEGIN...78. G, P�(F ; lhs(S)), P1[�;H;I;N], P13(E), E � �, P19[�:�nd](X; E),A = A� [E, S13[�:�nd](A� [X), S14[�:�nd](R�;X), lhs(X) � R,S15[S; �:�nd](E ;X), S16[S; �:�nd](R�; E ;X;S�), S17(E ;X)79. END80. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], lhs(E) � R,S16[S; �:�nd](R�; E ; E ;S�), S18[S; �:�nd](R�), S20[S](E)S3[A; I; �:�nd]: By S13[�:�nd](A� [X) (at both 74 and 78) and the end-of-loop con-dition, X = E , we have S13[�:�nd](A� [E). But A = A� [E , so S13[�:�nd](A),from which S3[A; I; �:�nd] follows.S16[S; �:�nd](R�; E ; E ;S�): From 74: Consider t 2 R�. Since at this point X =;, R = R�, and S = S�, we know that hf(t), �nd�(t) � canon�(S�(t)) �canon�(S(t)), and ��(canon�(S(t))) \ lhs(X) = ;. Since we also know thatE = ;, this is su�cient to satisfy the property S16[S; �:�nd](R�; E ; E ;S�). From78: follows from S16[S; �:�nd](R�; E ; X;S�) at 78 by the end-of-loop conditionX = E .S18[S; �:�nd](R�): From 74: by M � R. From 78: by S14[�:�nd](R�; X) at 78 andthe end-of-loop condition, (M�R�) � lhs(E). But lhs(E) � R, so (M�R�) �R.S20[S](E): From 74: trivial since E = ;. From 78: suppose S10[S; �:�nd](E) at 78.Then there exists e such that E = feg and e is a compound �-term. Supposeon the other hand that :S10[S; �:�nd](E) at 78. Then by S15[S; �:�nd](E ; X) at78, E is in �-solved form, so by S17(E ; X) at 78 and the end-of-loop condition,E � S.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 150Line 82:80. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], lhs(E) � R,S16[S; �:�nd](R�; E ; E ;S�), S18[S; �:�nd](R�), S20[S](E)81. [X := ;;]82. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], lhs(E) � R,S18[S; �:�nd](R�), S19[S; �:�nd](R�; E �X;S�), S20[S](E)S19[S; �:�nd](R�; E �X;S�): Note that X = ;, so it su�ces to show the propertyS19[S; �:�nd](R�; E ;S�). Consider t 2 R�. By S16[S; �:�nd](R�; E ; E ;S�) at80, we know that hf(t). Also, �nd�(t) � canon�(S(t)) and thus t 2 R unless��(canon�(S�(t))) \ lhs(E) 6= ; ^ S8(canon�(S�(t))), in which case �nd�(t) �canon�(S�(t)). S19[S; �:�nd](R�; E ;S�) follows easily.Line 86:84. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R), e 2 E,I _ S18[S; �:�nd](R�), I _ S19[S; �:�nd](R�; E �X;S�), S20[S](E), e 62 X85. L := e[1]:notify; [U := ;;]86. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R), e 2 E,I _ S18[S; �:�nd](R�), S20[S](E), S21[�:�nd](L; e[1]), e 62 X,S22[I;S; �:�nd](e;R�; E �X;L � U ;S�)S21[�:�nd](L; e[1]): By G17.S22[I;S; �:�nd](e;R�; E �X;L � U ;S�): Suppose :I and let t 2 R�. Since we knowthat I _S19[S; �:�nd](R�; E �X;S�) at 84, t 2 R or S8(canon�(S�(t)))^hf(t)^�nd�(t) � canon�(S�(t)) ^ ��(canon�(S�(t))) \ lhs(X) 6= ;. It remains to showthat if t 62 R, then e[1] 2 ��(canon�(S�(t))) ! (�; canon�(S�(t))) 2 (L � U).But this follows by G16, L = e[1]:notify, and U = ;.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 151Line 90:88. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R),I _ S18[S; �:�nd](R�), S20[S](E), S21[�:�nd](L; e[1]), e 2 E, e 62 X,S22[I;S; �:�nd](e;R�; E �X;L � U ;S�), (i; d) 2 L, (i; d) 62 U89. TheoryUpdatei(e,d); [U := U [f(i; d)g;]90. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R),I _ S18[S; �:�nd](R�), S20[S](E), S21[�:�nd](L; e[1]), e 2 E, e 62 X,S22[I;S; �:�nd](e;R�; E �X;L � U ;S�)...270. G, P1[�;H;I;N], S3[A;I; �:�nd], S28[�:�nd](i; d)271. TheoryUpdatei(e,d)272. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R), I _ (R0 � R),I 0 ! I...379. END TheoryUpdate�380. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R), I _ (R0 � R),I 0 ! I, S34[I;S; �:�nd](d)First, consider the preconditions of TheoryUpdatei.S28[�:�nd](i; d): Suppose i = �. Since (i; d) 2 L and by S21[�:�nd](L; e[1]) at 88,we have hf(d) and S8(d) and e[1] 2 ��(d). Thus, it remains to show that9 c 2 ��(d): (c:�nd 6� c). But e[1] 2 ��(d) and since e[1] must therefore be a�-leaf, it follows from S20[S](E) (and e 2 E) at 88 that e[1] 2 lhs(S). Thus, byG19, e[1]:�nd 6� e[1].Now consider the properties at 90. Note that :I implies :I88 since I 0 ! I at 272.G: By G at 272.P�(F ; lhs(S)): By P�(F ; lhs(S)) at 88 and 272.P1[�;H; I;N]: By P1[�;H; I;N] at 272.S3[A; I; �:�nd]: By S3[A; I; �:�nd] at 272.I _ (lhs(E) � R): Suppose :I. Then :I88, so lhs(E) � R88. Then, since R0 � R at272, lhs(E) � R.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 152I _ S18[S; �:�nd](R�): Suppose :I. Then :I88, so M88 �R� � R88. But R88 � R(by R0 � R at 272), so M88 �R� � R. Finally,M272 � R, so M�M88 � Rat 90, and thus M�R� � R.S20[S](E): By S20[S](E) at 88 and P�(lhs(S)) at 272.S21[�:�nd](L; e[1]): By S21[�:�nd](L; e[1]) at 88 and P�(F) at 272.e 2 E: By e 2 E at 88.e 62 X: By e 62 X at 88.S22[I;S; �:�nd](e;R�; E �X;L � U ;S�): Suppose :I, so that :I88. Then supposet 2 R�. If t 2 R88, then by R0 � R at 272, t 2 R. Otherwise, for conveniencelet s � canon�(S�(t)) and note that by S22[I;S; �:�nd](e;R�; E �X;L�U ;S�)at 88, we have hf88(t), �nd�88(t) � s (and thus s:�nd88 � s), s is a compound�-term, ��(s) \ lhs(E � X88) 6= ;, and e[1] 2 ��(s) ! (�; s) 2 (L � U88). Weconsider two cases.1. Suppose (i; d) = (�; s). We �rst show that s 2 R. First note that sincei = �, we know that S34[I;S; �:�nd](d) at 272, so (since d � s) (s:�nd 6�s) _ (s 2 R). Now suppose that s 62 R and (s:�nd 6� s). But recall thats:�nd88 � s, so this means that s 2 M272, and thus s 2 R sinceM272 � R.Now, if s 2 R, then �nd�(s) � canon�(S(s)). But s � canon�(S�(t)), so�nd�(s) � canon�(S(canon�(S�(t)))), and thus �nd�(s) � canon�(S(t)) byCorollary A.1. But since �nd�88(t) � s, it follows by P�(F) at 272 that�nd�(s) � �nd�(t), and so �nd�(t) � canon�(S(t)), and thus t 2 R.2. Suppose (i; d) 6= (�; s). If s:�nd 6� s, then using the same reasoningas in the previous case, we can conclude that s 2 R and thus t 2 R.Suppose on the other hand that s:�nd � s. We already know that s is acompound �-term. Now, since �nd�88(t) � s, it follows by P�(F) at 272that hf(t) and �nd�(t) � �nd�(s) � s. Also, X is unchanged from 88, so��(s) \ lhs(E � X) 6= ;. It remains to show that e[1] 2 ��(s) ! (�; s) 2

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 153(L � U). But this follows trivially since e[1] 2 ��(s)! (�; s) 2 (L � U88),U = U88 [f(i; d)g, and (�; s) 6= (i; d).Line 92:86. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R), e 2 E,I _ S18[S; �:�nd](R�), S20[S](E), S21[�:�nd](L; e[1]), e 62 X,S22[I;S; �:�nd](e;R�; E �X;L � U ;S�)87. FOREACH (i; d) 2 L DO BEGIN...90. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R),I _ S18[S; �:�nd](R�), S20[S](E), S21[�:�nd](L; e[1]), e 2 E, e 62 X,S22[I;S; �:�nd](e;R�; E �X;L � U ;S�)91. END [X := X [feg;]92. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R),I _ S18[S; �:�nd](R�), I _ S19[S; �:�nd](R�; E �X;S�), S20[S](E)I _ S19[S; �:�nd](R�; E �X;S�): Suppose :I and let t 2 R�. Again, for convenience,let s � canon�(S�(t)). If t 62 R, then by S22[I;S; �:�nd](e;R�; E�X;L�U ;S�)at 86 or 90, we have s is a compound �-term, hf(t), �nd�(t) � s, ��(s)\ lhs(E �X90) 6= ;, and e[1] 2 ��(s) ! (�; s) 2 (L � U). It only remains to show��(s)\ lhs(E �X) 6= ;. Suppose the contrary. The only way this could happenis if e[1] 2 ��(s). But this implies that (�; s) 2 (L�U), and by the end-of-loopcondition, L = U , so this is impossible.Line 94:81. [X := ;;]82. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], lhs(E) � R,S18[S; �:�nd](R�), S19[S; �:�nd](R�; E �X;S�), S20[S](E)83. FOREACH e 2 E DO BEGIN...92. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (lhs(E) � R),I _ S18[S; �:�nd](R�), I _ S19[S; �:�nd](R�; E �X;S�), S20[S](E)93. END94. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R),I _ (lhs(E) � R), I _ (R0 � R)

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 154I _ (R0 � R): Assume :I, and suppose t 2 R�. By S19[S; �:�nd](R�; E �X;S�) at82 or I _S19[S; �:�nd](R�; E �X;S�) at 92, either t 2 R or ��(canon�(S�(t)))\lhs(E � X) 6= ;. But by the end-of-loop condition, E = X, so we must havet 2 R.I _ (M� R): Assume :I. Then by S18[S; �:�nd](R�) at 82 or I _S18[S; �:�nd](R�)at 92, M�R� � R. But as just shown, R� � R, so M� R.A.5.5 AssertFormulaLine 101:99. G, free(e) � V, fr(e), P11(e), P20[H](�; e), S4[S; �:�nd](e)100. AssertFormula(e) [Z := ;; Gok10 := FALSE;]101. G, P=(all), free(e) � V 0, fr(e), P11(e), P17[�](�0), P20[H](�0; e),P21[�:�nd], P38[A;��](e), S4[S; �:�nd](e)P17[�](�0): Trivial since � = �0.P21[�:�nd]: Trivial since e:�nd � e:�nd' for all e.P38[A;��](e): By G10 at 99, if t 2 �j and j 6= T (t), then t occurs j-alien in somesub-term of A. Also, it follows by G11 at 99 that hf(t).Line 103:... [Z := ;;]101. G, P=(all), free(e) � V 0, fr(e), P11(e), P17[�](�0), P20[H](�0; e),P21[�:�nd], P38[A;��](e), S4[S; �:�nd](e)102. FOREACH maximal sub-term t of e DO BEGIN103. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, fr(e), P11(e),P17[�](�0), P20[H](�0; e), P21[�:�nd], P22[�:�nd](Z), P23(t), P24[��](Z; e),P38[A;��](e), S4[S; �:�nd](e), M�R, t� e...105. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, fr(e), P11(e),P17[�](�0), P20[H](�0; e), P21[�:�nd], P22[�:�nd](Z), P24[��](Z; e),P38[A;��](e), S4[S; �:�nd](e), M�R106. END

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 155P22[�:�nd](Z): From 101: Z = ;. From 105: follows trivially from P22[�:�nd](Z) at105.P23(t): By the loop condition.P24[��](Z; e): From 101: Z = ;. From 105: follows trivially from P24[��](Z;) at 105.M� R: From 101: by P=(all) at 101. From 105: follows trivially from M � R at105.Line 105:102. FOREACH maximal sub-term t of e DO BEGIN103. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, fr(e), P11(e),P17[�](�0), P20[H](�0; e), P21[�:�nd], P22[�:�nd](Z), P23(t), P24[��](Z; e),P38[A;��](e), S4[S; �:�nd](e), M�R, t� e104. SetupTerm(t,T (e)); [Z := Z [ftg;]105. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, fr(e), P11(e),P17[�](�0), P20[H](�0; e), P21[�:�nd], P22[�:�nd](Z), P24[��](Z; e),P38[A;��](e), S4[S; �:�nd](e), M�R...114. G, fr(t), P23(t), free(t) � V, S4[S; �:�nd](t)115. SetupTerm(t,i)...145. END SetupTerm146. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t), P42[��](t; i),M�RFirst we consider the preconditions of SetupTerm.fr(t): By fr(e) and G7 at 103, the de�nition of fr, and the fact that t is a maximalsub-term of e.free(t) � V: By free(e) � V 0, P�(V), and t� e at 103.S4[S; �:�nd](t): By S4[S; �:�nd](e) at 103, t� e.Now we consider the properties at line 105.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 156G: By G at 146.P=(A;H;S): By P=(A;H;S) at 146.P�(�;V;N ;F ;R): By P�(�;V;N ;F ;R) at 146.free(e) � V 0: By free(e) � V 0 at 103.fr(e): By fr(e), t� e at 103, P27[�:�nd](t) and P28[�:�nd](t) at 146, and the de�nitionof fr.P11(e): By P11(e) at 103.P17[�](�0): By P17[�](�0) at 103, we have T [�0 j= 9 x: �103 and x \ V 0 = ;, wherew = free(�103)� free(�0) Then, by P17[�](�0) at 146, we have T [�103 j= 9 y:�and y \V103 = ;, where y = free(�)� free(�103). By P�(�) at 103 and 146 andLemma A.4 it follows that T [�0 j= 9w:�, where w = x[y = free(�)�free(�0).It then follows easily from P�(V) at 146 that w \ V 0 = ;.P20[H](�0; e): By P20[H](�0; e) at 103.P21[�:�nd]: By P21[�:�nd] at 103 and P27[�:�nd](t) and P28[�:�nd](t) at 146.P22[�:�nd](Z): By P22[�:�nd](Z) at 103, 8 t 2 Z103: t:�nd103 � t. It then follows byP27[�:�nd](t) and P28[�:�nd](t) at 146 that 8 t 2 Z103: t:�nd � t. Finally, sinceZ = Z103 [ftg, and t:�nd � t at 146, we have 8 t 2 Z: t:�nd � t.P24[��](Z; e): Suppose s�Z, s� d� e, and s occurs T (d)-alien in d. We must shows 2 �T (s) ^ s 2 �T (d). We consider four cases.1. Suppose s � Z103. s 2 �T (s) ^ s 2 �T (d) follows easily by P24[��](Z; e) at103.2. Suppose s 6� Z103 and d � t. Then we have s � t and s � d � t, so s 2�T (s) ^ s 2 �T (d) follows by P24[��](t; t) at 146.3. Suppose s 6� Z103, d 6� t, and s� t. Then by the de�nition of alien, s occursT (t)-alien in t, and thus s 2 �T (s) ^ s 2 �T (d) follows again by P24[��](t; t)at 146.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 1574. Suppose s 6� Z103, d 6� t, and s 6� t. We know s � Z and Z = Z103 [ftg,so we must have s � t, and thus s � t. Now, s � d � d and e is a literal(by P11(e)), so by the de�nition of literal, we must have e � d or e � :d.In either case, we have T (d) = T (e) and thus T (t) 6= T (e). Thus, byP26[��](t; i) at 146, t 2 �T (t) ^ t 2 �T (e), and thus s 2 �T (s) ^ s 2 �T (d).P38[A;��](e): Suppose s 2 �j and j 6= T (s). If s 6� t, then by P39[��](t) at 146,s 2 �j at 103. But then, by P38[A;��](e) at 103, s occurs j-alien in somesub-term of A103 [feg. It follows from P=(()A) at 146 that s occurs j-alienin some sub-term of A [feg. Suppose on the other hand that s� t. Then byP42[��](t; i) at 146, either s 2 �j at 103 (the case we just handled above), ors � t ^ j = i (in which case s occurs j-alien in e), or s occurs j-alien in somesub-term of t, and thus in some sub-term of e.S4[S; �:�nd](e): By S4[S; �:�nd](e) at 103, and P=(S) and P�(F) at 146.M� R: By M� R at 103 and 146 and P�(R) at 146.Line 107:101. G, P=(all), free(e) � V 0, fr(e), P11(e), P17[�](�0), P20[H](�0; e),P21[�:�nd], P38[A;��](e), S4[S; �:�nd](e)102. FOREACH maximal sub-term t of e DO BEGIN...105. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, fr(e), P11(e),P17[�](�0), P20[H](�0; e), P21[�:�nd], P22[�:�nd](Z), P24[��](Z; e),P38[A;��](e), S4[S; �:�nd](e), M�R106. END107. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, P11(e), P17[�](�0),P20[H](�0; e), P21[�:�nd], P24[��](e; e), P25[�:�nd](e), P38[A;��](e),M�RP24[��](e; e): From 101: trivial since there are no terms in e. From 105: sincethe property is true for every sub-term of every maximal sub-term of e byP24[��](Z; e) at 105 (and the end-of-loop condition), it is therefore true forevery term in e.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 158P25[�:�nd](e): From 101: trivial since there are no terms in e. From 105: follows byP22[�:�nd](Z) at 105 and the end-of-loop condition.Line 109:107. G, P=(A;H;S), P�(�;V;N ;F ;R), free(e) � V 0, P11(e), P17[�](�0),P20[H](�0; e), P21[�:�nd], P24[��](e; e), P25[�:�nd](e), P38[A;��](e),M�R108. [AT (e) := AT (e) [feg; Gok10 := TRUE;]109. G, P=(H;S), P�(�;V;N ;F ;R), free(e) � V 0, P11(e), P17[�](�0 [feg),P20[H](�0; e), P21[�:�nd], P25[�:�nd](e), e 2 �, A = A0 [feg, M�RG: We must consider those global properties that depend on A or Gok10 .G2: Follows trivially from G2 at 107 since �107 � �.G3: Let fW;X;Zg be the partition of �0 and Y the set containing e which existby P20[H](�0; e) at 107. Also, by P20[H](�0; e) we have T [H j= 9w: W ,where w = free(W)� free(H), and T [H[W j= 9 x; y: (X[Y), where x =free(X)� free(H[W) and y = free(Y)� free(H[W [X), so in particular,T [H [W j= 9 x; ye: (X [feg), where ye = free(e) � free(H [W [X).We also have T [W [X j= 9 z: Z, where z = free(Z)� free(W [X) andz \ free(H [feg) = ; (and thus z = free(Z) � free(H [W [X [feg))Putting these together we get T [H j= 9w�: (W [X [feg [Z), wherew� = free(W [X [feg [Z) � free(H), but W [X [Z = �0, so wehave T [H j= 9w�: (�0 [feg), where w� = free(�0 [feg) � free(H).Now, by P17[�](�0) at 107 (and the fact that � = �107 [feg), T [�0 j=9 x�: (��feg) where x� = free(��feg)� free(�0) and x� \V 0 = ;. Now,since free(H) � V 0 (by G8 at 99 and P=(H) at 111) and free(e) � V 0at 111, we also have x� = free(� � feg) � free(H [�0 [feg). We canthus conclude T [H j= 9 y�: (�0 [feg [(�� feg)), where y� = free((��feg) [�0 [feg) � free(H). Since �0 � � by P�(�), this simpli�es toT [H j= 9 y�: �, where y� = free(�)� free(H).G4: Follows trivially from G2 at 107 since �107 � �.G8: Follows from G8, free(e) � V 0, and P�(V) at 107.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 159G9: Suppose t occurs j-alien in some sub-term of � [F . We must show t 2�j ^ t 2 �T (t). First, if t 2 �107 [F , then t 2 �j ^ t 2 �T (t) by G9 at 107.The only other case is if t� e. But then t 2 �j ^ t 2 �T (t) by P24[��](e; e)at 107.G10: By P38[A;��](e) at 107 and A = A107 [feg.G11: Follows from G11, P25[�:�nd](e), and G6 at 107, and the fact that A =A107 [feg.G20: By G20 and P11(e) at 107, and the fact that A = A107 [feg.P17[�](�0 [feg): We must show T [�0 [feg j= 9w: � and w \ V 0 = ;, wherew = free(�) � free(�0 [feg). Now, by P17[�](�0) at 107, we have T [�0 j=9w: (�� feg) and w \ V 0 = ;, where w = free(� � feg)� free(�0). It followsthat T [�0 [feg j= [(9w: (� � feg)) ^ e]. But free(e) � V 0, free(e) \ w = ;,so we can rewrite this as T [�0 [feg j= 9w: �, and we can also rewrite w asw = free(�)� free(�0 [feg).Line 111:109. G, P=(H;S), P�(�;V;N ;F ;R), free(e) � V 0, P17[�](�0 [feg),P20[H](�0; e), P21[�:�nd], P25[�:�nd](e), e 2 �, A = A0 [feg, M�R110. TheoryAssertT (e)(e);111. G, P=(H;S), P�(�;V;N ;F ;R), P17[�](�0 [feg), P21[�:�nd],P25[�:�nd](e), e 2 �, A = A0 [feg, M�R...255. G,256. TheoryAsserti(e)257. G, P34[all](i)The preconditions of TheoryAssert are obvious, so we consider the properties atline 111. For reference, P34[all](i) at 257 implies P=(� � Bi;H; I;N ;S;��; �:�nd),P�(Q;Bi;V; �:notify), Ti [
i(�0i j= 9w: Bi) ^ w \ V 0 = ; ^ w � V, where w =free(Bi)� free(�0i), and Ti [
i(�i j= (Q�Q0)) ^ free(Q�Q0) � V.G By G at 257.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 160P=(H;S): By P=(H;S) at 109 and 257.P�(�;V;N ;F ;R): By P�(�;V;N ;F ;R) at 109 and P=(N ; �:�nd) and P�(�;V) at257.P17[�](�0 [feg): By P17[�](�0 [feg) at 109, we have T [�0 [feg j= 9w: �109 andw\V 0 = ;, where w = free(�109)� free(�0[feg). Let ��i denote the value of �iat 109. Then, by P34[all](i), where i = T (e), we have
i(Ti [��i j= 9 x: Bi) andx\V109 = ; (and thus x\V 0 = ; by P�(V) at 109), where x = free(Bi)�free(��i).It follows that T [��i j= 9 x:Bi, and thus T [�109 j= 9 x:Bi, so T [�0 [feg j=9w; x: (�109 [Bi). But � = �109 [Bi (by P=(� � Bi) and P�(Bi) at 257), soT [�0 [feg j= 9w; x:�. As shown, (w [x) \ V 0 = ;. It remains to show thatw [x = free(�)� free(�0 [feg). We know that free(�) = free(�109) [free(Bi)and w = free(�109)� free(�0 [feg). Now, x = free(Bi)� free(��i), but we alsoknow that x \ V109 = ;, free(�109) � V109 (by G8 at 109), and free(e) � V109(by free(e) � V 0 and P�(V) at 109), so x = free(Bi)� free(�109 [feg), and thusw [x = free(�)� free(�0 [feg).P21[�:�nd]: By P21[�:�nd] at 109 and P=(�:�nd) at 257.P25[�:�nd](e): By P25[�:�nd](e) at 109 and P=(�:�nd) at 257.e 2 �: By e 2 � at 109 and P�(�) at 257.A = A0 [feg: By A = A0 [feg at 109 and P=(�� Bi) at 257.M� R: By M� R at 109 and P=(�:�nd) at 257.A.5.6 SetupTermLine 116:114. G, fr(t), P23(t), free(t) � V, S4[S; �:�nd](t)115. SetupTerm(t,i)116. G, P=(all), fr(t), P23(t), free(t) � V, P17[�](�0), S4[S; �:�nd](t)P17[�](�0): Trivial since �0 = �.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 161Line 120:118. G, P=(all), fr(t), P23(t), free(t) � V, P17[�](�0), T (t) 6= i,S4[S; �:�nd](t)119. [�T (t) := �T (t) [ftg;]120. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)G: We must consider those global properties that depend on �.G8: By G8 and free(t) � V at 118.G9: By G9 at 118 and the fact that nothing was removed from �j for any j.G10: By de�nition, :Gok10 inside of SetupTerm.P39[��](t): By P=(all) at 118, P39[��](t) holds at 118. Then, since the only changeto �j for any j is the addition of t to �T (t) and clearly t � t, it follows thatP39[��](t) holds at 120.P42[��](t; i): By P=(all) at 118, we have �j = �0j at 118, so P42[��](t; i) holds at118. Now, suppose s � t, s 2 �j, and j 6= T (t). If s 2 �j at 118, then theproperty holds by P42[��](t; i) at 118. The only other possibility is that s � tand j = T (t). But we assumed that j 6= T (t), so this is not possible. ThusP42[��](t; i) holds at 120.Line 122:120. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)121. TheoryAddSharedTermT (t)(t);122. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)...252. G, free(e) � V253. TheoryAddSharedTermi(e)254. G, P34[all](i)The preconditions for TheoryAddSharedTerm are trivial, so we consider the propertiesat line 122. Recall that P34[all](i) at 254 implies P=(� � Bi;H; I;N ;S;��; �:�nd),

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 162P�(Q;Bi;V; �:notify), Ti [
i(�0i j= 9w: Bi) ^ w \ V 0 = ; ^ w � V, where w =free(Bi)� free(�0i), and Ti [
i(�i j= (Q�Q0)) ^ free(Q�Q0) � V.G: By G at 254.P=(A;H;S; �:�nd): By P=(A;H;S; �:�nd) at 120 and at 254.P�(�;V;N ;��): By P�(�;V;N ;��) at 120 and P=(N ;��) and P�(�;V) at 254.fr(t): By fr(t) at 120 and P=(�:�nd) at 254.P23(t): By P23(t) at 120.free(t) � V: By free(t) � V at 120 and P�(V) at 254.P17[�](�0): By P17[�](�0) at 120, T [�0 j= 9w: �120 and w \ V 0 = ;, where w =free(�120)�free(�0). Then, by P34[all](i) at 254, T [�120 j= 9 x:� and x\V120 =;, where x = free(�)� free(�120). Thus, by P�(�) at 120 and � = �120 [Bi at254, we can use Lemma A.4 to get T [�0 j= 9 y: �, where y = w [xfree(�) �free(�0). It follows easily (by P�(V) at 120) that y \ V 0 = ;.T (t) 6= i: By T (t) 6= i at 120.t 2 �T (t): By t 2 �T (t) at 120 and P=(��) at 254.P39[��](t): By P39[��](t) at 120 and P=(��) at 254.P42[��](t; i): By P42[��](t; i) at 120 and P=(��) at 254.S4[S; �:�nd](t): By S4[S; �:�nd](t) at 120 and P=(S; �:�nd) at 254.Line 124:122. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)123. [�i := �i [ftg;]124. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V, t 2 �i,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 163G: We must consider those global properties that depend on �.G8: By G8 and free(t) � V at 122.G9: By G9 at 122 and the fact that nothing was removed from �j for any j.G10: By de�nition, :Gok10 inside of SetupTerm.P39[��](t): We have P39[��](t) at 122. Then since the only change to �j for any j isthe addition of t to �T (t) and clearly t � t, it follows that P39[��](t) holds at124.P42[��](t; i): We have P42[��](t; i) at 122, and the only change from 122 is the additionof t to �i. But this is covered by the case s � t ^ j = i in P42[��](t; i), soP42[��](t; i) holds at 124.Line 126:124. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V, t 2 �i,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)125. TheoryAddSharedTermi(t);126. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V, t 2 �i,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)This case is almost identical to that for line 122. The only di�erence is that there isone additional property, t 2 �i which is preserved trivially by P=(��) at 254.Line 128:116. G, P=(all), fr(t), P23(t), free(t) � V, P17[�](�0), S4[S; �:�nd](t)117. IF T (t) 6= i THEN BEGIN...126. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V, t 2 �i,P17[�](�0), T (t) 6= i, t 2 �T (t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)127. END128. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), P26[��](t; i), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)P26[��](t; i): Follows from 116 by if-condition, and from 126 by T (t) 6= i, t 2 �T (t),and t 2 �i.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 164P39[��](t): Follows from 116 by P=(all) and follows trivially from 126.P42[��](t; i): Follows from 116 by P=(all) and follows trivially from 126.Line 130:128. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P23(t), free(t) � V,P17[�](�0), P26[��](t; i), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)129. IF HasFind(t) THEN BEGIN130. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P17[�](�0), hf(t),P24[��](t; t), P26[��](t; i), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)P24[��](t; t): Suppose s � d � t and s occurs T (d)-alien in d. Then since hf(t), itfollows by G6 that hf(d), so d = d 2 F . Thus, by G9, (s 2 �T (d) ^ s 2 �T (s)).Line 132:130. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), fr(t), P17[�](�0), hf(t),P24[��](t; t), P26[��](t; i), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)131. RETURN;132. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t),P42[��](t; i), M�RP�(F ;R): By P=(S; �:�nd) at 130.P27[�:�nd](t): By P=(�:�nd) at 130.P28[�:�nd](t): By P=(�:�nd) at 130.t:�nd � t: By fr(t) and hf(t) at 130.M� R: By P=(�:�nd) at 130.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 165Line 136:134. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), free(t) � V, fr(t), P17[�](�0),P23(t), P26[��](t; i), :hf(t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)135. FOR k := 1 TO Arity(t) DO BEGIN136. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),:hf(t), P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), P29[�:�nd](t; k),P30[�:�nd](t;Arity(t) + 1), P32[��](t; k), P39[��](t), P42[��](t; i),S4[S; �:�nd](t), M�R...138. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),:hf(t), P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), P29[�:�nd](t; k + 1),P30[�:�nd](t;Arity(t) + 1), P32[��](t; k + 1), P39[��](t), P42[��](t; i),S4[S; �:�nd](t), M�R139. ENDP�(F ;R): From 134: by P=(S; �:�nd) at 134. From 138: trivial.P27[�:�nd](t): From 134: by P=(�:�nd) at 134. From 138: trivial.P28[�:�nd](t): From 134: by P=(�:�nd) at 134. From 138: trivial.P29[�:�nd](t; k): From 134: k=1. From 138: by P29[�:�nd](t; k + 1) at 138.P30[�:�nd](t;Arity(t) + 1): From 134: by fr(t) and :hf(t) at 134. From 138: trivial.P32[��](t; k): From 134: k=1. From 138: by P32[��](t; k + 1) at 138.M� R: From 134: by P=(�:�nd) at 134. From 138: trivial.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 166Line 138:136. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),:hf(t), P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), P29[�:�nd](t; k),P30[�:�nd](t;Arity(t) + 1), P32[��](t; k), P39[��](t), P42[��](t; i),S4[S; �:�nd](t), M�R137. SetupTerm(t[k],T (t));138. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),:hf(t), P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), P29[�:�nd](t; k + 1),P30[�:�nd](t;Arity(t) + 1), P32[��](t; k + 1), P39[��](t), P42[��](t; i),S4[S; �:�nd](t), M�R...114. G, fr(t), P23(t), free(t) � V, S4[S; �:�nd](t)115. SetupTerm(t,i)...145. END SetupTerm146. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t), P42[��](t; i),M�RFirst we must show the preconditions of SetupTerm are met.fr(t[k]): By P30[�:�nd](t;Arity(t) + 1) at 136.P23(t[k]): By P23(t) at 136.S4[S; �:�nd](t[k]): By S4[S; �:�nd](t) at 136.Now we consider the properties at line 138.G: By G at 146.P=(A;H;S): By P=(A;H;S) at 136 and 146.P�(�;V;N ;��;F ;R): By P�(�;V;N ;��;F ;R) at 136 and 146.free(t) � V: By free(t) � V at 136 and P�(V) at 146.P17[�](�0): By P17[�](�0) and P�(�) at 136 and 146, Lemma A.4, and P�(V) at 136.P23(t): By P23(t) at 136.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 167:hf(t): By :hf(t) at 136 and P27[�:�nd](t) at 146.P26[��](t; i): By P26[��](t; i) at 136 and P�(��) at 146.P27[�:�nd](t): By P27[�:�nd](t) at 136 and P27[�:�nd](t) at 146.P28[�:�nd](t): By P28[�:�nd](t) at 136 and P27[�:�nd](t) and P28[�:�nd](t) at 146.P29[�:�nd](t; k + 1): By P29[�:�nd](t; k) at 136, P27[�:�nd](t) and P28[�:�nd](t) at 146,and t:�nd � t at 146.P30[�:�nd](t;Arity(t) + 1): By P30[�:�nd](t;Arity(t)+1) at 136, and P27[�:�nd](t) andP28[�:�nd](t) at 146.P32[��](t; k + 1): By P32[��](t; k) at 136 and P�(��) at 146, and P24[��](t; t) andP26[��](t; i) at 146.P39[��](t): By P39[��](t) at 136 and 146 and the fact that t[k]� t.P42[��](t; i): Suppose s � t, s 2 �j, and j 6= T (s). We must show that s 2 �0j,s � t ^ j = i, or s occurs j-alien in some sub-term of t. First note that ifs 2 �j at 136, then the required property follows by P42[��](t; i) at 136. Now,if s 6� t[k], then by P39[��](t) at 146, s 2 �j at 136. Finally, we consider thecase where s � t[k]. In this case, by P42[��](t; i) at 146, we have s 2 �j;136(i.e. s in �j at line 136 in which case the required property follows as shownabove), s � t[k] ^ j = T (t), or s occurs j-alien in some sub-term of t[k] (andthus, clearly in some sub-term of t). The only non-trivial case is the middleone: s � t[k] ^ j = T (t). But we know that j 6= T (s), so T (t[k]) 6= T (t), andthus t[k] is j-alien in t. Since s � t[k], it follows that s occurs j-alien in somesub-term of t (in this case, the sub-term is t itself).S4[S; �:�nd](t): Suppose s � t. We must show :hf(t) ! (t � canon�(S(t))). Ifs� t[k], then hf(s) by t:�nd � t at 146 and G6. Otherwise, s:�nd � s:�nd136 byP27[�:�nd](t) at 146, so t � canon�(S(t)) by S4[S; �:�nd](t) at 136 and P=(S)at 146.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 168M� R: By M� R at 136 and 146 and P�(R) at 146.Line 140:134. G, P=(A;H;S; �:�nd), P�(�;V;N ;��), free(t) � V, fr(t), P17[�](�0),P23(t), P26[��](t; i), :hf(t), P39[��](t), P42[��](t; i), S4[S; �:�nd](t)135. FOR k := 1 TO Arity(t) DO BEGIN...138. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),:hf(t), P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), P29[�:�nd](t; k + 1),P30[�:�nd](t;Arity(t) + 1), P32[��](t; k + 1), P39[��](t), P42[��](t; i),S4[S; �:�nd](t), M�R139. END140. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),P24[��](t; t), P26[��](t; i), :hf(t), P27[�:�nd](t), P28[�:�nd](t), P31[�:�nd](t),P39[��](t), P42[��](t; i), S4[S; �:�nd](t), M�RP24[��](t; t): From 134: trivial since t has no sub-terms. From 138: suppose s� d� tand s occurs T (d)-alien in d. We must show s 2 �T (s)^ s 2 �T (d). If d� t, thenfor some child c of t, d� c, so s 2 �T (s) ^ s 2 �T (d) by P24[��](c; c) which holdsby P32[��](t; k+1) at 138 and the end-of-loop condition. If d � t and s is not achild of t, then there exists a child c of t such that s� c and s occurs T (d)-alienin c, so by the same argument as above, s 2 �T (s) ^ s 2 �T (d). Finally, if d � tand s is a child of t, then s 2 �T (s) ^ s 2 �T (d) by P26[��](s; T (d)) which holdsby P32[��](t; k + 1) at 138 and the end-of-loop condition.P27[�:�nd](t): From 134: By P=(�:�nd) at 134. From 138: trivial.P28[�:�nd](t): From 134: By P=(�:�nd) at 134. From 138: trivial.P31[�:�nd](t): From 134: trivial since t has no children. From 138: by P29[�:�nd](t; k+1) at 138 and the end-of-loop condition.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 169Line 142:140. G, P=(A;H;S), P�(�;V;N ;��;F ;R), free(t) � V, P17[�](�0), P23(t),P24[��](t; t), P26[��](t; i), :hf(t), P27[�:�nd](t), P28[�:�nd](t), P31[�:�nd](t),P39[��](t), P42[��](t; i), S4[S; �:�nd](t), M�R141. t:�nd := t; [Gok16 := FALSE;]142. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t), P42[��](t; i),M�R, S23[�:�nd; �:notify](t)G: We consider the global properties that depend on �nd. Note that by :hf(t) at140, it follows that HF = HF140 [ftg and F = F140 [ft = tg.G2: By G2 at 140, T [� j= F140. Also, since T includes equality, and inparticular re
exivity, T [� j= ft = tg. Thus, since F = F140 [ft = tg,T [� j= F .G5: By :hf(t) and the execution of line 141, hf(s) � hf140(s) and �nd�(s) =�nd�140(s) for all s 6� t. But �nd�(t) � t, so G5 holds at 142.G6: By G6 and P31[�:�nd](t) at 140.G7: By G7 and P23(t) at 140.G8: By G8 and free(t) � V at 140.G9: Suppose r occurs j-alien in some sub-term s in �[F . We must show that(r 2 �j ^ r 2 �T (r)). If s� (� [F140), then (r 2 �j ^ r 2 �T (r)) by G9 at140. Otherwise, since F = F140 [ft = tg, it must be the case that s � t.Thus, by P24[��](t; t) at 140, (r 2 �j ^ r 2 �T (r)).G11: By G11 at 140 since A = A140 and HF140 � HF.G14: By G14 at 140 since F140 � F .G15: By G15 at 140, T� [
�(S) j=
�(F140). Also, since T� includes re
exivity,T� j=
�(t = t). But F = F140 [ft = tg, so T� [
�(S) j=
�(F).G16: By de�nition, :Gok16 at 142.G17: By G17 at 140 and since HF140 � HF.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 170G18: Notice that fr140(t) by P31[�:�nd](t) at 140 and fr140(t) at 142 since t:�nd �t. It is not hard to see that as a result fr(e) $ fr140(e) for all expressionse. Thus G18 follows from G18 at 140.G19: Suppose s is a �-leaf. If s 6� t, then by G19 at 140, hf(s) ! (s:�nd 6�s $ s 2 lhs(S)) and s � S ! hf(s) since s:�nd � s:�nd140 and S = S140.Suppose s � t. Clearly hf(s) and s:�nd � s. It remains to show thats 62 lhs(S). Now, by G19 at 140, s� S ! hf170(s). But we know :hf170(s),so it follows that s 6� S, and thus s 62 lhs(S).P�(F ;R): Given P�(F ;R) at 140, we must simply show F140 � F and R140 � R.We already showed that F = F140 [ft = tg. To show that R140 � R, note thatS140 = S and s:�nd140 � s:�nd for s 6� t. Thus, it only remains to show thatt 2 R. But this follows by hf(t) and :hf(t) and S4[S; �:�nd](t) at 140.P27[�:�nd](t): Follows by P27[�:�nd](t) at 140 since s:�nd140 � s:�nd for s 6� t.P28[�:�nd](t): By P28[�:�nd](t) at 140, s:�nd140 � s:�nd for s 6� t, and t:�nd � t.M� R: M di�ers fromM140 only by the addition of t. We knowM140 � R140 and,as shown above, R140 � R. But we also know that t 2 R (also shown above),so M� R.S23[�:�nd; �:notify](t): By G16 at 140 and s:�nd140 � s:�nd for s 6� t.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 171Line 144:142. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t), P42[��](t; i),M�R, S23[�:�nd; �:notify](t)143. TheorySetupT (t)(t); [Gok16 := TRUE;]144. G, P=(A;H;S), P�(�;V;N ;��;F ;R), P17[�](�0), P24[��](t; t),P26[��](t; i), P27[�:�nd](t), P28[�:�nd](t), t:�nd � t, P39[��](t), P42[��](t; i),M�R...264. G, hf(e)265. TheorySetupi(e)266. G, P34[all](i)...366. END TheorySetup�367. G, P34[all](�), S35[�:notify](e)The only nontrivial precondition is hf(t) which is true by t:�nd � t at 142. Con-sider now the properties at 144. Recall that P34[all](i) at 266 implies P=(� �Bi;H; I;N ;S;��; �:�nd), P�(Q;Bi;V; �:notify), Ti [
i(�0i j= 9w: Bi) ^ w \ V 0 =;^w � V, where w = free(Bi)�free(�0i), and Ti[
i(�i j= (Q�Q0))^free(Q�Q0) � V.G: All but G16 follow from G at 266. To show, G16, suppose s is a compound �-termand hf(s). We must show 8 c 2 ��(s): (�; s) 2 c:notify). If s 6� t, then thisfollows by S23[�:�nd; �:notify](t) at 142 and P=(�:�nd) and P�(�:notify) at 266.If s � t, then s must be a compound � term, and thus TheorySetup� is called.Thus, by S35[�:notify](e) at 367, 8 c 2 ��(s): (�; s) 2 c:notify).P=(A;H;S): By P=(A;H;S) at 142 and 266.P�(�;V;N ;��;F ;R): By P�(�;V;N ;��;F ;R) at 142 and P=(N ;S;��; �:�nd) andP�(�;V) at 266.P17[�](�0): By P17[�](�0) at 142, T [�0 j= 9w: �142 and w \ V 0 = ;, where w =free(�142)�free(�0). Then, by P34[all](i) at 266, T [�142 j= 9 x:� and x\V142 =;, where x = free(�)� free(�142). Thus, by P�(�) at 142 and � = �142 [Bi at266, we can use Lemma A.4 to get T [�0 j= 9 y: �, where y = w [xfree(�) �free(�0). It follows easily (by P�(V) at 142) that y \ V 0 = ;.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 172P24[��](t; t): By P24[��](t; t) at 142 and P=(��) at 266.P26[��](t; i): By P26[��](t; i) at 142 and P=(��) at 266.P27[�:�nd](t): By P27[�:�nd](t) at 142 and P=(�:�nd) at 266.P28[�:�nd](t): By P28[�:�nd](t) at 142 and P=(�:�nd) at 266.t:�nd � t: By t:�nd � t at 142 and P=(�:�nd) at 266.P39[��](t): By P39[��](t) at 142 and P=(��) at 266.P42[��](t; i): By P42[��](t; i) at 142 and P=(��) at 266.M� R: By M� R at 142 and P=(S; �:�nd) at 266.A.5.7 SimplifyLine 153:151. G, P=(all), T [� j= e0 ' e, hf(e)152. RETURN Find(e);153. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e0 ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)...237. G, hf(t)238. Find(t)...250. END Find251. G, P=(all), retval:�nd � retval, t � retvalG: By G at 251.P=(A;H; I;N ;S; �:�nd): By P=(all) at 151 and 251.P�(�;V): By P=(all) at 151 and 251.free(retval) � V: retval = retval 2 F by retval:�nd � retval at 251, so free(retval) � Vby G8.fr(retval): By retval:�nd � retval at 251.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 173T [� j= e0 ' retval: We know T [�151 j= e0 ' e. Then, F j= e = retval by t � retvalat 251. But �151 = � by P=(�) at 251 and T [� j= F by G2, so T [� j= e 'retval and thus T [� j= e0 ' retval.P17[�](�0): Trivial since � = �0 by P=(�) at 151 and P=(�) at 251.S4[S; �:�nd](retval): We know hf(retval) by retval:�nd � retval at 251, and thus hf(t)for all t� retval by G6. S4[S; �:�nd](retval) follows trivially.S5(retval): As just shown, hf(retval), so by G7, retval is a term, and thus Op(retval) 6=`='.Line 157:155. G, P=(all), free(e) � V, T [� j= e0 ' e, :hf(e)156. FOR k := 1 to Arity(e) DO BEGIN157. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e; k), S24[S; �:�nd](e; k)...159. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e; k + 1), S24[S; �:�nd](e; k + 1)160. ENDIt is easy to see that all properties are satis�ed by the transition from 159. Thus itsu�ces to consider the transition from 155.P17[�](�0): Trivial since � = �0 by P=(all) at 155.P30[�:�nd](e; k): Trivial since k=1.S24[S; �:�nd](e; k): Trivial since k=1.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 174Line 159:157. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e; k), S24[S; �:�nd](e; k)158. e[k] := Simplify(e[k]);159. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e; k + 1), S24[S; �:�nd](e; k + 1)...147. G, free(e) � V148. Simplify(e)...164. END Simplify165. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e0 ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)G: By G at 165.P=(A;H; I;N ;S; �:�nd): By P=(A;H; I;N ;S; �:�nd) at 157 and 165.P�(�;V): by P�(�;V) at 157 and 165.free(e) � V: By the execution of 158 and free(retval) � V at 165 together withfree(e) � V at 157 and P�(V) at 165.T [� j= e0 ' e: By the execution of 158, T [� j= e0 ' retval at 165, together withT [� j= e0 ' e at 158 and P�(�) at 165 and the properties of substitution.P17[�](�0): By P17[�](�0) and P�(�) at 157 and 165, Lemma A.4, and P�(V) at 165.P30[�:�nd](e; k + 1): By P30[�:�nd](e; k) at 157, fr(retval) at 165, and P=(�:�nd) at165.S24[S; �:�nd](e; k + 1): By S24[S; �:�nd](e; k) at 157, S4[S; �:�nd](retval) at 165, andP=(S; �:�nd) at 165.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 175Line 161:155. G, P=(all), free(e) � V, T [� j= e0 ' e, :hf(e)156. FOR k := 1 to Arity(e) DO BEGIN...159. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e; k + 1), S24[S; �:�nd](e; k + 1)160. END161. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e;Arity(e) + 1), S24[S; �:�nd](e;Arity(e) + 1)P17[�](�0): From 155: by P=(all) at 155. From 159: trivial.P30[�:�nd](e;Arity(e) + 1): From 155: trivial since e has no children. From 159: byend-of-loop condition.S24[S; �:�nd](e;Arity(e) + 1): From 155: trivial since e has no children. From 159:by end-of-loop condition.Line 163:161. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e) � V, T [� j= e0 ' e,P17[�](�0), P30[�:�nd](e;Arity(e) + 1), S24[S; �:�nd](e;Arity(e) + 1)162. RETURN Rewrite(e);163. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e0 ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)...166. G, free(e) � V, fr(e) _ hf(e), S25[S; �:�nd](e)167. Rewrite(e)...185. END Rewrite186. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)First we consider the preconditions of Rewrite.fr(e) _ hf(e): Suppose :hf(e). By P30[�:�nd](e;Arity(e) + 1) at 161, fr(c) for all chil-dren c of e. Thus fr(e).S25[S; �:�nd](e): By S24[S; �:�nd](e;Arity(e) + 1) at 161.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 176Now we consider the properties at line 163.G: By G at 186.P=(A;H; I;N ;S; �:�nd): By P=(A;H; I;N ;S; �:�nd) at 161 and 186.P�(�;V): By P�(�;V) at 161 and 186.free(retval) � V: By free(retval) � V at 186.fr(retval): By fr(retval) at 186.T [� j= e0 ' retval: By T [� j= e0 ' retval at 161, T [� j= e ' retval at 186, andP�(�) at 186.P17[�](�0): By P17[�](�0) and P�(�) at 161 and 186, Lemma A.4, and P�(V) at 186.S4[S; �:�nd](retval): By S4[S; �:�nd](retval) at 186.S5(retval): By S5(retval) at 186.A.5.8 RewriteLine 172:170. G, P=(all), free(e) � V, hf(e)171. RETURN Find(e);172. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)...237. G, hf(t)238. Find(t)...250. END Find251. G, P=(all), retval:�nd � retval, t � retvalThe preconditions of Find are satis�ed trivially, so we just consider the propertiesat 172.G: By G at 251.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 177P=(A;H; I;N ;S; �:�nd): By P=(all) at 170 and 251.P�(�;V): By P=(all) at 170 and 251.free(retval) � V: retval = retval 2 F by retval:�nd � retval at 251, so free(retval) � Vby G8.fr(retval): By retval:�nd � retval at 251.T [� j= e ' retval: F j= e = retval by t � retval at 251 and T [� j= F by G2, soT [� j= e ' retval.P17[�](�0): Trivial since � = �0 by P=(all) at 170 and P=(all) at 251.S4[S; �:�nd](retval): We know hf(retval) by retval:�nd � retval at 251, and thus hf(t)for all t� retval by G6. S4[S; �:�nd](retval) follows trivially.S5(retval): As just shown, hf(retval), so by G7, retval is a term, and thus Op(retval) 6=`='.Line 176:174. G, P=(all), free(e) � V, fr(e), S25[S; �:�nd](e)175. e� := OpRewrite(e);176. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S26[S; �:�nd](e; e�), S27(e; e�)...187. G, free(e) � V, fr(e), S25[S; �:�nd](e)188. OpRewrite(e)...210. END OpRewrite211. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)The preconditions of OpRewrite are satis�ed trivially, so we just consider the prop-erties at 176.G: By G at 211.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 178P=(A;H; I;N ;S; �:�nd): By P=(all) at 174 and P=(A;H; I;N ;S; �:�nd) at 211.P�(�;V): By P=(all) at 174 and P�(�;V) at 211.free(e�) � V: By free(retval) � V at 211.T [� j= e ' e�: By T [� j= e ' retval at 211.fr(e�): By fr(retval) at 211.P17[�](�0): By �0 = �174 and V 0 = V174 at 174 (by P=(all)) and P17[�](�0) at 211.S26[S; �:�nd](e; e�): By S26[S; �:�nd](e; retval) at 211.S27(e; e�): By S27(e; retval) at 211.Line 178:176. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S26[S; �:�nd](e; e�), S27(e; e�)177. IF e 6� e� THEN BEGIN178. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S25[S; �:�nd](e)S25[S; �:�nd](e): By S26[S; �:�nd](e; e�) at 176 and the if-condition.Line 180:178. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S25[S; �:�nd](e)179. e� := Rewrite(e�);180. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S4[S; �:�nd](e�), S5(e�)...166. G, free(e) � V, fr(e) _ hf(e), S25[S; �:�nd](e)167. Rewrite(e)...185. END Rewrite186. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S4[S; �:�nd](retval), S5(retval)The preconditions of Rewrite are satis�ed trivially, so we just consider the properties

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 179at 180.G: By G at 186.P=(A;H; I;N ;S; �:�nd): By P=(A;H; I;N ;S; �:�nd) at 178 and 186.P�(�;V): By P�(�;V) at 178 and 186.free(e�) � V: By free(retval) � V at 186.T [� j= e ' e�: By T [� j= e ' e� at 178, T [� j= e ' retval at 186, and P�(�)at 186.fr(e�): By fr(retval) at 186.P17[�](�0): By P17[�](�0) and P�(�) at 178 and 186, Lemma A.4, and P�(V) at 186.S4[S; �:�nd](e�): By S4[S; �:�nd](retval) at 186.S5(e�): By S5(retval) at 186.Line 182:176. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S26[S; �:�nd](e; e�), S27(e; e�)177. IF e 6� e� THEN BEGIN...180. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S4[S; �:�nd](e�), S5(e�)181. END182. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(e�) � V, T [� j= e ' e�,fr(e�), P17[�](�0), S4[S; �:�nd](e�), S5(e�)The transition from 180 is trivial. Thus we consider only the transition from 176.S4[S; �:�nd](e�): By S26[S; �:�nd](e; e�) at 176 and the if-condition.S5(e�): By S27(e; e�) at 176 and the if-condition.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 180A.5.9 OpRewriteLine 191:189. G, P=(all), free(e) � V, fr(e), S25[S; �:�nd](e)190. IF Op(e) = ':' THEN BEGIN191. G, P=(all), free(e) � V, fr(e), Op(e) = ':', S4[S; �:�nd](e), S5(e)S4[S; �:�nd](e): By S25[S; �:�nd](e) at 189 and the fact that e itself is not a term(since Op(e) = ':').S5(e): Trivial since Op(e) 6= `='.Line 193:191. G, P=(all), free(e) � V, fr(e), Op(e) = ':', S4[S; �:�nd](e), S5(e)192. RETURN RewriteNegation(e);193. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)...212. G, free(e) � V, fr(e), Op(e) = ':', S4[S; �:�nd](e)213. RewriteNegation(e)...235. END RewriteNegation236. G, P=(all), free(retval) � V, T [� j= e ' retval, fr(retval),S4[S; �:�nd](retval)The preconditions of RewriteNegation are satis�ed trivially, so we just consider theproperties at 193.G: By G at 236.P=(A;H; I;N ;S; �:�nd): By P=(all) at 191 and 236.P�(�;V): By P=(all) at 191 and 236.free(retval) � V: By free(retval) � V at 236.fr(retval): By fr(retval) at 236.T [� j= e ' retval: By T [� j= e ' retval at 236.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 181P17[�](�0): By P=(all) at 191 and 236.S26[S; �:�nd](e; retval): By S4[S; �:�nd](e) at 236.S27(e; retval): By S5(e) at 191.Line 199:197. G, P=(all), Op(e) = `=', e[1] � e[2]198. RETURN true;199. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)P17[�](�0): By P=(all) at 197.S26[S; �:�nd](e; retval): S4[S; �:�nd](true) is trivially true since true has no sub-terms.S27(e; retval): S5(retval) is true since Op(true) 6= `='.Line 201:195. G, P=(all), free(e) � V, fr(e), S25[S; �:�nd](e)196. IF Op(e) = `=' AND e[1] � e[2] THEN BEGIN...198. RETURN true;...200. END201. G, P=(all), free(e) � V, fr(e), S5(e), S25[S; �:�nd](e)S5(e): S5(e) is the negation of the if-condition.Line 203:201. G, P=(all), free(e) � V, fr(e), S5(e), S25[S; �:�nd](e)202. IF e is a term or an atomic formula THEN BEGIN203. G, P=(all), free(e) � V, fr(e), P33(e), S5(e), S25[S; �:�nd](e)P33(e): By the if-condition.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 182Line 205:203. G, P=(all), free(e) � V, fr(e), P33(e), S5(e), S25[S; �:�nd](e)204. RETURN TheoryRewriteT (e)(e);205. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)...261. G, free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)262. TheoryRewritei(e)263. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](i),S26[S; �:�nd](e; retval)The preconditions of TheoryRewritei are satis�ed trivially, so we consider the prop-erties at 205. Recall that P34[all](i) at 263 implies P=(��Bi;H; I;N ;S;��; �:�nd),P�(Q;Bi;V; �:notify), Ti [
i(�0i j= 9w: Bi) ^ w \ V 0 = ; ^ w � V, where w =free(Bi)� free(�0i), and Ti [
i(�i j= (Q�Q0)) ^ free(Q�Q0) � V.G: By G at 263.P=(A;H; I;N ;S; �:�nd): By P=(all) at 203 and P=(A;H; I;N ;S; �:�nd) at 263.P�(�;V): By P=(all) at 203, � = �203 [Bi, and P�(V) at 263.free(retval) � V: By free(retval) � V at 263.fr(retval): By fr(retval) at 263.T [� j= e ' retval: By T [� j= e ' retval at 263.P17[�](�0): By P=(all) at 203 and P17[�](�0) at 263 (which, as we have shown before,follows from P34[all](i)).S26[S; �:�nd](e; retval): By S26[S; �:�nd](e; retval) at 263.S27(e; retval): By S5(e) at 203.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 183Line 207:201. G, P=(all), free(e) � V, fr(e), S5(e), S25[S; �:�nd](e)202. IF e is a term or an atomic formula THEN BEGIN...204. RETURN206. END207. G, P=(all), free(e) � V, fr(e), S4[S; �:�nd](e), S5(e)S4[S; �:�nd](e): By S25[S; �:�nd](e) at 201 and the fact that e itself is not a term bythe if-condition.Line 209:207. G, P=(all), free(e) � V, fr(e), S4[S; �:�nd](e), S5(e)208. RETURN e;209. G, P=(A;H;I;N ;S; �:�nd), P�(�;V), free(retval) � V, fr(retval),T [� j= e ' retval, P17[�](�0), S26[S; �:�nd](e; retval), S27(e; retval)P17[�](�0): By P=(all) at 207.S26[S; �:�nd](e; retval): By S4[S; �:�nd](e) at 207.S27(e; retval): By S5(e) at 207.A.5.10 RewriteNegationLine 218:216. G, P=(all), free(e) � V, fr(e), Op(e) = ':', e[1] � true217. RETURN false;218. G, P=(all), free(retval) � V, T [� j= e ' retval, fr(retval),S4[S; �:�nd](retval)S4[S; �:�nd](retval): S4[S; �:�nd](false) is trivially true since false has no sub-terms.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 184Line 224:222. G, P=(all), free(e) � V, fr(e), Op(e) = ':', e[1] � false223. RETURN true;224. G, P=(all), free(retval) � V, T [� j= e ' retval, fr(retval),S4[S; �:�nd](retval)S4[S; �:�nd](retval): S4[S; �:�nd](true) is trivially true since true has no sub-terms.A.5.11 FindLine 247:245. G, P=(all), hf(t)246. RETURN Find(t:�nd);247. G, P=(all), retval:�nd � retval, t � retval...237. G, hf(t)238. Find(t)...250. END Find251. G, P=(all), retval:�nd � retval, t � retvalWe �rst consider the preconditions of Findhf(t.�nd): Follows from G5 at 245.We now consider the properties at 247.G: By G at 251.P=(all): By P=(all) at 245 and 251.retval:�nd � retval: By retval:�nd � retval at 251.t � retval: By hf(t), G5, and the de�nition of �nd� and �, t �245 t:�nd245. Then, byP=(all) at 251, t � t:�nd Finally, by the Find postcondition, t:�nd � retval, soby the de�nition of �, t � retval.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 185A.5.12 Theory-Speci�c Code for a Nelson-Oppen Theory TiTheoryAddSharedTerm273. G, free(e) � V274. TheoryAddSharedTermi(e)275. G, P34[all](i)P34[all](i): TheoryAddSharedTermi does nothing, so P=(all) holds at 275, and thus,by Lemma A.5, so does P34[all](i).TheoryAssert276. G,277. TheoryAsserti(e)278. G, P34[all](i)P34[all](i): TheoryAsserti does nothing, so P=(all) holds at 278, and thus, by LemmaA.5, so does P34[all](i).TheoryCheckSatLine 283:281. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, S2[I;S; �:�nd],S3[A;I; �:�nd]282. IF :Sat i(�i [E�i) THEN BEGIN283. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P36[�;��; �:�nd](i):P36[�;��; �:�nd](i): By the if-condition.Line 285:283. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P36[�;��; �:�nd](i)284. I := TRUE;285. G, P=(all � fIg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]G: Only G1 depends on I. Since line 284 sets I to be TRUE, we must show thatT [H j= false. By :P36[�;��; �:�nd](i) at 283, we have Ti [
i(�i [E�i) j=

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 186false. It follows that T [�[E�i j= false. But by the de�nition of E�i , F j= E�i ,and T [� j= F by G2 at 283, so T [� j= false. Finally, by G3 at 283, if T [H issatis�able, then T [H[� is also satis�able. Therefore, T [H is not satis�able.P1[�;H; I;N]: Trivial since I = TRUE;P9[�; I;N ;Q;��; �:�nd](i): Trivial since I = TRUE;S2[I;S; �:�nd]: Trivial since I = TRUE;S3[A; I; �:�nd]: Trivial since I = TRUE;Line 287:281. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, S2[I;S; �:�nd],S3[A;I; �:�nd]282. IF :Sat i(�i [E�i) THEN BEGIN...286. END ELSE IF :Sat i(�i [Ar�i) THEN BEGIN287. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P7[�;��; �:�nd](i),P36[�;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]:P7[�;��; �:�nd](i): By the if-condition on line 286.P36[�;��; �:�nd](i): By the if-condition on line 282.Line 289:287. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P7[�;��; �:�nd](i),P36[�;��; �:�nd](i), S2[I;S; �:�nd], S3[A;I; �:�nd]288. Choose � � D�i such that :Sat i(�i [E�i [�);289. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P7[�;��; �:�nd](i),P36[�;��; �:�nd](i), P37[�;��; �:�nd](i;:�), S2[I;S; �:�nd], S3[A;I; �:�nd]A note on line 288: It is always possible to choose an appropriate set for �. Inparticular, D�i always works since E�i [D�i = Ar�i by de�nition and :Sat i(�i [Ar�i) by :P7[�;��; �:�nd](i) at 287.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 187P37[�;��; �:�nd](i;:�): By execution of line 288, Ti [
i(�i [E�i [�) is not satis-�able, so any model and variable assignment satisfying Ti [
i(�i [E�i) mustnot satisfy
i(�). Thus, Ti [
i(�i [E�i) j=
i(:�).Line 291:289. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, :P7[�;��; �:�nd](i),P36[�;��; �:�nd](i), P37[�;��; �:�nd](i;:�), S2[I;S; �:�nd], S3[A;I; �:�nd]290. Q := f:�g;291. G, P=(all � fI;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]G: We must consider only those global properties which depend on Q.G4: By P37[�;��; �:�nd](i;:�) at 289, Ti [
i(�i [E�i) j=
i(:�), so T [�[E�i j= :�. But by the de�nition of E�i , F j= E�i , and T [� j= F by G2at 289, so T [� j= :�. G4 follows by G4 at 289 and the execution of line290.G8: By G8 at 289, free(�) � V. But free(�) � free(�), so free(Q) � V. Therest follows by G8 at 289.P9[�; I;N ;Q;��; �:�nd](i): Trivial, since Q 6= ;.Line 293:281. G, P=(all), P1[�;H;I;N], Q = ;, :I, convex, S2[I;S; �:�nd],S3[A;I; �:�nd]282. IF :Sat i(�i [E�i) THEN BEGIN...285. G, P=(all � fIg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]286. END ELSE IF :Sat i(�i [Ar�i) THEN BEGIN...291. G, P=(all � fI;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]292. END293. G, P=(all � fI;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](i),S2[I;S; �:�nd], S3[A;I; �:�nd]

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 188P9[�; I;N ;Q;��; �:�nd](i): The transitions from 285 and 291 are trivial. But if nei-ther if-branch is taken, then by the if-condition of 286, Ti [
i(�i [Ar�i) issatis�able, from which P9[�; I;N ;Q;��; �:�nd](i) follows easily.TheoryRewrite296. G, free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)297. TheoryRewritei(e)298. RETURN e;299. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](i),S26[S; �:�nd](e; retval)P34[all](i): Since no state variables change, P=(all) holds at 299, so by Lemma A.5,so does P34[all](i).S26[S; �:�nd](e; retval): Since e � retval, we must show S4[S; �:�nd](e). Suppose t�e.If t 6� e, then by S25[S; �:�nd](e) at 296, t � canon�(S(t)). Suppose t � e and:hf(t), We must show t � canon�(S(t)). First note that since T (e) = i, andTi is a Nelson-Oppen theory, t is not a �-term, and thus t is a �-leaf. Thus,by G19, t 6� S, so S(t) � t. But by property 4 of canon, canon�(t) � t. Thus,t � canon�(S(t)).TheorySetup300. G, hf(e)301. TheorySetupi(e)302. G, P34[all](i)P34[all](i): TheorySetupi does nothing, so P=(all) holds at 302, and thus, by LemmaA.5, so does P34[all](i).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 189TheorySolve303. G, P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, fr(e), P11(e),Op(e) = `=', e[1] 6� e[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e)304. TheorySolve(e)305. RETURN feg;306. G, P=(H;I;N ; �:�nd), P�(�), free(retval) � V, P14[�:�nd](retval),P17[�](�0), P35[�](e; retval), S2[I;S; �:�nd], S3[A;I; �:�nd], S7[S; �:�nd](retval)Note that this (the default) implementation of TheorySolve is only used if there isno Shostak theory, since otherwise, the Shostak theory provides the implementationfor TheorySolve.P14[�:�nd](retval): We know that retval = feg. 8 e 2 retval: fr(e) follows by fr(e) at303, and P13(retval) follows from P11(e) and Op(e) = `=' at 303.P17[�](�0): Follows easily since �0 = �.P35[�](e; retval): Trivial since retval = feg.S7[S; �:�nd](retval): Given that retval = feg, it is easy to see that S4[S; �:�nd](retval)follows from S4[S; �:�nd](e) at 303. Then, since there is no Shostak theory, e[1]and e[2] are not �-terms, and thus, since e[1] 6� e[2], feg is in �-solved form(strictly speaking, this property isn't even needed if there is no Shostak theory).TheoryUpdate307. G, P1[�;H;I;N], S3[A;I; �:�nd], S28[�:�nd](i; d)308. TheoryUpdatei(e,d)309. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R), I _ (R0 � R),I 0 ! II _ (M� R): TheoryUpdatei does nothing, so M = ;.A.5.13 Theory-Speci�c Code for Shostak Theory T�TheoryAddSharedTerm and TheoryAssertThese are exactly the same as for the Nelson-Oppen theory-speci�c code, shownabove.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 190TheoryCheckSatLine 320:... [X := ;;]318. G, P=(all), P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]319. FOREACH e in A� DO BEGIN320. G, P=(all), P1[�;H;I;N], e 2 A�, S2[I;S; �:�nd], S3[A;I; �:�nd],S29[I;S](X;�)...326. G, P=(all), P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd],S29[I;S](X;�)327. ENDS29[I;S](X;�): From 318: X = ;. From 326: by S29[I;S](X;�) at 326.Line 322:320. G, P=(all), P1[�;H;I;N], e 2 A�, S2[I;S; �:�nd], S3[A;I; �:�nd],S29[I;S](X;�)321. IF Op(e) = ':' AND Find(e[1][1]) � Find(e[1][2]) THEN BEGIN322. G, P=(all), P1[�;H;I;N], Op(e[1]) = `=', Op(e) = ':',e[1][1] � e[1][2], e 2 A�, S2[I;S; �:�nd]...237. G, hf(t)238. Find(t)...250. END Find251. G, P=(all), retval:�nd � retval, t � retvalWe �rst consider the preconditions of the calls to Find. We assume that the calls toFind are not made unless Op(e) = ':' (i.e. C-like semantics). Since e 2 A, we knowe is a literal by G20. Now, since e is in A�, e is a �-literal, so e[1] must be an equationbetween two terms since Shostak theories do not have predicate symbols. Finally, weknow hf(e[1][1]) and hf(e[1][2]) by G11 at 320.G: By G at 320 and 251.P=(all): By P=(all) at 320 and 251.P1[�;H; I;N]: By P1[�;H; I;N] at 320 and P=(all).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 191Op(e[1]) = `=': See above paragraph.Op(e) = ':': By the if-condition.e[1][1] � e[1][2]: By t � retval at 251, the if-condition, and the de�nition of �.e 2 A�: By e 2 A� at 320 and P=(all).S2[I;S; �:�nd]: By S2[I;S; �:�nd] at 320 and P=(all).Line 324:322. G, P=(all), P1[�;H;I;N], Op(e[1]) = `=', Op(e) = ':',e[1][1] � e[1][2], e 2 A�, S2[I;S; �:�nd]323. I := TRUE; RETURN;324. G, P=(all � fI;N ;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](�),S2[I;S; �:�nd], S3[A;I; �:�nd]G: Only G1 depends on I. Since line 284 sets I to be TRUE, we must show thatT [H j= false. Let s � e[1][1] and t � e[1][2]. We know that s � t, so bythe de�nition of � and S2[I;S; �:�nd] at 322, canon�(S(s)) � canon�(S(t)).Then, by property 1 of canon, Ti j=
�(S(s) = S(t)). Then, by Proposition 2.1,Ti [
�(S) j=
�(s = t), and thus T [S j= s = t. But T [F j= S by G14 andT [� j= F by G2, so T [� j= s = t. But s 6= t 2 A � �, so T [� j= false.Thus, by G3, T [H j= false.P1[�;H; I;N]: Trivial since I = TRUE.P9[�; I;N ;Q;��; �:�nd](�): Trivial since I = TRUE.S2[I;S; �:�nd]: Trivial since I = TRUE.S3[A; I; �:�nd]: Trivial since I = TRUE.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 192Line 326:320. G, P=(all), P1[�;H;I;N], e 2 A�, S2[I;S; �:�nd], S3[A;I; �:�nd],S29[I;S](X;�)321. IF Op(e) = ':' AND Find(e[1][1]) � Find(e[1][2]) THEN BEGIN... RETURN;...325. END [X := X [feg;]326. G, P=(all), P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd],S29[I;S](X;�)S29[I;S](X;�): Assume :I, d 2 X, and Op(d) 6= ':'. We must show Ti [
i(S) 6j=
i(d[1]). If d 2 X320, then this follows by S29[I;S](X;�) at 320. Otherwise,d � e, and thus d[1] is an equation and d[1][1] 6� d[1][2] (see comments forline 322, above). Let s � d[1][1] and t � d[1][2]. Since s 6� t, it followsfrom S2[I;S; �:�nd] that canon�(S(s)) 6� canon�(S(t)). Thus, by property 1of canon, Ti 6j=
�(S(s) = S(t)), and thus, by Proposition 2.1, Ti [
�(S) 6j=
�(s = t).Line 328:... [X := ;;]318. G, P=(all), P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd]319. FOREACH e in A� DO BEGIN...326. G, P=(all), P1[�;H;I;N], S2[I;S; �:�nd], S3[A;I; �:�nd],S29[I;S](X;�)327. END328. G, P=(all � fI;N ;Qg), P1[�;H;I;N], P9[�;I;N ;Q;��; �:�nd](�),S2[I;S; �:�nd], S3[A;I; �:�nd]P9[�; I;N ;Q;��; �:�nd](�): Suppose Q = ;, :I, and convex. We must show thatT� [
�(�� [Ar��) is satis�able. First, note that since A� contains only �-literals (by de�nition and by G20), every formula in A� is either an equation ora disequation. Let A=� be the set of all equations in A and A 6=� the set of alldisequations in A�. Now, T� [
�(S) is satis�able by Corollary 2.1 since S is in�-solved form by G13. We next show that T� [
�(S [A6=� [D��) is satis�able.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 193Suppose it is not, then T� [
�(S) j=
�(:(A6=� [D��)). But then, since T�is convex, it must be the case that T� [
�(S) j=
�(s = t) where s 6= t 2(A6=� [D��). But if s 6= t 2 A6=� , then by S29[I;S](X;�) (which holds vacuouslyat 318 where X = ;) and the end-of-loop condition, T� [
�(S) 6j=
i(s = t).Suppose on the other hand that s 6= t 2 D��. By de�nition of D��, hf(s) ^hf(t) ^ �nd�(s) 6� �nd�(t), so by S2[I;S; �:�nd], canon�(S(s)) 6� canon�(S(t)).Then, by property 1 of canon and Proposition 2.1, Ti[
�(S) 6j=
�(s = t). Thus,T�[
�(S [A6=� [D��) is satis�able. Finally, suppose s = t 2 A=� [E�� . Then,by S3[A; I; �:�nd] or by the de�nition of E�� , hf(s)^ hf(t)^ �nd�(s) � �nd�(t),and thus, by S2[I;S; �:�nd], canon�(S(s)) � canon�(S(t)). It then follows byproperty 1 of canon and Proposition 2.1 that Ti [
�(S) j=
�(s = t). Thus,T� [
�(S [A� [Ar��) is satis�able. But B� = ; by G12, so it follows thatT� [
�(�� [Ar��) is satis�able.TheoryRewriteLine 335:333. G, P=(all), free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)334. IF e is not a term THEN BEGIN335. G, P=(all), free(e) � V, fr(e), P33(e), :P23(e), S4[S; �:�nd](e):P23(e): By the if-condition.S4[S; �:�nd](e): Since e is not a term, if a term t � e, then t � c for some child c ofe. S4[S; �:�nd](e) then follows from S25[S; �:�nd](e).Line 337:335. G, P=(all), free(e) � V, fr(e), P33(e), :P23(e), S4[S; �:�nd](e)336. RETURN e;337. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](�),S26[S; �:�nd](e; retval), S42[S](e; retval)P34[all](�): By P=(all) and Lemma A.5.S26[S; �:�nd](e; retval): By S4[S; �:�nd](e) since e � retval.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 194S42[S](e; retval): e is not a term by :P23(e) at 335.Line 339:333. G, P=(all), free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)334. IF e is not a term THEN BEGIN...336. RETURN e;...338. END339. G, P=(all), free(e) � V, fr(e), P23(e), S25[S; �:�nd](e)P23(e): By the if-condition.Line 341:339. G, P=(all), free(e) � V, fr(e), P23(e), S25[S; �:�nd](e)340. e� := RewriteHelper(e);341. G, P=(all), free(e�) � V, P23(e�), T [� j= e ' e�, S30[�:�nd](e�),S31[S; �:�nd](e�), S32[S](e�), S33[S](e�; e)...381. G, free(t) � V, P23(t), fr(t) _ hf(t), S25[S; �:�nd](t)382. RewriteHelper(t)...410. END RewriteHelper411. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)G: By G at 411.P=(all): By P=(all) at 339 and 411.free(e�) � V: By free(retval) � V at 411.P23(e�): By P23(retval) at 411.T [� j= e ' e�: By T [� j= t0 ' retval at 411.S30[�:�nd](e�): By S30[�:�nd](retval) at 411.S31[S; �:�nd](e�): By S31[S; �:�nd](retval) at 411.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 195S32[S](e�): By S32[S](retval) at 411.S33[S](e�; e): By S33[S](retval; t0) at 411.Line 343:341. G, P=(all), free(e�) � V, P23(e�), T [� j= e ' e�, S30[�:�nd](e�),S31[S; �:�nd](e�), S32[S](e�), S33[S](e�; e)342. RETURN canon�(e�);343. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](�),S26[S; �:�nd](e; retval), S42[S](e; retval)Note that the only requirement needed to be able to apply canon� to an expressionis that the expression be a term. This is guaranteed by P23(e�) at 341.T [� j= e ' retval: By T [� j= e ' e� at 341 and properties 1 and 2 of canon.fr(retval): By S30[�:�nd](e�) at 341 and property 3 of canon, we know that 8 c 2��(retval):fr(c). Then, by G18, it follows that fr(retval).free(retval) � V: By free(e�) � V at 341 and property 3 of canon.P34[all](�): By P=(all) at 341 and Lemma A.5.S26[S; �:�nd](e; retval): We will show S4[S; �:�nd](retval). It is easy to see that thisproperty implies S26[S; �:�nd](e; retval). Consider t�retval, and suppose :hf(t).We must show t � canon�(S(t)). First suppose that t�c for some c 2 ��(retval).We know that c 2 ��(e�) by property 3 of canon. Then, by S31[S; �:�nd](e�) at341, we have S4[S; �:�nd](c). Thus, since t�c, t � canon�(S(t)). Suppose on theother hand that t 6� c for any c 2 ��(retval). Then t must be a compound �-terman it must be the case that ��(t) � ��(retval). But again by property 3 of canon,��(retval) � ��(retval), so ��(t) � ��(e�). Thus, by S32[S](e�) at 341, S(t) � t.Also, by property 5 of canon, canon�(t) � t, and thus t � canon�(S(t)).S42[S](e; retval): By S33[S](e�; e) at 341, canon�(e�) � canon�(S(e)).

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 196TheorySolveLine 350:348. G, P=(all), P4[�;H;I;N](e), :I, P6[�;H](e), free(e) � V, fr(e), P11(e),Op(e) = `=', e[1] 6� e[2], S2[I;S; �:�nd], S3[A;I; �:�nd], S4[S; �:�nd](e)349. RETURN solve�(e); [V := V [free(retval)]350. G, P=(�;H;I;N ; �:�nd), free(retval) � V, P14[�:�nd](retval),P17[�](�0), P35[�](e; retval), S2[I;S; �:�nd], S3[A;I; �:�nd],S7[S; �:�nd](retval)Note that by the de�nition of solve, either retval = ffalseg, retval = ;, or retval is a setof equations in �-solved form. In each case, we have T� j=
�(e$ 9w:retval), wherew = free(retval)�free(e) and w\V 0 = ; (recall that when used as a formula, the emptyset is equivalent to true). Also, if retval is a set of equations, then canon�(d[2]) � d[2]for each d 2 retval.P14[�:�nd](retval): Suppose retval 6= ffalseg. If retval = ;, then 8 e 2 retval: fr(e)and P13(retval) follow trivially. Otherwise, P13(retval) follows from the factthat retval is in �-solved form. It remains to show 8 e 2 retval: fr(e). We�rst show 8 c 2 ��(retval): fr(c). First note that by the de�nition of solve,��(retval) � ��(e) [w. Also, the variables in w are fresh, so w \ HF = ;.Suppose c 2 ��(d). If c 2 w, then c has no children and :hf(c), so it followsthat fr(c). If c 62 w, then c 2 ��(e). We consider two cases.1. Suppose :hf(c). c is a sub-term of e, so by G6 there is a path from eto c such that for every expression d in the path, :hf(d). Thus, everyhighest �nd-initialized sub-expression of d is also a highest �nd-initializedsub-expression of e. Thus, since e is �nd-reduced, so is c.2. Suppose hf(c), and suppose c is not �nd-reduced, so that c:�nd 6� c. Thenbecause c 2 ��(e) and e is �nd-reduced, there must a term t � e suchthat c 2 ��(t) and t:�nd � t. Then, by :I and S2[I;S; �:�nd], t �canon�(S(t)). Now, since c is a �-leaf and hf(c) and c:�nd 6� c, it followsfrom G19 that c 2 lhs(S), and thus c 62 ��(S(t)). But ��(canon�(S(t))) �

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 197��(S(t)) by property 3 of canon, so c 62 ��(canon�(S(t))) which is a con-tradiction since canon�(S(t)) � t.We have shown that 8 c 2 ��(retval): fr(c). Now, suppose d 2 retval. We knowthat 8 c 2 ��(d): fr(c). Thus, by G18, fr(d).P17[�](�0): � is unchanged by 349, so � = �0.P35[�](e; retval): We have T� j=
�(e$ 9w:retval), where w = free(retval) � free(e)and w \ V 0 = ;. It follows that T [� j= e$ 9w:retval. Also, free(�) � V 0 byP=(�) at 350, and P=(all) and G8 at 348, so w \ (V 0 [free(�)) = ;.S7[S; �:�nd](retval): Suppose retval 6= ffalseg. If retval = ;, then S4[S; �:�nd](retval)and S6(retval) follow trivially. Otherwise, S6(retval) clearly holds since retval isin �-solved form. It remains to show S4[S; �:�nd](retval). Consider t � retval.There are two cases.1. Suppose t� c for some c 2 ��(retval). Then, as shown above, ��(retval) ���(e) [w, so t 2 w or t� c for some c 2 ��(e). If t 2 w, then t is a �-leafand :hf(t), and thus t 6� S by G19, so S(t) � t. Also, by property 4 ofcanon, canon�(t) � t, so canon�(S(t)) � t. If t � c for some c 2 ��(e),then canon�(S(t)) � t by S4[S; �:�nd](e) at 348.2. Suppose t 6� c for any c 2 ��(retval) and suppose t � d where d 2 retval.Then t 6� d[1] since retval is in �-solved form and thus d[1] is a �-leaf. Thust must be a compound �-term and there must be a path of compound �-terms from d[2] to t. Clearly, then, ��(t) � ��(d[2]). Now, as shownabove, 8 c 2 ��(retval): fr(c). It follows that 8 c 2 ��(retval): S(c) � c. Tosee this, notice that if :hf(c), then c 6� S by G19, and if hf(c), then sincec:�nd � c, it follows (also by G19) that c 62 lhs(S). Thus, S(t) � t. Also,since there is a path of compound �-terms from d[2] to t and we knowthat canon�(d[2]) � d[2], it follows by repeated application of property 5of canon that canon�(t) � t. Thus canon�(S(t)) � t.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 198TheorySetupLine 357:355. G, P=(all), hf(e)356. IF e is a compound �-term THEN BEGIN [Z := ;;]357. G, P=(all), hf(e), S8(e)S8(e): By the if-condition.Line 359:... [Z := ;;]357. G, P=(all), hf(e), S8(e)358. FOREACH c 2 ��(e) DO BEGIN359. G, P=(all � f�:notifyg), P�(�:notify), hf(e), S8(e), S36[�:notify](Z)...361. G, P=(all � f�:notifyg), P�(�:notify), hf(e), S8(e), S36[�:notify](Z)362. ENDS36[�:notify](Z): From 357: trivially true since Z = ;. From 361: by S36[�:notify](Z)at 361.Line 361:359. G, P=(all � f�:notifyg), P�(�:notify), hf(e), S8(e), S36[�:notify](Z)360. c:notify := c:notify [f(�; e)g; [Z := Z [fcg;]361. G, P=(all � f�:notifyg), P�(�:notify), hf(e), S8(e), S36[�:notify](Z)G: We must consider only those global properties which depend on �:notify.G16: By G16 at 359 and �:notify359 � �:notify.G17: By G17, S8(e), hf(e) and c 2 ��(e) at 359.S36[�:notify](Z): By S36[�:notify](Z) at 359, the execution of line 360, and Z = Z359[fcg.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 199Line 363:357. G, P=(all), hf(e), S8(e)358. FOREACH c 2 ��(e) DO BEGIN...361. G, P=(all � f�:notifyg), P�(�:notify), hf(e), S8(e), S36[�:notify](Z)362. END363. G, P34[all](�), S35[�:notify](e)P34[all](�): From 357: by P=(all) at 357 and Lemma A.5. From 361: by P=(all �f�:notifyg) and P�(�:notify) at 361 and a similar argument as that found inLemma A.5.S35[�:notify](e): From 358: holds vacuously since ��(e) = ;. From 361: by S8(e) andS36[�:notify](Z) at 361 and the end-of-loop condition, Z = ��(e).Line 365:355. G, P=(all), hf(e)356. IF e is a compound �-term THEN BEGIN...363. G, P34[all](�), S35[�:notify](e)364. END365. G, P34[all](�), S35[�:notify](e)P34[all](�): From 355: by P=(all) and Lemma A.5. From 363: trivial.S35[�:notify](e): From 355: :S8(e) by the if-condition. From 363: trivial.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 200TheoryUpdateLine 374:372. G, P=(all), P1[�;H;I;N], :I, d:�nd � d, S3[A;I; �:�nd], S8(d),S9[�:�nd](d)373. d� := TheoryRewrite�(d);374. G, P=(S; �:�nd), P1[�;H;I;N], :I, :I 0, fr(d�), P23(d�), d:�nd � d,S1[S](d�; d), S3[A;I; �:�nd], S4[S; �:�nd](d�), S8(d), S9[�:�nd](d)...331. G, free(e) � V, fr(e), P33(e), S25[S; �:�nd](e)332. TheoryRewrite�(e)...344. END TheoryRewrite�345. G, T [� j= e ' retval, fr(retval), free(retval) � V, P34[all](�),S26[S; �:�nd](e; retval), S42[S](e; retval)We �rst consider the preconditions of TheoryRewrite�.free(d) � V: By d:�nd � d at 372, d� F , so by G8, free(d) � V.fr(d): By d:�nd � d at 372, d:�nd � d, so fr(d).P33(d): By d:�nd � d at 372, hf(d), so by G7, d is a term.S25[S; �:�nd](d): By d:�nd � d at 372, hf(d), so by G6, if t� d, hf(t). It follows thatS4[S; �:�nd](d) and thus also S25[S; �:�nd](d) at 372.We now consider the properties at 374. Recall that P34[all](i) at 345 implies P=(��Bi;H; I;N ;S;��; �:�nd), P�(Q;Bi;V; �:notify), Ti [
i(�0i j= 9w: Bi) ^w \ V 0 = ; ^w � V, where w = free(Bi)� free(�0i), and Ti[
i(�i j= (Q�Q0))^ free(Q�Q0) � V.G: By G at 345.P=(R;S; �:�nd): By P=(all) at 372 and P=(Eq; �:�nd) at 345.P1[�;H; I;N]: By P1[�;H; I;N] at 372 and P=(H; I;N) and P�(�) at 345.:I: By :I at 372 and P=(I) at 345.:I 0: By :I and P=(all) at 372.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 201fr(d�): By fr(retval) at 345.d:�nd � d: By d:�nd � d at 372 and P=(�:�nd) at 345.S1[S](d�; d): By d:�nd � d and G7 at 372, d is a term, so by S42[S](e; retval) at 345,d� � canon�(S(d)).P23(d�): Since d� � canon�(S(d)), and canon is a function from terms to terms, d� isa term.S3[A; I; �:�nd]: By S3[A; I; �:�nd] at 372, P=(A; I; �:�nd) at 345.S4[S; �:�nd](d�): Suppose t � d� and :hf(t). If t 6� d�, then t � canon�(S(t)) byS26[S; �:�nd](e; retval) at 345. Otherwise, we know that t � canon�(S(d))(shown above). So, by Lemma A.1, S(t) � t. Furthermore, by property 2of canon, canon�(t) � t. Thus, t � canon�(S(t)).S8(d): By S8(d) at 372.S9[�:�nd](d): By S9[�:�nd](d) at 372 and P=(�:�nd) at 345.Line 376:374. G, P=(S; �:�nd), P1[�;H;I;N], :I, :I 0, fr(d�), P23(d�), d:�nd � d,S1[S](d�; d), S3[A; I; �:�nd], S4[S; �:�nd](d�), S8(d), S9[�:�nd](d)375. AssertEqualities(fd = d�g);376. G, P�(F ; lhs(S)), P1[�;H;I;N], :I 0, S3[A;I; �:�nd], I _ (M�R),I _ (R0 � R), I _ (d 2 R)...58. G, P4[�;H;I;N](E), :I, P12[�;H](E), P14[�:�nd](E), free(E) � V,S3[A;I; �:�nd], S12[S; �:�nd](E)59. AssertEqualities(E)...97. END AssertEqualities98. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R),I _ (lhs(E) � R), I _ (R0 � R)We �rst consider the preconditions of AssertEqualities. First note that since d� �canon�(S(d)), T [S j= d = d�. Then, since T [� j= F by G2 and T [F j= S byG14, it follows that T [� j= d = d�.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 202P4[�;H; I;N](fd = d�g): By :I and P1[�;H; I;N], T [N [� j= H. Then, sinceT [� j= d = d�, it follows that :I ! (T [N [� [fd = d�g j= H).P12[�;H](fd = d�g): Trivial, since as mentioned above, T [� j= d = d�.P14[�:�nd](fd = d�g): P13(fd = d�g) is true by construction (note that d� is a termby P23(d�) and d is a term by d:�nd � d and G7). Then, 8 e 2 fd = d�g: fr(e)follows by d:�nd � d and fr(d�).free(fd = d�g) � V: Suppose c is a �-leaf in d = d�. We will show hf(c). Then, sinceevery free variable is also a �-leaf, free(fd = d�g) � V follows by G8. To showhf(c), we consider two cases. Suppose �rst that c� d. Then since d:�nd � d, itfollows from G6 that hf(c). Suppose on the other hand that c � d�. We knowthat d� � canon�(S(d)). By property 3 of canon, c 2 ��(S(d)). It follows thatc 2 ��(d) or c 2 ��(S). But if c 2 ��(d), then as we just showed, hf(c). Ifc 2 ��(S), then by G19, hf(c).S12[S; �:�nd](fd = d�g): S10[S; �:�nd](fd = d�g) follows from S8(d), the fact thatd:�nd � d, S1[S](d�; d), and S9[�:�nd](d). We now show S11[S; �:�nd](fd =d�g). To show d� � canon�(S(d�)), note that since d� � canon�(S(d)), it followsfrom Lemma A.1 that S(d�) � d�. Using property 2 of canon, it also followsthat canon�(d�) � d�. Thus, d� � canon�(S(d�)). fr(d = d�) follows by fr(d�)and d:�nd � d. Finally, S4[S; �:�nd](fd = d�g) follows from S4[S; �:�nd](d�),and d:�nd � d and G6.We now consider the properties at line 376.G: By G at 98.P�(F ; lhs(S)): By P=(S; �:�nd) at 374 and P�(F ; lhs(S)) at 98.P1[�;H; I;N]: By P1[�;H; I;N] at 98.:I 0: By :I 0 at 374.S3[A; I; �:�nd]: By S3[A; I; �:�nd] at 98.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 203I _ (M� R): By P=(�:�nd) at 374 and I _ (M� R) at 98.I _ (R0 � R): By P=(�:�nd) at 374 and I _ (R0 � R) at 98.I _ (d 2 R): By I _ (lhs(E) � R) at 98.Line 378:370. G, P=(all), P1[�;H;I;N], hf(d), S3[A;I; �:�nd], S8(d), S9[�:�nd](d)371. IF :I AND Find(d) � d THEN BEGIN...376. G, P�(F ; lhs(S)), P1[�;H;I;N], :I 0, S3[A;I; �:�nd], I _ (M�R),I _ (R0 � R), I _ (d 2 R)377. END378. G, P�(F ; lhs(S)), P1[�;H;I;N], S3[A;I; �:�nd], I _ (M�R),I _ (R0 � R), I 0 ! I, S34[I;S; �:�nd](d)S34[I;S; �:�nd](d): From 370: By the if-condition, I _ (d:�nd 6� d). From 376: byI _ (d 2 R).RewriteHelperLine 385:383. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), S25[S; �:�nd](t)384. IF t is a �-leaf THEN BEGIN385. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), :S8(t),S25[S; �:�nd](t):S8(t): By the if-condition.Line 387:385. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), :S8(t),S25[S; �:�nd](t)386. IF :HasFind(t) OR t:�nd � t THEN BEGIN387. G, P=(all), free(t) � V, t0 � t, fr(t), P23(t), :S8(t),S31[S; �:�nd](t), S32[S](t), S33[S](t; t0)

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 204S31[S; �:�nd](t): Since t is a �-leaf by :S8(t), we simply must show S4[S; �:�nd](t).Suppose s� t and :hf(s). We must show that s � canon�(S(s)). If s� t, thenthis follows by S25[S; �:�nd](t). Otherwise, s � t. Since s is a �-leaf and :hf(s),it follows from G19 that s 6� S, and thus S(s) � s. But by property 4 of canon,canon�(s) � s, so s � canon�(S(s)).S32[S](t): By :S8(t), t is a �-leaf, so we simply must show S(t) � t. We showed thisabove for the case when :hf(t). Otherwise, we know that t:�nd � t. Thus, byG19, t 62 lhs(S), and thus S(t) � t.S33[S](t; t0): We know that t � t0. As shown above, S(t) � t, so canon�(t) �canon�(S(t)).Line 389:387. G, P=(all), free(t) � V, t0 � t, fr(t), P23(t), :S8(t),S31[S; �:�nd](t), S32[S](t), S33[S](t; t0)388. RETURN t;389. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)S30[�:�nd](retval): Trivial since t is a �-leaf by :S8(t) (and thus ��(t) � ftg) andfr(t).Line 393:391. G, P=(all), free(t) � V, t0 � t, P23(t), hf(t), S25[S; �:�nd](t)392. t := Find(t);393. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t), S25[S; �:�nd](t)...237. G, hf(t)238. Find(t)...250. END Find251. G, P=(all), retval:�nd � retval, t � retvalG: By G at 251.P=(all): By P=(all) at 391 and 251.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 205free(t) � V: By retval:�nd � retval at 251, retval� F , so free(retval) � V by G8.t0 � t: By t0 � t391 and t � retval at 251.P23(t): By retval:�nd � retval and G7 at 251.fr(t): By retval:�nd � retval at 251.S25[S; �:�nd](t): Trivial since hf(s) for all s� t by retval:�nd � retval at 251 and G6.Line 395:393. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t), S25[S; �:�nd](t)394. RETURN RewriteHelper(t�);395. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)...381. G, free(t) � V, P23(t), fr(t) _ hf(t), S25[S; �:�nd](t)382. RewriteHelper(t)...410. END RewriteHelper411. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)G: By G at 411.P=(all): By P=(all) at 393 and 411.free(retval) � V: By free(retval) � V at 411.T [� j= t0 ' retval: By t0 �393 t393 and G2 at 393, T [�393 j= t0 = t393. Thus, byT [� j= t0 ' retval and P=(all) at 411, T [� j= t0 ' retval.P23(retval): By P23(retval) at 411.S30[�:�nd](retval): By S30[�:�nd](retval) at 411.S31[S; �:�nd](retval): By S31[S; �:�nd](retval) at 411.S32[S](retval): By S32[S](retval) at 411.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 206S33[S](retval; t0): We must show that canon�(retval) � canon�(S(t0)). First of all,by S33[S](retval; t0) at 411, canon�(retval) � canon�(S(t393)). Thus, by prop-erty 1 of canon, T� j=
�(retval = S(t393)). It follows that T� [
�(S) j=
�(retval = t393). Then, by the fact that t0 �393 t393 and G15 at 411, wehave that T� [
�(S) j=
�(t0 = t393). Thus, T� [
�(S) j=
�(retval = t0). ByProposition 2.1, T� j=
�(S(retval) = S(t0)). Now, note that by S32[S](retval),S(retval) � retval, so we have T� j=
�(retval = S(t0)), and thus, by property 1of canon, canon�(retval) � canon�(S(t0)).Line 399:384. IF t is a �-leaf THEN BEGIN...398. END ELSE BEGIN399. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), S8(t),S25[S; �:�nd](t)S8(t): By the if-condition.Line 401:399. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), S8(t),S25[S; �:�nd](t)400. FOR k := 1 to Arity(t) DO BEGIN401. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S8(t), S37[�:�nd](t),S38[�:�nd](t; k), S39[S; �:�nd](t; k), S40[S; �:�nd](t; k), S41[S](t; k),Op(t) = Op(t0)402. t[k] := RewriteHelper(t[k]);403. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S8(t), S37[�:�nd](t),S38[�:�nd](t; k + 1), S39[S; �:�nd](t; k + 1), S40[S; �:�nd](t; k + 1),S41[S](t; k + 1), Op(t) = Op(t0)404. ENDThe transition from 403 is trivial, so we consider only the transition from 399.S37[�:�nd](t): If hf(t), then hf(c) for each child of t by G6. Otherwise, :hf(t) and thusfr(t). But this means that each child must be �nd-reduced.S38[�:�nd](t; k): Trivial, since k = 1.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 207S39[S; �:�nd](t; k): Trivial, since k = 1.S40[S; �:�nd](t; k): By S25[S; �:�nd](t) and t0 � t at 399.S41[S](t; k): Trivial, since k = 1.Line 403:401. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S8(t), S37[�:�nd](t),S38[�:�nd](t; k), S39[S; �:�nd](t; k), S40[S; �:�nd](t; k), S41[S](t; k),Op(t) = Op(t0)402. t[k] := RewriteHelper(t[k]);403. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S8(t), S37[�:�nd](t),S38[�:�nd](t; k + 1), S39[S; �:�nd](t; k + 1), S40[S; �:�nd](t; k + 1),S41[S](t; k + 1), Op(t) = Op(t0)...381. G, free(t) � V, P23(t), fr(t) _ hf(t), S25[S; �:�nd](t)382. RewriteHelper(t)...410. END RewriteHelper411. G, P=(all), free(retval) � V, T [� j= t0 ' retval, P23(retval),S30[�:�nd](retval), S31[S; �:�nd](retval), S32[S](retval), S33[S](retval; t0)We �rst consider the preconditions of RewriteHelper.free(t[k]) � V: By free(t) � V at 401.P23(t[k]): By P23(t) at 401.fr(t[k]) _ hf(t[k]): By S37[�:�nd](t) at 401.S25[S; �:�nd](t[k]): By S40[S; �:�nd](t; k) at 401.Now we consider the properties at line 403.G: By G at 411.P=(all): By P=(all) at 401 and 411.free(t) � V: By free(t) � V at 401 and P=(V) and free(retval) � V at 411.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 208T [� j= t0 ' t: We know that T [�401 j= t0 = t401. Also, T [� j= t401[k] = t[k].But by P=(all), �401 = �, so T [� j= t0 = t.P23(t): By P23(t) at 401, P23(retval) at 411.S8(t): By S8(t) at 401 since the operator of t has not changed.S37[�:�nd](t): Let c be a child of t. We must show hf(c) _ fr(c). If c 6� t[k], thenthis follows from S37[�:�nd](t) at 401 and P=(all) at 411. If c � t[k], then byS30[�:�nd](retval) at 411, 8 d 2 ��(c):fr(d). Thus, by G18, fr(c).S38[�:�nd](t; k + 1): Suppose 1 � l < k+1. If l 6= k, then we have S30[�:�nd](t[l]) byS38[�:�nd](t; k) at 401 and P=(all) at 411. Otherwise, if l = k, we must showS30[�:�nd](t[k]). But this follows by S30[�:�nd](retval) at 411.S39[S; �:�nd](t; k + 1): Follows by property S39[S; �:�nd](t; k) at 401, and by P=(all),S31[S; �:�nd](retval), and S32[S](retval) at 411.S40[S; �:�nd](t; k + 1): By S40[S; �:�nd](t; k) at 401 and P=(all) at 411.S41[S](t; k + 1): Suppose 1 � l < k + 1. If l 6= k, then S33[S](t[l]; t0[l]) by S41[S](t; k)at 401 and P=(all) at 411. Otherwise, by S40[S; �:�nd](t; k) at 401, t401[l] � t0[l],and thus, by S33[S](retval; t0) at 411, S33[S](t[l]; t0[l]).Op(t) = Op(t0): By Op(t) = Op(t0) at 401.

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 209Line 405:399. G, P=(all), free(t) � V, t0 � t, P23(t), fr(t) _ hf(t), S8(t),S25[S; �:�nd](t)400. FOR k := 1 to Arity(t) DO BEGIN...403. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S8(t), S37[�:�nd](t),S38[�:�nd](t; k + 1), S39[S; �:�nd](t; k + 1), S40[S; �:�nd](t; k + 1),S41[S](t; k + 1), Op(t) = Op(t0)404. END405. G, P=(all), free(t) � V, T [� j= t0 ' t, P23(t), S30[�:�nd](t),S31[S; �:�nd](t), S32[S](t), S33[S](t; t0)Note that no transition from 399 is possible: t is a compound term by S8(t), so itmust have at least one child.S30[�:�nd](t): By S8(t), t 62 ��(t), so S30[�:�nd](t) follows from S38[�:�nd](t; k+ 1) at403 and the end-of-loop condition, k = Arity(t).S31[S; �:�nd](t): As above, we have by S8(t) that t 62 ��(t), so S31[S; �:�nd](t) followsfrom S39[S; �:�nd](t; k + 1) at 403 and the end-of-loop condition.S32[S](t): By t 62 ��(t), S39[S; �:�nd](t; k + 1) at 403, and the end-of-loop condition.S33[S](t; t0): We must show canon�(t) � canon�(S(t0)). Let n = Arity(t) and letf = Op(t). Note that f = Op(t0) as well. The proof is as follows:canon�(t)� canon�(f(t[1]; : : : ; t[n]) def. of t� canon�(f(canon�(t[1]); : : : ; canon�(t[n]))) Lemma A.3� canon�(f(canon�(S(t0[1])); : : : ; canon�(S(t0[n])))) S41[S](t; k + 1)� canon�(f(S(t0[1]); : : : ;S(t0[n]))) Lemma A.3� canon�(S(f(t0[1]; : : : ; t0[n]))) T (f) = �� canon�(S(t0)) def. of t0

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 210A.6 Partial CorrectnessAs stated before, partial correctness means that if the program terminates, it givesthe correct result. For a validity checker, partial correctness can further be dividedinto soundness and completeness. In order to show that the framework guaranteessoundness and completeness, we must �rst show that the preconditions of AddFactare always satis�ed. We then show that the postconditions of AddFact guaranteesoundness and completeness.A.6.1 Preconditions of AddFactWe �rst consider the initial call to AddFact. Given the initial values of all the globalstate variables, it is not hard to see that initially, all preconditions of AddFact aretrivially true. The only one which does not follow immediately is P2(e) which requiresthat the parameter to AddFact be a �-formula. Clearly, we expect this preconditionto be satis�ed by any user of the framework.Now, consider subsequent calls to AddFact. As long as the user code does notchange any of the global state of the framework, every precondition of AddFact isguaranteed by the postconditions of AddFact except for P3[�;H](e) and P2(e). Asmentioned, P2(e) is a reasonable expectation for any call to AddFact. The other case,P3[�;H](e) is more interesting. Basically, P3[�;H](e) requires that free variables inthe formula passed to AddFact either be free variables appearing in the assumptionhistory H (i.e. in previous calls to AddFact) or fresh variables not being used by theframework. This seems reasonable, since it is easy to enforce that the framework andthe user code generate di�erent sets of fresh variables.However, there is a potential di�culty with this precondition. If the user codeuses the Simplify procedure to simplify formulas, the two sets of fresh variables mayget mixed up. It seems reasonable for the user code to use parts of formulas returnedto it by Simplify to construct new facts to pass to AddFact. This may violate theprecondition.This problem can be overcome by rede�ning H as the value of � at the beginningof a call to AddFact and removing the precondition P3[�;H](e). Essentially, what

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 211this does is change the functionality of AddFact. Instead of collecting a set of factsin H, each call to AddFact transforms the current fact database � into a new factdatabase which is equisatis�able with � [feg.A.6.2 SoundnessAt a high level, a validity checker such as CVC is sound if, whenever it reports thata formula is valid, the formula really is valid. This can be guaranteed if we knowthat whenever the framework sets I to be TRUE, the assumption history H is trulyinconsistent.Theorem A.1. If a call to AddFact respects the preconditions and AddFact termi-nates with I set to TRUE, then T [H j= false.Proof. I ! (T [H j= false) is the �rst global invariant. Thus, soundness is ensuredby the fact that G1 is a postcondition of AddFact. utA.6.3 CompletenessA validity checker is complete if, whenever a valid formula is provided as input, thevalidity checker reports that the formula is valid. This can be guaranteed as long aswe know that whenever I is FALSE, the assumption history H is actually satis�able.In reality, because we are allowing non-convex theories (see Section 3.5.1), wecan't prove something quite this strong. Instead, we can show that whenever I isFALSE and convex is true, the assumption history is satis�able. With the additionalassumption that every branch of the decision tree eventually reaches a point at whichconvex holds, it follows that CVC is complete. We now give a proof of this based onpostconditions of AddFact.Theorem A.2. If a call to AddFact respects the preconditions, AddFact terminateswith I = FALSE, and convex is true, then T [H is satis�able.Proof. By P10[�; I;N ;��; �:�nd], we have that Ti [
i(�i [Ar�i) is satis�able foreach theory Ti. We �rst show that this implies that Ti [
i(�i [Ar�) is satis�able

APPENDIX A. CORRECTNESS OF THE FRAMEWORK 212for each Ti, where � is the restriction of � to � (recall that � = S�i). SupposeM j=� Ti [
i(�i [Ar�i), and consider the di�erence in the domains of Ar�i andAr�. The domain of Ar� includes all terms in �, while Ar�i includes only the termsin �i. Thus, if t is in the domain of Ar� but not the domain of Ar�i, then it mustbe the case that t 62 �i and t 2 �j where j 6= i. Now, if T (t) = i, then by G10 andG9, it follows that t 2 �i, so we must have T (t) 6= i. Similarly, if t occurs i-alienin some formula e 2 �i, then by G9, t 2 �i. Thus, T (t) 6= i and t does not occuri-alien in any formula in �i. It follows that
i(t) is a variable and does not appear in
i(�i). Now, we can modify � so that it also satis�es
i(Ar�). To do so, we simplyassociate a di�erent element of M with each equivalence class of � as follows: if theequivalence class contains a term t such that
i(t) appears in
i(�i [Ar�i), then weassociate the element assigned to this term by M and �. Otherwise, we associatea new element of M (we can assume M has in�nitely many elements because Ti isstably in�nite). Then, for each term t such that t is in the domain of Ar� but not inthe domain of Ar�i , we modify � to assign to
i(t) the element associated with theequivalence class of t. Call the modi�ed assignment �0. Since, as shown above,
i(t)does not appear in
i(�i [Ar�i), it is not hard to see that M j=�0
i(�i [Ar�).Now, since
i(�i [Ar�) is satis�able in Ti for each i, it follows by Theorem 2.3that T [� is satis�able. By P1[�;H; I;N], T [N [� j= H. But because convexholds, it follows that T [� j= N , so T [� j= H and thus T [H is satis�able. ut

Bibliography[1] C. Barrett, D. Dill, and J. Levitt. Validity Checking for Combinations of The-ories with Equality. In Mandayam Srivas and Albert Camilleri, editors, FormalMethods In Computer-Aided Design, volume 1166 of Lecture Notes in ComputerScience, pages 187{201. Springer-Verlag, November 1996. Palo Alto, California.[2] C. Barrett, D. Dill, and A. Stump. A Framework for Cooperating Decision Proce-dures. In David McAllester, editor, 17th International Conference on Computer-Aided Deduction, volume 1831 of Lecture Notes in Arti�cial Intelligence, pages79{97. Springer-Verlag, June 2000. Pittsburgh, Pennsylvania.[3] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A Decision Procedurefor Bit-Vector Arithmetic. In Proceedings of the 35th Design Automation Con-ference, June 1998. San Francisco, CA.[4] Ritwik Bhattacharya. Private communication, 1999.[5] Nikolaj S. Bj�rner. Integrating Decision Procedures for Temporal Veri�cation.PhD thesis, Stanford University, 1999.[6] Vamsi Boppana, Sreeranga P. Rajan, Koichiro Takayama, and Masahiro Fujita.Model Checking Based on Sequential ATPG. In 11th International Conference onComputer-Aided Veri�cation, pages 418{430. Springer-Verlag, July 1999. Trento,Italy.[7] R. Bryant, S. German, and M. Velev. Exploiting Positive Equality in a Logicof Equality with Uninterpreted Functions. In 11th International Conference on213

BIBLIOGRAPHY 214Computer-Aided Veri�cation, volume 1633 of Lecture Notes in Computer Science,pages 470{482. Springer-Verlag, July 1999. Trento, Italy.[8] Tev�k Bultan, Richard Gerber, and William Pugh. Symbolic Model Checking ofIn�nite State Systems Using Presburger Arithmetic. In Orna Grumberg, editor,Proceedings of the 9th International Conference on Computer Aided Veri�cation,volume 1254 of Lecture Notes in Computer Science, pages 400{411. Springer-Verlag, June 1997. Haifa, Israel.[9] Jerry R. Burch and David L. Dill. Automatic Veri�cation of Pipelined Mi-croprocessor Control. In David L. Dill, editor, Conference on Computer-AidedVeri�cation, volume 818 of Lecture Notes in Computer Science, pages 68{80.Springer-Verlag, 1994. Stanford, California, June 21{23, 1994.[10] D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak's Decision Procedure forCombinations of Theories. In M. McRobbie and J. Slaney, editors, 13th Interna-tional Conference on Computer Aided Deduction, volume 1104 of Lecture Notesin Computer Science, pages 463{477. Springer-Verlag, 1996.[11] Satyaki Das and David L. Dill. Successive Approximation of Abstract TransitionRelations. In Proceedings of the Sixteenth Annual IEEE Symposium on Logic inComputer Science, 2001. June 2001, Boston, USA.[12] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with PredicateAbstraction. In 11th International Conference on Computer-Aided Veri�cation,pages 160{172. Springer-Verlag, July 1999. Trento, Italy.[13] Nancy A. Day, John Launchbury, and Je� Lewis. Logical Abstractions in Haskell.In Proceedings of the 1999 Haskell Workshop. Utrecht University Department ofComputer Science, Technical Report UU-CS-1999-28, October 1999.[14] Leonardo de Moura, Harald Ruess, and Maria Sorea. Lazy Theorem Proving forBounded Model Checking over In�nite Domains. In 18th International Confer-ence on Automated Deduction, 2002.

BIBLIOGRAPHY 215[15] L. e Silva, L. Silveira, and J. Marques-Silva. Algorithms for Solving Boolean Sat-is�ability in Combinational Circuits. In Proceedings of the IEEE/ACM Design,Automation and Test in Europe Conference (DATE), March 1999.[16] H. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.[17] Z. Manna et al. STeP: Deductive-Algorithmic Veri�cation of Reactive and Real-time Systems. In 8th International Conference on Computer-Aided Veri�cation,volume 1102 of Lecture Notes in Computer Science, pages 415{418. Springer-Verlag, 1996.[18] C. Flanagan. Private Communication, 2000.[19] Cormac Flanagan, Rajeev Joshi, and James B. Saxe. The Design of An E�cientTheorem Prover using Explicated Clauses, 2002. In Preparation.[20] M. Gordon and T. Melham. Introduction to HOL: a theorem proving environmentfor higher order logic. Cambridge University Press, 1993.[21] S�ren T. Heilmann. Proof Support for Duration Calculus. PhD thesis, TechnicalUniversity of Denmark, 1999.[22] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.[23] Jeremy Levitt and Kunle Olukotun. A Scalable Formal Veri�cation Methodologyfor Pipelined Microprocessors. In ACM-SIGDA; IEEE, editor, Proceedings of the33th ACM/IEEE Design Automation Conference, pages 558{563, Las Vegas, NV,June 1996. ACM Press.[24] Jeremy Levitt and Kunle Olukotun. Verifying Correct Pipeline Implentation forMicroprocessors. In International Conference on Computer Aided Design, SanJose, CA, November 1997. IEEE Computer Society Press.[25] R. B. Jones, D. L. Dill, and J. R. Burch. E�cient Validity Checking for Pro-cessor Veri�cation. In IEEE/ACM International Conference on Computer AidedDesign, pages 2{6, November 1995.

BIBLIOGRAPHY 216[26] Tracy Larrabee. Test pattern generation using Boolean satis�ability. IEEETransactions on Computer-Aided Design, 11(1):4{15, January 1992.[27] J. Levitt. Formal Veri�cation Techniques for Digital Systems. PhD thesis, Stan-ford University, 1999.[28] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Cha�: Engi-neering an E�cient SAT Solver. In Proceedings of the 39th Design AutomationConference, June 2001. Las Vegas, NV.[29] G. Nelson and D. Oppen. Simpli�cation by cooperating decision procedures.ACM Transactions on Programming Languages and Systems, 1(2):245{57, 1979.[30] Derek C. Oppen. Complexity, Convexity and Combinations of Theories. Theo-retical Computer Science, 12:291{302, 1980.[31] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System.In D. Kapur, editor, 11th International Conference on Automated Deduction,volume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752. Springer-Verlag, 1992.[32] David Y.W. Park, Jens U. Skakkeb�k, Mats P.E. Heimdahl, Barbara J. Czerny,and David L. Dill. Checking Properties of Safety Critical Speci�cations Using Ef-�cient Decision Procedures. In FMSP'98: Second Workshop on Formal Methodsin Software Practice, pages 34{43, March 1998.[33] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality Formulasby Small-Domain Instantiations. In 11th International Conference on Computer-Aided Veri�cation, volume 1633 of Lecture Notes in Computer Science, pages455{469. Springer-Verlag, July 1999. Trento, Italy.[34] H. Ruess and N. Shankar. Deconstructing Shostak. In 16th Annual IEEE Sym-posium on Logic in Computer Science, pages 19{28, June 2001.[35] R. Shostak. Deciding combinations of theories. Journal of the Association forComputing Machinery, 31(1):1{12, 1984.

BIBLIOGRAPHY 217[36] Laurent Simon. The Sat-Ex Site. http://www.lri.fr/�simon/satex/satex.php3.[37] A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In14th International Conference on Computer-Aided Veri�cation, 2002.[38] Aaron Stump, David L. Dill, Clark W. Barrett, and Jeremy Levitt. A DecisionProcedure for an Extensional Theory of Arrays. In 16th IEEE Symposium onLogic in Computer Science, pages 29{37. IEEE Computer Society, June 2001.Boston, Massachusetts.[39] J. Su, D. Dill, and J. Skakkeb�k. Formally Verifying Data and Control withWeak Reachability Invariants. In Formal Method In Computer-Aided Design,1998.[40] C. Tinelli and M. Harandi. A New Correctness Proof of the Nelson-OppenCombination Procedure. In F. Baader and K. Schulz, editors, 1st InternationalWorkshop on Frontiers of Combining Systems (FroCoS'96), volume 3 of AppliedLogic Series. Kluwer Academic Publishers, 1996.[41] Cesare Tinelli and Christophe Ringeissen. Unions of Non-Disjoint Theories andCombinations of Satis�ability Procedures. Technical Report 01-02, Departmentof Computer Science, University of Iowa, April 2001.[42] A. Tiwari. Decision Procedures in Automated Deduction. PhD thesis, StateUniversity of New York at Stony Brook, 2000.

