A Proof-Producing Boolean Search Engine*

Clark Barrett! and Sergey Berezin?

! New York University, barrett@cs.nyu.edu
2 Stanford University, berezin@stanford.edu

Abstract. We present a proof-producing search engine for solving the
Boolean satisfiability problem. We show how the proof-producing infras-
tructure can be used to track the dependency information needed to
implement important optimizations found in modern SAT solvers. We
also describe how the same search engine can be extended to work with
decision procedures for quantifier-free first-order logic. Initial results in-
dicate that it is possible to extend a state-of-the-art SAT solver with
proof production in a way that both preserves the algorithmic perfor-
mance (e.g. the number of decisions to solve a problem) and does not
incur unreasonable overhead for the proofs.

1 Introduction

Decision procedures for domain-specific first-order theories have become impor-
tant tools for many verification applications. Two of the primary challenges in
creating a practical implementation of such decision procedures are ensuring cor-
rectness and achieving adequate performance. The addition of proof production
can help accomplish both of these goals.

Many arguments have been made for adding proof production to automated
theorem provers. For example, proofs provide additional reliability and the abil-
ity to check a result independently using a trusted proof-checker. We advocate
proof production for an additional reason: the proof infrastructure tracks de-
pendencies among assumed and derived facts during the proof search. These
dependencies capture exactly the information that is needed to to determine the
cause of each conflict during the proof search, making it easy to generate conflict
clauses. As described in Section 3, conflict clauses are an essential ingredient of
efficient SAT algorithms.

Although other methods exist for generating conflict clauses when the input
to the SAT solver is a Boolean formula, our algorithm can produce conflict
clauses when extended to quantifier-free first order logic.

The paper is organized as follows. Following a survey of related work, Sec-
tion 2 describes our proof system and a simple proof-producing SAT solver.

* This research was supported by GSRC contract DABT63-96-C-0097-P00005, by Na-
tional Science Foundation CCR-0121403, and by a grant from Intel Corporation. The
content of this paper does not necessarily reflect the position or the policy of GSRC,
NSF, Intel, or the Government, and no official endorsement should be inferred.

Then, in Section 3, we give an overview of the performance enhancements used
in modern SAT solvers. Section 4 gives a detailed implementation of an efficient
proof-producing SAT solver, and Section 5 discusses the extension to quantifier-
free first-order logic. Section 6 concludes.

1.1 Related Work

In the past few years, there has been significant interest in combining decision
procedures for first-order theories with SAT [1-3, 8,16, 7]. The implementations
described in these approaches treat the SAT solver more or less as a black box. In
particular, the first-order problem must first be translated into a purely Boolean
problem. Often, valuable structural information is lost during such a translation.
In contrast, our approach integrates the SAT solver with the first-order decision
procedures, allowing structural information to be preserved. In addition, hy-
brid systems which use available SAT solvers are unable to produce proofs. Our
integrated solver does produce proofs.

Recently, there has been some work done on proof-producing SAT solvers
[10,17]. However, the “proof” produced by these solvers is really just a script
which enables another, presumably trusted, solver to duplicate the steps taken
by the original solver. Though this does increase confidence in the solution, it
does not actually produce a proof object which can be checked by a theorem
prover. In our approach, an actual proof object can be produced. This proof
can then be checked by a small trusted theorem prover which does not need to
include a SAT solver.

Previous work at Stanford on proof-producing decision procedures culmi-
nated with the proof-producing tool CVC [14,15]. CVC includes two options for
solving the Boolean part of the problem: a slow SAT solver that produces proofs
and a fast SAT solver that does not produce proofs. The current research aims
to combine these approaches, resulting in solver which is both fast and able to
produce proofs.

2 A Simple Proof-Producing SAT solver

Consider the simple propositional logic described in Fig. 1. A propositional for-
mula is built from the constant formulas T (always true) and L (always false),
propositional variables (i.e. variables that can either be assigned true or false),
and Boolean operators (A, V, =). A literal is a propositional variable or the nega-
tion of a propositional variable. We also define ¢; — ¢2 to be an abbreviation
for =@y V @2, and ¢1 <> @2 to be an abbreviation for (¢1 — ¢2) A (61 — ¢2).

Given such a formula, the goal of SAT is to find an assignment of true or
false to each variable such that the formula evaluates (under the obvious standard
semantics) to true.

If no satisfying assignment exists, a formula is said to be unsatisfiable. Given
an unsatisfiable propositional formula ¢, a proof system should be able to pro-
duce a proof of =¢. We now introduce a proof system for accomplishing this task
which is based on natural deduction.

propositional formula ::= T | L | propositional wariable
| propositional formula A propositional formula
| propositional formula V propositional formula
| —propositional formula

Fig. 1. Propositional logic

2.1 Proof System

A proof is a tree, each of whose nodes is labeled with a formula. The formulas
at the leaves of the tree are called assumptions. Assumptions may be designated
as open or closed.

A sequent is a pair I' F ¢, where I is a set of formulas and ¢ is a formula.
Since we are often interested only in the assumptions and the conclusion (the
formula labeling the root) of a proof, the sequent I" F ¢ is used to represent any
proof whose open assumptions are among I and whose conclusion is ¢.

A proof rule or inference rule is a function which takes one or more proofs
(called premises) and returns a new proof whose root node has each of the input
proofs as its successors. A proof rule specifies the formula which should label the
new root node and may also change the designation of one or more assumptions
from open to closed.

Proof rules depend only on the assumptions and conclusions of their premises
and can thus be described using sequents. We denote a proof rule as follows:

P --- P,
C

where the P;’s are sequents for the premises and C is a sequent representing
the new proof tree. The proof rule takes any set of proofs which match the P;’s
and returns a new proof whose root is labeled by the right-hand side of C. If an
assumption appears in some P; but not in C, then that assumption is closed in
the proof tree constructed by the proof rule. If there are no premises, the rule is
called an aziom. We will describe the proof rules of our system below.

A sequent I' F ¢ is wvalid if the conjunction of the assumptions in I" implies
¢. A proof rule is sound if the validity of all its premises implies the validity of
the conclusion. The set of valid proofs are those which can be constructed using
the proof rules.

Though we will not prove it here, it is straightforward to show that if all the
proof rules are sound, then the sequent for a valid proof is indeed valid.

2.2 Proof Rules

To simplify the notation, we write I', @ to denote I' U {a} for the assumptions.
This notation also implies that a & I'.
The most basic rule is the assumption axiom. This and other rules needed
for a simple proof-producing SAT solver are shown below.
In,ak¢ Iy, —atk ¢

pyu assume oo caseSplit

% iff TrueElim F;fii;l
Fol_Oéo F1I-a1 Fnl-a

Lyuly,..., I, - ¢
NFoeoy InFyYoo

Fl U F2 F ¢ 0

In the pseudo-code, these rules are used as function calls which take the
premises and, possibly, some additional parameters, and return the conclusion
sequent. For instance, assume(¢) takes ¢ as an argument and returns the se-
quent ¢ F ¢ as the result. Similarly, caseSplit(s;, s2,) is an application of
the caseSplit rule with premises s; and s». The parameter « identifies which
assumptions to eliminate from s; and s2. A call to simplify(A, ¢) takes the set
of premises A = {I; F a; | i € {0...n}} as its first parameter, and the formula
¢ to be simplified as its second parameter. It returns a sequent for ¢ <> ¢’ where
¢' is obtained by replacing all instances of the literals in A by true (and their

negations by false) and applying obvious Boolean simplifications to the result.
Note that the premises must be of a certain form in order for the rule to
be sound. Our implementation includes an option which causes each of these
rules to verify at run-time that its arguments are of the right form and generates
an error if the check fails. This provides a very efficient “on-the-fly” internal
soundness check in the tool which can often be used to detect soundness bugs

without the need for an external proof checker.

iffFalseElim

" simplify

trans

2.3 Naive SAT solver with proof production.

A simple SAT solver can be constructed using an algorithm which first picks a
propositional variable a called a splitter, assigns it true or false, and then calls
itself recursively until the formula evaluates to true or false.

A simple proof-producing SAT solver using the proof rules just described is
shown in Fig. 2. The procedure checkSAT takes as input a formula ¢ and returns
either a theorem of the form —¢ or a theorem of the form I' - ¢, where I is
a set of literals appearing in ¢.

The checkSAT procedure calls checkSAT,., a recursive procedure which takes
as input a set of assumptions A (theorems of the form o F a where a is a
literal), and a formula ¢, and returns either a theorem of the form I" - ¢ «+ T
or 'F¢+ L.

Both procedures use a helper function called getRHS. This function takes a
proof of ¢ «» ¢’ as input (for some ¢ and ¢') and returns the formula ¢'. The
checkSAT, procedure also makes use of the findSplitter function which takes
a formula and returns a propositional variable appearing in the formula.

3 Efficient SAT algorithms

The algorithm in the previous section is essentially an implementation of the
standard Davis-Putnam-Logemann-Loveland (DPLL) algorithm [5,6]. Modern

checkSAT(¢) {
s := checkSAT, (0, ¢);
¢' := getRHS(s);
if (¢’ =T) return iffTrueElim(s);
return iffFalseElim(s);

}

checkSAT, (A, ¢) {
so := simplify(A, ¢);
¢' := getRHS(so);
if (¢’ € {T,L1}) return so;
a := findSplitter(¢');
s1 := trans(so,checkSAT, (A U assume(a),¢’));
if (getRHS(s1)=T) return s;;
s2 := trans(sg,checkSAT, (A U assume(-a),¢'));
if (getRHS(s2)= T) return s3;
return caseSplit(si, s2,a);

Fig. 2. Naive SAT solver.

SAT solvers like GRASP [12] and Chaff [13] are also based on this same funda-
mental algorithm, but include significant refinements and optimizations.

Efficient SAT algorithms are based on fast manipulation of clauses. A clause is
a disjunction of one or more literals. Most SAT solvers assume that the formula to
be checked is given in Conjunctive Normal Form (CNF), that is, as a conjunction
of clauses.

Fig. 3 shows pseudo-code for an enhanced SAT solver (without proofs). It
is similar to the algorithms in [12,13], but is organized slightly differently. The
checkSAT procedure takes as input a formula ¢ and returns either @, indicating
that the formula is unsatisfiable, or a satisfying assignment. The satisfying as-
signment is represented as a set of literals # with the property that if each literal
in @ is true, then the formula ¢ is also true. The formula to be checked is first
converted to CNF. We do not address how to do this here, but the conversion is
straightforward and discussed in other papers, such as [3,11]. The CNF clauses
are stored in the global variable @, and then the recursive procedure checkSAT,
is called.

checkSAT, takes as input a partial assignment (an assignment to some subset
of the variables appearing in) again represented as a set 6 of literals. It returns
an assignment 6’ which extends 6 if there exists such an assignment satistying .
Otherwise, it returns (). The first step in checkSAT, is Boolean Constraint Prop-
agation (BCP). BCP uses the structure of the clauses in @ to deduce additional
assignments that must hold in order to obtain a satisfying assignment for @,
and is described in more detail below. It returns a new partial assignment. BCP
may discover that some variable v is required to take on two different values by

different clauses in @. In this case, the returned partial assignment has both v
and —wv and is said to be inconsistent.

If BCP discovers a conflict, the conflict is analyzed to produce a new conflict
clause. This clause identifies a subset of # which is responsible for the conflict
and is (permanently) added to &, ensuring that the conflict will not reoccur.
We discuss this more below. When a conflict is discovered, checkSAT, returns 0,
indicating that the given partial assignment 6 cannot be extended to a satisfying
assignment.

If BCP does not discover a conflict, then the search for a satisfying assignment
can continue. checkSAT, calls findSplitter which searches @ for a variable not
already assigned by 6. If such a variable is found, it is returned in «. Otherwise,
() is returned, in which case all variables are assigned, so the current assignment
is a satisfying assignment.

If a splitter is found, it is added to the current assignment. Then checkSAT,.
is called recursively with the current assignment. The result is either a satisfying
assignment which is then returned, or @), indicating that the current assignment
does not have a satisfying assignment. In the latter case, execution continues at
the top of the loop where BCP is called again. Because of the conflict clause just
added by the most recent call to checkSAT,, we are guaranteed that this call to
BCP will detect an inconsistency.

checkSAT(¢) {
@ := convertToCNF (¢) ;
return checkSAT, (0));

}

checkSAT, (6) {
while (true) {
6 := BCP(P,0);
if (incomnsistent(6)) {
conflictClause := analyzeConflict(®,6);
@ := & U {conflictClause};
return 0;
}
« := findSplitter(®,0);
if (¢ =0) return 0;
f := 6Uaq;
§' := checkSAT, (6);
if (0’ #0) return ¢';

Fig. 3. Enhanced SAT solver.

We now discuss the importance and implementation of several components
of enhanced SAT algorithm shown in Fig. 3: fast BCP, conflict clauses, so called

non-chronological backtracking, or intelligent backjumping, and finally, good de-
ciston heuristics for picking splitters.

3.1 Fast Boolean Constraint Propagation (BCP).

Intuitively, the purpose of BCP is to derive all the assignments to variables
that logically follow from the current assignments without having to split on
any variable. The complexity of BCP is polynomial, and can be implemented
very efficiently. Since the worst-case complexity of SAT is exponential in the
number of variables, reducing the number of variables by BCP is one of the
most important aspects of the algorithm.

When the formula is represented as a set of clauses, BCP amounts to finding
unit clauses, those that have exactly one literal unassigned, and assigning the
corresponding variable to make the literal true. This assignment may result
in more unit clauses, and the process continues until either a contradiction is
detected (one of the clauses gets all of its literals assigned to false), or no more
unit clauses remain.

GRASP and Chaff implement unit clause detection by having two watched
literals in each clause. As long as both literals stay unassigned, the clause is
guaranteed not to become a unit clause. If either of the watched literals gets
assigned, the clause is searched for another unassigned literal, and if one is found,
it becomes the new watched literal. Each variable maintains two lists of clauses
in which the variable appears as a positive or negative literal respectively. So, for
each variable assignment, only those clauses are processed in which a watched
literal becomes false.

Learning the Conflict Clauses. When a SAT solver detects a conflict, it is often
the case that only a small subset of the variable assignments is responsible for the
contradiction, and therefore, the same assignment will appear in many branches
of the decision tree. A SAT solver takes advantage of this fact by learning such
conflict assignments, so that when they show up again, it immediately backtracks
without having to derive the contradiction again.

Typically, a conflict assignment contains exactly one variable assigned at the
last level of recursion (often the most recent splitter). Other variables may be
either previous splitters themselves, or assignments derived from those splitters
by BCP.

A conflict assignment can be expressed as a formula ¢ = ¢; A --- A £, where
£;’s are literals. Since we know that the original problem & is unsatisfiable when
¢ is true, we can state that @ is satisfiable only if ¢ = ¢, V --- V £, is true.

Notice that € has the syntax of a clause, so it can simply be added to @. When
the same assignment is made again, the conflict will be immediately detected by
BCP due to the newly added clause ¢, which we call a conflict clause.

Intelligent Backjumping. Each variable assignment has an associated decision
level, which is the corresponding depth in the decision tree where the assignment
is made.

When a conflict occurs, the SAT solver returns to the previous decision level,
effectively undoing all the assignments made at the current decision level. Notice
that if the conflict clause includes the most recent splitter, then the negation of
the splitter will be derived by BCP from the conflict clause. Therefore, there
is no need to consider the opposite assignment of the splitter explicitly, it will
happen automatically.

In some cases, the SAT solver can backtrack beyond the previous decision
level. If the conflict clause does not include any variables from the previous
decision level, then the negation of the splitter is still implied in the decision
level before that. Thus, we can backtrack to the most recent decision level in
which a variable from the conflict clause is assigned.

Decision Heuristics. It is well-known that the order in which the splitters are
chosen can dramatically affect the performance of the SAT algorithm. Modern
SAT solvers have developed sophisticated splitter heuristics that work amazingly
well in practice. Examples of these heuristics are detailed in [9, 13].

4 An Efficient Proof-Producing SAT solver

We now give a relatively detailed description of a proof-producing SAT solver
with the enhancements described above. Before describing the algorithm, we
describe the data structures used in the algorithm. Some additional proof rules
used by the algorithm are shown in Fig. 4.

4.1 Basic Data Structures

Expressions All formulas and terms are represented as DAGs with maximal
sharing of subexpressions. That is, if two expressions e; and ez are syntactically
the same, then they are physically stored in the same location. In particular,
checking expressions for (syntactic) equality is a constant time operation (com-
parison of pointers).

Theorems Theorems hold a sequent I' - ¢, where I' is a set of formula ex-
pressions and ¢ is a formula expression. Besides the sequent, theorems may also
carry the actual proof tree corresponding to the sequent (as a special proof term
expression, not discussed here). The proofs are only generated when the tool
is requested to produce an externally checkable proof. Otherwise, the sequents
are sufficient for the functionality of the algorithm. The metavariable s (for “se-
quent”) is used to represent theorems. If s is a theorem whose sequent is I" - ¢,
then getAssumptions(s) returns the set of formulas in I, and getConc(s) re-
turns the formula ¢. To simplify the algorithm, we also allow a special “NULL”
theorem, without a sequent or a proof, denoted by 0.

TFoAY TEony Lokl
Tré Ag -left TFo AEg -right FaE—
' itk —ai)izg; I'EV(cs
LiFe DiFéodp, (LiFoode TEV@) oo o
nuh - FUUi;ﬁj(Fi)'_aj
Loy, ...,on b L conflictClause

I't=ayV---V-oa,

Fig. 4. Additional Proof Rules.

4.2 Program State

The state of the SAT solver consists of the following components. Some com-
ponents are backtracked, meaning that when pop() is called, they revert to the
value they had when the corresponding call to push() was made. Backtracked
components are marked with the T sign.

t Assumptions: A is a set of theorems called assumptions, each of whose con-
clusions is a literal. These literals (and the corresponding variables) are said
to be assigned. All other variables and literals are unassigned. A corresponds
to decisions and derived literals.

tLiterals: literals is a queue containing theorems whose conclusions are lit-
erals (which are waiting to be added as assumptions). The function call
pushBack(literals,s) inserts s into the queue and the corresponding call
to popFront(literals) returns and removes the first item in the queue.
Initially, 1literals is empty.

Clauses: @ is a set of theorems, each of whose conclusions is a clause. @ contains
clauses that are part of the original formula to be checked for satisfiability
as well as derived conflict clauses. Given a clause expression ¢, the func-
tion setupWatchPointers(c) selects two of its literals to be watched literals
and associates with ¢ two watch pointers indexed by i € {0, 1} which point
to these literals. Given a clause ¢ and an index ¢ € {0, 1}, the function
updateWatchPointer(c,i) is called when the i‘" watch pointer in ¢ is as-
signed. It searches for an unassigned literal in ¢ and updates the it* watch
pointer to point to the new literal.

Non-clauses: @ is a set of theorems, each of whose conclusions is neither a
literal nor a clause. It contains parts of the original formula which are in
non-clausal form.

Watch lists: Associated with each literal is a list of the clauses where the
literal is being watched. For a literal [, the function getWatchPointers(l)
returns a set of pairs (¢,) where ¢ is a clause in which [is being watched and
i € {0, 1} is the index corresponding to the watched literal [in c. Initially
these lists are empty.

4.3 The Algorithm

The code for an efficient proof-producing SAT solver is shown in Fig. 5 and
Fig. 6.

checkSAT. The main function in the SAT checking algorithm is checkSAT
which, as in the algorithm of Fig. 2, takes as input a formula ¢ and returns
either a theorem of the form —¢ or a theorem of the form I' - ¢, where I' is
a set of literals appearing in ¢.

checkSAT begins by initializing the theorem sets to be empty. It then takes
the formula to be checked and passes it as a trivial theorem (created using
the assume rule) to addFact, which partitions ¢ into literals, clauses, and non-
clauses. Next, checkSAT calls checkSAT, which does the main recursive search.
If checkSAT, returns), then this means that ¢ is satisfiable under the set of
assumptions contained in A, so the simplify rule (followed by iffTrueElim)
can be used to get a theorem of the appropriate form. If checkSAT, does not
return), then it must return a theorem whose conclusion is L. Since ¢ is assumed
in the first call to addFact, any derivation of L returned by checkSAT, will also
contain ¢ as an assumption, so we can use the notIntro rule to derive a theorem
whose conclusion is —¢.

addFact. addFact takes as input a theorem s and figures out where to put it. It
first assigns ¢ to be the conclusion of the theorem. If ¢ is a conjunction, then s is
split using the conjunction elimination rules and addFact calls itself recursively.
If ¢ is a literal, s gets pushed onto the literal queue. If ¢ is a clause, s gets added
to the set @ of clauses. Otherwise, s is added to the set © of non-clauses.

checkSAT,. checkSAT, is similar to the procedure of the same name in Fig. 3.
It starts by calling BCP which figures out additional assignments which are
implied by the current set of assignments. If BCP does not return), it means
that an inconsistency was detected and the return value is a proof of L from the
current set of assumptions. In this case, the current context is inconsistent, so
there is no need to search further along the current branch. The theorem proving
L is returned.

If BCP does not detect an inconsistency, then we continue the search for a
satisfying assignment by finding a splitter. The function findSplitter can look
for a splitter in either the set of clauses @ or the set of non-clauses ©. In our im-
plementation, findSplitter first uses a depth-first search to find splitters from €.
When all the literals in @ have been assigned, it then uses a Chaff-like heuristic
to pick splitters from ®. There are certainly more sophisticated heuristics that
could be used and investigating these is part of our current research.

If no splitter can be found, checkSAT, returns () to indicate that the current
set of assumptions constitutes a satisfying assignment. Otherwise, the back-
tracked state (A and literals) is saved by calling push(). Then, the splitter
« is added to the set of assigned literals by calling addFact and checkSAT, is

checkSAT(¢) {
O =& := A :=
addFact (assume (¢)) ;
s := checkSAT, ();
if (s =0) return iffTrueElim(simplify(A,¢));
return notIntro(s,¢);

}

addFact(s) {
¢ := getConc(s);
if (isConjunction(¢)) {
addFact (andElimLeft (s)) ;
addFact (andElimRight (s)) ;

else if (isLiteral(¢)) pushBack(literals, s);
else if (isClause(¢)) {

¢ := dU{s};

setupWatchPointers (getConc(s));

}
else © := OU{s};
}

checkSAT, () {

while (true) {
s := BCPQ);
if (s #0) return s;
a := findSplitter();
if (¢ =0) return 0;
push();
addFact (assume ()) ;
s := checkSAT, ();
if (s =0) return s;
popQ);
if (backJump(s)) return s;
addFact (notIntro(s,getLastAssumption(s)));

Fig. 5. Enhanced SAT solver with proofs.

called recursively. If the result is) indicating that a satisfying assignment was
found, then checkSAT, returns without calling pop() to preserve the satisfying
assignment.

The other possibility is that the recursive call results in a proof of L from
some subset of the current assumptions. In this case, we first check for the
possibility of intelligent backjumping. The function backJump (s) returns true if
none of the assumptions in s (excluding the most recently assigned assumption)
were assigned in the current recursion level (since the most recent active call to
push). In this case, the theorem s can be used to derive a literal in the previous
recursion level, and is thus returned.

If backJump (s) returns false, then the notIntro rule can be used to derive
the negation of the most recent assumption in s from the others, and checkSAT,
starts over at the top of the loop.

BCP() {
inconsistent := false;
while (—incomsistent) {
s := popFront(literals);

A = AU{s};
[:= getConc(s);
w := getWatchPointers(l);

foreach (c,i)€ w {
updateWatchPointers(c,?);
if (isUmsat(c)) {

inconsistent := true;
unsatClause := c;
}
else if (isUnit(c)) addFact(unitProp(c));

}
}

if (—inconsistent) {
foreach sgp € © {
s := iffMP(sg,simplify(A,getConc(sy)));
if (getConc(s)= 1) return s;

}

return 0;

}

conflict = processImplGraph(unsatClause);
addFact (conflictClause(conflict));
return conflict;

Fig. 6. Enhanced BCP with proofs.

BCP. The last part of the SAT solver is the BCP code. BCP begins by pro-
cessing the queue of literals. Each theorem in the queue is added to the set of

assumptions. Then the watch pointers for all clauses which are watching the
literal are updated. If any of these clauses become unsatisfiable (all its literals
are assigned false), the inconsistent flag is set and the inconsistent clause is
stored in unsatClause. If any of these clauses becomes a unit clause, then the
unitProp rule is used to derive the remaining unassigned literal.

Once all of the literals have been processed, if no inconsistency has been
detected, then the non-clauses are processed. This is done by checking if any
of them simplify to L. If so, a theorem deriving L is returned. Otherwise,) is
returned indicating no inconsistency.

If an inconsistent clause is detected, then the so-called “implication graph”
can be used to generate a conflict clause. The implication graph is stored implic-
itly by the theorems in @. We start by looking up the theorem for the inconsistent
clause in @ and collecting all of its assumptions. We then look in A for the the-
orems justifying these assumptions. This process is continued until we have a
set of assumptions, at most one of which was assigned at the current recursion
level (since the last active call to push). The call to processImplGraph returns
a theorem which derives L from these assumptions.

Finally, the conflictClause rule is used to turn the conflict theorem into a
conflict clause, which is then added to the set of clauses (implementing conflict
clause learning), and the conflict is returned.

5 Extension to Quantifier-Free First-Order Logic

Although the algorithm just presented only handles Boolean logic, it can easily
be extended to cooperate with quantifier-free first-order decision procedures. In
first-order logic, the atomic formulas are no longer required to be propositional
variables, but can also be predicates applied to terms over object constants and
variables. Therefore, we redefine the notion of a literal to be an atomic formula
(a predicate or a propositional variable) or its negation.

Since the atomic formulas are no longer independent from each other, purely
Boolean constraint propagation is not sufficient. To overcome this problem, we
extend BCP to first-order constraint propagation (FOCP) as follows. Every time
a new literal ¢ is added to A, it is also submitted to the first-order decision proce-
dure. Similarly, whenever a decision procedure derives a new literal [, addFact (1)
is called. In fact, if a decision procedure derives non-literals, these can also be
handled just by calling addFact. However, in this case the additional clauses or
non-clauses will have to be backtracked.

Additionally, after each literal is submitted to the first-order decision pro-
cedure, the first-order decision procedure may report an inconsistency. If the
first-order decision procedure is instrumented with proof production, then it can
return a theorem deriving L from some subset of the current assumptions. This
theorem can be then be used to generate a conflict clause just as with purely
Boolean conflicts.

The ability to produce proofs from the first-order decision procedure is thus
essential for enabling the efficiency gains that come from learning conflict clauses.

6 Conclusion

We have implemented a prototype of our algorithm in an emerging tool called
CVC Lite. CVC Lite is a smaller, more light-weight implementation of CVC,
designed for experimentation and rapid prototyping.

For our experiments, we adopted the philosophy of using families of bench-
marks as advocated in [4]. We compared the average number of decisions required
to solve the Boolean benchmarks in the PC families (each containing 33 bench-
marks) of the hole4 and hole5 benchmarks [4]. We compared zchaff, CVC (in its
standard proof-producing mode), and CVC Lite. Though CVC has a fast SAT-
based mode which is essentially equivalent to zchaff, this mode cannot produce
proofs.

|benchmark|zchaff|CVC Lite|CVC |

hole4 30 31 800
holeb 149 163 25832

Fig. 7. Comparison of the number of decisions.

Clearly, CVC Lite does not quite capture all of the intelligence in zchaff, but
it is close. When proofs are enabled, CVC does a poor job on Boolean exam-
ples. CVC Lite demonstrates that it is possible to implement a proof-producing
Boolean solver whose algorithmic performance is close to that of a highly tuned
non-proof-producing solver.

Because our prototype implementation has not been tuned for run-time per-
formance, we did not compare run-times. However based on [17] as well as our
previous experience with CVC, proof-production only adds a small constant
overhead to the underlying algorithm (the reason CVC is so much slower in
proof-production mode is that it is not using the efficient SAT algorithms, not
because proof-production adds a lot of overhead). Also, the optimizations en-
abled by proof production typically lead to an exponential speedup, so a small
amount of overhead is reasonable.

As already mentioned, one important area of ongoing research is investigating
decision heuristics for combined clausal and non-clausal formulas. An obvious
question is: why not just convert everything to CNF? Although this is possible
for purely Boolean formulas, it often degrades performance of some non-Boolean
testcases (this problem is also mentioned in [3]). We are working on decision
heuristics which perform well on both Boolean and non-Boolean testcases.

References

1. Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-Based Pro-
cedures for Temporal Reasoning. In S. Biundo and M. Fox, editors, Proceedings of

10.

11.

12.

13.

14.

15.

16.

17.

the 5th European Conference on Planning (Durham, UK), volume 1809 of Lecture
Notes in Computer Science, pages 97-108. Springer, 2000.

Gilles Audemard, Piergiorgio Bertoli, and Alessandro Cimatti. A SAT-Based Ap-
proach for Solving Formulas over Boolean and Linear Mathematical Propositions.
In Reiner Hahnle, editor, Proceedings of the 18th International Conference on Auto-
mated Deduction (Copenhagen, Denmark), Lecture Notes in Artificial Intelligence.
Springer, 2002.

Clark W. Barrett, David L. Dill, and Aaron Stump. Checking Satisfiability of
First-Order Formulas by Incremental Translation to SAT. In Ed Brinksma and
Kim Guldstrand Larsen, editors, 14th International Conference on Computer Aided
Verification (CAV), volume 2404 of Lecture Notes in Computer Science, pages 236—
249. Springer-Verlag, 2002. Copenhagen, Denmark.

. Franc Brglez, Xiao Yu Li, and Matthias F. Stallman. The role of a skeptic agent in

testing and benchmarking of SAT algorithms. In Fifth Int. Symp. on the Theory
and Applications of Satisfiability Testing, Cincinnati, Ohio, USA, May 2002.
Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394-397, July 1962.

Martin Davis and Hilary Putnam. A computing procedure for quantification the-
ory. Journal of the ACM, 7(3):201-215, July 1960.

Leonardo de Moura, Harald Ruess, and Maria Sorea. Lazy Theorem Proving for
Bounded Model Checking over Infinite Domains. In 18th International Conference
on Automated Deduction, 2002.

Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James Saxe. Theorem Proving
using Lazy Proof Explication. In 15th International Conference on Computer Aided
Verification (CAV), Lecture Notes in Computer Science. Springer-Verlag, 2003.
E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat solver. In Proceedings
of Design Automation and Test in Europe (DATE), pages 142-149, 2002.

E. Goldberg and Y. Novikov. Verification of Proofs of Unsatisfiability for CNF
formulas. In Proceedings of Design, Automation and Test in Europe (Munich,
Germany), 2003.

Tracy Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans-
actions on Computer-Aided Design, 11(1):4-15, January 1992.

J. Marques-Silva and K. Sakallah. GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Transactions on Computers, 48(5):506-521, 1999.

M. Moskewicz, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In 39th Design Automation Conference, 2001.

A. Stump. Checking Validities and Proofs with CVC and flea. PhD thesis, Stanford
University, 2002. In preparation: check http://verify.stanford.edu/” stump/ for a
draft.

Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating Validity
Checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, 14th International
Conference on Computer Aided Verification (CAV), volume 2404 of Lecture Notes
in Computer Science, pages 500-504. Springer-Verlag, 2002. Copenhagen, Den-
mark.

Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In
Giovambattista Ianni and Sergio Flesca, editors, Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (Cosenza, Italy), volume 2424 of
Lecture Notes in Artificial Intelligence. Springer, 2002.

L. Zhang and S. Malik. Validating SAT Solvers Using an Independent Resolution-
Based Checker: Practical Implementations and Other Applications. In Proceedings
of Design, Automation and Test in Europe (Munich, Germany), 2003.

