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h Engine?Clark Barrett1 and Sergey Berezin21 New York University, barrett�
s.nyu.edu2 Stanford University, berezin�stanford.eduAbstra
t. We present a proof-produ
ing sear
h engine for solving theBoolean satis�ability problem. We show how the proof-produ
ing infras-tru
ture 
an be used to tra
k the dependen
y information needed toimplement important optimizations found in modern SAT solvers. Wealso des
ribe how the same sear
h engine 
an be extended to work withde
ision pro
edures for quanti�er-free �rst-order logi
. Initial results in-di
ate that it is possible to extend a state-of-the-art SAT solver withproof produ
tion in a way that both preserves the algorithmi
 perfor-man
e (e.g. the number of de
isions to solve a problem) and does notin
ur unreasonable overhead for the proofs.1 Introdu
tionDe
ision pro
edures for domain-spe
i�
 �rst-order theories have be
ome impor-tant tools for many veri�
ation appli
ations. Two of the primary 
hallenges in
reating a pra
ti
al implementation of su
h de
ision pro
edures are ensuring 
or-re
tness and a
hieving adequate performan
e. The addition of proof produ
tion
an help a

omplish both of these goals.Many arguments have been made for adding proof produ
tion to automatedtheorem provers. For example, proofs provide additional reliability and the abil-ity to 
he
k a result independently using a trusted proof-
he
ker. We advo
ateproof produ
tion for an additional reason: the proof infrastru
ture tra
ks de-penden
ies among assumed and derived fa
ts during the proof sear
h. Thesedependen
ies 
apture exa
tly the information that is needed to to determine the
ause of ea
h 
on
i
t during the proof sear
h, making it easy to generate 
on
i
t
lauses. As des
ribed in Se
tion 3, 
on
i
t 
lauses are an essential ingredient ofeÆ
ient SAT algorithms.Although other methods exist for generating 
on
i
t 
lauses when the inputto the SAT solver is a Boolean formula, our algorithm 
an produ
e 
on
i
t
lauses when extended to quanti�er-free �rst order logi
.The paper is organized as follows. Following a survey of related work, Se
-tion 2 des
ribes our proof system and a simple proof-produ
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Then, in Se
tion 3, we give an overview of the performan
e enhan
ements usedin modern SAT solvers. Se
tion 4 gives a detailed implementation of an eÆ
ientproof-produ
ing SAT solver, and Se
tion 5 dis
usses the extension to quanti�er-free �rst-order logi
. Se
tion 6 
on
ludes.1.1 Related WorkIn the past few years, there has been signi�
ant interest in 
ombining de
isionpro
edures for �rst-order theories with SAT [1{3, 8, 16, 7℄. The implementationsdes
ribed in these approa
hes treat the SAT solver more or less as a bla
k box. Inparti
ular, the �rst-order problem must �rst be translated into a purely Booleanproblem. Often, valuable stru
tural information is lost during su
h a translation.In 
ontrast, our approa
h integrates the SAT solver with the �rst-order de
isionpro
edures, allowing stru
tural information to be preserved. In addition, hy-brid systems whi
h use available SAT solvers are unable to produ
e proofs. Ourintegrated solver does produ
e proofs.Re
ently, there has been some work done on proof-produ
ing SAT solvers[10, 17℄. However, the \proof" produ
ed by these solvers is really just a s
riptwhi
h enables another, presumably trusted, solver to dupli
ate the steps takenby the original solver. Though this does in
rease 
on�den
e in the solution, itdoes not a
tually produ
e a proof obje
t whi
h 
an be 
he
ked by a theoremprover. In our approa
h, an a
tual proof obje
t 
an be produ
ed. This proof
an then be 
he
ked by a small trusted theorem prover whi
h does not need toin
lude a SAT solver.Previous work at Stanford on proof-produ
ing de
ision pro
edures 
ulmi-nated with the proof-produ
ing tool CVC [14, 15℄. CVC in
ludes two options forsolving the Boolean part of the problem: a slow SAT solver that produ
es proofsand a fast SAT solver that does not produ
e proofs. The 
urrent resear
h aimsto 
ombine these approa
hes, resulting in solver whi
h is both fast and able toprodu
e proofs.2 A Simple Proof-Produ
ing SAT solverConsider the simple propositional logi
 des
ribed in Fig. 1. A propositional for-mula is built from the 
onstant formulas > (always true) and ? (always false),propositional variables (i.e. variables that 
an either be assigned true or false),and Boolean operators (^, _, :). A literal is a propositional variable or the nega-tion of a propositional variable. We also de�ne �1 ! �2 to be an abbreviationfor :�1 _ �2, and �1 $ �2 to be an abbreviation for (�1 ! �2) ^ (�1 ! �2).Given su
h a formula, the goal of SAT is to �nd an assignment of true orfalse to ea
h variable su
h that the formula evaluates (under the obvious standardsemanti
s) to true.If no satisfying assignment exists, a formula is said to be unsatis�able. Givenan unsatis�able propositional formula �, a proof system should be able to pro-du
e a proof of :�. We now introdu
e a proof system for a

omplishing this taskwhi
h is based on natural dedu
tion.



propositional formula ::= > | ? | propositional variable| propositional formula ^ propositional formula| propositional formula _ propositional formula| :propositional formulaFig. 1. Propositional logi
2.1 Proof SystemA proof is a tree, ea
h of whose nodes is labeled with a formula. The formulasat the leaves of the tree are 
alled assumptions. Assumptions may be designatedas open or 
losed.A sequent is a pair � ` �, where � is a set of formulas and � is a formula.Sin
e we are often interested only in the assumptions and the 
on
lusion (theformula labeling the root) of a proof, the sequent � ` � is used to represent anyproof whose open assumptions are among � and whose 
on
lusion is �.A proof rule or inferen
e rule is a fun
tion whi
h takes one or more proofs(
alled premises) and returns a new proof whose root node has ea
h of the inputproofs as its su

essors. A proof rule spe
i�es the formula whi
h should label thenew root node and may also 
hange the designation of one or more assumptionsfrom open to 
losed.Proof rules depend only on the assumptions and 
on
lusions of their premisesand 
an thus be des
ribed using sequents. We denote a proof rule as follows:P1 � � � PnCwhere the Pi's are sequents for the premises and C is a sequent representingthe new proof tree. The proof rule takes any set of proofs whi
h mat
h the Pi'sand returns a new proof whose root is labeled by the right-hand side of C. If anassumption appears in some Pi but not in C, then that assumption is 
losed inthe proof tree 
onstru
ted by the proof rule. If there are no premises, the rule is
alled an axiom. We will des
ribe the proof rules of our system below.A sequent � ` � is valid if the 
onjun
tion of the assumptions in � implies�. A proof rule is sound if the validity of all its premises implies the validity ofthe 
on
lusion. The set of valid proofs are those whi
h 
an be 
onstru
ted usingthe proof rules.Though we will not prove it here, it is straightforward to show that if all theproof rules are sound, then the sequent for a valid proof is indeed valid.2.2 Proof RulesTo simplify the notation, we write �; � to denote � [ f�g for the assumptions.This notation also implies that � 62 � .The most basi
 rule is the assumption axiom. This and other rules neededfor a simple proof-produ
ing SAT solver are shown below.� ` � assume �1; � ` � �2; :� ` ��1 [ �2 ` � 
aseSplit



� ` �$ >� ` � i�TrueElim � ` �$ ?� ` :� i�FalseElim�0 ` �0 �1 ` �1 : : : �n ` �n�0 [ �1; : : : ; �n ` �$ �0 simplify�1 ` �$  �2 `  $ ��1 [ �2 ` �$ � transIn the pseudo-
ode, these rules are used as fun
tion 
alls whi
h take thepremises and, possibly, some additional parameters, and return the 
on
lusionsequent. For instan
e, assume(�) takes � as an argument and returns the se-quent � ` � as the result. Similarly, 
aseSplit(s1; s2; �) is an appli
ation ofthe 
aseSplit rule with premises s1 and s2. The parameter � identi�es whi
hassumptions to eliminate from s1 and s2. A 
all to simplify(�; �) takes the setof premises � = f�i ` �i j i 2 f0 : : : ngg as its �rst parameter, and the formula� to be simpli�ed as its se
ond parameter. It returns a sequent for �$ �0 where�0 is obtained by repla
ing all instan
es of the literals in � by true (and theirnegations by false) and applying obvious Boolean simpli�
ations to the result.Note that the premises must be of a 
ertain form in order for the rule tobe sound. Our implementation in
ludes an option whi
h 
auses ea
h of theserules to verify at run-time that its arguments are of the right form and generatesan error if the 
he
k fails. This provides a very eÆ
ient \on-the-
y" internalsoundness 
he
k in the tool whi
h 
an often be used to dete
t soundness bugswithout the need for an external proof 
he
ker.2.3 Na�ive SAT solver with proof produ
tion.A simple SAT solver 
an be 
onstru
ted using an algorithm whi
h �rst pi
ks apropositional variable � 
alled a splitter, assigns it true or false, and then 
allsitself re
ursively until the formula evaluates to true or false.A simple proof-produ
ing SAT solver using the proof rules just des
ribed isshown in Fig. 2. The pro
edure 
he
kSAT takes as input a formula � and returnseither a theorem of the form ` :� or a theorem of the form � ` �, where � isa set of literals appearing in �.The 
he
kSAT pro
edure 
alls 
he
kSATr, a re
ursive pro
edure whi
h takesas input a set of assumptions � (theorems of the form � ` � where � is aliteral), and a formula �, and returns either a theorem of the form � ` � $ >or � ` �$ ?.Both pro
edures use a helper fun
tion 
alled getRHS. This fun
tion takes aproof of � $ �0 as input (for some � and �0) and returns the formula �0. The
he
kSATr pro
edure also makes use of the findSplitter fun
tion whi
h takesa formula and returns a propositional variable appearing in the formula.3 EÆ
ient SAT algorithmsThe algorithm in the previous se
tion is essentially an implementation of thestandard Davis-Putnam-Logemann-Loveland (DPLL) algorithm [5, 6℄. Modern




he
kSAT(�) fs := 
he
kSATr(;, �);�0 := getRHS(s);if (�0 = >) return iffTrueElim(s);return iffFalseElim(s);g
he
kSATr(�, �) fs0 := simplify(�, �);�0 := getRHS(s0);if (�0 2 f>;?g) return s0;� := findSplitter(�0);s1 := trans(s0,
he
kSATr(� [ assume(�),�0));if (getRHS(s1)= >) return s1;s2 := trans(s0,
he
kSATr(� [ assume(:�),�0));if (getRHS(s2)= >) return s2;return 
aseSplit(s1 ; s2; �);g Fig. 2. Na�ive SAT solver.SAT solvers like GRASP [12℄ and Cha� [13℄ are also based on this same funda-mental algorithm, but in
lude signi�
ant re�nements and optimizations.EÆ
ient SAT algorithms are based on fast manipulation of 
lauses. A 
lause isa disjun
tion of one or more literals. Most SAT solvers assume that the formula tobe 
he
ked is given in Conjun
tive Normal Form (CNF), that is, as a 
onjun
tionof 
lauses.Fig. 3 shows pseudo-
ode for an enhan
ed SAT solver (without proofs). Itis similar to the algorithms in [12, 13℄, but is organized slightly di�erently. The
he
kSAT pro
edure takes as input a formula � and returns either ;, indi
atingthat the formula is unsatis�able, or a satisfying assignment. The satisfying as-signment is represented as a set of literals � with the property that if ea
h literalin � is true, then the formula � is also true. The formula to be 
he
ked is �rst
onverted to CNF. We do not address how to do this here, but the 
onversion isstraightforward and dis
ussed in other papers, su
h as [3, 11℄. The CNF 
lausesare stored in the global variable �, and then the re
ursive pro
edure 
he
kSATris 
alled.
he
kSATr takes as input a partial assignment (an assignment to some subsetof the variables appearing in �) again represented as a set � of literals. It returnsan assignment �0 whi
h extends � if there exists su
h an assignment satisfying �.Otherwise, it returns ;. The �rst step in 
he
kSATr is Boolean Constraint Prop-agation (BCP). BCP uses the stru
ture of the 
lauses in � to dedu
e additionalassignments that must hold in order to obtain a satisfying assignment for �,and is des
ribed in more detail below. It returns a new partial assignment. BCPmay dis
over that some variable v is required to take on two di�erent values by



di�erent 
lauses in �. In this 
ase, the returned partial assignment has both vand :v and is said to be in
onsistent.If BCP dis
overs a 
on
i
t, the 
on
i
t is analyzed to produ
e a new 
on
i
t
lause. This 
lause identi�es a subset of � whi
h is responsible for the 
on
i
tand is (permanently) added to �, ensuring that the 
on
i
t will not reo

ur.We dis
uss this more below. When a 
on
i
t is dis
overed, 
he
kSATr returns ;,indi
ating that the given partial assignment � 
annot be extended to a satisfyingassignment.If BCP does not dis
over a 
on
i
t, then the sear
h for a satisfying assignment
an 
ontinue. 
he
kSATr 
alls findSplitter whi
h sear
hes � for a variable notalready assigned by �. If su
h a variable is found, it is returned in �. Otherwise,; is returned, in whi
h 
ase all variables are assigned, so the 
urrent assignmentis a satisfying assignment.If a splitter is found, it is added to the 
urrent assignment. Then 
he
kSATris 
alled re
ursively with the 
urrent assignment. The result is either a satisfyingassignment whi
h is then returned, or ;, indi
ating that the 
urrent assignmentdoes not have a satisfying assignment. In the latter 
ase, exe
ution 
ontinues atthe top of the loop where BCP is 
alled again. Be
ause of the 
on
i
t 
lause justadded by the most re
ent 
all to 
he
kSATr, we are guaranteed that this 
all toBCP will dete
t an in
onsisten
y.
he
kSAT(�) f� := 
onvertToCNF(�);return 
he
kSATr(;);g
he
kSATr(�) fwhile (true) f� := BCP(�,�);if (in
onsistent(�)) f
onfli
tClause := analyzeConfli
t(�,�);� := � [ f
onfli
tClauseg;return ;;g� := findSplitter(�,�);if (� = ;) return �;� := � [ �;�0 := 
he
kSATr(�);if (�0 6= ;) return �0;gg Fig. 3. Enhan
ed SAT solver.We now dis
uss the importan
e and implementation of several 
omponentsof enhan
ed SAT algorithm shown in Fig. 3: fast BCP, 
on
i
t 
lauses, so 
alled



non-
hronologi
al ba
ktra
king, or intelligent ba
kjumping, and �nally, good de-
ision heuristi
s for pi
king splitters.3.1 Fast Boolean Constraint Propagation (BCP).Intuitively, the purpose of BCP is to derive all the assignments to variablesthat logi
ally follow from the 
urrent assignments without having to split onany variable. The 
omplexity of BCP is polynomial, and 
an be implementedvery eÆ
iently. Sin
e the worst-
ase 
omplexity of SAT is exponential in thenumber of variables, redu
ing the number of variables by BCP is one of themost important aspe
ts of the algorithm.When the formula is represented as a set of 
lauses, BCP amounts to �ndingunit 
lauses, those that have exa
tly one literal unassigned, and assigning the
orresponding variable to make the literal true. This assignment may resultin more unit 
lauses, and the pro
ess 
ontinues until either a 
ontradi
tion isdete
ted (one of the 
lauses gets all of its literals assigned to false), or no moreunit 
lauses remain.GRASP and Cha� implement unit 
lause dete
tion by having two wat
hedliterals in ea
h 
lause. As long as both literals stay unassigned, the 
lause isguaranteed not to be
ome a unit 
lause. If either of the wat
hed literals getsassigned, the 
lause is sear
hed for another unassigned literal, and if one is found,it be
omes the new wat
hed literal. Ea
h variable maintains two lists of 
lausesin whi
h the variable appears as a positive or negative literal respe
tively. So, forea
h variable assignment, only those 
lauses are pro
essed in whi
h a wat
hedliteral be
omes false.Learning the Con
i
t Clauses. When a SAT solver dete
ts a 
on
i
t, it is oftenthe 
ase that only a small subset of the variable assignments is responsible for the
ontradi
tion, and therefore, the same assignment will appear in many bran
hesof the de
ision tree. A SAT solver takes advantage of this fa
t by learning su
h
on
i
t assignments, so that when they show up again, it immediately ba
ktra
kswithout having to derive the 
ontradi
tion again.Typi
ally, a 
on
i
t assignment 
ontains exa
tly one variable assigned at thelast level of re
ursion (often the most re
ent splitter). Other variables may beeither previous splitters themselves, or assignments derived from those splittersby BCP.A 
on
i
t assignment 
an be expressed as a formula 
 � `1 ^ � � � ^ `n, where`i's are literals. Sin
e we know that the original problem � is unsatis�able when
 is true, we 
an state that � is satis�able only if 
 � `1 _ � � � _ `n is true.Noti
e that 
 has the syntax of a 
lause, so it 
an simply be added to �. Whenthe same assignment is made again, the 
on
i
t will be immediately dete
ted byBCP due to the newly added 
lause 
, whi
h we 
all a 
on
i
t 
lause.Intelligent Ba
kjumping. Ea
h variable assignment has an asso
iated de
isionlevel, whi
h is the 
orresponding depth in the de
ision tree where the assignmentis made.



When a 
on
i
t o

urs, the SAT solver returns to the previous de
ision level,e�e
tively undoing all the assignments made at the 
urrent de
ision level. Noti
ethat if the 
on
i
t 
lause in
ludes the most re
ent splitter, then the negation ofthe splitter will be derived by BCP from the 
on
i
t 
lause. Therefore, thereis no need to 
onsider the opposite assignment of the splitter expli
itly, it willhappen automati
ally.In some 
ases, the SAT solver 
an ba
ktra
k beyond the previous de
isionlevel. If the 
on
i
t 
lause does not in
lude any variables from the previousde
ision level, then the negation of the splitter is still implied in the de
isionlevel before that. Thus, we 
an ba
ktra
k to the most re
ent de
ision level inwhi
h a variable from the 
on
i
t 
lause is assigned.De
ision Heuristi
s. It is well-known that the order in whi
h the splitters are
hosen 
an dramati
ally a�e
t the performan
e of the SAT algorithm. ModernSAT solvers have developed sophisti
ated splitter heuristi
s that work amazinglywell in pra
ti
e. Examples of these heuristi
s are detailed in [9, 13℄.4 An EÆ
ient Proof-Produ
ing SAT solverWe now give a relatively detailed des
ription of a proof-produ
ing SAT solverwith the enhan
ements des
ribed above. Before des
ribing the algorithm, wedes
ribe the data stru
tures used in the algorithm. Some additional proof rulesused by the algorithm are shown in Fig. 4.4.1 Basi
 Data Stru
turesExpressions All formulas and terms are represented as DAGs with maximalsharing of subexpressions. That is, if two expressions e1 and e2 are synta
ti
allythe same, then they are physi
ally stored in the same lo
ation. In parti
ular,
he
king expressions for (synta
ti
) equality is a 
onstant time operation (
om-parison of pointers).Theorems Theorems hold a sequent � ` �, where � is a set of formula ex-pressions and � is a formula expression. Besides the sequent, theorems may also
arry the a
tual proof tree 
orresponding to the sequent (as a spe
ial proof termexpression, not dis
ussed here). The proofs are only generated when the toolis requested to produ
e an externally 
he
kable proof. Otherwise, the sequentsare suÆ
ient for the fun
tionality of the algorithm. The metavariable s (for \se-quent") is used to represent theorems. If s is a theorem whose sequent is � ` �,then getAssumptions(s) returns the set of formulas in � , and getCon
(s) re-turns the formula �. To simplify the algorithm, we also allow a spe
ial \NULL"theorem, without a sequent or a proof, denoted by ;.



� ` � ^  � ` � ^E -left � ` � ^  � `  ^E -right �; � ` ?� ` :� :I�1 ` � �2 ` �$  �1 [ �2 `  i�MP (�i ` :�i)i6=j � ` Wi(�i)� [Si6=j(�i) ` �j unitProp�; �1; : : : ; �n ` ?� ` :�1 _ � � � _ :�n 
on
i
tClauseFig. 4. Additional Proof Rules.4.2 Program StateThe state of the SAT solver 
onsists of the following 
omponents. Some 
om-ponents are ba
ktra
ked, meaning that when pop() is 
alled, they revert to thevalue they had when the 
orresponding 
all to push() was made. Ba
ktra
ked
omponents are marked with the y sign.yAssumptions: � is a set of theorems 
alled assumptions, ea
h of whose 
on-
lusions is a literal. These literals (and the 
orresponding variables) are saidto be assigned. All other variables and literals are unassigned. � 
orrespondsto de
isions and derived literals.yLiterals: literals is a queue 
ontaining theorems whose 
on
lusions are lit-erals (whi
h are waiting to be added as assumptions). The fun
tion 
allpushBa
k(literals,s) inserts s into the queue and the 
orresponding 
allto popFront(literals) returns and removes the �rst item in the queue.Initially, literals is empty.Clauses: � is a set of theorems, ea
h of whose 
on
lusions is a 
lause. � 
ontains
lauses that are part of the original formula to be 
he
ked for satis�abilityas well as derived 
on
i
t 
lauses. Given a 
lause expression 
, the fun
-tion setupWat
hPointers(
) sele
ts two of its literals to be wat
hed literalsand asso
iates with 
 two wat
h pointers indexed by i 2 f0; 1g whi
h pointto these literals. Given a 
lause 
 and an index i 2 f0; 1g, the fun
tionupdateWat
hPointer(
,i) is 
alled when the ith wat
h pointer in 
 is as-signed. It sear
hes for an unassigned literal in 
 and updates the ith wat
hpointer to point to the new literal.Non-
lauses: � is a set of theorems, ea
h of whose 
on
lusions is neither aliteral nor a 
lause. It 
ontains parts of the original formula whi
h are innon-
lausal form.Wat
h lists: Asso
iated with ea
h literal is a list of the 
lauses where theliteral is being wat
hed. For a literal l, the fun
tion getWat
hPointers(l)returns a set of pairs (
; i) where 
 is a 
lause in whi
h l is being wat
hed andi 2 f0; 1g is the index 
orresponding to the wat
hed literal l in 
. Initiallythese lists are empty.



4.3 The AlgorithmThe 
ode for an eÆ
ient proof-produ
ing SAT solver is shown in Fig. 5 andFig. 6.
he
kSAT. The main fun
tion in the SAT 
he
king algorithm is 
he
kSATwhi
h, as in the algorithm of Fig. 2, takes as input a formula � and returnseither a theorem of the form ` :� or a theorem of the form � ` �, where � isa set of literals appearing in �.
he
kSAT begins by initializing the theorem sets to be empty. It then takesthe formula to be 
he
ked and passes it as a trivial theorem (
reated usingthe assume rule) to addFa
t, whi
h partitions � into literals, 
lauses, and non-
lauses. Next, 
he
kSAT 
alls 
he
kSATr whi
h does the main re
ursive sear
h.If 
he
kSATr returns ;, then this means that � is satis�able under the set ofassumptions 
ontained in �, so the simplify rule (followed by iffTrueElim)
an be used to get a theorem of the appropriate form. If 
he
kSATr does notreturn ;, then it must return a theorem whose 
on
lusion is ?. Sin
e � is assumedin the �rst 
all to addFa
t, any derivation of ? returned by 
he
kSATr will also
ontain � as an assumption, so we 
an use the notIntro rule to derive a theoremwhose 
on
lusion is :�.addFa
t. addFa
t takes as input a theorem s and �gures out where to put it. It�rst assigns � to be the 
on
lusion of the theorem. If � is a 
onjun
tion, then s issplit using the 
onjun
tion elimination rules and addFa
t 
alls itself re
ursively.If � is a literal, s gets pushed onto the literal queue. If � is a 
lause, s gets addedto the set � of 
lauses. Otherwise, s is added to the set � of non-
lauses.
he
kSATr . 
he
kSATr is similar to the pro
edure of the same name in Fig. 3.It starts by 
alling BCP whi
h �gures out additional assignments whi
h areimplied by the 
urrent set of assignments. If BCP does not return ;, it meansthat an in
onsisten
y was dete
ted and the return value is a proof of ? from the
urrent set of assumptions. In this 
ase, the 
urrent 
ontext is in
onsistent, sothere is no need to sear
h further along the 
urrent bran
h. The theorem proving? is returned.If BCP does not dete
t an in
onsisten
y, then we 
ontinue the sear
h for asatisfying assignment by �nding a splitter. The fun
tion findSplitter 
an lookfor a splitter in either the set of 
lauses � or the set of non-
lauses �. In our im-plementation, �ndSplitter �rst uses a depth-�rst sear
h to �nd splitters from �.When all the literals in � have been assigned, it then uses a Cha�-like heuristi
to pi
k splitters from �. There are 
ertainly more sophisti
ated heuristi
s that
ould be used and investigating these is part of our 
urrent resear
h.If no splitter 
an be found, 
he
kSATr returns ; to indi
ate that the 
urrentset of assumptions 
onstitutes a satisfying assignment. Otherwise, the ba
k-tra
ked state (� and literals) is saved by 
alling push(). Then, the splitter� is added to the set of assigned literals by 
alling addFa
t and 
he
kSATr is




he
kSAT(�) f� := � := � := ;;addFa
t(assume(�));s := 
he
kSATr();if (s = ;) return iffTrueElim(simplify(�,�));return notIntro(s,�);gaddFa
t(s) f� := getCon
(s);if (isConjun
tion(�)) faddFa
t(andElimLeft(s));addFa
t(andElimRight(s));gelse if (isLiteral(�)) pushBa
k(literals, s);else if (isClause(�)) f� := � [ fsg;setupWat
hPointers(getCon
(s));gelse � := � [ fsg;g
he
kSATr() fwhile (true) fs := BCP();if (s 6= ;) return s;� := findSplitter();if (� = ;) return ;;push();addFa
t(assume(�));s := 
he
kSATr();if (s = ;) return s;pop();if (ba
kJump(s)) return s;addFa
t(notIntro(s,getLastAssumption(s)));gg Fig. 5. Enhan
ed SAT solver with proofs.




alled re
ursively. If the result is ; indi
ating that a satisfying assignment wasfound, then 
he
kSATr returns without 
alling pop() to preserve the satisfyingassignment.The other possibility is that the re
ursive 
all results in a proof of ? fromsome subset of the 
urrent assumptions. In this 
ase, we �rst 
he
k for thepossibility of intelligent ba
kjumping. The fun
tion ba
kJump(s) returns true ifnone of the assumptions in s (ex
luding the most re
ently assigned assumption)were assigned in the 
urrent re
ursion level (sin
e the most re
ent a
tive 
all topush). In this 
ase, the theorem s 
an be used to derive a literal in the previousre
ursion level, and is thus returned.If ba
kJump(s) returns false, then the notIntro rule 
an be used to derivethe negation of the most re
ent assumption in s from the others, and 
he
kSATrstarts over at the top of the loop.BCP() fin
onsistent := false;while (:in
onsistent) fs := popFront(literals);� := � [ fsg;l := getCon
(s);w := getWat
hPointers(l);forea
h (
,i)2 w fupdateWat
hPointers(
,i);if (isUnsat(
)) fin
onsistent := true;unsatClause := 
;gelse if (isUnit(
)) addFa
t(unitProp(
));ggif (:in
onsistent) fforea
h s� 2 � fs := iffMP(s�,simplify(�,getCon
(s�)));if (getCon
(s)= ?) return s;greturn ;;g
onfli
t = pro
essImplGraph(unsatClause);addFa
t(
onfli
tClause(
onfli
t));return 
onfli
t;g Fig. 6. Enhan
ed BCP with proofs.BCP. The last part of the SAT solver is the BCP 
ode. BCP begins by pro-
essing the queue of literals. Ea
h theorem in the queue is added to the set of



assumptions. Then the wat
h pointers for all 
lauses whi
h are wat
hing theliteral are updated. If any of these 
lauses be
ome unsatis�able (all its literalsare assigned false), the in
onsistent 
ag is set and the in
onsistent 
lause isstored in unsatClause. If any of these 
lauses be
omes a unit 
lause, then theunitProp rule is used to derive the remaining unassigned literal.On
e all of the literals have been pro
essed, if no in
onsisten
y has beendete
ted, then the non-
lauses are pro
essed. This is done by 
he
king if anyof them simplify to ?. If so, a theorem deriving ? is returned. Otherwise, ; isreturned indi
ating no in
onsisten
y.If an in
onsistent 
lause is dete
ted, then the so-
alled \impli
ation graph"
an be used to generate a 
on
i
t 
lause. The impli
ation graph is stored impli
-itly by the theorems in �. We start by looking up the theorem for the in
onsistent
lause in � and 
olle
ting all of its assumptions. We then look in � for the the-orems justifying these assumptions. This pro
ess is 
ontinued until we have aset of assumptions, at most one of whi
h was assigned at the 
urrent re
ursionlevel (sin
e the last a
tive 
all to push). The 
all to pro
essImplGraph returnsa theorem whi
h derives ? from these assumptions.Finally, the 
onfli
tClause rule is used to turn the 
on
i
t theorem into a
on
i
t 
lause, whi
h is then added to the set of 
lauses (implementing 
on
i
t
lause learning), and the 
on
i
t is returned.5 Extension to Quanti�er-Free First-Order Logi
Although the algorithm just presented only handles Boolean logi
, it 
an easilybe extended to 
ooperate with quanti�er-free �rst-order de
ision pro
edures. In�rst-order logi
, the atomi
 formulas are no longer required to be propositionalvariables, but 
an also be predi
ates applied to terms over obje
t 
onstants andvariables. Therefore, we rede�ne the notion of a literal to be an atomi
 formula(a predi
ate or a propositional variable) or its negation.Sin
e the atomi
 formulas are no longer independent from ea
h other, purelyBoolean 
onstraint propagation is not suÆ
ient. To over
ome this problem, weextend BCP to �rst-order 
onstraint propagation (FOCP) as follows. Every timea new literal � is added to�, it is also submitted to the �rst-order de
ision pro
e-dure. Similarly, whenever a de
ision pro
edure derives a new literal l, addFa
t(l)is 
alled. In fa
t, if a de
ision pro
edure derives non-literals, these 
an also behandled just by 
alling addFa
t. However, in this 
ase the additional 
lauses ornon-
lauses will have to be ba
ktra
ked.Additionally, after ea
h literal is submitted to the �rst-order de
ision pro-
edure, the �rst-order de
ision pro
edure may report an in
onsisten
y. If the�rst-order de
ision pro
edure is instrumented with proof produ
tion, then it 
anreturn a theorem deriving ? from some subset of the 
urrent assumptions. Thistheorem 
an be then be used to generate a 
on
i
t 
lause just as with purelyBoolean 
on
i
ts.The ability to produ
e proofs from the �rst-order de
ision pro
edure is thusessential for enabling the eÆ
ien
y gains that 
ome from learning 
on
i
t 
lauses.



6 Con
lusionWe have implemented a prototype of our algorithm in an emerging tool 
alledCVC Lite. CVC Lite is a smaller, more light-weight implementation of CVC,designed for experimentation and rapid prototyping.For our experiments, we adopted the philosophy of using families of ben
h-marks as advo
ated in [4℄. We 
ompared the average number of de
isions requiredto solve the Boolean ben
hmarks in the PC families (ea
h 
ontaining 33 ben
h-marks) of the hole4 and hole5 ben
hmarks [4℄. We 
ompared z
ha�, CVC (in itsstandard proof-produ
ing mode), and CVC Lite. Though CVC has a fast SAT-based mode whi
h is essentially equivalent to z
ha�, this mode 
annot produ
eproofs. ben
hmark z
ha� CVC Lite CVChole4 30 31 800hole5 149 163 25832Fig. 7. Comparison of the number of de
isions.Clearly, CVC Lite does not quite 
apture all of the intelligen
e in z
ha�, butit is 
lose. When proofs are enabled, CVC does a poor job on Boolean exam-ples. CVC Lite demonstrates that it is possible to implement a proof-produ
ingBoolean solver whose algorithmi
 performan
e is 
lose to that of a highly tunednon-proof-produ
ing solver.Be
ause our prototype implementation has not been tuned for run-time per-forman
e, we did not 
ompare run-times. However based on [17℄ as well as ourprevious experien
e with CVC, proof-produ
tion only adds a small 
onstantoverhead to the underlying algorithm (the reason CVC is so mu
h slower inproof-produ
tion mode is that it is not using the eÆ
ient SAT algorithms, notbe
ause proof-produ
tion adds a lot of overhead). Also, the optimizations en-abled by proof produ
tion typi
ally lead to an exponential speedup, so a smallamount of overhead is reasonable.As already mentioned, one important area of ongoing resear
h is investigatingde
ision heuristi
s for 
ombined 
lausal and non-
lausal formulas. An obviousquestion is: why not just 
onvert everything to CNF? Although this is possiblefor purely Boolean formulas, it often degrades performan
e of some non-Booleantest
ases (this problem is also mentioned in [3℄). We are working on de
isionheuristi
s whi
h perform well on both Boolean and non-Boolean test
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