
A Proof-Produ
ing Boolean Sear
h Engine?Clark Barrett1 and Sergey Berezin21 New York University, barrett�
s.nyu.edu2 Stanford University, berezin�stanford.eduAbstra
t. We present a proof-produ
ing sear
h engine for solving theBoolean satis�ability problem. We show how the proof-produ
ing infras-tru
ture
an be used to tra
k the dependen
y information needed toimplement important optimizations found in modern SAT solvers. Wealso des
ribe how the same sear
h engine
an be extended to work withde
ision pro
edures for quanti�er-free �rst-order logi
. Initial results in-di
ate that it is possible to extend a state-of-the-art SAT solver withproof produ
tion in a way that both preserves the algorithmi
 perfor-man
e (e.g. the number of de
isions to solve a problem) and does notin
ur unreasonable overhead for the proofs.1 Introdu
tionDe
ision pro
edures for domain-spe
i�
 �rst-order theories have be
ome impor-tant tools for many veri�
ation appli
ations. Two of the primary
hallenges in
reating a pra
ti
al implementation of su
h de
ision pro
edures are ensuring
or-re
tness and a
hieving adequate performan
e. The addition of proof produ
tion
an help a

omplish both of these goals.Many arguments have been made for adding proof produ
tion to automatedtheorem provers. For example, proofs provide additional reliability and the abil-ity to
he
k a result independently using a trusted proof-
he
ker. We advo
ateproof produ
tion for an additional reason: the proof infrastru
ture tra
ks de-penden
ies among assumed and derived fa
ts during the proof sear
h. Thesedependen
ies
apture exa
tly the information that is needed to to determine the
ause of ea
h
on
i
t during the proof sear
h, making it easy to generate
on
i
t
lauses. As des
ribed in Se
tion 3,
on
i
t
lauses are an essential ingredient ofeÆ
ient SAT algorithms.Although other methods exist for generating
on
i
t
lauses when the inputto the SAT solver is a Boolean formula, our algorithm
an produ
e
on
i
t
lauses when extended to quanti�er-free �rst order logi
.The paper is organized as follows. Following a survey of related work, Se
-tion 2 des
ribes our proof system and a simple proof-produ
ing SAT solver.? This resear
h was supported by GSRC
ontra
t DABT63-96-C-0097-P00005, by Na-tional S
ien
e Foundation CCR-0121403, and by a grant from Intel Corporation. The
ontent of this paper does not ne
essarily re
e
t the position or the poli
y of GSRC,NSF, Intel, or the Government, and no oÆ
ial endorsement should be inferred.

Then, in Se
tion 3, we give an overview of the performan
e enhan
ements usedin modern SAT solvers. Se
tion 4 gives a detailed implementation of an eÆ
ientproof-produ
ing SAT solver, and Se
tion 5 dis
usses the extension to quanti�er-free �rst-order logi
. Se
tion 6
on
ludes.1.1 Related WorkIn the past few years, there has been signi�
ant interest in
ombining de
isionpro
edures for �rst-order theories with SAT [1{3, 8, 16, 7℄. The implementationsdes
ribed in these approa
hes treat the SAT solver more or less as a bla
k box. Inparti
ular, the �rst-order problem must �rst be translated into a purely Booleanproblem. Often, valuable stru
tural information is lost during su
h a translation.In
ontrast, our approa
h integrates the SAT solver with the �rst-order de
isionpro
edures, allowing stru
tural information to be preserved. In addition, hy-brid systems whi
h use available SAT solvers are unable to produ
e proofs. Ourintegrated solver does produ
e proofs.Re
ently, there has been some work done on proof-produ
ing SAT solvers[10, 17℄. However, the \proof" produ
ed by these solvers is really just a s
riptwhi
h enables another, presumably trusted, solver to dupli
ate the steps takenby the original solver. Though this does in
rease
on�den
e in the solution, itdoes not a
tually produ
e a proof obje
t whi
h
an be
he
ked by a theoremprover. In our approa
h, an a
tual proof obje
t
an be produ
ed. This proof
an then be
he
ked by a small trusted theorem prover whi
h does not need toin
lude a SAT solver.Previous work at Stanford on proof-produ
ing de
ision pro
edures
ulmi-nated with the proof-produ
ing tool CVC [14, 15℄. CVC in
ludes two options forsolving the Boolean part of the problem: a slow SAT solver that produ
es proofsand a fast SAT solver that does not produ
e proofs. The
urrent resear
h aimsto
ombine these approa
hes, resulting in solver whi
h is both fast and able toprodu
e proofs.2 A Simple Proof-Produ
ing SAT solverConsider the simple propositional logi
 des
ribed in Fig. 1. A propositional for-mula is built from the
onstant formulas > (always true) and ? (always false),propositional variables (i.e. variables that
an either be assigned true or false),and Boolean operators (^, _, :). A literal is a propositional variable or the nega-tion of a propositional variable. We also de�ne �1 ! �2 to be an abbreviationfor :�1 _ �2, and �1 $ �2 to be an abbreviation for (�1 ! �2) ^ (�1 ! �2).Given su
h a formula, the goal of SAT is to �nd an assignment of true orfalse to ea
h variable su
h that the formula evaluates (under the obvious standardsemanti
s) to true.If no satisfying assignment exists, a formula is said to be unsatis�able. Givenan unsatis�able propositional formula �, a proof system should be able to pro-du
e a proof of :�. We now introdu
e a proof system for a

omplishing this taskwhi
h is based on natural dedu
tion.

propositional formula ::= > | ? | propositional variable| propositional formula ^ propositional formula| propositional formula _ propositional formula| :propositional formulaFig. 1. Propositional logi
2.1 Proof SystemA proof is a tree, ea
h of whose nodes is labeled with a formula. The formulasat the leaves of the tree are
alled assumptions. Assumptions may be designatedas open or
losed.A sequent is a pair � ` �, where � is a set of formulas and � is a formula.Sin
e we are often interested only in the assumptions and the
on
lusion (theformula labeling the root) of a proof, the sequent � ` � is used to represent anyproof whose open assumptions are among � and whose
on
lusion is �.A proof rule or inferen
e rule is a fun
tion whi
h takes one or more proofs(
alled premises) and returns a new proof whose root node has ea
h of the inputproofs as its su

essors. A proof rule spe
i�es the formula whi
h should label thenew root node and may also
hange the designation of one or more assumptionsfrom open to
losed.Proof rules depend only on the assumptions and
on
lusions of their premisesand
an thus be des
ribed using sequents. We denote a proof rule as follows:P1 � � � PnCwhere the Pi's are sequents for the premises and C is a sequent representingthe new proof tree. The proof rule takes any set of proofs whi
h mat
h the Pi'sand returns a new proof whose root is labeled by the right-hand side of C. If anassumption appears in some Pi but not in C, then that assumption is
losed inthe proof tree
onstru
ted by the proof rule. If there are no premises, the rule is
alled an axiom. We will des
ribe the proof rules of our system below.A sequent � ` � is valid if the
onjun
tion of the assumptions in � implies�. A proof rule is sound if the validity of all its premises implies the validity ofthe
on
lusion. The set of valid proofs are those whi
h
an be
onstru
ted usingthe proof rules.Though we will not prove it here, it is straightforward to show that if all theproof rules are sound, then the sequent for a valid proof is indeed valid.2.2 Proof RulesTo simplify the notation, we write �; � to denote � [f�g for the assumptions.This notation also implies that � 62 � .The most basi
 rule is the assumption axiom. This and other rules neededfor a simple proof-produ
ing SAT solver are shown below.� ` � assume �1; � ` � �2; :� ` ��1 [�2 ` �
aseSplit

� ` �$ >� ` � i�TrueElim � ` �$?� ` :� i�FalseElim�0 ` �0 �1 ` �1 : : : �n ` �n�0 [�1; : : : ; �n ` �$ �0 simplify�1 ` �$ �2 ` $ ��1 [�2 ` �$ � transIn the pseudo-
ode, these rules are used as fun
tion
alls whi
h take thepremises and, possibly, some additional parameters, and return the
on
lusionsequent. For instan
e, assume(�) takes � as an argument and returns the se-quent � ` � as the result. Similarly,
aseSplit(s1; s2; �) is an appli
ation ofthe
aseSplit rule with premises s1 and s2. The parameter � identi�es whi
hassumptions to eliminate from s1 and s2. A
all to simplify(�; �) takes the setof premises � = f�i ` �i j i 2 f0 : : : ngg as its �rst parameter, and the formula� to be simpli�ed as its se
ond parameter. It returns a sequent for �$ �0 where�0 is obtained by repla
ing all instan
es of the literals in � by true (and theirnegations by false) and applying obvious Boolean simpli�
ations to the result.Note that the premises must be of a
ertain form in order for the rule tobe sound. Our implementation in
ludes an option whi
h
auses ea
h of theserules to verify at run-time that its arguments are of the right form and generatesan error if the
he
k fails. This provides a very eÆ
ient \on-the-
y" internalsoundness
he
k in the tool whi
h
an often be used to dete
t soundness bugswithout the need for an external proof
he
ker.2.3 Na�ive SAT solver with proof produ
tion.A simple SAT solver
an be
onstru
ted using an algorithm whi
h �rst pi
ks apropositional variable �
alled a splitter, assigns it true or false, and then
allsitself re
ursively until the formula evaluates to true or false.A simple proof-produ
ing SAT solver using the proof rules just des
ribed isshown in Fig. 2. The pro
edure
he
kSAT takes as input a formula � and returnseither a theorem of the form ` :� or a theorem of the form � ` �, where � isa set of literals appearing in �.The
he
kSAT pro
edure
alls
he
kSATr, a re
ursive pro
edure whi
h takesas input a set of assumptions � (theorems of the form � ` � where � is aliteral), and a formula �, and returns either a theorem of the form � ` � $ >or � ` �$?.Both pro
edures use a helper fun
tion
alled getRHS. This fun
tion takes aproof of � $ �0 as input (for some � and �0) and returns the formula �0. The
he
kSATr pro
edure also makes use of the findSplitter fun
tion whi
h takesa formula and returns a propositional variable appearing in the formula.3 EÆ
ient SAT algorithmsThe algorithm in the previous se
tion is essentially an implementation of thestandard Davis-Putnam-Logemann-Loveland (DPLL) algorithm [5, 6℄. Modern

he
kSAT(�) fs :=
he
kSATr(;, �);�0 := getRHS(s);if (�0 = >) return iffTrueElim(s);return iffFalseElim(s);g
he
kSATr(�, �) fs0 := simplify(�, �);�0 := getRHS(s0);if (�0 2 f>;?g) return s0;� := findSplitter(�0);s1 := trans(s0,
he
kSATr(� [assume(�),�0));if (getRHS(s1)= >) return s1;s2 := trans(s0,
he
kSATr(� [assume(:�),�0));if (getRHS(s2)= >) return s2;return
aseSplit(s1 ; s2; �);g Fig. 2. Na�ive SAT solver.SAT solvers like GRASP [12℄ and Cha� [13℄ are also based on this same funda-mental algorithm, but in
lude signi�
ant re�nements and optimizations.EÆ
ient SAT algorithms are based on fast manipulation of
lauses. A
lause isa disjun
tion of one or more literals. Most SAT solvers assume that the formula tobe
he
ked is given in Conjun
tive Normal Form (CNF), that is, as a
onjun
tionof
lauses.Fig. 3 shows pseudo-
ode for an enhan
ed SAT solver (without proofs). Itis similar to the algorithms in [12, 13℄, but is organized slightly di�erently. The
he
kSAT pro
edure takes as input a formula � and returns either ;, indi
atingthat the formula is unsatis�able, or a satisfying assignment. The satisfying as-signment is represented as a set of literals � with the property that if ea
h literalin � is true, then the formula � is also true. The formula to be
he
ked is �rst
onverted to CNF. We do not address how to do this here, but the
onversion isstraightforward and dis
ussed in other papers, su
h as [3, 11℄. The CNF
lausesare stored in the global variable �, and then the re
ursive pro
edure
he
kSATris
alled.
he
kSATr takes as input a partial assignment (an assignment to some subsetof the variables appearing in �) again represented as a set � of literals. It returnsan assignment �0 whi
h extends � if there exists su
h an assignment satisfying �.Otherwise, it returns ;. The �rst step in
he
kSATr is Boolean Constraint Prop-agation (BCP). BCP uses the stru
ture of the
lauses in � to dedu
e additionalassignments that must hold in order to obtain a satisfying assignment for �,and is des
ribed in more detail below. It returns a new partial assignment. BCPmay dis
over that some variable v is required to take on two di�erent values by

di�erent
lauses in �. In this
ase, the returned partial assignment has both vand :v and is said to be in
onsistent.If BCP dis
overs a
on
i
t, the
on
i
t is analyzed to produ
e a new
on
i
t
lause. This
lause identi�es a subset of � whi
h is responsible for the
on
i
tand is (permanently) added to �, ensuring that the
on
i
t will not reo

ur.We dis
uss this more below. When a
on
i
t is dis
overed,
he
kSATr returns ;,indi
ating that the given partial assignment �
annot be extended to a satisfyingassignment.If BCP does not dis
over a
on
i
t, then the sear
h for a satisfying assignment
an
ontinue.
he
kSATr
alls findSplitter whi
h sear
hes � for a variable notalready assigned by �. If su
h a variable is found, it is returned in �. Otherwise,; is returned, in whi
h
ase all variables are assigned, so the
urrent assignmentis a satisfying assignment.If a splitter is found, it is added to the
urrent assignment. Then
he
kSATris
alled re
ursively with the
urrent assignment. The result is either a satisfyingassignment whi
h is then returned, or ;, indi
ating that the
urrent assignmentdoes not have a satisfying assignment. In the latter
ase, exe
ution
ontinues atthe top of the loop where BCP is
alled again. Be
ause of the
on
i
t
lause justadded by the most re
ent
all to
he
kSATr, we are guaranteed that this
all toBCP will dete
t an in
onsisten
y.
he
kSAT(�) f� :=
onvertToCNF(�);return
he
kSATr(;);g
he
kSATr(�) fwhile (true) f� := BCP(�,�);if (in
onsistent(�)) f
onfli
tClause := analyzeConfli
t(�,�);� := � [f
onfli
tClauseg;return ;;g� := findSplitter(�,�);if (� = ;) return �;� := � [�;�0 :=
he
kSATr(�);if (�0 6= ;) return �0;gg Fig. 3. Enhan
ed SAT solver.We now dis
uss the importan
e and implementation of several
omponentsof enhan
ed SAT algorithm shown in Fig. 3: fast BCP,
on
i
t
lauses, so
alled

non-
hronologi
al ba
ktra
king, or intelligent ba
kjumping, and �nally, good de-
ision heuristi
s for pi
king splitters.3.1 Fast Boolean Constraint Propagation (BCP).Intuitively, the purpose of BCP is to derive all the assignments to variablesthat logi
ally follow from the
urrent assignments without having to split onany variable. The
omplexity of BCP is polynomial, and
an be implementedvery eÆ
iently. Sin
e the worst-
ase
omplexity of SAT is exponential in thenumber of variables, redu
ing the number of variables by BCP is one of themost important aspe
ts of the algorithm.When the formula is represented as a set of
lauses, BCP amounts to �ndingunit
lauses, those that have exa
tly one literal unassigned, and assigning the
orresponding variable to make the literal true. This assignment may resultin more unit
lauses, and the pro
ess
ontinues until either a
ontradi
tion isdete
ted (one of the
lauses gets all of its literals assigned to false), or no moreunit
lauses remain.GRASP and Cha� implement unit
lause dete
tion by having two wat
hedliterals in ea
h
lause. As long as both literals stay unassigned, the
lause isguaranteed not to be
ome a unit
lause. If either of the wat
hed literals getsassigned, the
lause is sear
hed for another unassigned literal, and if one is found,it be
omes the new wat
hed literal. Ea
h variable maintains two lists of
lausesin whi
h the variable appears as a positive or negative literal respe
tively. So, forea
h variable assignment, only those
lauses are pro
essed in whi
h a wat
hedliteral be
omes false.Learning the Con
i
t Clauses. When a SAT solver dete
ts a
on
i
t, it is oftenthe
ase that only a small subset of the variable assignments is responsible for the
ontradi
tion, and therefore, the same assignment will appear in many bran
hesof the de
ision tree. A SAT solver takes advantage of this fa
t by learning su
h
on
i
t assignments, so that when they show up again, it immediately ba
ktra
kswithout having to derive the
ontradi
tion again.Typi
ally, a
on
i
t assignment
ontains exa
tly one variable assigned at thelast level of re
ursion (often the most re
ent splitter). Other variables may beeither previous splitters themselves, or assignments derived from those splittersby BCP.A
on
i
t assignment
an be expressed as a formula
 � `1 ^ � � � ^ `n, where`i's are literals. Sin
e we know that the original problem � is unsatis�able when
 is true, we
an state that � is satis�able only if
 � `1 _ � � � _ `n is true.Noti
e that
 has the syntax of a
lause, so it
an simply be added to �. Whenthe same assignment is made again, the
on
i
t will be immediately dete
ted byBCP due to the newly added
lause
, whi
h we
all a
on
i
t
lause.Intelligent Ba
kjumping. Ea
h variable assignment has an asso
iated de
isionlevel, whi
h is the
orresponding depth in the de
ision tree where the assignmentis made.

When a
on
i
t o

urs, the SAT solver returns to the previous de
ision level,e�e
tively undoing all the assignments made at the
urrent de
ision level. Noti
ethat if the
on
i
t
lause in
ludes the most re
ent splitter, then the negation ofthe splitter will be derived by BCP from the
on
i
t
lause. Therefore, thereis no need to
onsider the opposite assignment of the splitter expli
itly, it willhappen automati
ally.In some
ases, the SAT solver
an ba
ktra
k beyond the previous de
isionlevel. If the
on
i
t
lause does not in
lude any variables from the previousde
ision level, then the negation of the splitter is still implied in the de
isionlevel before that. Thus, we
an ba
ktra
k to the most re
ent de
ision level inwhi
h a variable from the
on
i
t
lause is assigned.De
ision Heuristi
s. It is well-known that the order in whi
h the splitters are
hosen
an dramati
ally a�e
t the performan
e of the SAT algorithm. ModernSAT solvers have developed sophisti
ated splitter heuristi
s that work amazinglywell in pra
ti
e. Examples of these heuristi
s are detailed in [9, 13℄.4 An EÆ
ient Proof-Produ
ing SAT solverWe now give a relatively detailed des
ription of a proof-produ
ing SAT solverwith the enhan
ements des
ribed above. Before des
ribing the algorithm, wedes
ribe the data stru
tures used in the algorithm. Some additional proof rulesused by the algorithm are shown in Fig. 4.4.1 Basi
 Data Stru
turesExpressions All formulas and terms are represented as DAGs with maximalsharing of subexpressions. That is, if two expressions e1 and e2 are synta
ti
allythe same, then they are physi
ally stored in the same lo
ation. In parti
ular,
he
king expressions for (synta
ti
) equality is a
onstant time operation (
om-parison of pointers).Theorems Theorems hold a sequent � ` �, where � is a set of formula ex-pressions and � is a formula expression. Besides the sequent, theorems may also
arry the a
tual proof tree
orresponding to the sequent (as a spe
ial proof termexpression, not dis
ussed here). The proofs are only generated when the toolis requested to produ
e an externally
he
kable proof. Otherwise, the sequentsare suÆ
ient for the fun
tionality of the algorithm. The metavariable s (for \se-quent") is used to represent theorems. If s is a theorem whose sequent is � ` �,then getAssumptions(s) returns the set of formulas in � , and getCon
(s) re-turns the formula �. To simplify the algorithm, we also allow a spe
ial \NULL"theorem, without a sequent or a proof, denoted by ;.

� ` � ^ � ` � ^E -left � ` � ^ � ` ^E -right �; � ` ?� ` :� :I�1 ` � �2 ` �$ �1 [�2 ` i�MP (�i ` :�i)i6=j � ` Wi(�i)� [Si6=j(�i) ` �j unitProp�; �1; : : : ; �n ` ?� ` :�1 _ � � � _ :�n
on
i
tClauseFig. 4. Additional Proof Rules.4.2 Program StateThe state of the SAT solver
onsists of the following
omponents. Some
om-ponents are ba
ktra
ked, meaning that when pop() is
alled, they revert to thevalue they had when the
orresponding
all to push() was made. Ba
ktra
ked
omponents are marked with the y sign.yAssumptions: � is a set of theorems
alled assumptions, ea
h of whose
on-
lusions is a literal. These literals (and the
orresponding variables) are saidto be assigned. All other variables and literals are unassigned. �
orrespondsto de
isions and derived literals.yLiterals: literals is a queue
ontaining theorems whose
on
lusions are lit-erals (whi
h are waiting to be added as assumptions). The fun
tion
allpushBa
k(literals,s) inserts s into the queue and the
orresponding
allto popFront(literals) returns and removes the �rst item in the queue.Initially, literals is empty.Clauses: � is a set of theorems, ea
h of whose
on
lusions is a
lause. �
ontains
lauses that are part of the original formula to be
he
ked for satis�abilityas well as derived
on
i
t
lauses. Given a
lause expression
, the fun
-tion setupWat
hPointers(
) sele
ts two of its literals to be wat
hed literalsand asso
iates with
 two wat
h pointers indexed by i 2 f0; 1g whi
h pointto these literals. Given a
lause
 and an index i 2 f0; 1g, the fun
tionupdateWat
hPointer(
,i) is
alled when the ith wat
h pointer in
 is as-signed. It sear
hes for an unassigned literal in
 and updates the ith wat
hpointer to point to the new literal.Non-
lauses: � is a set of theorems, ea
h of whose
on
lusions is neither aliteral nor a
lause. It
ontains parts of the original formula whi
h are innon-
lausal form.Wat
h lists: Asso
iated with ea
h literal is a list of the
lauses where theliteral is being wat
hed. For a literal l, the fun
tion getWat
hPointers(l)returns a set of pairs (
; i) where
 is a
lause in whi
h l is being wat
hed andi 2 f0; 1g is the index
orresponding to the wat
hed literal l in
. Initiallythese lists are empty.

4.3 The AlgorithmThe
ode for an eÆ
ient proof-produ
ing SAT solver is shown in Fig. 5 andFig. 6.
he
kSAT. The main fun
tion in the SAT
he
king algorithm is
he
kSATwhi
h, as in the algorithm of Fig. 2, takes as input a formula � and returnseither a theorem of the form ` :� or a theorem of the form � ` �, where � isa set of literals appearing in �.
he
kSAT begins by initializing the theorem sets to be empty. It then takesthe formula to be
he
ked and passes it as a trivial theorem (
reated usingthe assume rule) to addFa
t, whi
h partitions � into literals,
lauses, and non-
lauses. Next,
he
kSAT
alls
he
kSATr whi
h does the main re
ursive sear
h.If
he
kSATr returns ;, then this means that � is satis�able under the set ofassumptions
ontained in �, so the simplify rule (followed by iffTrueElim)
an be used to get a theorem of the appropriate form. If
he
kSATr does notreturn ;, then it must return a theorem whose
on
lusion is ?. Sin
e � is assumedin the �rst
all to addFa
t, any derivation of ? returned by
he
kSATr will also
ontain � as an assumption, so we
an use the notIntro rule to derive a theoremwhose
on
lusion is :�.addFa
t. addFa
t takes as input a theorem s and �gures out where to put it. It�rst assigns � to be the
on
lusion of the theorem. If � is a
onjun
tion, then s issplit using the
onjun
tion elimination rules and addFa
t
alls itself re
ursively.If � is a literal, s gets pushed onto the literal queue. If � is a
lause, s gets addedto the set � of
lauses. Otherwise, s is added to the set � of non-
lauses.
he
kSATr .
he
kSATr is similar to the pro
edure of the same name in Fig. 3.It starts by
alling BCP whi
h �gures out additional assignments whi
h areimplied by the
urrent set of assignments. If BCP does not return ;, it meansthat an in
onsisten
y was dete
ted and the return value is a proof of ? from the
urrent set of assumptions. In this
ase, the
urrent
ontext is in
onsistent, sothere is no need to sear
h further along the
urrent bran
h. The theorem proving? is returned.If BCP does not dete
t an in
onsisten
y, then we
ontinue the sear
h for asatisfying assignment by �nding a splitter. The fun
tion findSplitter
an lookfor a splitter in either the set of
lauses � or the set of non-
lauses �. In our im-plementation, �ndSplitter �rst uses a depth-�rst sear
h to �nd splitters from �.When all the literals in � have been assigned, it then uses a Cha�-like heuristi
to pi
k splitters from �. There are
ertainly more sophisti
ated heuristi
s that
ould be used and investigating these is part of our
urrent resear
h.If no splitter
an be found,
he
kSATr returns ; to indi
ate that the
urrentset of assumptions
onstitutes a satisfying assignment. Otherwise, the ba
k-tra
ked state (� and literals) is saved by
alling push(). Then, the splitter� is added to the set of assigned literals by
alling addFa
t and
he
kSATr is

he
kSAT(�) f� := � := � := ;;addFa
t(assume(�));s :=
he
kSATr();if (s = ;) return iffTrueElim(simplify(�,�));return notIntro(s,�);gaddFa
t(s) f� := getCon
(s);if (isConjun
tion(�)) faddFa
t(andElimLeft(s));addFa
t(andElimRight(s));gelse if (isLiteral(�)) pushBa
k(literals, s);else if (isClause(�)) f� := � [fsg;setupWat
hPointers(getCon
(s));gelse � := � [fsg;g
he
kSATr() fwhile (true) fs := BCP();if (s 6= ;) return s;� := findSplitter();if (� = ;) return ;;push();addFa
t(assume(�));s :=
he
kSATr();if (s = ;) return s;pop();if (ba
kJump(s)) return s;addFa
t(notIntro(s,getLastAssumption(s)));gg Fig. 5. Enhan
ed SAT solver with proofs.

alled re
ursively. If the result is ; indi
ating that a satisfying assignment wasfound, then
he
kSATr returns without
alling pop() to preserve the satisfyingassignment.The other possibility is that the re
ursive
all results in a proof of ? fromsome subset of the
urrent assumptions. In this
ase, we �rst
he
k for thepossibility of intelligent ba
kjumping. The fun
tion ba
kJump(s) returns true ifnone of the assumptions in s (ex
luding the most re
ently assigned assumption)were assigned in the
urrent re
ursion level (sin
e the most re
ent a
tive
all topush). In this
ase, the theorem s
an be used to derive a literal in the previousre
ursion level, and is thus returned.If ba
kJump(s) returns false, then the notIntro rule
an be used to derivethe negation of the most re
ent assumption in s from the others, and
he
kSATrstarts over at the top of the loop.BCP() fin
onsistent := false;while (:in
onsistent) fs := popFront(literals);� := � [fsg;l := getCon
(s);w := getWat
hPointers(l);forea
h (
,i)2 w fupdateWat
hPointers(
,i);if (isUnsat(
)) fin
onsistent := true;unsatClause :=
;gelse if (isUnit(
)) addFa
t(unitProp(
));ggif (:in
onsistent) fforea
h s� 2 � fs := iffMP(s�,simplify(�,getCon
(s�)));if (getCon
(s)= ?) return s;greturn ;;g
onfli
t = pro
essImplGraph(unsatClause);addFa
t(
onfli
tClause(
onfli
t));return
onfli
t;g Fig. 6. Enhan
ed BCP with proofs.BCP. The last part of the SAT solver is the BCP
ode. BCP begins by pro-
essing the queue of literals. Ea
h theorem in the queue is added to the set of

assumptions. Then the wat
h pointers for all
lauses whi
h are wat
hing theliteral are updated. If any of these
lauses be
ome unsatis�able (all its literalsare assigned false), the in
onsistent
ag is set and the in
onsistent
lause isstored in unsatClause. If any of these
lauses be
omes a unit
lause, then theunitProp rule is used to derive the remaining unassigned literal.On
e all of the literals have been pro
essed, if no in
onsisten
y has beendete
ted, then the non-
lauses are pro
essed. This is done by
he
king if anyof them simplify to ?. If so, a theorem deriving ? is returned. Otherwise, ; isreturned indi
ating no in
onsisten
y.If an in
onsistent
lause is dete
ted, then the so-
alled \impli
ation graph"
an be used to generate a
on
i
t
lause. The impli
ation graph is stored impli
-itly by the theorems in �. We start by looking up the theorem for the in
onsistent
lause in � and
olle
ting all of its assumptions. We then look in � for the the-orems justifying these assumptions. This pro
ess is
ontinued until we have aset of assumptions, at most one of whi
h was assigned at the
urrent re
ursionlevel (sin
e the last a
tive
all to push). The
all to pro
essImplGraph returnsa theorem whi
h derives ? from these assumptions.Finally, the
onfli
tClause rule is used to turn the
on
i
t theorem into a
on
i
t
lause, whi
h is then added to the set of
lauses (implementing
on
i
t
lause learning), and the
on
i
t is returned.5 Extension to Quanti�er-Free First-Order Logi
Although the algorithm just presented only handles Boolean logi
, it
an easilybe extended to
ooperate with quanti�er-free �rst-order de
ision pro
edures. In�rst-order logi
, the atomi
 formulas are no longer required to be propositionalvariables, but
an also be predi
ates applied to terms over obje
t
onstants andvariables. Therefore, we rede�ne the notion of a literal to be an atomi
 formula(a predi
ate or a propositional variable) or its negation.Sin
e the atomi
 formulas are no longer independent from ea
h other, purelyBoolean
onstraint propagation is not suÆ
ient. To over
ome this problem, weextend BCP to �rst-order
onstraint propagation (FOCP) as follows. Every timea new literal � is added to�, it is also submitted to the �rst-order de
ision pro
e-dure. Similarly, whenever a de
ision pro
edure derives a new literal l, addFa
t(l)is
alled. In fa
t, if a de
ision pro
edure derives non-literals, these
an also behandled just by
alling addFa
t. However, in this
ase the additional
lauses ornon-
lauses will have to be ba
ktra
ked.Additionally, after ea
h literal is submitted to the �rst-order de
ision pro-
edure, the �rst-order de
ision pro
edure may report an in
onsisten
y. If the�rst-order de
ision pro
edure is instrumented with proof produ
tion, then it
anreturn a theorem deriving ? from some subset of the
urrent assumptions. Thistheorem
an be then be used to generate a
on
i
t
lause just as with purelyBoolean
on
i
ts.The ability to produ
e proofs from the �rst-order de
ision pro
edure is thusessential for enabling the eÆ
ien
y gains that
ome from learning
on
i
t
lauses.

6 Con
lusionWe have implemented a prototype of our algorithm in an emerging tool
alledCVC Lite. CVC Lite is a smaller, more light-weight implementation of CVC,designed for experimentation and rapid prototyping.For our experiments, we adopted the philosophy of using families of ben
h-marks as advo
ated in [4℄. We
ompared the average number of de
isions requiredto solve the Boolean ben
hmarks in the PC families (ea
h
ontaining 33 ben
h-marks) of the hole4 and hole5 ben
hmarks [4℄. We
ompared z
ha�, CVC (in itsstandard proof-produ
ing mode), and CVC Lite. Though CVC has a fast SAT-based mode whi
h is essentially equivalent to z
ha�, this mode
annot produ
eproofs. ben
hmark z
ha� CVC Lite CVChole4 30 31 800hole5 149 163 25832Fig. 7. Comparison of the number of de
isions.Clearly, CVC Lite does not quite
apture all of the intelligen
e in z
ha�, butit is
lose. When proofs are enabled, CVC does a poor job on Boolean exam-ples. CVC Lite demonstrates that it is possible to implement a proof-produ
ingBoolean solver whose algorithmi
 performan
e is
lose to that of a highly tunednon-proof-produ
ing solver.Be
ause our prototype implementation has not been tuned for run-time per-forman
e, we did not
ompare run-times. However based on [17℄ as well as ourprevious experien
e with CVC, proof-produ
tion only adds a small
onstantoverhead to the underlying algorithm (the reason CVC is so mu
h slower inproof-produ
tion mode is that it is not using the eÆ
ient SAT algorithms, notbe
ause proof-produ
tion adds a lot of overhead). Also, the optimizations en-abled by proof produ
tion typi
ally lead to an exponential speedup, so a smallamount of overhead is reasonable.As already mentioned, one important area of ongoing resear
h is investigatingde
ision heuristi
s for
ombined
lausal and non-
lausal formulas. An obviousquestion is: why not just
onvert everything to CNF? Although this is possiblefor purely Boolean formulas, it often degrades performan
e of some non-Booleantest
ases (this problem is also mentioned in [3℄). We are working on de
isionheuristi
s whi
h perform well on both Boolean and non-Boolean test
ases.Referen
es1. Alessandro Armando, Claudio Castellini, and Enri
o Giun
higlia. SAT-Based Pro-
edures for Temporal Reasoning. In S. Biundo and M. Fox, editors, Pro
eedings of

the 5th European Conferen
e on Planning (Durham, UK), volume 1809 of Le
tureNotes in Computer S
ien
e, pages 97{108. Springer, 2000.2. Gilles Audemard, Piergiorgio Bertoli, and Alessandro Cimatti. A SAT-Based Ap-proa
h for Solving Formulas over Boolean and Linear Mathemati
al Propositions.In Reiner H�ahnle, editor, Pro
eedings of the 18th International Conferen
e on Auto-mated Dedu
tion (Copenhagen, Denmark), Le
ture Notes in Arti�
ial Intelligen
e.Springer, 2002.3. Clark W. Barrett, David L. Dill, and Aaron Stump. Che
king Satis�ability ofFirst-Order Formulas by In
remental Translation to SAT. In Ed Brinksma andKimGuldstrand Larsen, editors, 14th International Conferen
e on Computer AidedVeri�
ation (CAV), volume 2404 of Le
ture Notes in Computer S
ien
e, pages 236{249. Springer-Verlag, 2002. Copenhagen, Denmark.4. Fran
 Brglez, Xiao Yu Li, and Matthias F. Stallman. The role of a skepti
 agent intesting and ben
hmarking of SAT algorithms. In Fifth Int. Symp. on the Theoryand Appli
ations of Satis�ability Testing, Cin
innati, Ohio, USA, May 2002.5. Martin Davis, George Logemann, and Donald Loveland. A ma
hine program fortheorem-proving. Communi
ations of the ACM, 5:394{397, July 1962.6. Martin Davis and Hilary Putnam. A
omputing pro
edure for quanti�
ation the-ory. Journal of the ACM, 7(3):201{215, July 1960.7. Leonardo de Moura, Harald Ruess, and Maria Sorea. Lazy Theorem Proving forBounded Model Che
king over In�nite Domains. In 18th International Conferen
eon Automated Dedu
tion, 2002.8. Corma
 Flanagan, Rajeev Joshi, Xinming Ou, and James Saxe. Theorem Provingusing Lazy Proof Expli
ation. In 15th International Conferen
e on Computer AidedVeri�
ation (CAV), Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2003.9. E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat solver. In Pro
eedingsof Design Automation and Test in Europe (DATE), pages 142{149, 2002.10. E. Goldberg and Y. Novikov. Veri�
ation of Proofs of Unsatis�ability for CNFformulas. In Pro
eedings of Design, Automation and Test in Europe (Muni
h,Germany), 2003.11. Tra
y Larrabee. Test pattern generation using Boolean satis�ability. IEEE Trans-a
tions on Computer-Aided Design, 11(1):4{15, January 1992.12. J. Marques-Silva and K. Sakallah. GRASP: A Sear
h Algorithm for PropositionalSatis�ability. IEEE Transa
tions on Computers, 48(5):506{521, 1999.13. M. Moskewi
z, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Cha�: Engineeringan EÆ
ient SAT Solver. In 39th Design Automation Conferen
e, 2001.14. A. Stump. Che
king Validities and Proofs with CVC and
ea. PhD thesis, StanfordUniversity, 2002. In preparation:
he
k http://verify.stanford.edu/~ stump/ for adraft.15. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating ValidityChe
ker. In Ed Brinksma and Kim Guldstrand Larsen, editors, 14th InternationalConferen
e on Computer Aided Veri�
ation (CAV), volume 2404 of Le
ture Notesin Computer S
ien
e, pages 500{504. Springer-Verlag, 2002. Copenhagen, Den-mark.16. Cesare Tinelli. A DPLL-based
al
ulus for ground satis�ability modulo theories. InGiovambattista Ianni and Sergio Fles
a, editors, Pro
eedings of the 8th EuropeanConferen
e on Logi
s in Arti�
ial Intelligen
e (Cosenza, Italy), volume 2424 ofLe
ture Notes in Arti�
ial Intelligen
e. Springer, 2002.17. L. Zhang and S. Malik. Validating SAT Solvers Using an Independent Resolution-Based Che
ker: Pra
ti
al Implementations and Other Appli
ations. In Pro
eedingsof Design, Automation and Test in Europe (Muni
h, Germany), 2003.

