
CVC Lite: A New Implementation of theCooperating Validity Che
ker?Category BClark Barrett1 and Sergey Berezin21New York University, barrett�
s.nyu.edu2Stanford University, berezin�stanford.edu

 Springer-VerlagAbstra
t. We des
ribe a tool 
alled CVC Lite (CVCL), an automatedtheorem prover for formulas in a union of �rst-order theories. CVCLsupports a set of theories whi
h are useful in veri�
ation, in
luding un-interpreted fun
tions, arrays, re
ords and tuples, and linear arithmeti
.New features in CVCL (beyond those provided in similar previous sys-tems) in
lude a library API, more support for produ
ing proofs, someheuristi
s for reasoning about quanti�ers, and support for symboli
 sim-ulation primitives.1 Introdu
tionDe
ision pro
edures for de
idable fragments of �rst-order logi
 
ontinue to at-tra
t users and interest in a wide variety of veri�
ation e�orts.CVC Lite (CVCL) is a tool for determining the validity (or satis�ability) of�rst-order formulas over a union of spe
i�
 useful theories. It repla
es the originalCooperating Validity Che
ker (CVC) [7℄, whi
h, in turn, was a su

essor to theStanford Validity Che
ker (SVC) [4℄. The name does not imply that the newsystem is less powerful than CVC, but rather was 
hosen be
ause after learningfrom our experien
e with CVC, we felt we 
ould 
reate a tool whi
h, withoutsa
ri�
ing fun
tionality, would be smaller, faster, and easier to use and maintain.Although CVCL is a work in progress, in many respe
ts it has already val-idated our vision and rewarded the e�ort involved in a reimplementation. Inparti
ular, the 
ode base is one third the size of CVC, the performan
e is 
om-parable, and it has been used and enhan
ed by a number of people outside the
ore group of developers. In addition, CVCL has many new features, not foundin any of the previous systems.In this paper, we will des
ribe the theory and features of CVCL, with anemphasis on what is new as 
ompared to the previous systems (espe
ially CVC).We begin with a brief overview of the system and the theories whi
h are 
urrentlysupported in CVCL. Then we des
ribe the features whi
h are new in CVCL and
on
lude with some example appli
ations.? This resear
h was supported by a grant from Intel Corporation and by NationalS
ien
e Foundation CCR-0121403.



2 OverviewCVCL a

epts as input one or more assertion formulas and a query formula.It then 
he
ks whether the assertion formulas imply the query formula. Ea
hformula must be a �rst-order formula whose parameters (non-logi
al symbols)must be from among the theories listed in the next se
tion.The algorithm used depends on the Nelson-Oppen method for 
ombiningde
ision pro
edures [6℄ and the implementation is based 
losely on an algorithmwhose 
orre
tness is veri�ed in the �rst author's Ph.D. thesis [3℄.Although there is limited support for quanti�ers in CVCL (see below), thealgorithm is 
omplete only for quanti�er-free formulas. As with its prede
essor,CVCL uses advan
ed SAT-based sear
h heuristi
s and has the ability to produ
ea proof when a formula is su

essfully validated.3 The Theories of CVCL3.1 Equality with Uninterpreted Fun
tionsThe simplest supported theory is one whi
h 
ontains an arbitrary number offun
tions and predi
ates whi
h are \uninterpreted", meaning that the theorydoes not provide any information about them other than that they are fun
-tions and predi
ates. Be
ause the set of non-logi
al symbols in this theory variesa

ording to the formulas being 
he
ked, the user must spe
ify the set of su
hfun
tions and predi
ates for a parti
ular run of CVCL.3.2 ArraysCVCL in
ludes a theory of abstra
t arrays with two operations, read and writewhi
h 
an be used to read from a lo
ation in an abstra
t array or to 
reate anew array by writing a new value to a lo
ation in an existing array.3.3 Re
ords and TuplesCVCL formulas 
an in
lude simple aggregate datatypes like re
ords and tuples.These are handled with a simple de
ision pro
edure for a set of operations used to
reate, read from, and write to these datatypes (mu
h like the array operations).3.4 Arithmeti
As with its prede
essors, CVCL 
an de
ide the theory of linear arithmeti
 overthe reals. However, CVCL also has some additional 
apabilities. The �rst is theability to deal with linear arithmeti
 over integers. In fa
t, CVCL 
an reasonabout linear expressions over any 
ombination of real and integer variables.The other extension implemented in CVCL is the ability to handle somenonlinear arithmeti
. Nonlinear expressions are transformed into a normal form,making it possible to verify simple identities like (a+b)(a�b) = a2�b2. However,the nonlinear 
apabilities of CVCL are still very limited.



3.5 Additional TheoriesCurrently, new de
ision pro
edures are being developed for indu
tive datatypes,a subset of set theory, and a theory of bit-ve
tors.4 New Features4.1 Library APIOne of the main features la
king in both SVC and CVC was a library interfa
e.Intera
tion with the old systems was done using a small 
ustom 
ommand lan-guage. Commands were either typed in manually or provided through a s
riptingme
hanism.CVCL has the same 
ommand language interfa
e, but we also designed anabstra
t interfa
e into CVCL from the start. The methods in this API mimi
 the
ommand language, so that it is easy to move from one mode of intera
tion to theother. In fa
t, the 
ommand language interfa
e is implemented using the API,minimizing the 
han
e that the two modes of intera
tion will behave di�erently.The API is available both as an abstra
t C++ 
lass and as a set of C fun
-tions. It has been su

essfully used as a library from C++, and the C interfa
ehas been su

essfully used by the foreign fun
tion interfa
e of other languagesin
luding Prolog and O
aml.4.2 Proof Support for EÆ
ient Boolean ReasoningA major feature of the original CVC system was the ability to produ
e a proofartifa
t as the result of su

essfully validating a formula. However, CVC 
ouldonly produ
e proofs when using a slow sear
h heuristi
. When using advan
edSAT-based heuristi
s, whi
h are essential on large formulas, CVC was unable toprodu
e a proof be
ause it depended on an external SAT solver and had no wayto extra
t a proof from this solver.CVCL over
omes this diÆ
ulty by integrating a 
ustom SAT solver and in-
luding proof rules for the kinds of reasoning done in modern eÆ
ient BooleanSAT solvers [2℄. This enables CVCL to use advan
ed te
hniques like 
lause learn-ing and 
on
i
t-dire
ted ba
ktra
king while still produ
ing proofs.4.3 Quanti�ersOne of the most signi�
ant new features of CVCL is native support for quan-ti�ers. Adding quanti�ers ne
essarily makes the logi
 unde
idable, but in manypra
ti
al examples, even very simple heuristi
s for quanti�er instantiation 
anbe suÆ
ient.The 
urrent heuristi
 used by CVCL is to 
olle
t the set of terms that haveo

urred in some previous formula, and then use these terms to instantiate thequanti�ed variables of similar type. This is a very 
lose reimplementation ofthe heuristi
 used by Das and Dill [5℄ for solving quanti�ed formulas arising inpredi
ate abstra
tion.



4.4 Symboli
 SimulationA primitive interfa
e for symboli
 simulation was built into CVC, and su

ess-fully applied to appli
ations in hardware veri�
ation [1℄. CVCL provides a moreextensive and intuitive interfa
e to symboli
 simulation primitives.5 Con
lusionSin
e be
oming available in August 2003, CVCL has been downloaded by manyresear
h groups and used in a wide variety of veri�
ation e�orts in both hardwareand software.One representative example is the work on 
ompiler validation being doneat NYU. CVCL is used to verify the veri�
ation 
onditions generated by a toolwhi
h 
he
ks the 
orre
tness of transformations done by an optimizing 
om-piler [8℄.CVCL has an a
tive user and development 
ommunity. More information,in
luding instru
tions for downloading and installing the tool, is available at theCVCL web page: http://verify.stanford.edu/CVCL.Referen
es1. Husam Abu-Haimed, Sergey Berezin, and David L. Dill. Strengthening invariantsby symboli
 
onsisten
y testing. In Warren A. Hunt Jr. and Fabio Somenzi, editors,CAV, volume 2725 of Le
ture Notes in Computer S
ien
e. Springer, 2003.2. Clark Barrett and Sergey Berezin. A Proof-Produ
ing Boolean Sear
h Engine. InCADE-19 Workshop: Pragmati
s of De
ision Pro
edures in Automated Reasoning(PDPAR), July 2003. Miami, Florida, USA.3. Clark W. Barrett. Che
king Validity of Quanti�er-Free Formulas in Combinationsof First-Order Theories. PhD thesis, Stanford University, 2003.4. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity Che
king forCombinations of Theories with Equality. In Mandayam Srivas and Albert Camil-leri, editors, Formal Methods In Computer-Aided Design (FMCAD), volume 1166of Le
ture Notes in Computer S
ien
e, pages 187{201. Springer-Verlag, November1996. Palo Alto, California.5. Satyaki Das and David L. Dill. Counter-example based predi
ate dis
overy in pred-i
ate abstra
tion. In Formal Methods in Computer-Aided Design. Springer-Verlag,November 2002.6. Greg Nelson and Derek Oppen. Simpli�
ation by 
ooperating de
ision pro
edures.ACM Transa
tions on Programming Languages and Systems, 1(2):245{57, 1979.7. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating ValidityChe
ker. In Ed Brinksma and Kim Guldstrand Larsen, editors, 14th InternationalConferen
e on Computer Aided Veri�
ation (CAV), volume 2404 of Le
ture Notes inComputer S
ien
e, pages 500{504. Springer-Verlag, 2002. Copenhagen, Denmark.8. Lenore Zu
k, Amir Pnueli, Benjaming Goldberg, Clark Barrett, Yi Fang, and YingHu. Translation and run-time validation of optimized 
ode. (to appear in) For-mal Methods in Systems Design, 2004. Preliminary version in Third Workshop onRuntime Veri�
ation (RV), 2002.


