
A Pra
ti
al Approa
h to Partial Fun
tions in CVC Lite�Sergey Berezin1 Clark Barrett2 Igor Shikanian2 Marsha Che
hik3Arie Gur�nkel3 David L. Dill11Stanford University, {berezin,dill}�stanford.edu2New York University, {barrett,
hikania}�
s.nyu.edu3University of Toronto, {
he
hik,arie}�
s.toronto.eduAbstra
tMost veri�
ation approa
hes assume a mathemati
al formalism in whi
h fun
-tions are total, even though partial fun
tions o

ur naturally in many appli
ations.Furthermore, although there have been various proposals for logi
s of partial fun
-tions, there is no
onsensus on whi
h is \the right" logi
 to use for veri�
ation appli-
ations. In this paper, we propose using a three-valued Kleene logi
, where partialfun
tions return the \unde�ned" value when applied outside of their domains. Theparti
ular semanti
s are
hosen a

ording to the prin
iple of least surprise to theuser; if there is disagreement among the various approa
hes on what the value ofthe formula should be, its evaluation is unde�ned. We show that the problem of
he
king validity in the three-valued logi

an be redu
ed to
he
king validity ina standard two-valued logi
, and des
ribe how this approa
h has been su

essfullyimplemented in our tool, CVC Lite.1 Introdu
tionFirst-order logi
 is an invaluable tool for modeling properties and behaviors of systems.Re
ent progress in automated reasoning and theorem proving has led to a broader andmore su

essful appli
ation of logi
 as a tool for analyzing systems. Most standardapproa
hes to theorem proving and dedu
tion using �rst-order logi
 assume that allfun
tions and predi
ates are total. However, many appli
ations are more naturallymodeled using partial fun
tions and predi
ates.Although it is generally agreed that a logi
 whi
h
an a

ommodate partial fun
tionsis useful for a wide variety of appli
ations, there is general disagreement on whi
h logi
should be used. An overview of the di�erent approa
hes
an be found in [4, 7℄. Ofthe approa
hes whi
h take partiality seriously as opposed to attempting a work-around,there are two main alternatives. The �rst allows terms to be unde�ned, but requiresthat all formulas be either true or false. The unusual feature of this approa
h is thata predi
ate applied to an unde�ned term is de�ned to be false. Although this logi
preserves some ni
e features of
lassi
al logi
 (the dedu
tion theorem, for instan
e),�This resear
h was supported by GSRC
ontra
t DABT63-96-C-0097-P00005, and by National S
i-en
e Foundation CCR-0121403. The
ontent of this paper does not ne
essarily re
e
t the position orthe poli
y of GSRC, NSF, or the Government, and no oÆ
ial endorsement should be inferred.1

in a
ertain sense there is a loss of information be
ause the unde�nedness does notpropagate to formulas. For example, if we assume the term 1=0 is unde�ned, then theformula :P (1=0) will be valid.The se
ond approa
h is based on Kleene's strong three-valued logi
 [8℄, and allowsboth terms and formulas to be unde�ned. This approa
h is more
onservative in thesense that any formula whi
h is valid in the se
ond approa
h will be valid in the �rstapproa
h, but there are some formulas, su
h as :P (1=0), whi
h may be valid in the �rstapproa
h but will be unde�ned in the se
ond.Although a previous implementation of our theorem prover adopted the �rst ap-proa
h [13℄, we prefer the se
ond approa
h based on a prin
iple of least surprise. Thatis, a formula should be valid only when there is no disagreement on whether that is areasonable
on
lusion. This is parti
ularly important in veri�
ation appli
ations, as theintegrity of a system may be judged by whether a theorem about the system is valid.Furthermore, it is our experien
e that any theorem whi
h really should be valid
an beformulated in su
h a way that it is valid a

ording to this se
ond approa
h.A more pragmati
 issue that must be dealt with is that most theorem-provers arebased on
lassi
al logi
. Various approa
hes have been advo
ated for modifying standardtheorem-proving to a

ommodate logi
s with partial fun
tions [6, 7, 9, 14℄. However,we are interested in �nding a method for supporting partiality without modifying thetheorem prover. One way to do this is by building over- and under-approximationsfor the formula. This te
hnique has been su

essfully applied for three-valued model-
he
king [3, 5℄.PVS (Prototype Veri�
ation System [11℄) uses a
ompletely di�erent approa
h whi
hinvolves
onstru
ting and proving additional formulas
alled type
orre
tness
onditions(TCCs). The validity of TCCs guarantees that all the relevant terms and formulas arealways de�ned. However, TCCs in PVS are
omputed in a somewhat ad ho
 manner,whi
h
an yield surprising results. For example, it is possible to have a formula of theform A) B with a valid TCC whose
ontrapositive :B) :A has an invalid TCC.In this paper, we propose a te
hnique for
he
king the validity of a formula inthree-valued logi
 by redu
ing the problem to
he
king two formulas in standard two-valued logi
. Similarly to PVS, we
onstru
t a TCC formula whose validity implies thatthe original formula is always de�ned. After
he
king the TCC, we
he
k the originalformula. Both of these
he
ks
an be done using standard two-valued logi
. Note that,unlike in PVS, our method is pre
ise in the sense that if a TCC is invalid, the validityof the original formula is indeed unde�ned in the three-valued semanti
s.The paper is organized as follows. Se
tion 2 gives the syntax and semanti
s for ourthree-valued logi
. Se
tion 3 gives two fundamental theorems whi
h justify the redu
tionto two-valued logi
. Se
tion 4 des
ribes results obtained by implementing these ideas inthe theorem prover CVC Lite, and Se
tion 5
on
ludes.2 Three-Valued Logi
: Syntax and Semanti
sSyntax. Let � = (S; F; P; C) be a signature, where S = fs1; : : :g is a set of sorts,F = ff1; : : :g, P = fp1; : : :g and C = f
1; : : :g are sets of fun
tion predi
ate, and
onstant symbols. Ea
h symbol has a type built out of the sorts in �. De�ne a term t2

as follows: t ::= x j
 j f(t1; : : : ; tn) j if � then t1 else t2 endif ;where x is a variable, and the symbols
 and f are from �, and � in the
onditionaloperator is a formula. A formula � is de�ned as follows:� ::= true j false j p(t1; : : : ; tn) j �1 _ �2 j :�1 jif �0 then �1 else �2 endif j 9x : s: �1;where p is a predi
ate from �. We also use the usual synta
ti
 abbreviations for �1^�2,�1) �2, �1 , �2, and 8x : s: �.It is important to distinguish the two versions of the if-then-else operator: the onefor terms, and the other for formulas. Also note that the if-then-else operators are notexpressible in terms of other operators or logi
al
onne
tives in 3-valued logi
.1For our purposes, we will assume that in
luded with every signature � is a set � ofdomain formulas, one for ea
h fun
tion and predi
ate symbol in �. The domain formulafor a fun
tion symbol f is a �-formula with k free variables where k is the arity of fand is denoted Æf [x1; : : : ; xk℄. The domain formula for a predi
ate symbol p of arity kis de�ned similarly and is denoted Æp[x1; : : : ; xk℄. An instantiation of a domain formulaÆf with terms t1; : : : ; tk is written Æf [t1; : : : ; tk℄ and denotes the result of repla
ing ea
hxi with ti in the domain formula Æf [x1; : : : ; xk℄.Intuitively, the domain formula for f de�nes the set of points where f is de�ned.As a result, it is important that the domain formulas themselves always be de�ned. Toensure this, we require that if s is a fun
tion or predi
ate symbol appearing in a domainformula, then Æs[x1; : : : ; xn℄ = true.Three-valued semanti
s with partial fun
tions. Given a signature �, a modelis a pair M = hA; Ii where A is an S-indexed family of nonempty
arrier sets A =fAs j s 2 Sg for ea
h sort s in �, and I is an interpretation, whi
h is a mapping from
onstant symbols
 : s, fun
tion symbols f : s1 � � � � � sn ! s, and predi
ate symbolsp : s1�� � ��sn ! bool in � to elements
M 2 As, partial fun
tions fM : As1�� � ��Asn !As, and relations pM � As1 � � � � �Asn , respe
tively.Given a model M and a variable assignment e whi
h maps ea
h variable to anelement of some As, the value of an expression (a term or a formula) � is denoted[[�℄℄Me and is de�ned in Fig. 1. The value of a term may be an element of some As ora distinguished value ?t not in any As. The value of a formula may be true, false, or?�. We will use ? to represent both ?t and ?� sin
e terms and formulas are alwayssynta
ti
ally separated from ea
h other, and the parti
ular kind of ? is always
learfrom the
ontext.A model is required to satisfy the following additional
ondition imposed by thedomain formulas �:[[Æf [x1; : : : ; xk℄℄℄Me = true i� fM is de�ned at ([[x1℄℄Me; : : : ; [[xk℄℄Me):We say that two expressions � and � are logi
ally equivalent, and write � � � if[[�℄℄Me = [[�℄℄Me for every model M and variable assignment e.1The obvious 2-valued translations (�0) �1) ^ (:�0) �2) and (�0 ^ �1) _ (:�0 ^ �2) are a
tuallyover- and under-approximations of the 3-valued operator if �0 then �1 else �2 endif .3

[[
℄℄Me =
M[[x℄℄Me = e(x)[[f(t1; : : : ; tn)℄℄Me = 8<: fM([[t1℄℄Me; : : : ; [[tn℄℄Me); if [[ti℄℄M 6= ? for all i 2 [1::n℄and [[Æf [t1; : : : ; tn℄℄℄Me = true;? otherwise[[if � then t1 else t2 endif ℄℄Me = 8<: ?; if [[�℄℄Me = ?[[t1℄℄Me; if [[�℄℄Me = true[[t2℄℄Me; if [[�℄℄Me = false[[true℄℄Me = true[[false℄℄Me = false[[p(t1; : : : ; tn)℄℄Me = 8<: pM([[t1℄℄Me; : : : ; [[tn℄℄Me); if [[ti℄℄M 6= ? for all i 2 [1::n℄and [[Æp[t1; : : : ; tn℄℄℄Me = true;? otherwise[[�1 _ �2℄℄Me = 8<: true; if [[�1℄℄Me = true or [[�2℄℄Me = true;false if [[�1℄℄Me = false and [[�2℄℄Me = false;? otherwise[[:�℄℄Me = 8<: true; if [[�℄℄Me = falsefalse if [[�℄℄Me = true? if [[�℄℄Me = ?[[if � then �1 else �2 endif ℄℄Me = 8<: ?; if [[�℄℄Me = ?[[�1℄℄Me; if [[�℄℄Me = true[[�2℄℄Me; if [[�℄℄Me = false[[9x : s: �℄℄Me = 8<: true; if for some a 2 As: [[�℄℄Me[x a℄ = true;false; if for all a 2 As: [[�℄℄Me[x a℄ = false;? otherwise.Figure 1: Three-valued semanti
s: [[�℄℄Me.Semanti
s of if-then-else. Noti
e that the interpretation of the if-then-else opera-tor (for terms) is unde�ned if the
ondition is unde�ned, even if the other two
hildrenevaluate to the same value. One reason for this
hoi
e of the semanti
s is simply thatit turns out to be pra
ti
al in real appli
ations. In real programs, if a partial fun
tionis applied to an argument outside of its domain, the program may
rash or raise anex
eption; in other words, it results in an abnormal behavior. Therefore, dete
ting apossible ? value in the
ondition of an if-then-else provides the user with useful infor-mation, namely, that the program may
rash during exe
ution under
ertain
onditions.For example,
onsider the following pie
e of C
ode:int *p = mallo
(sizeof(int));int x = (*p > 0)? y : z; 4

In this example, the if-then-else operator (whi
h is (�)? �:� in C) will
ause theprogram to
rash if p happens to be NULL, even if y = z in this parti
ular program state.Here *p is a partial fun
tion de�ned over non-null pointers to integers, and returningan integer.The logi
al if-then-else is de�ned similarly to the term if-then-else, so that DeMor-gan law for negation and the if-lifting properties for any predi
ate symbol p in � arepreserved::(if � then �1 else �2 endif) � if � then :�1 else :�2 endifp(if � then t1 else t2 endif) � if � then p(t1) else p(t2) endifThree-Valued Validity. The three-valued semanti
s
an be extended to validity offormulas in the following way. A formula is
onsidered valid, if in all models M andfor all variable assignments e, [[�℄℄Me = true. A formula is invalid if there is at leastone su
h model M and one su
h assignment e that [[�℄℄Me = false. Otherwise (if theformula always evaluates to either true or ?) the validity is unde�ned. We denote thethree-valued validity as j= �, whi
h may hold, not hold, or be unde�ned.3 Redu
tion from Three-Valued Logi
 to Two-Valued Logi
Suppose we wish to determine the three-valued validity of some �-formula �. Ourgeneral strategy is �rst to
ompute a formula
alled a Type Corre
tness Condition(TCC) whi
h
an be used to
he
k whether �
an ever be unde�ned. If this
he
ksu

eeds, that is, � is always de�ned, we
an then
he
k the original formula. Both ofthese
he
ks
an be done using standard two-valued logi
. To justify this
laim, we �rstintrodu
e TCCs and then prove that they have the required properties.Type
orre
tness
onditions (TCCs). A Type Corre
tness Condition for a formula� of our three-valued logi
 is a formula whi
h does not involve any partial symbols(symbols whose domain formulas are not true) and whi
h evaluates to true i� � is notunde�ned.First, observe that if we have a term f(x), then by de�nition its TCC is simplyÆf [x℄. We
an generalize this to arbitrary terms or formulas quite easily. Figure 2 givesa re
ursive de�nition of D�, the TCC for an arbitrary formula �.The TCC not only identi�es whether or not the formula � is de�ned, but it
analso be used to redu
e the three-valued evaluation of � to an evaluation in standardtwo-valued logi
 with total models.Suppose M is a partial model of �. Let �̂ be equivalent to � ex
ept that all of itsdomain formulas are true. Let M̂ be a model of �̂ whi
h agrees with M wherever M isde�ned. Finally, let [[S℄℄2̂Me denote the evaluation of an expression S in the total modelM̂ using standard two-valued semanti
s. The following two theorems justify our useof TCCs and
an be veri�ed by a straightforward indu
tion on formulas. We omit theproofs be
ause of spa
e
onstraints.
5

Dx � trueD
 � trueDf(t1;:::;tn) � Æf [t1; : : : ; tn℄ ^ n̂i=1DtiDif � then t1 else t2 endif � D� ^ (if � then Dt1 else Dt2 endif)Dif � then �1 else �2 endif � D� ^ (if � then D�1 else D�2 endif)Dp(t1;:::;tn) � Æp[t1; : : : ; tn℄ ^ n̂i=1DtiD:� � D�D�1_�2 � (D�1 ^ �1) _ (D�2 ^ �2) _ (D�1 ^ D�2)D9x: � � (9x:D� ^ �) _ (8x:D�)Figure 2: De�nition of TCCs for terms and formulas.Theorem 1. Let S be any �-term or formula, and let M̂ denote an arbitrary extensionof a �-model M to a total model over �̂. Then:[[DS ℄℄2̂Me = true) [[S℄℄2̂Me = [[S℄℄Me:Theorem 2. Let S be any �-term or formula, and let M̂ denote an arbitrary extensionof a �-model M to a total model over �̂. Then:[[DS ℄℄2̂Me = false) [[S℄℄Me = ?:Another important property of D� is that if � is represented as a DAG, then theworst-
ase size of D� as a DAG is linear in the size of �. This is be
ause at ea
h step ofthe
omputation of D�, only a
onstant number of additional nodes are introdu
ed inaddition to those already in �. This is
riti
al for many appli
ations where the size of �may be very large, and even a quadrati
 in
rease over the size of � may be una

eptable.In pra
ti
e, things are usually even better. Often, the instan
es of partial fun
tionsare relatively sparse, and D� is very small relative to �.Che
king validity. Theorems 1 and 2 and the pro
edure for
onstru
ting D� e�e
-tively provide an algorithm for
he
king the three-valued validity of formulas in a partialmodel M . All we have to do is
onstru
t a de
ision pro
edure DP that
an determinethe (two-valued) validity of formulas in M̂ , an arbitrary extension of M .Suppose we want to determine the validity of � in M . We �rst
he
k D�, the TCCof �. If DP(D�) is false, then [[D�℄℄2̂Me = false for some interpretation e, so [[�℄℄Me = ?by Theorem 2. Thus, � is not valid in M . On the other hand, if DP(D�) is true,then [[D�℄℄2̂Me = true for all e, so [[�℄℄2̂Me = [[�℄℄Me for all e by Theorem 1. Thus, DP(�)e�e
tively determines the validity of � in M .This property is extremely useful from a pra
ti
al implementation point of view,as we
an build a de
ision pro
edure for any
onvenient extension of M in whi
h all6

fun
tions are total. Sin
e evaluation and simpli�
ation are
ommon steps in de
isionpro
edures, this eliminates the need to handle partial fun
tions as spe
ial
ases, and we
an just evaluate or simplify them as we would any other fun
tion.As a spe
i�
 example,
onsider the partial model of arithmeti
 with division, wheredivision by zero is unde�ned. De
ision pro
edures for arithmeti
 often require beingable to put terms in a normal form. In parti
ular, it is desirable to be able to evaluate
onstant expressions to obtain
onstants. In a partial model, there is no
orre
t way toevaluate 1=0, but if we extend that model, say by de�ning division by 0 to be 0, we
aneasily evaluate all
onstant expressions. Our approa
h shows that a de
ision pro
edurewith this additional assumption
an be used to de
ide validity in the partial model.4 Implementation in CVC LiteWe have implemented the three-valued Kleene semanti
s des
ribed above in our tool,CVC Lite [2℄. CVC Lite is an eÆ
ient validity
he
ker for �rst-order logi
 over severalinterpreted theories. The tool takes a formula � as an input and returns Valid or Invalid.CVC Lite is based on standard te
hniques for
ombining �rst order de
ision pro-
edures [1, 10, 12℄, and
urrently supports several theories, in
luding uninterpretedfun
tions, arrays, and linear real arithmeti
. It also has some limited support for quan-ti�ers.The input language of CVC Lite is typed, with support for predi
ate subtyping, thatis, types of the form � 0 = fx : � j �(x)g, where � is a type, and �(x) is a quanti�er-freeformula over the variable x. The type � 0 is
alled a subtype of � with type predi
ate �.The values of any term t of type � 0 are restri
ted to those of type � whi
h also satisfy�(t). For example, the division operator over reals is a fun
tion of type:div : real� fy : real j y 6= 0g ! real:Note that su
h a fun
tion
an also be
onsidered as a partial fun
tion from (real� real)to real whi
h is unde�ned when the se
ond argument is 0.In fa
t, sin
e pre
ise type
he
king in the presen
e of predi
ate subtypes involvesmanipulating arbitrary logi
al formulas, type
he
king proper is restri
ted to mat
hingonly the base types of fun
tion arguments and terms (that is, the maximal supertypes).In parti
ular, div(x; 0) will be type-
orre
t, sin
e 0 is of type real, whi
h is the base typeof the se
ond argument.The more pre
ise
he
king of whether an input formula � is always de�ned is doneseparately by
omputing D� and
he
king for its validity. If the validity of D�
annotbe established, CVC Lite returns a type error.If D� is valid, then � is
he
ked for validity as if it is a formula in the
lassi
al two-valued logi
 where all fun
tions are total. As des
ribed above, the de
ision pro
edure forarithmeti

an extend div to be a total fun
tion without
ompromising the
orre
tnessof the result. As an example,
onsider the following formula:�0 � div(x; y) = div(x; y);where x and y are variables of type real. This formula is
learly valid in
lassi
altwo-valued logi
. However, the TCC for this formula, D�0 � y 6= 0, is not valid, and7

therefore, the validity of �0 in the three-valued semanti
s in unde�ned. CVC Lite dete
tsthis and returns a type error.However, adding a
ondition that y 6= 0 makes the formula valid in three-valuedsemanti
s: �1 � y 6= 0) div(x; y) = div(x; y);sin
e its TCC:D�1 � (true ^ :(y 6= 0)) _ (y 6= 0 ^ div(x; y) = div(x; y) _ (true ^ y 6= 0)is trivially true due to the �rst and the last disjun
ts.2In fa
t, the
ontrapositive of that formula is also valid in the three-valued semanti
sfor exa
tly the same reason, even though this version of the formula may look somewhatstartling to a mathemati
ian:�2 � div(x; y) 6= div(x; y)) y = 0:CVC Lite
orre
tly proves that both formulas are indeed Valid.From the implementation point of view, the approa
h was extremely easy to
ode: ittook only a few hours to implement and debug. Furthermore,
he
king TCCs does notnoti
eably a�e
t the performan
e of the tool on
lassi
al examples (without subtypesor partial fun
tions), as the TCCs of su
h formulas immediately simplify to true. Howit a�e
ts the performan
e on large examples with partial fun
tions still remains to beseen. However, we expe
t that the typi
al overhead will be very low, sin
e TCCs oftenhave a mu
h simpler stru
ture than the a
tual formulas.5 Con
lusionWe have proposed a three-valued Kleene logi
 for use in appli
ations whi
h are mostnaturally modeled using partial fun
tions. We have shown how the question of
he
kingvalidity of formulas in this logi

an be solved by
he
king the formula and a TypeCorre
tness Condition whose size is linear in the size of the original formula. Both ofthese
he
ks
an be done using standard two-valued semanti
s.We have a prototype implementation of these ideas in the theorem-prover CVC Lite.Our implementation was able to determine three-valued validity and invalidity of smallexamples. We plan to use these ideas to test larger examples in CVC Lite.Future work in
ludes using these ideas to develop a more general notion of validityin the presen
e of theories with sorts and sub-sorts and dealing with non-stri
t fun
tionsand predi
ates (those whi
h, like the Boolean operators ^ and _ do not have the propertythat if one of their
hildren evaluates to ?, then the whole expression evaluates to ?).Referen
es[1℄ C. Barrett. Che
king Validity of Quanti�er-Free Formulas in Combinations of First-Order Theories. PhD thesis, Stanford University, 2003.2Re
all, that 1) 2 � (: 1 _ 2), and the TCC for the impli
ation is the same as the TCC forthe
orresponding disjun
tion. 8

[2℄ Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the
o-operating validity
he
ker. In Pro
eedings of the 16th International Conferen
e onComputer Aided Veri�
ation (CAV), April 2004. To appear.[3℄ G. Bruns and P. Godefroid. \Model Che
king Partial State Spa
es with 3-ValuedTemporal Logi
s". In Pro
eedings of Pro
eedings of 11th International Conferen
eon Computer-Aided Veri�
ation (CAV'99), volume 1633 of LNCS, pages 274{287,Trento, Italy, 1999. Springer.[4℄ William M. Farmer. A Partial Fun
tions Version of Chur
h's Simple Theory ofTypes. The Journal of Symboli
 Logi
, 55(3):1269{1291, 1990.[5℄ A. Gur�nkel and M. Che
hik. \Multi-Valued Model-Che
king via Classi
al Model-Che
king". In Pro
eedings of 14th International Conferen
e on Con
urren
y Theory(CONCUR'03), volume 2761 of LNCS, September 2003.[6℄ M. Kerber and M. Kohlhase. A Me
hanization of Strong Kleene Logi
 for Par-tial Fun
tions. In A. Bundy, editor, 12th International Conferen
e on AutomatedDedu
tion, volume 814 of LNAI, pages 371{385. Springer Verlag, 1994.[7℄ M. Kerber and M. Kohlhase. Me
hanising Partiality without Re-Implementation.In 21st Annual German Conferen
e on Arti�
ial Intelligen
e, volume 1303 of LNAI,pages 123{134. Springer Verlag, 1997.[8℄ S. C. Kleene. Introdu
tion to Metamathemati
s. New York: Van Nostrand, 1952.[9℄ Fran
is
a Lu
io-Carras
o and Antonio Gavilanes-Fran
o. A First Order Logi
 forPartial Fun
tions. In Pro
eedings STACS'89, volume 349 of LNCS, pages 47{58.Springer, 1989.[10℄ G. Nelson and D. Oppen. Simpli�
ation by
ooperating de
ision pro
edures. ACMTransa
tions on Programming Languages and Systems, 1(2):245{57, 1979.[11℄ N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer S
ien
e Labo-ratory, SRI International, Menlo Park, CA, 1993. Also appears in Tutorial Notes,Formal Methods Europe'93: Industrial-Strength Formal Methods, pages 357{406,Odense, Denmark, April 1993.[12℄ R. Shostak. De
iding
ombinations of theories. Journal of the Asso
iation forComputing Ma
hinery, 31(1):1{12, 1984.[13℄ Aaron Stump. Che
king Validities and Proofs with CVC and
ea. PhD thesis,Stanford University, 2002.[14℄ Pawel Ti
hy. Foundations of partial type theory. Reports on Mathemati
al Logi
,14:59{72, 1982.
9

