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Abstract

Most verification approaches assume a mathematical formalism in which func-
tions are total, even though partial functions occur naturally in many applications.
Furthermore, although there have been various proposals for logics of partial func-
tions, there is no consensus on which is “the right” logic to use for verification appli-
cations. In this paper, we propose using a three-valued Kleene logic, where partial
functions return the “undefined” value when applied outside of their domains. The
particular semantics are chosen according to the principle of least surprise to the
user; if there is disagreement among the various approaches on what the value of
the formula should be, its evaluation is undefined. We show that the problem of
checking validity in the three-valued logic can be reduced to checking validity in
a standard two-valued logic, and describe how this approach has been successfully
implemented in our tool, CVC Lite.

1 Introduction

First-order logic is an invaluable tool for modeling properties and behaviors of systems.
Recent progress in automated reasoning and theorem proving has led to a broader and
more successful application of logic as a tool for analyzing systems. Most standard
approaches to theorem proving and deduction using first-order logic assume that all
functions and predicates are total. However, many applications are more naturally
modeled using partial functions and predicates.

Although it is generally agreed that a logic which can accommodate partial functions
is useful for a wide variety of applications, there is general disagreement on which logic
should be used. An overview of the different approaches can be found in [4, 7]. Of
the approaches which take partiality seriously as opposed to attempting a work-around,
there are two main alternatives. The first allows terms to be undefined, but requires
that all formulas be either true or false. The unusual feature of this approach is that
a predicate applied to an undefined term is defined to be false. Although this logic
preserves some nice features of classical logic (the deduction theorem, for instance),
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in a certain sense there is a loss of information because the undefinedness does not
propagate to formulas. For example, if we assume the term 1/0 is undefined, then the
formula —P(1/0) will be valid.

The second approach is based on Kleene’s strong three-valued logic [8], and allows
both terms and formulas to be undefined. This approach is more conservative in the
sense that any formula which is valid in the second approach will be valid in the first
approach, but there are some formulas, such as —=P(1/0), which may be valid in the first
approach but will be undefined in the second.

Although a previous implementation of our theorem prover adopted the first ap-
proach [13], we prefer the second approach based on a principle of least surprise. That
is, a formula should be valid only when there is no disagreement on whether that is a
reasonable conclusion. This is particularly important in verification applications, as the
integrity of a system may be judged by whether a theorem about the system is valid.
Furthermore, it is our experience that any theorem which really should be valid can be
formulated in such a way that it is valid according to this second approach.

A more pragmatic issue that must be dealt with is that most theorem-provers are
based on classical logic. Various approaches have been advocated for modifying standard
theorem-proving to accommodate logics with partial functions [6, 7, 9, 14]. However,
we are interested in finding a method for supporting partiality without modifying the
theorem prover. One way to do this is by building over- and under-approximations
for the formula. This technique has been successfully applied for three-valued model-
checking [3, 5].

PVS (Prototype Verification System [11]) uses a completely different approach which
involves constructing and proving additional formulas called type correctness conditions
(TCCs). The validity of TCCs guarantees that all the relevant terms and formulas are
always defined. However, TCCs in PVS are computed in a somewhat ad hoc manner,
which can yield surprising results. For example, it is possible to have a formula of the
form A = B with a valid TCC whose contrapositive =B = —=A has an invalid TCC.

In this paper, we propose a technique for checking the validity of a formula in
three-valued logic by reducing the problem to checking two formulas in standard two-
valued logic. Similarly to PVS, we construct a TCC formula whose validity implies that
the original formula is always defined. After checking the TCC, we check the original
formula. Both of these checks can be done using standard two-valued logic. Note that,
unlike in PVS, our method is precise in the sense that if a TCC is invalid, the validity
of the original formula is indeed undefined in the three-valued semantics.

The paper is organized as follows. Section 2 gives the syntax and semantics for our
three-valued logic. Section 3 gives two fundamental theorems which justify the reduction
to two-valued logic. Section 4 describes results obtained by implementing these ideas in
the theorem prover CVC Lite, and Section 5 concludes.

2 Three-Valued Logic: Syntax and Semantics

Syntax. Let X = (S, F, P, C) be a signature, where S = {s1,...} is a set of sorts,
F ={fi,...}, P = {p1,...} and C = {c1,...} are sets of function predicate, and
constant symbols. Each symbol has a type built out of the sorts in 3. Define a term ¢



as follows:
t == z|c| f(tr,...,t,) | if ¢ then t; else ty endif,

where z is a variable, and the symbols ¢ and f are from 3, and ¢ in the conditional
operator is a formula. A formula ¢ is defined as follows:

¢ == true |false | p(ty,...,tn) | ¢1V d2 | 21 |
if ¢p then ¢; else ¢, endif | Iz : s. ¢y,

where p is a predicate from 3. We also use the usual syntactic abbreviations for ¢; A ¢2,
¢1 = @2, ¢1 & @2, and Vz : s. ¢.

It is important to distinguish the two versions of the if-then-else operator: the one
for terms, and the other for formulas. Also note that the if-then-else operators are not
expressible in terms of other operators or logical connectives in 3-valued logic.

For our purposes, we will assume that included with every signature X is a set A of
domain formulas, one for each function and predicate symbol in X. The domain formula
for a function symbol f is a X-formula with k£ free variables where £ is the arity of f

and is denoted d0f[x1,...,2;]. The domain formula for a predicate symbol p of arity &
is defined similarly and is denoted d,[z1, ..., z;]. An instantiation of a domain formula
0y with terms ¢y,..., ¢ is written 0s[t1,..., ;] and denotes the result of replacing each
x; with ¢; in the domain formula 6z, ..., z).

Intuitively, the domain formula for f defines the set of points where f is defined.
As a result, it is important that the domain formulas themselves always be defined. To
ensure this, we require that if s is a function or predicate symbol appearing in a domain
formula, then 0s[z1,...,z,]| = true.

Three-valued semantics with partial functions. Given a signature X, a model
is a pair M = (A,I) where A is an S-indexed family of nonempty carrier sets A =
{As | s € S} for each sort s in X, and I is an interpretation, which is a mapping from
constant symbols ¢ : s, function symbols f : 51 X --+ X s, — s, and predicate symbols
P sy X--X8, — boolin ¥ to elements cM € Ay, partial functions fM : Ag X xAg, —
Ay, and relations p™ C A, x --- x A, respectively.

Given a model M and a variable assignment e which maps each variable to an
element of some A, the value of an expression (a term or a formula) « is denoted
[a]are and is defined in Fig. 1. The value of a term may be an element of some A, or
a distinguished value 1; not in any A,. The value of a formula may be true, false, or
L4 We will use L to represent both 1; and L4 since terms and formulas are always
syntactically separated from each other, and the particular kind of L is always clear
from the context.

A model is required to satisfy the following additional condition imposed by the
domain formulas A:

[6¢[z1,...,zk]]me = true iff fM is defined at ([z1]ame, ..., [zr]are).

We say that two expressions a and g are logically equivalent, and write o = g if
la]are = [B]are for every model M and variable assignment e.

! The obvious 2-valued translations (¢o => ¢1) A (mdo = ¢2) and (do A ¢1) V (=0 A ¢2) are actually
over- and under-approximations of the 3-valued operator if ¢o then ¢; else ¢> endif.



M

lelare c
[z]ae e(z)
fM([[tl]]Me, e [[tn]]Me), if [[tz]]M ;é 1 foralli € [1n]
If(te,. .. tn)]me and [0f[t1,. .., tp]]me = true;
L otherwise
4, if [p]are = L
[if ¢ then ¢; else t2 endif]ye [ti]are, if [¢]are = true
[talare, if [¢]are = false
[true]ye = true
[false]ye = false
pM([ti]are, - .., [talare), if [t:]ar # L for all i € [1..n]
Ip(ti,....th)me = and [dp[t1,...,ty]Jme = true;
L otherwise
true, if [¢1]are = true or [p2]are = true;
[p1V p2]me = false if [¢1]are = false and [¢2]are = false;
L otherwise
true, if [¢]rre = false
[=¢lme = false if [¢p]are = true

4, if [p]are =L

[if ¢ then ¢; else ¢ endif] e = [P1]are, if [¢]are = true
[p2]are, if [¢p]me = false
true, if for some a € As: [P]arer < a] = true;
[Fz:s.p)pe = false, if for all a € As: [¢]amelxr + a] = false;
L otherwise.

Figure 1: Three-valued semantics: [¢]are.

Semantics of if-then-else. Notice that the interpretation of the if-then-else opera-
tor (for terms) is undefined if the condition is undefined, even if the other two children
evaluate to the same value. One reason for this choice of the semantics is simply that
it turns out to be practical in real applications. In real programs, if a partial function
is applied to an argument outside of its domain, the program may crash or raise an
exception; in other words, it results in an abnormal behavior. Therefore, detecting a
possible L value in the condition of an if-then-else provides the user with useful infor-
mation, namely, that the program may crash during execution under certain conditions.
For example, consider the following piece of C code:

int *p = malloc(sizeof (int));
int x = (*p > 0)? y : z;



In this example, the if-then-else operator (which is (-)? -:- in C) will cause the
program to crash if p happens to be NULL, even if y = z in this particular program state.
Here *p is a partial function defined over non-null pointers to integers, and returning
an integer.

The logical if-then-else is defined similarly to the term if-then-else, so that DeMor-
gan law for negation and the if-lifting properties for any predicate symbol p in 3 are
preserved:

—(if ¢ then ¢, else ¢ endif) = if ¢ then —¢; else ¢ endif
p(if ¢ then t; else t; endif) = if ¢ then p(¢;) else p(ty) endif

Three-Valued Validity. The three-valued semantics can be extended to validity of
formulas in the following way. A formula is considered walid, if in all models M and
for all variable assignments e, [¢]rre = true. A formula is invalid if there is at least
one such model M and one such assignment e that [¢]re = false. Otherwise (if the
formula always evaluates to either true or L) the validity is undefined. We denote the
three-valued validity as |= ¢, which may hold, not hold, or be undefined.

3 Reduction from Three-Valued Logic to Two-Valued Logic

Suppose we wish to determine the three-valued validity of some X-formula ¢. Our
general strategy is first to compute a formula called a Type Correctness Condition
(TCC) which can be used to check whether ¢ can ever be undefined. If this check
succeeds, that is, ¢ is always defined, we can then check the original formula. Both of
these checks can be done using standard two-valued logic. To justify this claim, we first
introduce TCCs and then prove that they have the required properties.

Type correctness conditions (TCCs). A Type Correctness Condition for a formula
¢ of our three-valued logic is a formula which does not involve any partial symbols
(symbols whose domain formulas are not true) and which evaluates to true iff ¢ is not
undefined.

First, observe that if we have a term f(z), then by definition its TCC is simply
drlz]. We can generalize this to arbitrary terms or formulas quite easily. Figure 2 gives
a recursive definition of Dy, the TCC for an arbitrary formula ¢.

The TCC not only identifies whether or not the formula ¢ is defined, but it can
also be used to reduce the three-valued evaluation of ¢ to an evaluation in standard
two-valued logic with total models.

Suppose M is a partial model of . Let ¥ be equivalent to X except that all of its
domain formulas are true. Let M be a model of ¥ which agrees with M wherever M is
defined. Finally, let [[S]]?\;Ie denote the evaluation of an expression S in the total model

M using standard two-valued semantics. The following two theorems justify our use
of TCCs and can be verified by a straightforward induction on formulas. We omit the
proofs because of space constraints.



D, = true
D. = true
n
Df(tly"'ytn) = (5f|:t1, e ,tn] A A Dtl
i=1
Dif 6 then t; else t» endif = D¢ A (lf ¢ then Dtl else Dt2 endif)
Dif ¢ then ¢ else ¢o endif = Dg A (if ¢ then Dy, else Dy, endif)
n
Dp(tl,...,tn) = 5p[t17 e 7tn] A /\ Dti
=1
D_,¢ = D‘i’
Dyivg, = (Dgy A1)V (Dg, A ¢2) V (Dyy A Dy,)
DEI:U.Q& = (E‘LU D¢ A QZS) V (V:U D¢)

Figure 2: Definition of TCCs for terms and formulas.

Theorem 1. Let S be any X-term or formula, and let M denote an arbitrary extension
of a X-model M to a total model over 3. Then:

[[DS]]?\%e = true = [[S]]i;[e = [S]e.

Theorem 2. Let S be any X-term or formula, and let M denote an arbitrary extension
of a X-model M to a total model over %. Then:

[[DS]]?\;[e =false = [S]me=L.

Another important property of Dy is that if ¢ is represented as a DAG, then the
worst-case size of Dy as a DAG is linear in the size of ¢. This is because at each step of
the computation of Dy, only a constant number of additional nodes are introduced in
addition to those already in ¢. This is critical for many applications where the size of ¢
may be very large, and even a quadratic increase over the size of ¢ may be unacceptable.

In practice, things are usually even better. Often, the instances of partial functions
are relatively sparse, and Dy is very small relative to ¢.

Checking validity. Theorems 1 and 2 and the procedure for constructing Dy effec-
tively provide an algorithm for checking the three-valued validity of formulas in a partial
model M. All we have to do is construct a decision procedure DP that can determine
the (two-valued) validity of formulas in M, an arbitrary extension of M.

Suppose we want to determine the validity of ¢ in M. We first check Dy, the TCC
of ¢. If DP(Dy) is false, then [[D(p]]?\;[e = false for some interpretation e, so [¢]me = L
by Theorem 2. Thus, ¢ is not valid in M. On the other hand, if DP(Dy) is true,
then [[Dqﬁ]]?\;[e = true for all e, so [[d)]]?\;[e = [¢]are for all e by Theorem 1. Thus, DP(¢)
effectively determines the validity of ¢ in M.

This property is extremely useful from a practical implementation point of view,
as we can build a decision procedure for any convenient extension of M in which all



functions are total. Since evaluation and simplification are common steps in decision
procedures, this eliminates the need to handle partial functions as special cases, and we
can just evaluate or simplify them as we would any other function.

As a specific example, consider the partial model of arithmetic with division, where
division by zero is undefined. Decision procedures for arithmetic often require being
able to put terms in a normal form. In particular, it is desirable to be able to evaluate
constant expressions to obtain constants. In a partial model, there is no correct way to
evaluate 1/0, but if we extend that model, say by defining division by 0 to be 0, we can
easily evaluate all constant expressions. Our approach shows that a decision procedure
with this additional assumption can be used to decide validity in the partial model.

4 Implementation in CVC Lite

We have implemented the three-valued Kleene semantics described above in our tool,
CVC Lite [2]. CVC Lite is an efficient validity checker for first-order logic over several
interpreted theories. The tool takes a formula ¢ as an input and returns Valid or Invalid.

CVC Lite is based on standard techniques for combining first order decision pro-
cedures [1, 10, 12], and currently supports several theories, including uninterpreted
functions, arrays, and linear real arithmetic. It also has some limited support for quan-
tifiers.

The input language of CVC Lite is typed, with support for predicate subtyping, that
is, types of the form 7/ = {z : 7 | ¢(z)}, where 7 is a type, and ¢(z) is a quantifier-free
formula over the variable z. The type 7' is called a subtype of 7 with type predicate ¢.
The values of any term ¢ of type 7' are restricted to those of type 7 which also satisfy
¢(t). For example, the division operator over reals is a function of type:

div : real x {y : real | y # 0} — real.

Note that such a function can also be considered as a partial function from (real X real)
to real which is undefined when the second argument is 0.

In fact, since precise typechecking in the presence of predicate subtypes involves
manipulating arbitrary logical formulas, typechecking proper is restricted to matching
only the base types of function arguments and terms (that is, the maximal supertypes).
In particular, div(z, 0) will be type-correct, since 0 is of type real, which is the base type
of the second argument.

The more precise checking of whether an input formula ¢ is always defined is done
separately by computing Dy and checking for its validity. If the validity of Dy cannot
be established, CVC Lite returns a type error.

If Dy is valid, then ¢ is checked for validity as if it is a formula in the classical two-
valued logic where all functions are total. As described above, the decision procedure for
arithmetic can extend div to be a total function without compromising the correctness
of the result. As an example, consider the following formula:

¢0 = dIV(.’L‘,y) = diV(.’L‘,y),

where z and y are variables of type real. This formula is clearly valid in classical
two-valued logic. However, the TCC for this formula, Dy, = y # 0, is not valid, and



therefore, the validity of ¢g in the three-valued semantics in undefined. CVC Lite detects
this and returns a type error.

However, adding a condition that y # 0 makes the formula valid in three-valued
semantics:

¢1 =y 7é 0= dIV(.’L‘,y) = diV(.’L‘,y),
since its TCC:

Dy, = (true A =(y #0)) V (y # 0 Adiv(z,y) = div(z,y) V (true Ay # 0)

is trivially true due to the first and the last disjuncts.?

In fact, the contrapositive of that formula is also valid in the three-valued semantics
for exactly the same reason, even though this version of the formula may look somewhat
startling to a mathematician:

¢2 = div(z,y) # div(z,y) =y = 0.

CVC Lite correctly proves that both formulas are indeed Valid.

From the implementation point of view, the approach was extremely easy to code: it
took only a few hours to implement and debug. Furthermore, checking TCCs does not
noticeably affect the performance of the tool on classical examples (without subtypes
or partial functions), as the TCCs of such formulas immediately simplify to true. How
it affects the performance on large examples with partial functions still remains to be
seen. However, we expect that the typical overhead will be very low, since TCCs often
have a much simpler structure than the actual formulas.

5 Conclusion

We have proposed a three-valued Kleene logic for use in applications which are most
naturally modeled using partial functions. We have shown how the question of checking
validity of formulas in this logic can be solved by checking the formula and a Type
Correctness Condition whose size is linear in the size of the original formula. Both of
these checks can be done using standard two-valued semantics.

We have a prototype implementation of these ideas in the theorem-prover CVC Lite.
Our implementation was able to determine three-valued validity and invalidity of small
examples. We plan to use these ideas to test larger examples in CVC Lite.

Future work includes using these ideas to develop a more general notion of validity
in the presence of theories with sorts and sub-sorts and dealing with non-strict functions
and predicates (those which, like the Boolean operators A and V do not have the property
that if one of their children evaluates to L, then the whole expression evaluates to L).
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