
CVC4

Clark Barrett1, Christopher L. Conway1, Morgan Deters1, Liana Hadarean1,
Dejan Jovanović1, Tim King1, Andrew Reynolds2, and Cesare Tinelli2

1New York University 2University of Iowa
c© Springer-Verlag

Abstract. CVC4 is the latest version of the Cooperating Validity Check-
er. A joint project of NYU and U Iowa, CVC4 aims to support the use-
ful feature set of CVC3 and SMT-LIBv2 while optimizing the design
of the core system architecture and decision procedures to take advan-
tage of recent engineering and algorithmic advances. CVC4 represents
a completely new code base; it is a from-scratch rewrite of CVC3, and
many subsystems have been completely redesigned. Additional decision
procedures for CVC4 are currently under development, but for what it
currently achieves, it is a lighter-weight and higher-performing tool than
CVC3. We describe the system architecture, subsystems of note, and
discuss some applications and continuing work.

1 Introduction

The Cooperating Validity Checker series has a long history. The Stanford Valid-
ity Checker (SVC) [3] came first, incorporating theories and its own SAT solver.
Its successor, the Cooperating Validity Checker (CVC) [16], had a more opti-
mized internal design, produced proofs, used the Chaff [13] SAT solver, and fea-
tured a number of usability enhancements. Its name comes from the cooperative
nature of decision procedures in Nelson-Oppen theory combination [14], which
share amongst each other equalities between shared terms. CVC Lite [1], first
made available in 2003, was a rewrite of CVC that attempted to make CVC more
flexible (hence the “lite”) while extending the feature set: CVC Lite supported
quantifiers where its predecessors did not. CVC3 [4] was a major overhaul of por-
tions of CVC Lite: it added better decision procedure implementations, added
support for using MiniSat [11] in the core, and had generally better performance.

CVC4 is the new version, the fifth generation of this validity checker line that
is now celebrating fifteen years of heritage. It represents a complete re-evaluation
of the core architecture to be both performant and to serve as a cutting-edge re-
search vehicle for the next several years. Rather than taking CVC3 and redesign-
ing problem parts, we’ve taken a clean-room approach, starting from scratch.
Before using any designs from CVC3, we have thoroughly scrutinized, vetted,

This work partially supported by the NSF (CCF–0644299, CCF–0914956, CNS–
1049495, and 0914877), AFOSR (FA9550–09–1–0596 and FA9550–09–1–0517),
SRC 2008–TJ–1850, and MIT Lincoln Laboratory.



and updated them. Many parts of CVC4 bear only a superficial resemblance, if
any, to their correspondent in CVC3. However, CVC4 is fundamentally similar
to CVC3 and many other modern SMT solvers: it is a DPLL(T ) solver [12], with
a SAT solver at its core and a delegation path to different decision procedure
implementations, each in charge of solving formulas in some background the-
ory. The re-evaluation and ground-up rewrite was necessitated, we felt, by the
performance characteristics of CVC3. CVC3 has many useful features, but some
core aspects of the design led to high memory use, and the use of heavyweight
computation (where more nimble engineering approaches could suffice) makes
CVC3 a much slower prover than other tools. As these designs are central to
CVC3, a new version was preferable to a selective re-engineering, which would
have ballooned in short order. Some specific deficiencies of CVC3 are mentioned
in this article.

2 Design of CVC4

CVC4 is organized around a central core of engines:

– The SMT Engine serves as the main outside interface point to the solver.
Known in previous versions of CVC as the ValidityChecker, the SMT Engine
has public functions to push and pop solving contexts, manipulate a set of
currently active assumptions, and check the validity of a formula, as well as
functions to request proofs and generate models. This engine is responsible
for setting up and maintaining all user-related state.

– The Prop Engine manages the propositional solver at the core of CVC4.
This, in principle, allows different SAT solvers to be plugged into CVC4. (At
present, only MiniSat is supported, due to the fact that a SAT solver must
be modified to dispatch properly to SMT routines.)

– The Theory Engine serves as an “owner” of all decision procedure imple-
mentations. As is common in the research field, these implementations are
referred to as theories and all are derived from the base class Theory.

CVC3 used what was in effect a domain-specific language for proof rules, which
formed the trusted code base of the system. No fact could be registered by the
system without first constructing a Theorem object, and no Theorem object
could be constructed except through the trusted proof rules.

CVC4’s design takes a different approach. Much time and memory was spent
in CVC3’s Theorem-computation. When not producing proofs, CVC4 uses a
more lightweight approach, with Theory objects similar to those suggested by
modern DPLL(T ) literature [12] and used in other solvers. CVC4’s Theory class
is responsible for checking consistency of the current set of assertions, and prop-
agating new facts based on the current set of assertions. Theorem objects are
not produced up front for theory-propagated facts, but rather can be computed
lazily (or not at all, when the DPLL core doesn’t require them).

CVC4 incorporates numerous managers in charge of managing subsystems:



– The Node Manager is one of the busiest parts of CVC4, in charge of the cre-
ation and deletion of all expressions (“nodes”) in the prover. Node objects
are immutable and subject to certain simplifying constraints.1 Further, Node
objects are unique; the creation of an already-extant Node results in a ref-
erence to the original. Node data is reference-counted (the Node class itself
is just a reference-counted smart pointer to node data) and subject to recla-
mation by the Node Manager when no longer referenced; for performance
reasons, this is done lazily (see below for performance justification).

– The Shared Term Manager is in charge of all shared terms in the system.
Shared terms are detected by the Theory Engine and registered with this
manager, and this manager broadcasts new equalities between shared terms.

– The Context Memory Manager is in charge of maintaining a coherent, back-
trackable data context for the prover. At its core, it is simply a region memory
manager, from which new memory regions can be requested (“pushed”) and
destroyed (“popped”) in LIFO order. These regions contain saved state for a
number of heap-allocated objects, and when a pop is requested, these heap
objects are “restored” from their backups in the region. This leads to a nice,
general mechanism to do backtracking without lots of ad hoc implementa-
tions in each theory; this is highly useful for rapid prototyping. However, as
a general mechanism, it must be used sparingly; it is often beneficial to per-
form backtracking manually within a theory using a lighter-weight method,
to timestamp to indicate when a previously-computed result is stale, or to
develop approaches requiring little or no backtracking at all (e.g., tableaux
in Simplex).

2.1 Expressions (“nodes”)

Expressions are represented by class Node and are considerably more efficient
than CVC3’s expression representation. In the latest version of CVC3, expres-
sions maintain 14 word-sized data members (plus pointers to child expressions).
In CVC4, nodes take 64 bits plus child pointers, a considerable space savings. (In
part, this savings results from clever bit-packing. Part is in storing node-related
data outside of Node objects when appropriate.)

The expression subsystem of CVC4 has been carefully designed, and we have
analyzed runtime profiling data to ensure its performance is reasonable. On
stress tests, it beats CVC3’s expression subsystem considerably. We performed
a handful of targeted experiments to demonstrate this (all results are speedups
observed over a large number of iterations of the same test within the same
process):

1 For example, PLUS nodes, representing arithmetic addition, must have two or more
children. This is specified by the theory of arithmetic and enforced by the Node
Manager ; this arity can then be assumed by code that manipulates arithmetic-
kinded nodes. If an input language permits unary PLUS, that language’s parser
must convert that input expression into a valid CVC4 Node.



Set-up/tear-down. First, we wanted to measure raw set-up and tear-down time
for the CVC4 expression subsystem with respect to CVC3. For CVC3, this in-
volves the creation and destruction of a ValidityChecker object. For CVC4, this
involves the creation and destruction of an Expression Manager. CVC4 performs
this task almost 10× faster than CVC3.

Same-exprs. CVC4 keeps a unique copy of expression information for each dis-
tinct expression. When the client requests an expression node, a lookup in an
internal node table is performed to determine whether it already exists; if it does,
a pointer to the existing expression data is returned (if not, a pointer to a new,
freshly-constructed expression data object is returned). CVC3’s behavior is sim-
ilar. For this stress test, we created a simple expression, then pointed away from
it, causing its reference count to drop to 0. CVC4 is 3.5× faster than CVC3 at
this simple task. This is largely because CVC3 does garbage-collection eagerly;
it thus does collection work when the reference count on the expression data
drops to 0, and must construct the expression anew each time it is requested.
CVC4’s lazy garbage-collection strategy never collects the expression data (as it
is dead only a short time) and therefore must never re-construct it anew.

Same-exprs-with-saving. Because the reference count on node data falls to 0 in
the previous test, we performed a similar test where the reference count never
drops to 0. This removes the advantage of the lazy collection strategy and mea-
sures the relative performance CVC4’s lookup in its internal node table. Because
the same expression is requested each time, the lookup is always successful (after
the first time). CVC4’s advantage in this test drops to 1.5× speedup over CVC3,
less of an advantage but still considerably faster.

Separate-exprs. Finally, the performance of raw expression construction is mea-
sured by producing a stream of new expressions. These will each result in a
failed lookup in the internal node table and the construction of a new expression
structure. Here, CVC4 is again roughly 3.5× faster than CVC3.

As mentioned above, all of the above stress tests were run for a high number
of iterations (at least ten million) to get stable performance data on which to
base the comparisons. In the separate-exprs test, expressions were built over
fresh variables, ensuring their distinctness.

We conclude that CVC4’s expression subsystem has better performance in
setting up and tearing down, in creating already-existing expressions, and in cre-
ating not-yet-existing expressions. We further demonstrated one case justifying
the use of a lazy garbage collector implemented in CVC4 over the eager one in
CVC3.

We performed similar experiments on typical linear arithmetic workloads
(drawn from QF LRA benchmarks in the SMT-LIB library). The time for the ex-
pression subsystem operations (not involving any solver machinery) was roughly
1.4× faster in CVC4 than in CVC3, and CVC4 allocated only a quarter of the
memory that CVC3 did.



2.2 Theories

CVC4 incorporates newly-designed and implemented decision procedures for its
theory of uninterpreted functions, its theory of arithmetic, of arrays, of bitvec-
tors, and of inductive datatypes, based on modern approaches described in the
literature. Performance generally is far better than CVC3’s (see the note in the
conclusion).

In a radical departure from CVC3, CVC4 implements a version of the Sim-
plex method in its implementation of arithmetic [10], whereas CVC3 (and earlier
provers in the CVC line) had used an approach based on Fourier-Motzkin vari-
able elimination.

2.3 Proofs

CVC4’s proof system is designed to support LFSC proofs [15], and is also de-
signed to have absolutely zero footprint in memory and time when proofs are
turned off at compile-time.

2.4 Library API

As CVC4 is meant to be used via a library API, there’s a clear division be-
tween the public, outward-facing interface, and the private, inward-facing one.
This is a distinction that wasn’t as clear in the previous version; installations of
CVC3 required the installation of all CVC3 header files, because public headers
depended on private ones to function properly. Not so in CVC4, where only a
subset of headers declaring public interfaces are installed on a user’s machine.

Further, we have decided “to take our own medicine.” Our own tools, includ-
ing CVC4’s parser and main command-line tool, link against the CVC4 library
in the same way that any end-user application would. This helps us ensure that
the library API is complete—since if it is not, the command-line CVC4 tool is
missing functionality, too, an omission we catch quickly. This is a considerable
difference in design from CVC3, where it has often been the case that the API
for one or another target language was missing key functionality.

2.5 Theory modularity

Theory objects are designed in CVC4 to be highly modular: they do not employ
global state, nor do they make any other assumptions that would inhibit their
functioning as a client to another decision procedure. In this way, one Theory
can instantiate and send subqueries to a completely subservient client Theory
without interfering with the main solver flow.

2.6 Support for concurrency

CVC4’s infrastructure has been designed to make the transition to multiproces-
sor and multicore hardware easy, and we currently have an experimental lemma-
sharing portfolio version of CVC4. We intend CVC4 to be a good vehicle for other



research ideas in this area as well. In part, the modularity of theories (above)
is geared toward this—the absence of global state and the immutability of ex-
pression objects clearly makes it easier to parallelize operations. Similarly, the
Theory API specifically includes the notion of interruptibility, so that an expen-
sive operation (e.g., theory propagation) can be interrupted if work in another
thread makes it irrelevant. Current work being performed at NYU and U Iowa
is investigating different ways to parallelize SMT; the CVC4 architecture pro-
vides a good experimental platform for this research, as it does not need to be
completely re-engineered to test different concurrent solving strategies.

3 Conclusion

SMT solvers are currently an area of considerable research interest. Barcel-
ogic [5], CVC3 [4], MathSat [6] OpenSMT [7], Yices [9], and Z3 [8] are examples
of modern, currently-maintained, popular SMT solvers. OpenSMT and CVC3
are open-source, and CVC3, Yices, and Z3 are the only ones to support all of
the defined SMT-LIB logics, including quantifiers.

CVC4 aims to follow in CVC3’s footsteps as an open-source theorem prover
supporting this wide array of background theories. CVC3 supports all of the
background theories defined by the SMT-LIB initiative, and provides proofs and
counterexamples upon request; CVC4 aims for full compliance with the new
SMT-LIB version 2 command language and backward compatibility with the
CVC presentation language.

In this way, CVC4 will be a drop-in replacement for CVC3, with a cleaner
and more consistent library API, a more modular, flexible core, a far smaller
memory footprint, and better performance characteristics.

The increased performance of CVC4’s (over CVC3’s) expression subsystem
was demonstrated in section 2; CVC4’s solving apparatus also performs better
than CVC3’s. In SMT-COMP 2010 [2], both solvers competed in the QF LRA
division. CVC4 solved more than twice the benchmarks CVC3 did, and for the
benchmarks they both solved, CVC4 was almost always faster.

Our goal in CVC4 has been to provide a better-performing implementation
of CVC3’s feature set, while focusing on flexibility so that it can function as a
research vehicle for years to come. Our first goal has been realized for the fea-
tures that CVC4 currently supports, and we believe this success will continue
as we complete support for CVC3’s rich set of features. We have been successful
in our second as well: a number of internal, complicated, non-intuitive assump-
tions on which CVC3 rests have been removed in the CVC4 redesign. We have
been able to simplify greatly the component interactions and the data structures
used in CVC4, making it far easier to document the internals, incorporate new
developers, and add support for new features.

References

1. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the Cooper-
ating Validity Checker. In Rajeev Alur and Doron A. Peled, editors, Proceedings of



the 16th International Conference on Computer Aided Verification (CAV ’04), vol-
ume 3114 of Lecture Notes in Computer Science, pages 515–518. Springer-Verlag,
July 2004. Boston, Massachusetts.

2. Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. SMT-COMP
2010: the 2010 edition of the satisfiability modulo theories competition. http:

//www.smtcomp.org/2010/.
3. Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combinations

of theories with equality. pages 187–201. Springer-Verlag, 1996.
4. Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns,

editors, Proceedings of the 19th International Conference on Computer Aided Ver-
ification (CAV ’07), volume 4590 of Lecture Notes in Computer Science, pages
298–302. Springer-Verlag, July 2007. Berlin, Germany.

5. Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodrguez-Carbonell,
and Albert Rubio. The Barcelogic SMT solver. In Aarti Gupta and Sharad Malik,
editors, Computer Aided Verification, volume 5123 of Lecture Notes in Computer
Science, pages 294–298. Springer Berlin / Heidelberg, 2008.

6. Roberto Bruttomesso, Alessandro Cimatti, Anders Franzn, Alberto Griggio, and
Roberto Sebastiani. The MathSAT 4 SMT solver. In Aarti Gupta and Sharad Ma-
lik, editors, Computer Aided Verification, volume 5123 of Lecture Notes in Com-
puter Science, pages 299–303. Springer Berlin / Heidelberg, 2008.

7. Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. The
OpenSMT solver. In Javier Esparza and Rupak Majumdar, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 6015 of Lecture
Notes in Computer Science, pages 150–153. Springer Berlin / Heidelberg, 2010.

8. Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
Proceedings of the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

9. Bruno Dutertre and Leonardo de Moura. The YICES SMT solver. http://yices.
csl.sri.com/tool-paper.pdf.

10. Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proceedings of the 18th Computer-Aided Verification conference,
volume 4144 of LNCS, pages 81–94. Springer-Verlag, 2006.

11. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing,
volume 2919 of Lecture Notes in Computer Science, pages 333–336. Springer Berlin
/ Heidelberg, 2004.

12. Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Ce-
sare Tinelli. DPLL(T): fast decision procedures. pages 175–188. Springer, 2004.

13. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In ANNUAL ACM IEEE DESIGN
AUTOMATION CONFERENCE, pages 530–535. ACM, 2001.

14. Greg Nelson and Derek Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–57, 1979.

15. Duckki Oe, Andrew Reynolds, and Aaron Stump. Fast and flexible proof checking
for SMT. In Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories, SMT ’09, pages 6–13, New York, NY, USA, 2009. ACM.

16. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating validity
checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the
14th International Conference on Computer Aided Verification (CAV ’02), volume



2404 of Lecture Notes in Computer Science, pages 500–504. Springer-Verlag, July
2002. Copenhagen, Denmark.


