PDPAR 2004 Preliminary Version

Combining SAT Methods with Non-Clausal

Decision Heuristics 1

Clark Barrett 2

New York University

Jacob Donham 3

Abstract

A decision procedure for arbitrary first-order formulas can be viewed as combining a
propositional search with a decision procedure for conjunctions of first-order literals,
so Boolean SAT methods can be used for the propositional search in order to improve
the performance of the overall decision procedure. We show how to combine some
Boolean SAT methods with non-clausal heuristics developed for first-order decision
procedures. The combination of methods leads to a smaller number of decisions
than either method alone.

1 Introduction

Decision procedures for domain-specific first-order theories and combinations
of such theories are useful in applications such as hardware verification, trans-
lation validation, extended static checking, and proof-carrying code. These
first-order decision procedures are based on core algorithms that decide the
satisfiability of a conjunction of literals. In order to decide arbitrary formulas,
we must layer a propositional satisfiability procedure on top of the first-order
procedure.

We can view the overall process as follows: Form a propositional abstraction
of the formula by replacing each distinct atomic formula with a Boolean vari-
able; find a variable assignment which satisfies the propositional abstraction;
convert, the assignment to a conjunction of first-order literals by replacing each
Boolean variable assigned true or false with the corresponding atomic formula
or its negation, respectively; finally, check that the conjunction of literals is
satisfiable using the first-order decision procedure.

1 This research was supported by a grant from Intel Corporation. The content of this paper
does not necessarily reflect the position or the policy of Intel.
2 Email: barrett@cs.nyu.edu
3 Email: jake@bitmechanic.com
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

BARRETT, DONHAM

checkSat (A, ¢)
¢ = simplify(A, ¢);
if (¢ € (T, 1)) return ¢';
a = findSplitter(¢');
if (checkSat(A U {a=T}, ¢)
if (checkSat(A U {a=_1}, ¢
return 1;

T) return T;
T) return T;

Fig. 1. Propositional DPLL algorithm

For large formulas with significant Boolean structure, the size of the propo-
sitional search tree dominates the overall performance, so heuristics and clever
search algorithms for SAT are important. We can combine SAT methods with
non-clausal heuristics developed for first-order decision procedures to obtain
a method which takes fewer decisions to decide a formula than either one by
itself. Section 2 reviews existing methods for propositional satisfiability and
describes some non-clausal search heuristics. Section 3 describes our imple-
mentation combining these methods, and Section 4 gives quantitative results
obtained using CVC Lite [2], a proof-producing decision procedure for a com-
bination of theories without quantifiers.

2 Efficient SAT Algorithms

The essence of the standard Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm for SAT [5,6] is shown in in Figure 1. It explores the space of partial
variable assignments depth-first and checks each one to see if it satisfies the
formula. The variable ¢ represents the formula under consideration, and A
represents the partial assignment so far. If ¢ simplifies to T under A then
A is a satisfying assignment. If ¢ simplifies to | then A is an unsatisfying
assignment. If ¢ simplifies to neither T nor L, then the algorithm chooses
an unassigned variable (a splitter; such a choice is a decision), and then calls
checkSat on the simplified formula along with A augmented first with the
splitter assigned to T and then to L. The algorithm incrementally builds a
partial assignment until the assignment satisfies the formula or exhausts the
tree of possible assignments.

Many modern SAT solvers like GRASP [11] and Chaff [12] are based on re-
finements of the basic DPLL algorithm. The two most important refinements
are Boolean constraint propagation and conflict clauses.

Boolean constraint propagation (BCP) takes advantage of the fact that for
a formula in conjunctive normal form (CNF), every clause must be satisfied by
a satisfying assignment. So if there are n literals in a clause and n—1 of them
evaluate to | under the current partial assignment (such clauses are called
unit clauses), then the nth must evaluate to T in order to satisfy the clause.
By propagating Boolean constraints until there are no more unit clauses the
algorithm may deduce the values of many variables and avoid having to split

2

BARRETT, DONHAM

on them.

If we find the formula to be unsatisfiable under a particular assignment A,
then there is a minimal set § C A which makes the formula unsatisfiable. If
the algorithm later generates a A’ such that 6 C A’ then it can immediately
determine that the formula is unsatisfiable under A’ and save some work. A
conflict clause asserts that at least one assignment in 0 is false. For example,
if 0 ={a=T,b=_1,c= T} then the conflict clause is (ma V bV —¢). When
¢ simplifies to | under some A, we find a minimal conflict set J by tracing
the implication graph describing how each variable got its value—whether
directly from an assignment or through a chain of propagations from some set
of assignments—and add a conflict clause derived from ¢ to ¢. Then if a A’
is generated such that § C A’, BCP on the conflict clause cuts off the search
tree immediately.

In the first-order version of DPLL, we replace variable assignments with
first-order assumptions. Propositionally satisfying assignments are checked by
submitting the conjunction of first-order literals induced by a propositional
assignment to the first-order decision procedure. If the first-order decision
procedure is online (like CVC Lite is) then first-order literals can be submitted
as the partial assignment is built, rather than when the algorithm finds a
propositionally satisfying assignment. The algorithm may then discover much
earlier that a partial assignment does not first-order satisfy the formula.

In the first-order version of conflict clauses, the cause of a conflict can be
richer than a simple implication graph over propositional variables. CVC Lite
is a proof-producing decision procedure; it can generate a proof object giving
justification of its conclusion [1]. So when ¢ simplifies to L under A, CVC
Lite produces a proof of that fact, and the assumptions that are used in the
proof comprise exactly the subset of A that contributes to the conflict.

Other systems which use conflict clauses generated from first order decision
procedures include CVC, ICS, and Verifun. CVC [4,13] (the predecessor to
CVC Lite) uses the same strategy of generating conflict clauses based on proof
assumptions. The ICS decision procedure [7] does an optimized trial-and-error
elimination of irrelevant literals in a clause rather than tracking dependencies
on assumptions. Verifun [8] takes an intermediate approach: it cannot produce
proofs, but it does track just enough dependency information to enable the
production of conflict clauses.

2.1 Non-Clausal Decision Heuristics

A great difficulty of the DPLL algorithm is choosing splitters. The order
in which splitters are chosen can have a huge impact on the performance of
the algorithm, because a particular choice may prune a large subtree of the
decision tree. SAT solvers such as Chaff incorporate decision heuristics which
work well on many pure Boolean problems given in CNF. But we can do better
by taking advantage of the structure of a non-clausal (i.e. non-CNF) formula

3

BARRETT, DONHAM

to guide the search.

We have implemented the “depth-first-search” and “caching” heuristics
that were developed for SVC [3,10] (a predecessor of CVC Lite). In what
follows, the formulas under consideration are in non-clausal form. The logic
of these formulas includes a Boolean if-then-else operator, defined as if a then
b else ¢ = (a — b) A (ma — ¢), and a similar operator for terms. A formula
containing the term if o then t; else t; can be translated to an equisatisfiable
formula by replacing the if-then-else with a fresh variable v and conjoining the
side conditions a — v = t; and —a — v = t5. While these operators add no
expressive power to the logic, they are very useful in applications.

The depth-first-search (DFS) heuristic chooses as the splitter the top-most,
left-most atomic subformula within the formula being checked. The intuition
behind this heuristic is that in the best case, when the top-level expression of
the formula is an if-then-else with a literal as its condition and the consequent
and alternate are of equal size and share no literals, then the heuristic splits
on the condition and divides the problem into two sub-problems which are
half the size of the original. Of course, in the general case, these criteria are
not all satisfied and the sub-problems can be almost as large as the original
problem. A refinement is to search the sub-trees of an expression in order
of their height in the hope of splitting a larger sub-tree and yielding smaller
sub-problems.

The caching heuristic identifies splitters that are effective and caches them
for use in similar sub-problems. Given a partial assignment A, a splitter «
is effective if it terminates the recursive case-splitting of checkSat; that is, if
both checkSat (A U {a =T}, ¢') and checkSat(A U {a =1}, ¢') reach a
conflict without any further case splits. When the heuristic finds an effective
splitter it adds the splitters in the current partial assignment to an LRU cache,
and when choosing a splitter it favors those that are in the cache. The intuition
here is that we will encounter similar sub-problems for which the splitters in
the cache are also effective.

However, we may encounter a sub-problem that contains a splitter that
is in the cache, but is not effective for the sub-problem; the sub-problem is
not closely related to the sub-problem for which the splitter was originally
effective. In particular, when a splitter is added to the cache because it is
effective for a small sub-problem, it is unlikely that it will be effective for a
much larger sub-problem. Moreover, a poor splitter choice in a large sub-
problem is worse, in terms of the amount of extra work it causes, than in a
small sub-problem.

To mitigate these effects, the caching heuristic maintains a “trust” metric
for each splitter in the cache. A splitter starts out with an initial trust, and
each time it is found to be effective its trust is increased. If it is evicted from
the cache it loses the trust it has earned. When choosing a splitter for a sub-
problem of height h (where the height of a sub-problem is the height of the
formula’s parse tree), only those splitters in the cache with a trust of at least

4

BARRETT, DONHAM

h are considered.

Finally, the splitters in the cache are ordered according to how recently
they were added to the cache. So for a particular sub-problem, the newest
splitter that is in the sub-problem and has sufficient trust for the height of
the sub-problem is chosen. If no such splitter exists in the cache we fall back
to the DFS heuristic.

The caching heuristic is similar in some respects to the heuristics in Chaff
(both VSIDS and the heuristic that chooses a splitter from the most recent
conflict clause if possible), insofar as they both try to take advantage of the
adjacency of similar sub-problems as the decision tree is searched. The dif-
ferences are that the caching heuristic is somewhat more conservative (it puts
splitters in the cache only when it finds an effective splitter, not on every con-
flict), it falls back to the DFS heuristic when there are no applicable splitters
in the cache, it makes no attempt to weed out splitters that do not contribute
to the two conflicts of an effective splitter (corresponding to conflict-clause
minimization), and it maintains a trust metric to avoid poor splitter choices.
While the caching heuristic is somewhat ad hoc, it works well in practice.

3 Combining Non-Clausal Heuristics with SAT Meth-
ods

The SVC decision procedure uses DPLL without conflict clauses or BCP, and
works directly on non-clausal formulas. CVC has a mode where it converts
the formula to CNF and calls Chaff for the propositional search; it annotates
the CNF variables in order to reconstruct the non-clausal structure of the
formula and use the DF'S heuristic. CVC Lite implements its own Chaff-style
Boolean search with BCP and conflict clauses. It stores the clausal part of the
formula (i.e. any part of the formula already in CNF, and any conflict clauses
generated during the search) separately from the non-clausal part, and does
BCP on the clausal part only. The default strategy for CVC Lite is to use
the simple DFS heuristic on the non-clausal part of the formula, and fall back
to Chaff’s VSIDS heuristic when there are no splitters left in the non-clausal
part.

In the present work we add the caching heuristic to CVC Lite. The main
difference between our implementation and the implementation in SVC is how
effective splitters are determined. In SVC, if there are two conflicts in a row
at the same decision level, that means that both polarities for the most recent
splitter have been tried without needing to split again. With BCP and conflict
clauses, the first conflict causes a conflict clause to be added, and subsequent
BCP causes the most recent splitter to be asserted in the opposite polarity
(this is known as a failure-driven assertion). If there is a second conflict before
choosing another splitter, then the formula is unsatisfiable under the current
partial assignment with the splitter in either assignment, which corresponds
to our definition of an effective splitter.

5

BARRETT, DONHAM
p—ozx=1)A(g—=2=2)A (g — x=23)

p,x=1

(g—=x=2)N(~qg— x=23)
pr=1qx=2 pyr=1,-q,x =3

unsat unsat
Fig. 2. q is an effective splitter

Consider Figure 2, which shows part of a decision tree for a simple formula.
First p is chosen as a splitter, which implies z = 1. Next ¢ is chosen as a
splitter, which implies x = 2. The first-order decision procedure detects that
this combination of literals is unsatisfiable.

When the basic DPLL search detects the contradiction it backtracks one
level in the tree and asserts —¢, which implies x = 3. Again the first-order
decision procedure detects that this is unsatisfiable. Since asserting ¢ in either
polarity results in a contradiction, ¢ is an effective splitter.

When DPLL augmented with BCP and conflict clauses detects the con-
tradiction, it backtracks one level in the tree and adds the conflict clause
(=p V —q). Next it does BCP, and because p is asserted it deduces =g from
the newly-added conflict clause, which implies = 3, causing another con-
tradiction. It then backtracks again and adds the conflict clause —p (since p
is the only assumption). Since two conflicts have occurred in a row without
an intervening decision, ¢ is an effective splitter. Because in the core DPLL
algorithm, the current A is lost when the algorithm backtracks, our imple-
mentation of the caching heuristic saves A as soon as it reaches a conflict, in
case it turns out that the last splitter is effective.

3.1 Non-Clausal Boolean Constraint Propagation

If we translate a formula to CNF, we may be able to make valuable deductions
by BCP that we would not be able to make on the formula in non-clausal
form (since BCP as described works only on clauses). But the non-clausal
heuristics depend on the structure of the formula, which is lost in translation
to CNF. We can get the benefits of both approaches by keeping both the
non-clausal formula and its CNF translation, and using the first for non-
clausal heuristics and the second for BCP. (We convert to an equisatisfiable
formula in definitional CNF, introducing a fresh variable for each non-atomic
sub-expression to avoid the potentially exponential blowup in the size of the
result.)

Consider Figure 3, which shows the translation of a simple formula to

6

BARRETT, DONHAM

(aAD)V (cANd) =
(e1Vea)A(er V—aV—b)A(—er Va)A(=er VD) A(eaV—eV—=d) A(—eaVe) A(—esVd)

Fig. 3. Definitional CNF

definitional CNF. Fresh variables e; and e, are introduced to represent (a A b)
and (¢ A d), respectively, and the formulas e; <+ (a A b) and ey <> (¢ A d) are
translated into 3 clauses each. Now if we make a decision —a then BCP will
deduce —e; by the third clause, e; by the first clause, ¢ by the sixth clause,
and d by the seventh clause.

Following [9] we tried implementing propagation directly on Boolean con-
nectives rather than doing BCP on the CNF translation. For example, if the
result of an AND expression is known to be true, then both of its child expres-
sions must be true. This direct propagation can be done more efficiently than
BCP on the CNF translation. However, in our present implementation the
cost of the first-order decision procedure is much greater than that of BCP,
so this optimization does not significantly improve the overall results.

4 Results

Figure 4 gives empirical results for the various methods we have discussed on a
number of benchmarks from verification efforts. We treat the “simple” DPLL
search with the DFS splitter heuristic as a baseline, and compare it to the
“fast” search (incorporating BCP and conflict clauses), the fast search with
additional clauses (generated by CNF conversion of the original formula), the
simple search with the caching heuristic, and the combination of the caching
heuristic with the fast search and additional CNF clauses.

The table shows the number of splits, the number of splits normalized to
the simple search with DFS, the time in seconds, and the normalized time in
seconds for each benchmark and method. Smaller numbers in the normalized
fields in the table mean that the method does better than simple search with
DFS. At the bottom we show the geometric mean of the normalized numbers
to provide an overall comparison.

With simple search, the caching heuristic improves on DF'S in both number
of decisions and time. The fast search with DFS improves on the simple search
in number of decisions, and the addition of CNF clauses to the fast search
improves further on the number of decisions. Finally, the combination of the
fast search with CNF clauses and the caching heuristic does better than either
method alone in number of decisions, but is somewhat slower than the caching
heuristic alone.

Notice that in general, the current implementation of the “fast” search
achieves fewer splits, but requires more time. The implementation of the “fast”
search is not the subject of this paper, but in future work, we expect to be able
to optimize its performance significantly. One primary reason for our optimism
is that our previous system, CVC, whose implementation is similar to that of

7

BARRETT, DONHAM

Simple DFS Fast DFS Fast DFS + CNF
Splits Seconds Splits Seconds Splits Seconds
a 156 1 0.15 1 1005 6.44 0.85 5.66 930 5.96 0.69 4.63
b 56469 1 30.84 1 43581 0.77 47.86 1.55 38608 0.68 132.82 4.31
c 5534 1 2.78 1 4241 0.77 4.17 1.50 529 0.10 3.36 1.21
d 159 1 0.09 1 184 1.16 0.18 1.96 28 0.18 0.15 1.55
e 23674 1 8.49 1 155 0.01 0.35 0.04 186 0.01 0.58 0.07
f 703 1 0.10 1 703 1.00 0.29 2.89 26 0.04 0.41 4.12
g 4895 1 1.51 1 3114 0.64 3.81 2.51 40951 8.37 | 440.19 | 290.56
h 282 1 0.27 1 279 0.99 0.64 | 2.40 1976 7.01 15.69 59.20
i 1533 | 1 0.50 | 1 1187 0.77 1.57 | 3.13 || 21445 13.99 | 182.80 | 363.41
j 17484 1 5.01 1 13323 0.76 11.48 2.29 813 0.05 2.53 0.50
k 21294 1 6.58 1 20621 0.97 19.55 2.97 8 < 0.01 0.14 0.02
1 73484 1 21.40 1 54713 0.74 53.92 2.52 2902 0.04 9.56 0.45
m 25156 1 5.64 1 23906 0.95 14.54 | 2.58 10781 0.43 12.89 2.29
n 154238 1 22.18 1 412 < 0.01 0.17 | 0.01 407 < 0.01 0.23 0.01
o | 134815 | 1 55.74 | 1 95910 0.71 | 221.14 | 3.97 610 | < 0.01 5.18 0.09
p | 121200 | 1 48.69 | 1 82295 0.68 | 174.64 | 3.59 696 0.01 6.62 0.14
q 3547 1 1.21 1 3547 1.00 6.34 | 5.23 3506 0.99 16.30 13.44
r 595 | 1 0.19 | 1 595 1.00 0.71 | 3.73 7 0.01 0.11 0.60
S 1863 1 0.75 1 2543 1.37 1.69 2.26 2418 1.30 2.36 3.16
t 314 1 0.30 1 301 0.96 0.45 1.50 277 0.88 1.19 3.99
u | 331101 | 1 | 107.31 | 1 168984 0.51 | 126.03 | 1.17 1133 | < 0.01 0.96 0.01
v 1282 | 1 0.56 | 1 1112 0.87 0.56 | 1.00 98 0.08 0.20 0.36
w 668 1 0.21 1 4 0.01 0.02 0.08 3 < 0.01 0.04 0.19
Mean 1.00 1.00 || 0.47 1.38 || 0.10 1.08
Simple DFS Simple caching Fast caching + CNF
Splits Seconds Splits Seconds Splits Seconds
a 156 1 0.15 1 179 1.15 0.21 1.43 548 3.51 0.46 3.05
b 56469 1 30.84 1 19486 0.35 6.85 0.22 399 0.01 0.69 0.02
c 5534 | 1 2.78 | 1 2350 0.42 1.00 0.36 557 0.10 1.17 0.42
d 159 1 0.09 1 118 0.74 0.10 1.03 21 0.13 0.13 1.37
e 23674 1 8.49 1 6512 0.28 3.24 0.38 124 0.01 0.37 0.04
f 703 1 0.10 1 703 1.00 0.11 1.09 26 0.04 0.22 2.24
g 4895 1 1.51 1 936 0.19 0.83 0.55 1917 0.39 27.27 18.00
h 282 1 0.27 1 443 1.57 0.58 2.18 737 2.61 13.63 51.44
i 1533 | 1 0.50 | 1 1533 1.00 1.46 2.91 || 3795 2.48 | 60.18 | 119.65
j 17484 1 5.01 1 22010 1.26 6.21 1.24 784 0.04 2.54 0.51
k 21294 1 6.58 1 490 0.02 0.19 0.03 8 < 0.01 0.14 0.02
1 73484 1 21.40 1 90861 1.24 | 26.30 1.23 786 0.01 2.53 0.12
m 25156 1 5.64 1 29943 1.19 6.58 1.17 389 0.02 0.56 0.10
n 154238 1 22.18 1 130702 0.85 | 21.60 0.97 407 < 0.01 0.23 0.01
o | 134815 | 1 55.74 | 1 100208 0.74 | 86.57 1.55 576 | < 0.01 | 11.30 0.20
p 121200 1 48.69 1 87814 0.72 | 41.03 0.84 662 0.01 6.74 0.14
q 3547 1 1.21 1 3547 1.00 1.51 1.24 3464 0.98 29.38 24.22
r 595 | 1 0.19 | 1 180 0.30 0.08 0.41 7 0.01 0.11 0.56
S 1863 | 1 0.75 | 1 594 0.32 0.37 0.49 876 0.47 1.21 1.61
t 314 1 0.30 1 43 0.14 0.06 0.21 37 0.12 0.27 0.89
u | 331101 1 107.31 1 1210 < 0.01 0.39 < 0.01 1821 0.01 3.88 0.04
v 1282 | 1 0.56 | 1 315 0.25 0.12 0.22 95 0.07 0.28 0.49
w 668 1 0.21 1 408 0.61 0.20 0.96 3 < 0.01 0.04 0.20
Mean 1.00 1.00 || 0.41 | 0.53 | 0.04 0.55

Fig. 4. Results

BARRETT, DONHAM

the “fast” engine, except that the Boolean part does not produce proofs, is
able to do many more splits per second than the “fast” engine of CVC Lite.
We do not believe that proof-production accounts for all of the performance
difference. This work shows that we can vastly decrease the number of splits
by combining non-clausal and SAT-based heuristics. With further work we
should be able to achieve a similar improvement in performance.

References

[1] Clark Barrett and Sergey Berezin. A proof-producing boolean search engine.
In CADE-19 Workshop: Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR), July 2003. Miami, Florida, USA.

[2] Clark Barrett and Sergey Berezin. CVC-Lite: A new implementation of
the cooperating validity checker. 1In Proceedings of the 16th International
Conference on Computer-Aided Verification (CAV), April 2004. To appear.

[3] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for
combinations of theories with equality. In Mandayam Srivas and Albert
Camilleri, editors, Formal Methods in Computer-Aided Design, volume 1166 of

Lecture Notes in Computer Science, pages 187-201. Springer-Verlag, November
1996. Palo Alto, California, November 6-8.

[4] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking Satisfiability of
First-Order Formulas by Incremental Translation to SAT. In Ed Brinksma and
Kim Guldstrand Larsen, editors, 14th International Conference on Computer
Aided Verification (CAV), volume 2404 of Lecture Notes in Computer Science,
pages 236-249. Springer-Verlag, 2002. Copenhagen, Denmark.

[5] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5:394-397, July 1962.

[6] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201-215, July 1960.

[7] Leonardo de Moura, Harald Ruess, and Maria Sorea. Lazy Theorem Proving
for Bounded Model Checking over Infinite Domains. In 18th International
Conference on Automated Deduction, 2002.

[8] Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James Saxe. Theorem
Proving using Lazy Proof Explication. In 15th International Conference on
Computer Aided Verification (CAV), Lecture Notes in Computer Science.
Springer-Verlag, 2003.

[9] Malay K. Ganai, Pranav Ashar, Aarti Gupta, Lintao Zhang, and Sharad
Malik. Combining strengths of circuit-based and cnf-based algorithms for a

high-performance sat solver. In Proceedings of the 39th Conference on Design
Automation, pages 747-750. ACM Press, 2002.

9

BARRETT, DONHAM

[10] Jeremy R. Levitt. Formal Verification Techniques for Digital Systems. PhD
thesis, Stanford University, December 1998.

[11] J. Marques-Silva and K. Sakallah. = GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Transactions on Computers, 48(5):506-521,
1999.

[12] M. Moskewicz, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In 39th Design Automation Conference,
2001.

[13] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating
Validity Checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, 14th
International Conference on Computer Aided Verification (CAV), volume 2404
of Lecture Notes in Computer Science, pages 500-504. Springer-Verlag, 2002.
Copenhagen, Denmark.

10

	Introduction
	Efficient SAT Algorithms
	Non-Clausal Decision Heuristics

	Combining Non-Clausal Heuristics with SAT Methods
	Non-Clausal Boolean Constraint Propagation

	Results
	References

