
PDPAR 2004 Preliminary Version
Combining SAT Methods with Non-ClausalDe
ision Heuristi
s 1

Clark Barrett 2New York UniversityJa
ob Donham 3Abstra
tA de
ision pro
edure for arbitrary �rst-order formulas
an be viewed as
ombining apropositional sear
h with a de
ision pro
edure for
onjun
tions of �rst-order literals,so Boolean SAT methods
an be used for the propositional sear
h in order to improvethe performan
e of the overall de
ision pro
edure. We show how to
ombine someBoolean SAT methods with non-
lausal heuristi
s developed for �rst-order de
isionpro
edures. The
ombination of methods leads to a smaller number of de
isionsthan either method alone.1 Introdu
tionDe
ision pro
edures for domain-spe
i�
 �rst-order theories and
ombinationsof su
h theories are useful in appli
ations su
h as hardware veri�
ation, trans-lation validation, extended stati

he
king, and proof-
arrying
ode. These�rst-order de
ision pro
edures are based on
ore algorithms that de
ide thesatis�ability of a
onjun
tion of literals. In order to de
ide arbitrary formulas,we must layer a propositional satis�ability pro
edure on top of the �rst-orderpro
edure.We
an view the overall pro
ess as follows: Form a propositional abstra
tionof the formula by repla
ing ea
h distin
t atomi
 formula with a Boolean vari-able; �nd a variable assignment whi
h satis�es the propositional abstra
tion;
onvert the assignment to a
onjun
tion of �rst-order literals by repla
ing ea
hBoolean variable assigned true or false with the
orresponding atomi
 formulaor its negation, respe
tively; �nally,
he
k that the
onjun
tion of literals issatis�able using the �rst-order de
ision pro
edure.1 This resear
h was supported by a grant from Intel Corporation. The
ontent of this paperdoes not ne
essarily re
e
t the position or the poli
y of Intel.2 Email: barrett�
s.nyu.edu3 Email: jake�bitme
hani
.
omThis is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

Barrett, Donham
he
kSat(�, �)�0 = simplify(�, �);if (�0 2 (>; ?)) return �0;� = findSplitter(�0);if (
he
kSat(� [f� = >g, �0) == >) return >;if (
he
kSat(� [f� = ?g, �0) == >) return >;return ?; Fig. 1. Propositional DPLL algorithmFor large formulas with signi�
ant Boolean stru
ture, the size of the propo-sitional sear
h tree dominates the overall performan
e, so heuristi
s and
leversear
h algorithms for SAT are important. We
an
ombine SAT methods withnon-
lausal heuristi
s developed for �rst-order de
ision pro
edures to obtaina method whi
h takes fewer de
isions to de
ide a formula than either one byitself. Se
tion 2 reviews existing methods for propositional satis�ability anddes
ribes some non-
lausal sear
h heuristi
s. Se
tion 3 des
ribes our imple-mentation
ombining these methods, and Se
tion 4 gives quantitative resultsobtained using CVC Lite [2℄, a proof-produ
ing de
ision pro
edure for a
om-bination of theories without quanti�ers.2 EÆ
ient SAT AlgorithmsThe essen
e of the standard Davis-Putnam-Logemann-Loveland (DPLL) al-gorithm for SAT [5,6℄ is shown in in Figure 1. It explores the spa
e of partialvariable assignments depth-�rst and
he
ks ea
h one to see if it satis�es theformula. The variable � represents the formula under
onsideration, and �represents the partial assignment so far. If � simpli�es to > under � then� is a satisfying assignment. If � simpli�es to ? then � is an unsatisfyingassignment. If � simpli�es to neither > nor ?, then the algorithm
hoosesan unassigned variable (a splitter ; su
h a
hoi
e is a de
ision), and then
alls
he
kSat on the simpli�ed formula along with � augmented �rst with thesplitter assigned to > and then to ?. The algorithm in
rementally builds apartial assignment until the assignment satis�es the formula or exhausts thetree of possible assignments.Many modern SAT solvers like GRASP [11℄ and Cha� [12℄ are based on re-�nements of the basi
 DPLL algorithm. The two most important re�nementsare Boolean
onstraint propagation and
on
i
t
lauses.Boolean
onstraint propagation (BCP) takes advantage of the fa
t that fora formula in
onjun
tive normal form (CNF), every
lause must be satis�ed bya satisfying assignment. So if there are n literals in a
lause and n�1 of themevaluate to ? under the
urrent partial assignment (su
h
lauses are
alledunit
lauses), then the nth must evaluate to > in order to satisfy the
lause.By propagating Boolean
onstraints until there are no more unit
lauses thealgorithm may dedu
e the values of many variables and avoid having to split2

Barrett, Donhamon them.If we �nd the formula to be unsatis�able under a parti
ular assignment �,then there is a minimal set Æ � � whi
h makes the formula unsatis�able. Ifthe algorithm later generates a �0 su
h that Æ � �0 then it
an immediatelydetermine that the formula is unsatis�able under �0 and save some work. A
on
i
t
lause asserts that at least one assignment in Æ is false. For example,if Æ = fa = >; b = ?;
 = >g then the
on
i
t
lause is (:a _ b _ :
). When� simpli�es to ? under some �, we �nd a minimal
on
i
t set Æ by tra
ingthe impli
ation graph des
ribing how ea
h variable got its value|whetherdire
tly from an assignment or through a
hain of propagations from some setof assignments|and add a
on
i
t
lause derived from Æ to �. Then if a �0is generated su
h that Æ � �0, BCP on the
on
i
t
lause
uts o� the sear
htree immediately.In the �rst-order version of DPLL, we repla
e variable assignments with�rst-order assumptions. Propositionally satisfying assignments are
he
ked bysubmitting the
onjun
tion of �rst-order literals indu
ed by a propositionalassignment to the �rst-order de
ision pro
edure. If the �rst-order de
isionpro
edure is online (like CVC Lite is) then �rst-order literals
an be submittedas the partial assignment is built, rather than when the algorithm �nds apropositionally satisfying assignment. The algorithm may then dis
over mu
hearlier that a partial assignment does not �rst-order satisfy the formula.In the �rst-order version of
on
i
t
lauses, the
ause of a
on
i
t
an beri
her than a simple impli
ation graph over propositional variables. CVC Liteis a proof-produ
ing de
ision pro
edure; it
an generate a proof obje
t givingjusti�
ation of its
on
lusion [1℄. So when � simpli�es to ? under �, CVCLite produ
es a proof of that fa
t, and the assumptions that are used in theproof
omprise exa
tly the subset of � that
ontributes to the
on
i
t.Other systems whi
h use
on
i
t
lauses generated from �rst order de
isionpro
edures in
lude CVC, ICS, and Verifun. CVC [4,13℄ (the prede
essor toCVC Lite) uses the same strategy of generating
on
i
t
lauses based on proofassumptions. The ICS de
ision pro
edure [7℄ does an optimized trial-and-errorelimination of irrelevant literals in a
lause rather than tra
king dependen
ieson assumptions. Verifun [8℄ takes an intermediate approa
h: it
annot produ
eproofs, but it does tra
k just enough dependen
y information to enable theprodu
tion of
on
i
t
lauses.2.1 Non-Clausal De
ision Heuristi
sA great diÆ
ulty of the DPLL algorithm is
hoosing splitters. The orderin whi
h splitters are
hosen
an have a huge impa
t on the performan
e ofthe algorithm, be
ause a parti
ular
hoi
e may prune a large subtree of thede
ision tree. SAT solvers su
h as Cha� in
orporate de
ision heuristi
s whi
hwork well on many pure Boolean problems given in CNF. But we
an do betterby taking advantage of the stru
ture of a non-
lausal (i.e. non-CNF) formula3

Barrett, Donhamto guide the sear
h.We have implemented the \depth-�rst-sear
h" and \
a
hing" heuristi
sthat were developed for SVC [3,10℄ (a prede
essor of CVC Lite). In whatfollows, the formulas under
onsideration are in non-
lausal form. The logi
of these formulas in
ludes a Boolean if-then-else operator, de�ned as if a thenb else
 � (a! b) ^ (:a !
), and a similar operator for terms. A formula
ontaining the term if a then t1 else t2
an be translated to an equisatis�ableformula by repla
ing the if-then-else with a fresh variable v and
onjoining theside
onditions a ! v = t1 and :a ! v = t2. While these operators add noexpressive power to the logi
, they are very useful in appli
ations.The depth-�rst-sear
h (DFS) heuristi

hooses as the splitter the top-most,left-most atomi
 subformula within the formula being
he
ked. The intuitionbehind this heuristi
 is that in the best
ase, when the top-level expression ofthe formula is an if-then-else with a literal as its
ondition and the
onsequentand alternate are of equal size and share no literals, then the heuristi
 splitson the
ondition and divides the problem into two sub-problems whi
h arehalf the size of the original. Of
ourse, in the general
ase, these
riteria arenot all satis�ed and the sub-problems
an be almost as large as the originalproblem. A re�nement is to sear
h the sub-trees of an expression in orderof their height in the hope of splitting a larger sub-tree and yielding smallersub-problems.The
a
hing heuristi
 identi�es splitters that are e�e
tive and
a
hes themfor use in similar sub-problems. Given a partial assignment �, a splitter �is e�e
tive if it terminates the re
ursive
ase-splitting of
he
kSat; that is, ifboth
he
kSat(� [f� = >g, �0) and
he
kSat(� [f� = ?g, �0) rea
h a
on
i
t without any further
ase splits. When the heuristi
 �nds an e�e
tivesplitter it adds the splitters in the
urrent partial assignment to an LRU
a
he,and when
hoosing a splitter it favors those that are in the
a
he. The intuitionhere is that we will en
ounter similar sub-problems for whi
h the splitters inthe
a
he are also e�e
tive.However, we may en
ounter a sub-problem that
ontains a splitter thatis in the
a
he, but is not e�e
tive for the sub-problem; the sub-problem isnot
losely related to the sub-problem for whi
h the splitter was originallye�e
tive. In parti
ular, when a splitter is added to the
a
he be
ause it ise�e
tive for a small sub-problem, it is unlikely that it will be e�e
tive for amu
h larger sub-problem. Moreover, a poor splitter
hoi
e in a large sub-problem is worse, in terms of the amount of extra work it
auses, than in asmall sub-problem.To mitigate these e�e
ts, the
a
hing heuristi
 maintains a \trust" metri
for ea
h splitter in the
a
he. A splitter starts out with an initial trust, andea
h time it is found to be e�e
tive its trust is in
reased. If it is evi
ted fromthe
a
he it loses the trust it has earned. When
hoosing a splitter for a sub-problem of height h (where the height of a sub-problem is the height of theformula's parse tree), only those splitters in the
a
he with a trust of at least4

Barrett, Donhamh are
onsidered.Finally, the splitters in the
a
he are ordered a

ording to how re
entlythey were added to the
a
he. So for a parti
ular sub-problem, the newestsplitter that is in the sub-problem and has suÆ
ient trust for the height ofthe sub-problem is
hosen. If no su
h splitter exists in the
a
he we fall ba
kto the DFS heuristi
.The
a
hing heuristi
 is similar in some respe
ts to the heuristi
s in Cha�(both VSIDS and the heuristi
 that
hooses a splitter from the most re
ent
on
i
t
lause if possible), insofar as they both try to take advantage of theadja
en
y of similar sub-problems as the de
ision tree is sear
hed. The dif-feren
es are that the
a
hing heuristi
 is somewhat more
onservative (it putssplitters in the
a
he only when it �nds an e�e
tive splitter, not on every
on-
i
t), it falls ba
k to the DFS heuristi
 when there are no appli
able splittersin the
a
he, it makes no attempt to weed out splitters that do not
ontributeto the two
on
i
ts of an e�e
tive splitter (
orresponding to
on
i
t-
lauseminimization), and it maintains a trust metri
 to avoid poor splitter
hoi
es.While the
a
hing heuristi
 is somewhat ad ho
, it works well in pra
ti
e.3 Combining Non-Clausal Heuristi
s with SAT Meth-odsThe SVC de
ision pro
edure uses DPLL without
on
i
t
lauses or BCP, andworks dire
tly on non-
lausal formulas. CVC has a mode where it
onvertsthe formula to CNF and
alls Cha� for the propositional sear
h; it annotatesthe CNF variables in order to re
onstru
t the non-
lausal stru
ture of theformula and use the DFS heuristi
. CVC Lite implements its own Cha�-styleBoolean sear
h with BCP and
on
i
t
lauses. It stores the
lausal part of theformula (i.e. any part of the formula already in CNF, and any
on
i
t
lausesgenerated during the sear
h) separately from the non-
lausal part, and doesBCP on the
lausal part only. The default strategy for CVC Lite is to usethe simple DFS heuristi
 on the non-
lausal part of the formula, and fall ba
kto Cha�'s VSIDS heuristi
 when there are no splitters left in the non-
lausalpart.In the present work we add the
a
hing heuristi
 to CVC Lite. The maindi�eren
e between our implementation and the implementation in SVC is howe�e
tive splitters are determined. In SVC, if there are two
on
i
ts in a rowat the same de
ision level, that means that both polarities for the most re
entsplitter have been tried without needing to split again. With BCP and
on
i
t
lauses, the �rst
on
i
t
auses a
on
i
t
lause to be added, and subsequentBCP
auses the most re
ent splitter to be asserted in the opposite polarity(this is known as a failure-driven assertion). If there is a se
ond
on
i
t before
hoosing another splitter, then the formula is unsatis�able under the
urrentpartial assignment with the splitter in either assignment, whi
h
orrespondsto our de�nition of an e�e
tive splitter.5

Barrett, Donham
(q ! x = 2) ^ (:q ! x = 3)

unsatp; x = 1;:q; x = 3unsat
(p! x = 1) ^ (q ! x = 2) ^ (:q ! x = 3)p; x = 1
p; x = 1; q; x = 2Fig. 2. q is an e�e
tive splitterConsider Figure 2, whi
h shows part of a de
ision tree for a simple formula.First p is
hosen as a splitter, whi
h implies x = 1. Next q is
hosen as asplitter, whi
h implies x = 2. The �rst-order de
ision pro
edure dete
ts thatthis
ombination of literals is unsatis�able.When the basi
 DPLL sear
h dete
ts the
ontradi
tion it ba
ktra
ks onelevel in the tree and asserts :q, whi
h implies x = 3. Again the �rst-orderde
ision pro
edure dete
ts that this is unsatis�able. Sin
e asserting q in eitherpolarity results in a
ontradi
tion, q is an e�e
tive splitter.When DPLL augmented with BCP and
on
i
t
lauses dete
ts the
on-tradi
tion, it ba
ktra
ks one level in the tree and adds the
on
i
t
lause(:p _ :q). Next it does BCP, and be
ause p is asserted it dedu
es :q fromthe newly-added
on
i
t
lause, whi
h implies x = 3,
ausing another
on-tradi
tion. It then ba
ktra
ks again and adds the
on
i
t
lause :p (sin
e pis the only assumption). Sin
e two
on
i
ts have o

urred in a row withoutan intervening de
ision, q is an e�e
tive splitter. Be
ause in the
ore DPLLalgorithm, the
urrent � is lost when the algorithm ba
ktra
ks, our imple-mentation of the
a
hing heuristi
 saves � as soon as it rea
hes a
on
i
t, in
ase it turns out that the last splitter is e�e
tive.3.1 Non-Clausal Boolean Constraint PropagationIf we translate a formula to CNF, we may be able to make valuable dedu
tionsby BCP that we would not be able to make on the formula in non-
lausalform (sin
e BCP as des
ribed works only on
lauses). But the non-
lausalheuristi
s depend on the stru
ture of the formula, whi
h is lost in translationto CNF. We
an get the bene�ts of both approa
hes by keeping both thenon-
lausal formula and its CNF translation, and using the �rst for non-
lausal heuristi
s and the se
ond for BCP. (We
onvert to an equisatis�ableformula in de�nitional CNF, introdu
ing a fresh variable for ea
h non-atomi
sub-expression to avoid the potentially exponential blowup in the size of theresult.)Consider Figure 3, whi
h shows the translation of a simple formula to6

Barrett, Donham(a ^ b) _ (
 ^ d) �(e1_e2)^(e1_:a_:b)^(:e1_a)^(:e1_b)^(e2_:
:d)^(:e2
)^(:e2_d)Fig. 3. De�nitional CNFde�nitional CNF. Fresh variables e1 and e2 are introdu
ed to represent (a^ b)and (
 ^ d), respe
tively, and the formulas e1 $ (a ^ b) and e2 $ (
 ^ d) aretranslated into 3
lauses ea
h. Now if we make a de
ision :a then BCP willdedu
e :e1 by the third
lause, e2 by the �rst
lause,
 by the sixth
lause,and d by the seventh
lause.Following [9℄ we tried implementing propagation dire
tly on Boolean
on-ne
tives rather than doing BCP on the CNF translation. For example, if theresult of an AND expression is known to be true, then both of its
hild expres-sions must be true. This dire
t propagation
an be done more eÆ
iently thanBCP on the CNF translation. However, in our present implementation the
ost of the �rst-order de
ision pro
edure is mu
h greater than that of BCP,so this optimization does not signi�
antly improve the overall results.4 ResultsFigure 4 gives empiri
al results for the various methods we have dis
ussed on anumber of ben
hmarks from veri�
ation e�orts. We treat the \simple" DPLLsear
h with the DFS splitter heuristi
 as a baseline, and
ompare it to the\fast" sear
h (in
orporating BCP and
on
i
t
lauses), the fast sear
h withadditional
lauses (generated by CNF
onversion of the original formula), thesimple sear
h with the
a
hing heuristi
, and the
ombination of the
a
hingheuristi
 with the fast sear
h and additional CNF
lauses.The table shows the number of splits, the number of splits normalized tothe simple sear
h with DFS, the time in se
onds, and the normalized time inse
onds for ea
h ben
hmark and method. Smaller numbers in the normalized�elds in the table mean that the method does better than simple sear
h withDFS. At the bottom we show the geometri
 mean of the normalized numbersto provide an overall
omparison.With simple sear
h, the
a
hing heuristi
 improves on DFS in both numberof de
isions and time. The fast sear
h with DFS improves on the simple sear
hin number of de
isions, and the addition of CNF
lauses to the fast sear
himproves further on the number of de
isions. Finally, the
ombination of thefast sear
h with CNF
lauses and the
a
hing heuristi
 does better than eithermethod alone in number of de
isions, but is somewhat slower than the
a
hingheuristi
 alone.Noti
e that in general, the
urrent implementation of the \fast" sear
ha
hieves fewer splits, but requires more time. The implementation of the \fast"sear
h is not the subje
t of this paper, but in future work, we expe
t to be ableto optimize its performan
e signi�
antly. One primary reason for our optimismis that our previous system, CVC, whose implementation is similar to that of7

Barrett, DonhamSimple DFS Fast DFS Fast DFS + CNFSplits Se
onds Splits Se
onds Splits Se
ondsa 156 1 0.15 1 1005 6.44 0.85 5.66 930 5.96 0.69 4.63b 56469 1 30.84 1 43581 0.77 47.86 1.55 38608 0.68 132.82 4.31
 5534 1 2.78 1 4241 0.77 4.17 1.50 529 0.10 3.36 1.21d 159 1 0.09 1 184 1.16 0.18 1.96 28 0.18 0.15 1.55e 23674 1 8.49 1 155 0.01 0.35 0.04 186 0.01 0.58 0.07f 703 1 0.10 1 703 1.00 0.29 2.89 26 0.04 0.41 4.12g 4895 1 1.51 1 3114 0.64 3.81 2.51 40951 8.37 440.19 290.56h 282 1 0.27 1 279 0.99 0.64 2.40 1976 7.01 15.69 59.20i 1533 1 0.50 1 1187 0.77 1.57 3.13 21445 13.99 182.80 363.41j 17484 1 5.01 1 13323 0.76 11.48 2.29 813 0.05 2.53 0.50k 21294 1 6.58 1 20621 0.97 19.55 2.97 8 < 0:01 0.14 0.02l 73484 1 21.40 1 54713 0.74 53.92 2.52 2902 0.04 9.56 0.45m 25156 1 5.64 1 23906 0.95 14.54 2.58 10781 0.43 12.89 2.29n 154238 1 22.18 1 412 < 0:01 0.17 0.01 407 < 0:01 0.23 0.01o 134815 1 55.74 1 95910 0.71 221.14 3.97 610 < 0:01 5.18 0.09p 121200 1 48.69 1 82295 0.68 174.64 3.59 696 0.01 6.62 0.14q 3547 1 1.21 1 3547 1.00 6.34 5.23 3506 0.99 16.30 13.44r 595 1 0.19 1 595 1.00 0.71 3.73 7 0.01 0.11 0.60s 1863 1 0.75 1 2543 1.37 1.69 2.26 2418 1.30 2.36 3.16t 314 1 0.30 1 301 0.96 0.45 1.50 277 0.88 1.19 3.99u 331101 1 107.31 1 168984 0.51 126.03 1.17 1133 < 0:01 0.96 0.01v 1282 1 0.56 1 1112 0.87 0.56 1.00 98 0.08 0.20 0.36w 668 1 0.21 1 4 0.01 0.02 0.08 3 < 0:01 0.04 0.19Mean 1.00 1.00 0.47 1.38 0.10 1.08Simple DFS Simple
a
hing Fast
a
hing + CNFSplits Se
onds Splits Se
onds Splits Se
ondsa 156 1 0.15 1 179 1.15 0.21 1.43 548 3.51 0.46 3.05b 56469 1 30.84 1 19486 0.35 6.85 0.22 399 0.01 0.69 0.02
 5534 1 2.78 1 2350 0.42 1.00 0.36 557 0.10 1.17 0.42d 159 1 0.09 1 118 0.74 0.10 1.03 21 0.13 0.13 1.37e 23674 1 8.49 1 6512 0.28 3.24 0.38 124 0.01 0.37 0.04f 703 1 0.10 1 703 1.00 0.11 1.09 26 0.04 0.22 2.24g 4895 1 1.51 1 936 0.19 0.83 0.55 1917 0.39 27.27 18.00h 282 1 0.27 1 443 1.57 0.58 2.18 737 2.61 13.63 51.44i 1533 1 0.50 1 1533 1.00 1.46 2.91 3795 2.48 60.18 119.65j 17484 1 5.01 1 22010 1.26 6.21 1.24 784 0.04 2.54 0.51k 21294 1 6.58 1 490 0.02 0.19 0.03 8 < 0:01 0.14 0.02l 73484 1 21.40 1 90861 1.24 26.30 1.23 786 0.01 2.53 0.12m 25156 1 5.64 1 29943 1.19 6.58 1.17 389 0.02 0.56 0.10n 154238 1 22.18 1 130702 0.85 21.60 0.97 407 < 0:01 0.23 0.01o 134815 1 55.74 1 100208 0.74 86.57 1.55 576 < 0:01 11.30 0.20p 121200 1 48.69 1 87814 0.72 41.03 0.84 662 0.01 6.74 0.14q 3547 1 1.21 1 3547 1.00 1.51 1.24 3464 0.98 29.38 24.22r 595 1 0.19 1 180 0.30 0.08 0.41 7 0.01 0.11 0.56s 1863 1 0.75 1 594 0.32 0.37 0.49 876 0.47 1.21 1.61t 314 1 0.30 1 43 0.14 0.06 0.21 37 0.12 0.27 0.89u 331101 1 107.31 1 1210 < 0:01 0.39 < 0:01 1821 0.01 3.88 0.04v 1282 1 0.56 1 315 0.25 0.12 0.22 95 0.07 0.28 0.49w 668 1 0.21 1 408 0.61 0.20 0.96 3 < 0:01 0.04 0.20Mean 1.00 1.00 0.41 0.53 0.04 0.55Fig. 4. Results8

Barrett, Donhamthe \fast" engine, ex
ept that the Boolean part does not produ
e proofs, isable to do many more splits per se
ond than the \fast" engine of CVC Lite.We do not believe that proof-produ
tion a

ounts for all of the performan
edi�eren
e. This work shows that we
an vastly de
rease the number of splitsby
ombining non-
lausal and SAT-based heuristi
s. With further work weshould be able to a
hieve a similar improvement in performan
e.Referen
es[1℄ Clark Barrett and Sergey Berezin. A proof-produ
ing boolean sear
h engine.In CADE-19 Workshop: Pragmati
s of De
ision Pro
edures in AutomatedReasoning (PDPAR), July 2003. Miami, Florida, USA.[2℄ Clark Barrett and Sergey Berezin. CVC-Lite: A new implementation ofthe
ooperating validity
he
ker. In Pro
eedings of the 16th InternationalConferen
e on Computer-Aided Veri�
ation (CAV), April 2004. To appear.[3℄ Clark Barrett, David Dill, and Jeremy Levitt. Validity
he
king for
ombinations of theories with equality. In Mandayam Srivas and AlbertCamilleri, editors, Formal Methods in Computer-Aided Design, volume 1166 ofLe
ture Notes in Computer S
ien
e, pages 187{201. Springer-Verlag, November1996. Palo Alto, California, November 6{8.[4℄ Clark W. Barrett, David L. Dill, and Aaron Stump. Che
king Satis�ability ofFirst-Order Formulas by In
remental Translation to SAT. In Ed Brinksma andKim Guldstrand Larsen, editors, 14th International Conferen
e on ComputerAided Veri�
ation (CAV), volume 2404 of Le
ture Notes in Computer S
ien
e,pages 236{249. Springer-Verlag, 2002. Copenhagen, Denmark.[5℄ Martin Davis, George Logemann, and Donald Loveland. A ma
hine programfor theorem-proving. Communi
ations of the ACM, 5:394{397, July 1962.[6℄ Martin Davis and Hilary Putnam. A
omputing pro
edure for quanti�
ationtheory. Journal of the ACM, 7(3):201{215, July 1960.[7℄ Leonardo de Moura, Harald Ruess, and Maria Sorea. Lazy Theorem Provingfor Bounded Model Che
king over In�nite Domains. In 18th InternationalConferen
e on Automated Dedu
tion, 2002.[8℄ Corma
 Flanagan, Rajeev Joshi, Xinming Ou, and James Saxe. TheoremProving using Lazy Proof Expli
ation. In 15th International Conferen
e onComputer Aided Veri�
ation (CAV), Le
ture Notes in Computer S
ien
e.Springer-Verlag, 2003.[9℄ Malay K. Ganai, Pranav Ashar, Aarti Gupta, Lintao Zhang, and SharadMalik. Combining strengths of
ir
uit-based and
nf-based algorithms for ahigh-performan
e sat solver. In Pro
eedings of the 39th Conferen
e on DesignAutomation, pages 747{750. ACM Press, 2002.9

Barrett, Donham[10℄ Jeremy R. Levitt. Formal Veri�
ation Te
hniques for Digital Systems. PhDthesis, Stanford University, De
ember 1998.[11℄ J. Marques-Silva and K. Sakallah. GRASP: A Sear
h Algorithm forPropositional Satis�ability. IEEE Transa
tions on Computers, 48(5):506{521,1999.[12℄ M. Moskewi
z, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Cha�:Engineering an EÆ
ient SAT Solver. In 39th Design Automation Conferen
e,2001.[13℄ Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A CooperatingValidity Che
ker. In Ed Brinksma and Kim Guldstrand Larsen, editors, 14thInternational Conferen
e on Computer Aided Veri�
ation (CAV), volume 2404of Le
ture Notes in Computer S
ien
e, pages 500{504. Springer-Verlag, 2002.Copenhagen, Denmark.

10

	Introduction
	Efficient SAT Algorithms
	Non-Clausal Decision Heuristics

	Combining Non-Clausal Heuristics with SAT Methods
	Non-Clausal Boolean Constraint Propagation

	Results
	References

