
Validity Checking for Combinations of Theorieswith EqualityClark Barrett, David Dill, and Jeremy LevittComputer Systems Laboratory, Stanford University, Stanford CA 94305, USA
Abstract. An essential component in many veri�cation methods is afast decision procedure for validating logical expressions. This paperpresents the algorithm used in the Stanford Validity Checker (SVC)which has been used to aid several realistic hardware veri�cation ef-forts. The logic for this decision procedure includes Boolean and un-interpreted functions and linear arithmetic. We have also successfullyincorporated other interpreted functions, such as array operations andlinear inequalities. The primary techniques which allow a complete ande�cient implementation are expression sharing, heuristic rewriting, andcongruence closure with interpreted functions. We discuss these tech-niques and present the results of initial experiments in which SVC isused as a decision procedure in PVS, resulting in dramatic speed-ups.1 IntroductionDecision procedures are emerging as a central component of formal veri�cationsystems. Such a procedure can be included as a component of a general-purposetheorem-prover [8, 11], or as part of a domain-speci�c veri�cation system [1].Domain-speci�c systems for formally verifying the correctness of hardware de-signs in particular are becoming increasingly important, and they are beginningto be incorporated into industrial electronic design automation tools. As partof a general design tool used by non-experts, it is important that a veri�cationsystem be automatic. To be useful in practice, it is important that the systembe
exible and e�cient.Complex hardware designs are hierarchical; a decision procedure to verifysuch a design needs to have the
exibility to abstract away lower levels of thehierarchy. While BDDs have been applied to the veri�cation of hardware, theiruse has been limited to certain application domains. Although automatic andvery e�cient for certain problems, they do not easily support abstraction. Fur-thermore, they have di�cultly dealing with common operations, such as mul-tiplication. Other procedures use a system of rewrites based on Knuth-Bendixcompletion to attempt to prove the validity of a formula [7, 3]. However, thesesystems are limited and often ine�cient.

For several years, we have been developing a decision procedure for use inhardware veri�cation. The data structure we use resembles a BDD in that ex-pressions are represented as directed acyclic graphs (DAGs) and reused wheneverpossible. However, by extending our domain from Boolean formulas to decidablefragments of �rst-order logic, we obtain a procedure which is well suited for theveri�cation of hardware. We maintain the bene�ts of automation and e�ciency,while overcoming the drawbacks of BDDs. Lower levels of a design hierarchycan be easily abstracted through the use of uninterpreted functions, while lin-ear arithmetic, inequalities and other functions and relations can be naturallyrepresented and reasoned about.Furthermore, rather than relying on Boolean case-splitting or syntactic re-writing alone, we use a hybrid approach: we begin with a formula � which is anarbitrary Boolean combination of atomic formulas. As in previous procedures [6],we maintain a data structure (called a context), which is a database containing aset of logical expressions partitioned into equivalence classes. The initial contextcontains � and all of its subexpressions, each in its own equivalence class. Theprocedure begins by extracting an atomic formula � from �; it then asserts �and simpli�es � in the new context (i.e. substitutes true for �). During thissimpli�cation, a set of heuristic rewrites are applied which reduce the size of theDAG and increase the overall performance signi�cantly. The procedure then re-cursively checks the simpli�ed formula for validity. If the recursive call concludesthat the formula is not valid, the procedure halts and produces a counterexam-ple. Otherwise, the procedure restores the pre-assertion context, denies � (i.e.substitutes false for �), simpli�es � in the new context, and then checks thesimpli�ed formula recursively as before.To guide the simpli�cation process and allow the integration of rewrite rules,we de�ne a total ordering on expressions. Intuitively, the expression orderingdetermines which of two expressions is the simplest . Given any atomic formula,we can quickly �nd the simplest equivalent expression in the current context.This ordering is monotonic with respect to term structure so that simpli�cationof an expression using substitution and rewriting can proceed from the bottomup, substituting the simplest equivalent formula for each sub-formula.One of the problems that a context must deal with is detecting inconsistentcombinations of atomic formulas, such as x = y and f(x) 6= f(y). Congru-ence closure is a well-known method for dealing with such phenomena [4, 12, 9].Although it is true as was reported in [6] that congruence closure is often un-necessary, we have found practical applications where congruence closure is re-quired. The addition of interpreted functions complicates the congruence closurealgorithm. Nelson and Oppen propose a solution in which each theory contain-ing interpreted functions has a separate decision procedure. These procedurescommunicate by propagating information about equality. Several systems havedecision procedures based on Nelson and Oppen's methods for congruence clo-sure [9], including STeP [8], and the Extended Static Checker (ESC) being devel-oped by Nelson and Detlefs et al. at DEC [10]. Our implementation most closelyresembles that of Shostak [13, 2]. It provides tightly-coupled decision procedures

which interact through a single congruence closure algorithm and is thus moree�cient than the scheme of Nelson and Oppen.The entire system is coded in C++ with due attention to low-level e�ciencyissues. Both the logic and the procedure are signi�cantly extended from thatdescribed by Jones, Dill and Burch in 1995 [6]. Despite the addition of congru-ence closure, linear arithmetic and other extensions, the new system is as fastor faster than the previous version, depending on the examples used.The remaining sections are organized as follows. We �rst give some back-ground and present the basic algorithm in Section 2. Section 3 describes theordering on expressions. Section 4 discusses our implementation of congruenceclosure, and Section 5 compares it with Shostak's method. Section 6 discussesextensibility, and Section 7 presents results and conclusions. The Appendix con-tains some of the more involved proofs.2 Background2.1 The LogicOur logic has the following abstract syntax:expr ::= const| function symbol(expr, : : :, expr)| ite(expr, expr, expr)| (expr = expr)| add(rational const,(rational const, expr),: : :,(rational const, expr))const ::= false| true| rational constant| @symbolExpressions are classi�ed by sort : constants, uninterpreted functions, if-then-else expressions (ites), equalities and add expressions. The addition of otherinterpreted functions such as array operations and linear inequalities is discussedin Section 6. Constants include the Boolean constants true and false, rationalconstants, and special user-de�ned constants distinguished by an initial \@". Byde�nition, no two constants can be equal. Variables are uninterpreted functionsof arity 0. Boolean expressions are represented in terms of ites.The syntax de�nes an abstract syntax tree; in the remainder of the paperwhenever we refer to an expression, we are referring to its abstract syntax tree.If � and � are two expressions, we say that � is a subexpression of � if � is asubtree of �. We say that � is a child of � if � is a subtree rooted at a child ofthe root of �. In this case, we also say that � is a parent of �. The depth of anexpression is de�ned to be the height of its tree. Formally,De�nition 1 (Depth) The depth of an expression �, D(�), is de�ned recur-sively as: if � has no children, D(�) = 0. Otherwise, D(�) = maxfD(c) j c is achild of �g+ 1:

Since add expressions are interpreted, they behave a little bit di�erently. Wede�ne the depth of an add expression to be the depth of its least simple child. Ine�ect, the least simple child represents the add expression when it is comparedwith other sorts of expressions. More will be said about this in Section 3. It isalso necessary to note that the child of an add expression in normal form cannotbe an add expression itself.The following lemma is easily shown by induction on D(�).Lemma1. If � is a subexpression of � and � is not an add expression, thenD(�) < D(�).An important concept is that of an atomic expression. An atomic expressionis de�ned as an expression containing no ite subexpressions.1As was previously stated, expressions are represented by DAGs. Each expres-sion has an entry in a hash table. This ensures that there is one unique copyfor every expression and enables sharing of subexpressions in the DAG. Beforeinserting an expression into the hash table, certain rewrite rules are applied. Anexample of such a rewrite rule is:ite(�; �; �) ! ite(�; true; �):As mentioned above, a context consists of a set of expressions partitionedinto equivalence classes. These classes are maintained using Tarjan's union and�nd primitives 2 [14]. Each equivalence class contains a unique representativeelement called the equivalence class representative which is an expression usedto represent the class. If expressions � and � are in the same equivalence classin context C, we say that � �C �.2.2 Validation AlgorithmA simple validation algorithm (based on the one used in [6]) is shown in Figure1. Given an expression, we pick an atomic expression (called a splitter) thatappears as the if-part of an ite subexpression and perform a case split. Werepeat this recursively, reducing the ite to its then-part or else-part on each case1 Ideally, an atomic expression would be an expression containing no Boolean subex-pressions. However, since we do not store explicit type information we can onlyidentify a Boolean expression if it appears in the if-part of an ite. Though this the-oretically limits the completeness of our algorithm, we have not found it to be aproblem for practical applications. The issue can be resolved fairly easily by addingexplicit typing or more sophisticated type inference.2 In our implementation, (as in [13]) union(a; b) is deterministic about which �ndpointer gets changed; in our case it always sets �nd(b) equal to a. This is di�erentfrom Tarjan's union which sets the �nd of the tree with smaller rank. Althoughthis decreases the theoretical worst-case performance of �nd, the actual impact isnegligible since the program spends very little time in the union/�nd code. Also,we do use path-compression (in �nd) which has a much more signi�cant e�ect thanunion-by-rank since there are many more calls to �nd than to union.

Validate(e) Assert(e)e := Simp(e); CASE e OFsplitter := FindSplitter(e); a = b : Merge(a, b);IF e = true THEN ELSE : Merge(true, e);RETURN true; ENDCASESIF splitter = NULL THENRETURN false; Deny(e)PushContext; CASE e OFAssert(splitter); a = b : add (a,b) to diseq listresult := Validate(e); ELSE : Merge(false, e);PopContext; ENDCASESIF result = true THEN BEGINPushContext; Merge(e1,e2)Deny(splitter); union(e1,e2);result := Validate(e);PopContext; NewExpr(e)END Perform rewrites on eRETURN result; IF e not in hash table THEN BEGINinsert e in hash tableSimp(e) �nd(e) := e;e := Signature(e); ENDIF e is of the form a = b AND RETURN e;(a',b') 2 diseq listwhere �nd(a')=a and Signature(e)�nd(b')=b THEN RETURNRETURN false; NewExpr(f(Simp(t1),...,Simp(tn)));ELSE where e = f(t1,...,tn)RETURN �nd(e);Fig. 1. Basic Validation Algorithm. Note that true indicates the constant ex-pression, whereas true simply refers to the Boolean value.split. If the expression reduces to true when all the splitters are exhausted, wereturn true, otherwise we return false.The algorithm presented in this paper is a re�nement of the one shown inFigure 1, so we will start by describing this simpler version �rst. The purposeof Merge is to join the equivalence classes of the two atomic expressions passedto it. Merge is always called with the �rst expression simpler than the second;in particular, equality expressions are always rewritten to ensure that the left-hand side is simpler than the right-hand side. We will discuss what it meansfor one expression to be simpler than the other in the next section. Recall thatunion makes the �rst argument the new equivalence class representative for themerged equivalence class. Simp recursively traverses an expression, replacing eachsubexpression with its equivalence class representative. It also detects equalitieswhich are contradictory. This is done by maintaining a list of disequalities whichis updated whenever an equality is denied. The signi�cance of the Signaturefunction will be discussed in Section 4. NewExpr allows for expression sharing by

checking if an expression already exists before creating it. One important featureof our implementation is that the function FindSplitter is free to choose anyatomic Boolean expression, making it easy to add or change splitting heuristics.The algorithm presented in Figure 1 is sound and complete for Boolean tau-tology checking but is incomplete for logics which include interpreted and unin-terpreted functions. For example, it cannot even validatef(a) 6= f(b)) a 6= b:We will show how to complete the algorithm in Section 4, but �rst we discusswhat it means for one expression to be simpler than another and why this isimportant.3 Expression OrderingWe use a set of rules to determine a total ordering � on the expressions in ourlogic. If � � �, we say that � is simpler than �. This ordering was designed tohave two convenient monotonicity properties. First, it is monotonic with respectto subexpressions. That is, if � is a subexpression of �, then � � �. Second, itis monotonic with respect to substitution, so that if we replace a subexpressionwith a simpler subexpression, the result is simpler. These properties aid intuitionas well as implementation.As demonstrated by Shostak [13], it is possible to e�ciently implementtightly-coupled interacting decision procedures without an ordering on expres-sions. However, there are several signi�cant bene�ts to implementing an or-dering: without a monotonic ordering, it is possible to have �nd(a) = b and�nd(f(b)) = f(a). This kind of behavior is counterintuitive and can increase thedi�culty and the complexity of the implementation signi�cantly. On the otherhand, monotonicity ensures that whenever we assert that two expressions areequal, the simpler of the two can be substituted for the other throughout theDAG resulting in a more intuitive representation. More importantly, such sub-stitution increases sharing and leads to a more compact representation in theDAG.Perhaps most importantly, by enforcing that any rewrites which are appliedalways result in a simpler expression, a monotonic ordering ensures that theheuristic rewrites cannot form an in�nite loop. Such rewrites can have a signi�-cant impact on performance. On a set of test cases taken from actual veri�cationwork, the average speed-up with rewrites is about 2, excluding one large examplewhich has a speed-up of 14.5.The ordering we use is de�ned by the following rules (applied in order).1. Constant expressions are always simpler than non-constant expressions. Forarbitrary Boolean, rational and user-de�ned constants b, r and c, we de�neb � r � c. For Booleans, we simply have false � true. Rational constants areordered numerically and user-de�ned constants are ordered lexicographically.

2. add expressions behave like their most complex child when compared withexpressions of a di�erent sort (if comparing directly with the most complexchild, the child is simpler). When comparing two add expressions, theirchildren are compared from most complex to least complex. The �rst pairof children which are not equivalent determines the ordering.3. If two expressions have di�erent depths, the one with the smaller depth issimpler.4. We de�ne uninterpreted functions to be simpler than equalities and equalitiesto be simpler than ites. If two expressions are of the same sort, they arecompared as follows: If the two expressions are uninterpreted functions withdi�erent function names, the expression with the lexicographically simplername is the simplest; otherwise, the children of the expressions are comparedin order, and the �rst pair of children which are not equivalent determinethe ordering.Lemma2. Rules 1-4 determine a total order on expressions.The proof is omitted, but is straightforward and can be accomplished by casesplitting. We state the monotonicity properties in two theorems.Theorem3. If � is a subexpression of � then � � �.Theorem4. If �0 � �, � is a subexpression of �, and �0 is the result ofreplacing � with �0 in �, then �0 � �.The proof of the Theorem 3 is in the appendix, and the proof Theorem 4 isomitted.4 Congruence ClosureA context C is said to be closed with respect to congruences if the followingproperty holds for all expressions � and � in C:Property 1 If � and � are expressions of the same sort with the same numberof children, and if each pair of corresponding children are in the same equivalenceclass, then � and � are in the same equivalence class.The notion of a signature [4] is helpful in ensuring that this property holds.The signature of an expression e denoted signature(e) is de�ned to be the ex-pression in which each child has been replaced with its equivalence class rep-resentative (notice that this is what the function Signature in Figure 1 does).Each expression u maintains a pointer to the expression which is its signature.We denote this expression by sig(u). In order to ensure that Property 1 holds, wemust enforce that sig(u) = signature(u). Each equivalence class representativemaintains a list (called the use-list) of expressions in which the equivalence classrepresentative appears as a child.

Simp(e) Deny(e)IF e is atomic THEN Merge(false, e);RETURN �nd(e);ELSE NewExpr(e)RETURN �nd(Signature(e)); Solve, normalize, and rewriteIF e is in hash table THENMerge(a, b) RETURN e;IF �nd(a) 6= �nd(b) THEN BEGIN ELSE BEGINIF IsConst(a) AND IsConst(b) THEN insert e in hash tableInconsistent := true; sig(e) := e;ELSE BEGIN �nd(e) := e;union(a, b); use(e) := fg;FOREACH u IN use(b) FOREACH child c of e DOIF sig(u) = u THEN BEGIN use(c) := use(c) [e;sig(u) := Signature(u); ENDIF �nd(u) 6= �nd(sig(u)) THEN RETURN e;IF u = �nd(u) THENMerge(sig(u), u);ELSEAssert(NewExpr(�nd(u) = �nd(sig(u))));ENDENDEND Fig. 2. Modi�cations to the original algorithm.Figure 2 shows the modi�cations needed to implement congruence closure. Italso includes modi�cations necessary for dealing with add expressions. NewExprnow puts add expressions in a normal form with respect to their children, inaddition to performing rewrites. Furthermore, if an equality involves one or twoadd expressions, it is solved so that the most complex child of the add expres-sions appears alone on the right-hand side. This guarantees that when we assertsuch an equality, the most complex child expression will be replaced with a sumof simpler expressions. Thus, variable elimination occurs automatically. In fact,the interaction between solving and congruence closure is fairly subtle and is oneof the reasons that expression ordering was originally introduced; we wanted toguarantee that solving produces a simpler expression.Whereas the algorithm in Figure 1 is unable to detect inconsistent assertions,detecting inconsistency in the new algorithm is surprisingly simple. A context isinconsistent if and only if there is an equivalence class which contains more thanone constant. This is because any other inconsistency will eventually propagateto equating true and false which are both constants.The purpose of the additional code in Merge is to maintain the followinginvariant which we show is equivalent to Property 1. Recall that u �C v meansthat u and v are in the same equivalence class (i.e. �nd(u) = �nd(v)).

Theorem5. A context C satis�es Property 1 if for each expression u, u �Csignature(u).Proof: Suppose u �C signature(u) for each expression u in C. Let � and �be any two expressions which are of the same sort and for which correspondingchildren are in the same equivalence class. By de�nition, then, signature(�) =signature(�). But we know that �nd(�) = �nd(signature(�)) and �nd(�) =�nd(signature(�), so �nd(�) = �nd(�) and thus � �C �. 2Since our algorithm creates new signatures as it goes, a concern is whether anin�nite number of new signatures could be generated. For example, if we assertf(x) = x and if we make �nd(x) = f(x), then the signature of f(x) becomesf(f(x)). This process could then repeat. Theorem 3 guarantees that this willnot happen since it is impossible for the equivalence class representative of anexpression to be one of its subexpressions. This is another bene�t of monotonicityin our expression ordering.We claim that with the modi�cations shown in Figure 2, every pair of ex-pressions in the context will satisfy Property 1 on each call to Validate:Theorem6. Each time Assert or Deny is called from Validate, the resultingcontext is closed with respect to congruences.The proof can be found in the appendix.A fairly signi�cant optimization is to only maintain congruence closure foratomic expressions that are not constants. We can do this because completenessonly requires that we know whether an expression is true in a terminating caseof Validate, and in all such terminating cases the �nal expression is atomic.An additional bene�t of implementing congruence closure is the ease withwhich disequalities can be handled. In Figure 1, disequalities between equiva-lence classes are maintained in a special-purpose disequality table. In the newalgorithm, in order to deny a = b (or conceptually, assert a 6= b), we simplymerge a = b with false. Now, if we ever try to equate a and b, the equalitywill become equal to true. As mentioned above, this will result in attemptingto merge true and false, and the inconsistency will be discovered.5 A Comparison to Shostak's AlgorithmAs stated in the introduction, our implementation most closely resembles Shos-tak's algorithm for congruence closure [13]. Recently, Cyrluk et al. published acomplete and rigorous analysis of Shostak's algorithm[2]. For ease of compar-ison, we have written the code in this paper in a similar fashion. Despite thesimilarities, there are some signi�cant di�erences.First, and perhaps most importantly, Shostak's method requires that expres-sions be converted to disjunctive normal form. Our algorithm does not requirethis. Not only does this eliminate the overhead of converting to DNF, but it also

gives our technique a tremendous advantage when there is a large amount ofsharing in the expression DAG.Second, we allow the inclusion of heuristic rewrite rules which can signi�-cantly improve performance (as discussed earlier).Third, we implement signatures as actual expressions, rather than as tagsassociated with expressions. This allows us to compute the congruence closureusing only a single loop whereas Shostak's method requires a double loop. Thereason for this is as follows. Suppose we merge expressions a and b so that�nd(b) becomes a. We want to guarantee that every expression whose signaturecontains b is updated and then merged with any other expressions which havethe same signature. A single loop over all parents of b is necessary to updateall the signatures. In Shostak's implementation, a second loop is required: if uis a parent of b whose signature has changed, then for each such u, all parentsof a are checked to see if any have the same signature as u. Since we representsignatures as expressions, the second loop is unnecessary: we simply need toensure that each expression is in the same equivalence class as its signature.Since the signatures of the parents of a have not changed, there is no need torevisit them. While compared to Shostak's procedure our algorithm generatesmany extra expressions when a signature changes multiple times, in addition tomaking the algorithm simpler these extra expressions are actually required inorder to return to previous contexts. To avoid updating these old signatures inthe congruence closure computation, we check each expression in the use list tosee if it is its own signature. If it is not, we know it is an old signature and skipit. The cost of checking old signatures is also o�set by another advantage whichcomes from using expressions for signatures. Shostak's code requires that the uselist of an equivalence class representative contains all expressions which have achild in that equivalence class. We only require that their signatures be in theuse list. Thus if there are multiple expressions with the same signature, we havea single entry in the use list whereas an implementation of Shostak's algorithmwill have an entry for each expression.Finally, another di�erence is the aggressiveness with which we update andsimplify expressions. Shostak's implementation waits until an expression is usedin an assertion before adding it to use lists; we add expressions to use lists assoon as they are created and we have found it to be faster for many examples.This may be due to the di�erence between reducing a DAG and reducing aconjunct of formulas.Other minor di�erences include the ability to handle disequalities, and sup-port for user-de�ned constants.6 ExtensionsAn advantage of Shostak's method is that his decision procedure easily accom-modates new theories with interpreted functions, as long as they are canoniz-able and algebraically solvable [13]. While our procedure places slightly more

stringent requirement on new theories, new theories are similarly easy to ac-commodate. We require that each new sort of expression be totally ordered andcanonizable and that it be possible to solve an equation over interpreted func-tions for the most complex variable.3 These are the requirements we meet tosupport add expressions.A more complicated extension is adding linear inequalities, since the datastructures which exist for congruence closure are not su�cient to store all ofthe implications of asserting an inequality. We solve this problem by addingadditional lists at each unasserted inequality which contain a set of expressionsimplied by the current context. This approach is slow for expressions which aredominated by inequalities, but quite satisfactory for expressions which containa mix of inequalities, linear arithmetic, Boolean formulas, and array operations.At the cost of making the procedure incomplete, it is possible to even addinterpreted functions which do not satisfy the requirements for canonizability orsolvability. A good example of this is the addition of read and write as newsorts of expressions which implement basic array operations. read takes an arrayand an address and returns the element at that address. write takes an array,an address, and a value, and returns the given array with the new value at thespeci�ed address. Instead of providing a complete theory for these operations,we treat them as uninterpreted functions and add an automatic rewrite whichreduces read(write(s; a1; v); a2) to ite(a1 = a2; v; read(s; a2)).4 Our algorithmis now incomplete in that it is unable to deal with cases in which write expres-sions are directly equated with other expressions. However, it has been su�cientto deal with most of the veri�cation examples that we have encountered. Thisdemonstrates a further advantage of being able to include rewrites.7 Results and ConclusionsAs a point of comparison, we are experimentally using SVC to assist in proofsdone using PVS. Where possible, SVC is used as a decision procedure in place ofPVS's internal procedures which are an implementation of Shostak's algorithm.Often, SVC also replaces sequences of Boolean simpli�cations that are neces-sary in PVS to put formulas into a disjunctive normal form. Since SVC allowsarbitrary Boolean formulas, such simpli�cations are not required.So far, our experiments have included proving a fragment of a bounded re-transmission protocol veri�ed in PVS by Havelund and Shankar [5] and a sim-ple three stage microprocessor pipeline. The results of running the proofs ona HyperSPARC with 128 MB memory are shown in Table 1 and demonstratesigni�cant speedups even for these small examples.The speedup in the actual decision procedure is even more signi�cant thanshown by the data. In the data for PVS with SVC, the time spent inside of SVC3 As in [13], equations involving interpreted functions from more than one theorysolve the topmost interpreted functions by treating interpreted functions from othertheories as variables.4 Adding this rewrite requires a slight adjustment to the expression ordering.

Example PVS PVS with SVCprotocol 78.77s 16.11spipeline 56.65s 19.71sTable 1. PVS example with and without SVC decision procedure.is very small (less than one second) compared to the time PVS spends preparingto send the data to SVC. Of course it is unfair to conclude from these data alonethat our algorithm is signi�cantly superior to Shostak's since PVS is coded inLISP and SVC is coded in C++. It does, however, provide some insight into howSVC compares with other veri�cation tools.We have presented an e�cient and
exible algorithm for validity checkingwith equality and uninterpreted functions. The algorithm improves on previouswork by combining the e�ciency and speed of [6] with the completeness andextensibility of [13]. SVC has been successfully used both as a brute-force hard-ware veri�cation tool, and as a fast supplemental decision procedure for moregeneral theorem provers.Some of the future work we envision is improving the implementation oflinear inequalities, increasing the number of interpreted functions in the logic,and developing improved heuristics for choosing splitters. It is interesting to notethat determining how to choose splitters is very similar to the problem of BDDvariable ordering and so we expect there will be a signi�cant advantage in �ndinggood heuristics.AcknowledgmentsWe would like to thank Jens Skakkeb�k for his invaluable help in puttingtogether and conducting the experiments with PVS, and for uncovering bugsin SVC. We would also like to thank Robert Jones whose initial work on SVClaid the foundation for our continuing e�ort and who provided much appreciatedfeedback as we prepared this paper. This research was supported by ARPA con-tract DABT63-95-C-0049, and by a National Defense Science and EngineeringGraduate Fellowship.AppendixProof of Theorem 3: We �rst show the following lemma.Lemma7. If D(�) < D(�) then � � �Proof: Let �0 be � if � is not an add expression and the most complex child of� if � is an add expression. De�ne �0 similarly so that the ordering of � and �is determined by the ordering of �0 and �0 in accordance with Rule 2. Since addexpressions behave and have the same depth as their most complex child, we

know that D(�0) < D(�0) and since add expressions cannot contain other addexpressions as children, we know that neither �0 nor �0 are add expressions.Now �0 cannot be a constant since its depth is greater than the depth of �0and constants have 0 depth. Thus if Rule 1 applies, it must be the case that�0 is a constant so that �0 � �0. If Rule 1 does not apply, then the ordering isdetermined by Rule 3 which directly implies that �0 � �0. Thus � � �. 2We now proceed to prove Theorem 3. If � is not an add expression, then byLemma 1, D(�) < D(�) and thus by Lemma 7, � � �. If � is an add expression,then there are two cases. If � is a child of �, then by Rule 2, � � �. If � is isa subexpression of a child (recall that the child cannot be an add expression),then � has a smaller depth than the child by Lemma 1. Now since the depth ofthe add expression is the depth of its most complex child, it must be the casethat D(�) < D(�) so that by Lemma 7, � � �. 2Proof of Theorem 6: Initially, every expression is its own signature and its ownequivalence class representative, so by Theorem 5, the context satis�es Property1. Now we must show that this property still holds after a call to Assert orDeny.Suppose that we have an arbitrary context C which satis�es Property 1. Inthe following discussion, we will subscript �nd and signature with the contextto which we are referring. Thus we have:8 u 2 C: u �C signatureC(u):Let C0 = C and let Cn be the context which results from calling Assert or Denyfrom Validate so that for 0 � i � n, Ci represents an intermediate context,and all such intermediate contexts are represented by some Ci. We will use threelemmas:Lemma8. If u �Ci v then u �Cj v where 0 � i � j � n.Proof: Each context is derived from the previous context by either adding anexpression or merging two equivalence classes. Thus, once two expressions are inthe same equivalence class, they will always be in the same equivalence class.Lemma9. If i < j then signatureCj (signatureCi(u)) = signatureCj (u).Proof: Let c be an arbitrary child of u. We know that c �Ci �ndCi(c). ByLemma 8, we know that c �Cj �ndCi(c). This means that in context Cj , c and�ndCi(c) have the same equivalence class representative. Since c and �ndCi(c) arecorresponding children in u and signatureCi(u) respectively, we thus concludethat u and signatureCi(u) have the same signature in context Cj . 2Lemma10. For arbitrary expressions u and v, as a result of executingAssert(NewExpr(�nd(u) = �nd(v))) in context Ci, it will be the case thatu �Cj v for some j > i.

Proof: As mentioned above, NewExpr rewrites equalities into a normal form inwhich the left hand side is simpler than the right hand side. Let �1 = �ndCi(u)and �2 = �ndCi(v). These are already normal form expressions (i.e. no rewritesshould apply), so as long as neither one is an interpreted function, the result ofNewExpr will simply be an equality with the simpler of the two on the left andthe other on the right. Thus the call to Assert leads directly to a call to Mergeand thus u �Ci+1 v. If �1 or �2 is an interpreted function such as add, NewExprwill solve the equality to place the most complicated variable alone on the righthand side of the equation. Thus we will have a new equation of the form �0 = �where � is a single variable which appears in either �1 or �2. Assume withoutloss of generality that it appears in �1. When Assert is called on �0 = �, wewill go through everything on the use list of � and eventually �nd �1. We willreplace � with �0 in �1 to get �2 (or a signature which eventually gets put in thesame equivalence class as �2 if other simpli�cations on �2 were pending whenthe assertion took place). Now, since �1 and �2 eventually end up in the sameequivalence class in some context j > i, it must be the case that u �Cj v. 2We now proceed with the proof of Theorem 6. Suppose that Cn does notsatisfy Property 1. Then there exists some expression e such that it is not thecase that e �Cn signatureCn(e). Let i be the minimum for which e 2 Ci ^:(e �Ci signatureCi(e)) (obviously i > 0). Consider Ci�1. It cannot be thecase that e =2 Ci�1, because NewExpr ensures that each new expression isboth its own signature and its own equivalence class representative. It mustbe the case, then, that e �Ci�1 signatureCi�1(e). Obviously signatureCi�1(e) 6=signatureCi(e). This means that for some child e0 of e, �ndCi�1(e0) 6= �ndCi(e0).The only way for this to happen is if Ci is the result of calling union(a; b)where b = �ndCi�1(e0) and a = �ndCi(e0). In this case, signatureCi�1(e) ison the use list of b. Assuming that we maintain sig pointers correctly so thatsig(u) = signature(u)5, the body of the loop will be executed with u set tosignatureCi�1(e). This will occur in some context Cj where i � j. By Lemma9, signatureCj(u) = signatureCj(e). The result of the body being executed iseither nothing, if u �Cj signatureCj(u), or a call to Merge which merges u andsignatureCj(u), or a call to Assert which results in u � Cj0signatureCj (u) forsome j0 > j by Lemma 10. In each case, we know that u �Ck signatureCk(u)where Ck is the context after executing the body of the loop (clearly k � n).But by Lemma 9, signatureCk(u) = signatureCk(e). Thus, we havesignatureCi�1(e) �Ck signatureCk(e). And by Lemma 8, we know thate �Ck signatureCi�1(e). So e �Ck signatureCk(e) in contradiction to ourassumption that e was not equivalent to its signature in contexts Ci throughCn. 25 It is easy to see that this is true for atomic expressions, the only relevant case in ouroptimized algorithm.

References1. J. R. Burch and D. L. Dill, \Automatic Veri�cation of Microprocessor Control", InComputer Aided Veri�cation, 6th International Conference, 1994.2. D. Cyrluk, P. Lincoln and N. Shankar, \On Shostak's Decision Procedure for Com-binations of Theories", Proceedings of the 13th International Conference on Auto-mated Deduction, New Brunswick, NJ, July 1996, 463-477.3. A. J. J. Dick, \An Introduction to Knuth-Bendix Completion", The Computer Jour-nal 34(1):2-15, 1991.4. P. J. Downey, R. Sethi and R. E. Tarjan, \Variations on the Common SubexpressionProblem", Journal of the ACM, 27(4):758-771, 1980.5. K. Havelund and N. Shankar, \Experiments in Theorem Proving and Model Check-ing for Protocol Veri�cation", In Proceedings of Formal Methods Europe, March1996, 662-681.6. R. B. Jones, D. L. Dill and J. R. Burch, \E�cient Validity Checking for ProcessorVeri�cation", IEEE/ACM International Conference on Computer Aided Design,1995.7. D. E. Knuth and P. B. Bendix, \Simple Word Problems in Universal Algebras",In Computational Problems in Abstract Algebra, ed. J. Leech, 263-297, PergamonPress, 1970.8. Z. Manna, et al., \STeP: the Stanford Temporal Prover", Technique Report STAN-CS-TR-94, Computer Science Department, Stanford, 1994.9. G. Nelson and D. C. Oppen, \Simpli�cation by Cooperating Decision Procedures",ACM Transactions on Programming Languages and Systems, 1(2):245-257, 1979.10. G. Nelson, D. Detlefs, K. R. M. Leino and J. Saxe, \Extended Static CheckingHome page", <URL:http://www.research.digital.com/SRC/esc/Esc.html>, 1996.11. S. Owre, et al., \Formal Veri�cation for Fault-Tolerant Architectures: Prolegomenato the Design of PVS", IEEE Transactions of Software Engineering, 21(2):107-125,1995.12. R. E. Shostak, \An Algorithm for Reasoning About Equality", Communicationsof the ACM, 21(7):583-585, 1978.13. R. E. Shostak, \Deciding Combinations of Theories", Journal of the ACM, 31(1):1-12, 1984.14. R. E. Tarjan, \E�ciency of a Good but not Linear Set Union Algorithm", Journalof the ACM, 22(2):215-225, 1975.

