Validity Checking for Combinations of Theories
with Equality

Clark Barrett, David Dill, and Jeremy Levitt

Computer Systems Laboratory, Stanford University, Stanford CA 94305, USA

Abstract. An essential component in many verification methods is a
fast decision procedure for validating logical expressions. This paper
presents the algorithm used in the Stanford Validity Checker (SVC)
which has been used to aid several realistic hardware verification ef-
forts. The logic for this decision procedure includes Boolean and un-
interpreted functions and linear arithmetic. We have also successfully
incorporated other interpreted functions, such as array operations and
linear inequalities. The primary techniques which allow a complete and
efficient implementation are expression sharing, heuristic rewriting, and
congruence closure with interpreted functions. We discuss these tech-
niques and present the results of initial experiments in which SVC is
used as a decision procedure in PVS, resulting in dramatic speed-ups.

1 Introduction

Decision procedures are emerging as a central component of formal verification
systems. Such a procedure can be included as a component of a general-purpose
theorem-prover [8, 11], or as part of a domain-specific verification system [1].
Domain-specific systems for formally verifying the correctness of hardware de-
signs in particular are becoming increasingly important, and they are beginning
to be incorporated into industrial electronic design automation tools. As part
of a general design tool used by non-experts, it is important that a verification
system be automatic. To be useful in practice, it is important that the system
be flexible and efficient.

Complex hardware designs are hierarchical; a decision procedure to verify
such a design needs to have the flexibility to abstract away lower levels of the
hierarchy. While BDDs have been applied to the verification of hardware, their
use has been limited to certain application domains. Although automatic and
very efficient for certain problems, they do not easily support abstraction. Fur-
thermore, they have difficultly dealing with common operations, such as mul-
tiplication. Other procedures use a system of rewrites based on Knuth-Bendix
completion to attempt to prove the validity of a formula [7, 3]. However, these
systems are limited and often inefficient.

For several years, we have been developing a decision procedure for use in
hardware verification. The data structure we use resembles a BDD in that ex-
pressions are represented as directed acyclic graphs (DAGs) and reused whenever
possible. However, by extending our domain from Boolean formulas to decidable
fragments of first-order logic, we obtain a procedure which is well suited for the
verification of hardware. We maintain the benefits of automation and efficiency,
while overcoming the drawbacks of BDDs. Lower levels of a design hierarchy
can be easily abstracted through the use of uninterpreted functions, while lin-
ear arithmetic, inequalities and other functions and relations can be naturally
represented and reasoned about.

Furthermore, rather than relying on Boolean case-splitting or syntactic re-
writing alone, we use a hybrid approach: we begin with a formula « which is an
arbitrary Boolean combination of atomic formulas. As in previous procedures [6],
we maintain a data structure (called a contezt), which is a database containing a
set of logical expressions partitioned into equivalence classes. The initial context
contains « and all of its subexpressions, each in its own equivalence class. The
procedure begins by extracting an atomic formula 8 from «; it then asserts 3
and simplifies « in the new context (i.e. substitutes true for). During this
simplification, a set of heuristic rewrites are applied which reduce the size of the
DAG and increase the overall performance significantly. The procedure then re-
cursively checks the simplified formula for validity. If the recursive call concludes
that the formula is not valid, the procedure halts and produces a counterexam-
ple. Otherwise, the procedure restores the pre-assertion context, denies 5 (i.e.
substitutes false for), simplifies « in the new context, and then checks the
simplified formula recursively as before.

To guide the simplification process and allow the integration of rewrite rules,
we define a total ordering on expressions. Intuitively, the expression ordering
determines which of two expressions is the simplest. Given any atomic formula,
we can quickly find the simplest equivalent expression in the current context.
This ordering is monotonic with respect to term structure so that simplification
of an expression using substitution and rewriting can proceed from the bottom
up, substituting the simplest equivalent formula for each sub-formula.

One of the problems that a context must deal with is detecting inconsistent
combinations of atomic formulas, such as ¢ = y and f(z) # f(y). Congru-
ence closure is a well-known method for dealing with such phenomena [4, 12, 9].
Although it is true as was reported in [6] that congruence closure is often un-
necessary, we have found practical applications where congruence closure is re-
quired. The addition of interpreted functions complicates the congruence closure
algorithm. Nelson and Oppen propose a solution in which each theory contain-
ing interpreted functions has a separate decision procedure. These procedures
communicate by propagating information about equality. Several systems have
decision procedures based on Nelson and Oppen’s methods for congruence clo-
sure [9], including STeP [8], and the Extended Static Checker (ESC) being devel-
oped by Nelson and Detlefs et al. at DEC [10]. Our implementation most closely
resembles that of Shostak [13, 2]. It provides tightly-coupled decision procedures

which interact through a single congruence closure algorithm and is thus more
efficient than the scheme of Nelson and Oppen.

The entire system is coded in C++ with due attention to low-level efficiency
issues. Both the logic and the procedure are significantly extended from that
described by Jones, Dill and Burch in 1995 [6]. Despite the addition of congru-
ence closure, linear arithmetic and other extensions, the new system is as fast
or faster than the previous version, depending on the examples used.

The remaining sections are organized as follows. We first give some back-
ground and present the basic algorithm in Section 2. Section 3 describes the
ordering on expressions. Section 4 discusses our implementation of congruence
closure, and Section 5 compares it with Shostak’s method. Section 6 discusses
extensibility, and Section 7 presents results and conclusions. The Appendix con-
tains some of the more involved proofs.

2 Background

2.1 The Logic

Our logic has the following abstract syntax:

expr ::= const
function symbol Cexpr, ..., expr)
ite Cexpr, ezpr, expr)
(expr = expr)
add (rational const, (rational const, expr),..., (rational const, erpr))
const ::= false
| true
I rational constant
| @symbol

Expressions are classified by sort: constants, uninterpreted functions, if-then-
else expressions (ites), equalities and add expressions. The addition of other
interpreted functions such as array operations and linear inequalities is discussed
in Section 6. Constants include the Boolean constants true and false, rational
constants, and special user-defined constants distinguished by an initial “@Q”. By
definition, no two constants can be equal. Variables are uninterpreted functions
of arity 0. Boolean expressions are represented in terms of ites.

The syntax defines an abstract syntax tree; in the remainder of the paper
whenever we refer to an expression, we are referring to its abstract syntax tree.
If a and (3 are two expressions, we say that « is a subexpression of 3 if « is a
subtree of B. We say that « is a child of g if « is a subtree rooted at a child of
the root of 3. In this case, we also say that is a parent of a. The depth of an
expression is defined to be the height of its tree. Formally,

Definition 1 (Depth) The depth of an expression «, D(«), is defined recur-
sively as: if a has no children, D(«) = 0. Otherwise, D(a) = max{D(c) | ¢ is a
child of a} + 1.

Since add expressions are interpreted, they behave a little bit differently. We
define the depth of an add expression to be the depth of its least simple child. In
effect, the least simple child represents the add expression when it is compared
with other sorts of expressions. More will be said about this in Section 3. It is
also necessary to note that the child of an add expression in normal form cannot
be an add expression itself.

The following lemma is easily shown by induction on D(f).

Lemmal. If a is a subexpression of 3 and (8 is not an add expression, then
D(a) < D(B).

An important concept is that of an atomic expression. An atomic expression
is defined as an expression containing no ite subexpressions.!

As was previously stated, expressions are represented by DAGs. Each expres-
sion has an entry in a hash table. This ensures that there is one unique copy
for every expression and enables sharing of subexpressions in the DAG. Before
inserting an expression into the hash table, certain rewrite rules are applied. An
example of such a rewrite rule is:

ite(a, a, B) — ite(q, true, 8).

As mentioned above, a context consists of a set of expressions partitioned
into equivalence classes. These classes are maintained using Tarjan’s union and
find primitives 2 [14]. Each equivalence class contains a unique representative
element called the equivalence class representative which is an expression used
to represent the class. If expressions « and 8 are in the same equivalence class
in context C, we say that a ~¢ (.

2.2 Validation Algorithm

A simple validation algorithm (based on the one used in [6]) is shown in Figure
1. Given an expression, we pick an atomic expression (called a splitter) that
appears as the if-part of an ite subexpression and perform a case split. We
repeat this recursively, reducing the ite to its then-part or else-part on each case

! Ideally, an atomic expression would be an expression containing no Boolean subex-
pressions. However, since we do not store explicit type information we can only
identify a Boolean expression if it appears in the if-part of an ite. Though this the-
oretically limits the completeness of our algorithm, we have not found it to be a
problem for practical applications. The issue can be resolved fairly easily by adding
explicit typing or more sophisticated type inference.

In our implementation, (as in [13]) wnion(a,b) is deterministic about which find
pointer gets changed; in our case it always sets find(b) equal to a. This is different
from Tarjan’s union which sets the find of the tree with smaller rank. Although
this decreases the theoretical worst-case performance of find, the actual impact is
negligible since the program spends very little time in the union/find code. Also,
we do use path-compression (in find) which has a much more significant effect than
union-by-rank since there are many more calls to find than to union.

~

Validate(e)

e := Simp(e);
splitter := FindSplitter(e);
IF e = true THEN
RETURN true;
IF splitter = NULL THEN
RETURN false;
PushContext;
Assert (splitter);
result := Validate(e);
PopContext;
IF result = true THEN BEGIN
PushContext;
Deny (splitter);
result := Validate(e);
PopContext;
END

Assert (e)
CASE e OF
a =>b : Merge(a, b);
ELSE : Merge(true, e);
ENDCASES

Deny (e)
CASE e OF
a =b : add (a,b) to diseq list
ELSE : Merge(false, e);
ENDCASES

Merge (el,e2)
union(el,e2);

NewExpr (e)
Perform rewrites on e

IF e not in hash table THEN BEGIN
insert e in hash table

RETURN result;

Simp (e) find(e) := e;
e := Signature(e); END
IF e is of the form a = b AND RETURN e;

(a’,b’) € diseq list
where find(a’)=a and Signature(e)
find(b’)=b THEN RETURN
RETURN false; NewExpr (f (Simp(¢1),...,8imp(t,)));
ELSE where e = £(t1,...,t,)
RETURN find(e) ;

Fig. 1. Basic Validation Algorithm. Note that true indicates the constant ex-
pression, whereas true simply refers to the Boolean value.

split. If the expression reduces to true when all the splitters are exhausted, we
return true, otherwise we return false.

The algorithm presented in this paper is a refinement of the one shown in
Figure 1, so we will start by describing this simpler version first. The purpose
of Merge is to join the equivalence classes of the two atomic expressions passed
to it. Merge is always called with the first expression simpler than the second;
in particular, equality expressions are always rewritten to ensure that the left-
hand side is simpler than the right-hand side. We will discuss what it means
for one expression to be simpler than the other in the next section. Recall that
union makes the first argument the new equivalence class representative for the
merged equivalence class. Simp recursively traverses an expression, replacing each
subexpression with its equivalence class representative. It also detects equalities
which are contradictory. This is done by maintaining a list of disequalities which
is updated whenever an equality is denied. The significance of the Signature
function will be discussed in Section 4. NewExpr allows for expression sharing by

checking if an expression already exists before creating it. One important feature
of our implementation is that the function FindSplitter is free to choose any
atomic Boolean expression, making it easy to add or change splitting heuristics.

The algorithm presented in Figure 1 is sound and complete for Boolean tau-
tology checking but is incomplete for logics which include interpreted and unin-
terpreted functions. For example, it cannot even validate

fla) # f(b) = a # b

We will show how to complete the algorithm in Section 4, but first we discuss
what it means for one expression to be simpler than another and why this is
important.

3 Expression Ordering

We use a set of rules to determine a total ordering < on the expressions in our
logic. If o < 3, we say that « is simpler than . This ordering was designed to
have two convenient monotonicity properties. First, it is monotonic with respect
to subexpressions. That is, if a is a subexpression of 3, then a < . Second, it
is monotonic with respect to substitution, so that if we replace a subexpression
with a simpler subexpression, the result is simpler. These properties aid intuition
as well as implementation.

As demonstrated by Shostak [13], it is possible to efficiently implement
tightly-coupled interacting decision procedures without an ordering on expres-
sions. However, there are several significant benefits to implementing an or-
dering: without a monotonic ordering, it is possible to have find(a) = b and
find(f (b)) = f(a). This kind of behavior is counterintuitive and can increase the
difficulty and the complexity of the implementation significantly. On the other
hand, monotonicity ensures that whenever we assert that two expressions are
equal, the simpler of the two can be substituted for the other throughout the
DAG resulting in a more intuitive representation. More importantly, such sub-
stitution increases sharing and leads to a more compact representation in the
DAG.

Perhaps most importantly, by enforcing that any rewrites which are applied
always result in a simpler expression, a monotonic ordering ensures that the
heuristic rewrites cannot form an infinite loop. Such rewrites can have a signifi-
cant impact on performance. On a set of test cases taken from actual verification
work, the average speed-up with rewrites is about 2, excluding one large example
which has a speed-up of 14.5.

The ordering we use is defined by the following rules (applied in order).

1. Constant expressions are always simpler than non-constant expressions. For
arbitrary Boolean, rational and user-defined constants b, r and ¢, we define
b < r < c. For Booleans, we simply have false < true. Rational constants are
ordered numerically and user-defined constants are ordered lexicographically.

2. add expressions behave like their most complex child when compared with
expressions of a different sort (if comparing directly with the most complex
child, the child is simpler). When comparing two add expressions, their
children are compared from most complex to least complex. The first pair
of children which are not equivalent determines the ordering.

3. If two expressions have different depths, the one with the smaller depth is
simpler.

4. We define uninterpreted functions to be simpler than equalities and equalities
to be simpler than ites. If two expressions are of the same sort, they are
compared as follows: If the two expressions are uninterpreted functions with
different function names, the expression with the lexicographically simpler
name is the simplest; otherwise, the children of the expressions are compared
in order, and the first pair of children which are not equivalent determine
the ordering.

Lemma 2. Rules 1-4 determine a total order on expressions.

The proof is omitted, but is straightforward and can be accomplished by case
splitting. We state the monotonicity properties in two theorems.

Theorem 3. If « is a subexpression of B then a < (.

Theorem4. If o' < «, «a is a subexpression of B, and (' is the result of
replacing o with o in 8, then B' < .

The proof of the Theorem 3 is in the appendix, and the proof Theorem 4 is
omitted.

4 Congruence Closure

A context C is said to be closed with respect to congruences if the following
property holds for all expressions a and 3 in C:

Property 1 If a and 3 are expressions of the same sort with the same number
of children, and if each pair of corresponding children are in the same equivalence
class, then o and 3 are in the same equivalence class.

The notion of a signature [4] is helpful in ensuring that this property holds.
The signature of an expression e denoted signature(e) is defined to be the ex-
pression in which each child has been replaced with its equivalence class rep-
resentative (notice that this is what the function Signature in Figure 1 does).
Each expression v maintains a pointer to the expression which is its signature.
We denote this expression by sig(u). In order to ensure that Property 1 holds, we
must enforce that sig(u) = signature(u). Each equivalence class representative
maintains a list (called the use-list) of expressions in which the equivalence class
representative appears as a child.

Simp (e) Deny (e)

IF e is atomic THEN Merge (false, e);
RETURN find(e);
ELSE NewExpr (e)
RETURN find(Signature(e)); Solve, normalize, and rewrite
IF e is in hash table THEN
Merge(a, b) RETURN e;
IF find(a) # find(b) THEN BEGIN ELSE BEGIN
IF IsConst(a) AND IsConst(b) THEN insert e in hash table
Inconsistent := true; sig(e) := e;
ELSE BEGIN ﬁnd(e) e;
union(a, b); use(e) := {};
FOREACH u IN use(b) FOREACH child c of e DO
IF sig(u) = u THEN BEGIN use(c) := use(c) U e;
sig(u) := Signature(u); END

IF find(u) # find(sig(u)) THEN RETURN e;
IF u = find(u) THEN
Merge (sig(u), w);
ELSE
Assert (NewExpr (find(uw) = find(sig(u))));
END
END
END

Fig. 2. Modifications to the original algorithm.

Figure 2 shows the modifications needed to implement congruence closure. It
also includes modifications necessary for dealing with add expressions. NewExpr
now puts add expressions in a normal form with respect to their children, in
addition to performing rewrites. Furthermore, if an equality involves one or two
add expressions, it is solved so that the most complex child of the add expres-
sions appears alone on the right-hand side. This guarantees that when we assert
such an equality, the most complex child expression will be replaced with a sum
of simpler expressions. Thus, variable elimination occurs automatically. In fact,
the interaction between solving and congruence closure is fairly subtle and is one
of the reasons that expression ordering was originally introduced; we wanted to
guarantee that solving produces a simpler expression.

Whereas the algorithm in Figure 1 is unable to detect inconsistent assertions,
detecting inconsistency in the new algorithm is surprisingly simple. A context is
inconsistent if and only if there is an equivalence class which contains more than
one constant. This is because any other inconsistency will eventually propagate
to equating true and false which are both constants.

The purpose of the additional code in Merge is to maintain the following
invariant which we show is equivalent to Property 1. Recall that u ~¢ v means
that u and v are in the same equivalence class (i.e. find(u) = find(v)).

Theorem 5. A context C' satisfies Property 1 if for each expression u, u ~¢
signature(u).

Proof: Suppose u ~¢ signature(u) for each expression v in C. Let a and f
be any two expressions which are of the same sort and for which corresponding
children are in the same equivalence class. By definition, then, signature(a) =
signature(f). But we know that find(a) = find(signature(a)) and find(3)
find(signature(f), so find(a) = find(8) and thus a ~¢ 3. O

Since our algorithm creates new signatures as it goes, a concern is whether an
infinite number of new signatures could be generated. For example, if we assert
f(z) = x and if we make find(x) = f(x), then the signature of f(z) becomes
f(f(z)). This process could then repeat. Theorem 3 guarantees that this will
not happen since it is impossible for the equivalence class representative of an
expression to be one of its subexpressions. This is another benefit of monotonicity
in our expression ordering.

We claim that with the modifications shown in Figure 2, every pair of ex-
pressions in the context will satisfy Property 1 on each call to Validate:

Theorem 6. Each time Assert or Deny is called from Validate, the resulting
context is closed with respect to congruences.

The proof can be found in the appendix.

A fairly significant optimization is to only maintain congruence closure for
atomic expressions that are not constants. We can do this because completeness
only requires that we know whether an expression is true in a terminating case
of Validate, and in all such terminating cases the final expression is atomic.

An additional benefit of implementing congruence closure is the ease with
which disequalities can be handled. In Figure 1, disequalities between equiva-
lence classes are maintained in a special-purpose disequality table. In the new
algorithm, in order to deny a = b (or conceptually, assert a # b), we simply
merge a = b with false. Now, if we ever try to equate a and b, the equality
will become equal to true. As mentioned above, this will result in attempting
to merge true and false, and the inconsistency will be discovered.

5 A Comparison to Shostak’s Algorithm

As stated in the introduction, our implementation most closely resembles Shos-
tak’s algorithm for congruence closure [13]. Recently, Cyrluk et al. published a
complete and rigorous analysis of Shostak’s algorithm[2]. For ease of compar-
ison, we have written the code in this paper in a similar fashion. Despite the
similarities, there are some significant differences.

First, and perhaps most importantly, Shostak’s method requires that expres-
sions be converted to disjunctive normal form. Our algorithm does not require
this. Not only does this eliminate the overhead of converting to DNF, but it also

gives our technique a tremendous advantage when there is a large amount of
sharing in the expression DAG.

Second, we allow the inclusion of heuristic rewrite rules which can signifi-
cantly improve performance (as discussed earlier).

Third, we implement signatures as actual expressions, rather than as tags
associated with expressions. This allows us to compute the congruence closure
using only a single loop whereas Shostak’s method requires a double loop. The
reason for this is as follows. Suppose we merge expressions a and b so that
find(b) becomes a. We want to guarantee that every expression whose signature
contains b is updated and then merged with any other expressions which have
the same signature. A single loop over all parents of b is necessary to update
all the signatures. In Shostak’s implementation, a second loop is required: if u
is a parent of b whose signature has changed, then for each such w, all parents
of a are checked to see if any have the same signature as u. Since we represent
signatures as expressions, the second loop is unnecessary: we simply need to
ensure that each expression is in the same equivalence class as its signature.
Since the signatures of the parents of a have not changed, there is no need to
revisit them. While compared to Shostak’s procedure our algorithm generates
many extra expressions when a signature changes multiple times, in addition to
making the algorithm simpler these extra expressions are actually required in
order to return to previous contexts. To avoid updating these old signatures in
the congruence closure computation, we check each expression in the use list to
see if it is its own signature. If it is not, we know it is an old signature and skip
it.

The cost of checking old signatures is also offset by another advantage which
comes from using expressions for signatures. Shostak’s code requires that the use
list of an equivalence class representative contains all expressions which have a
child in that equivalence class. We only require that their signatures be in the
use list. Thus if there are multiple expressions with the same signature, we have
a single entry in the use list whereas an implementation of Shostak’s algorithm
will have an entry for each expression.

Finally, another difference is the aggressiveness with which we update and
simplify expressions. Shostak’s implementation waits until an expression is used
in an assertion before adding it to use lists; we add expressions to use lists as
soon as they are created and we have found it to be faster for many examples.
This may be due to the difference between reducing a DAG and reducing a
conjunct of formulas.

Other minor differences include the ability to handle disequalities, and sup-
port for user-defined constants.

6 Extensions

An advantage of Shostak’s method is that his decision procedure easily accom-
modates new theories with interpreted functions, as long as they are canoniz-
able and algebraically solvable [13]. While our procedure places slightly more

stringent requirement on new theories, new theories are similarly easy to ac-
commodate. We require that each new sort of expression be totally ordered and
canonizable and that it be possible to solve an equation over interpreted func-
tions for the most complex variable.? These are the requirements we meet to
support add expressions.

A more complicated extension is adding linear inequalities, since the data
structures which exist for congruence closure are not sufficient to store all of
the implications of asserting an inequality. We solve this problem by adding
additional lists at each unasserted inequality which contain a set of expressions
implied by the current context. This approach is slow for expressions which are
dominated by inequalities, but quite satisfactory for expressions which contain
a mix of inequalities, linear arithmetic, Boolean formulas, and array operations.

At the cost of making the procedure incomplete, it is possible to even add
interpreted functions which do not satisfy the requirements for canonizability or
solvability. A good example of this is the addition of read and write as new
sorts of expressions which implement basic array operations. read takes an array
and an address and returns the element at that address. write takes an array,
an address, and a value, and returns the given array with the new value at the
specified address. Instead of providing a complete theory for these operations,
we treat them as uninterpreted functions and add an automatic rewrite which
reduces read (write(s,al,v),a2) to ite(al = a2, v,read(s,a2)).* Our algorithm
is now incomplete in that it is unable to deal with cases in which write expres-
sions are directly equated with other expressions. However, it has been sufficient
to deal with most of the verification examples that we have encountered. This
demonstrates a further advantage of being able to include rewrites.

7 Results and Conclusions

As a point of comparison, we are experimentally using SVC to assist in proofs
done using PVS. Where possible, SVC is used as a decision procedure in place of
PVS’s internal procedures which are an implementation of Shostak’s algorithm.
Often, SVC also replaces sequences of Boolean simplifications that are neces-
sary in PVS to put formulas into a disjunctive normal form. Since SVC allows
arbitrary Boolean formulas, such simplifications are not required.

So far, our experiments have included proving a fragment of a bounded re-
transmission protocol verified in PVS by Havelund and Shankar [5] and a sim-
ple three stage microprocessor pipeline. The results of running the proofs on
a HyperSPARC with 128 MB memory are shown in Table 1 and demonstrate
significant speedups even for these small examples.

The speedup in the actual decision procedure is even more significant than
shown by the data. In the data for PVS with SVC, the time spent inside of SVC

3 As in [13], equations involving interpreted functions from more than one theory
solve the topmost interpreted functions by treating interpreted functions from other
theories as variables.

* Adding this rewrite requires a slight adjustment to the expression ordering.

Example| PVS |PVS with SVC
protocol [78.77s 16.11s
pipeline [56.65s 19.71s

Table 1. PVS example with and without SVC decision procedure.

is very small (less than one second) compared to the time PVS spends preparing
to send the data to SVC. Of course it is unfair to conclude from these data alone
that our algorithm is significantly superior to Shostak’s since PVS is coded in
LISP and SVC is coded in C++. It does, however, provide some insight into how
SVC compares with other verification tools.

We have presented an efficient and flexible algorithm for validity checking
with equality and uninterpreted functions. The algorithm improves on previous
work by combining the efficiency and speed of [6] with the completeness and
extensibility of [13]. SVC has been successfully used both as a brute-force hard-
ware verification tool, and as a fast supplemental decision procedure for more
general theorem provers.

Some of the future work we envision is improving the implementation of
linear inequalities, increasing the number of interpreted functions in the logic,
and developing improved heuristics for choosing splitters. It is interesting to note
that determining how to choose splitters is very similar to the problem of BDD
variable ordering and so we expect there will be a significant advantage in finding
good heuristics.

Acknowledgments

We would like to thank Jens Skakkebak for his invaluable help in putting
together and conducting the experiments with PVS, and for uncovering bugs
in SVC. We would also like to thank Robert Jones whose initial work on SVC
laid the foundation for our continuing effort and who provided much appreciated
feedback as we prepared this paper. This research was supported by ARPA con-
tract DABT63-95-C-0049, and by a National Defense Science and Engineering
Graduate Fellowship.

Appendix

Proof of Theorem 3: We first show the following lemma.
Lemma7. If D(a) < D(f) then a < 8

Proof: Let o’ be « if a is not an add expression and the most complex child of
a if a is an add expression. Define ' similarly so that the ordering of a and 3
is determined by the ordering of o’ and ' in accordance with Rule 2. Since add
expressions behave and have the same depth as their most complex child, we

know that D(a') < D(f') and since add expressions cannot contain other add
expressions as children, we know that neither o’ nor ' are add expressions.
Now (' cannot be a constant since its depth is greater than the depth of o/
and constants have 0 depth. Thus if Rule 1 applies, it must be the case that
a' is a constant so that o’ < 3'. If Rule 1 does not apply, then the ordering is
determined by Rule 3 which directly implies that o’ < 3. Thus a < S. |

We now proceed to prove Theorem 3. If 3 is not an add expression, then by
Lemma 1, D(a) < D(f) and thus by Lemma 7, « < 8. If 8 is an add expression,
then there are two cases. If « is a child of 3, then by Rule 2, a < 3. If a is is
a subexpression of a child (recall that the child cannot be an add expression),
then « has a smaller depth than the child by Lemma 1. Now since the depth of
the add expression is the depth of its most complex child, it must be the case
that D(a) < D(f) so that by Lemma 7, a < (. |

Proof of Theorem 6: Initially, every expression is its own signature and its own
equivalence class representative, so by Theorem 5, the context satisfies Property
1. Now we must show that this property still holds after a call to Assert or
Deny.

Suppose that we have an arbitrary context C' which satisfies Property 1. In
the following discussion, we will subscript find and signature with the context
to which we are referring. Thus we have:

Yu€ C. u~¢ signaturec(u).

Let Cy = C and let C,, be the context which results from calling Assert or Deny
from Validate so that for 0 < i < n, C; represents an intermediate context,
and all such intermediate contexts are represented by some C;. We will use three
lemmas:

Lemmas8. Ifu ~c, v then u ~c; v where 0 <i < j <n.

Proof: Each context is derived from the previous context by either adding an
expression or merging two equivalence classes. Thus, once two expressions are in
the same equivalence class, they will always be in the same equivalence class.

Lemma9. Ifi < j then signaturec,(signaturec,(u)) = signaturec; (u).

Proof: Let ¢ be an arbitrary child of u. We know that ¢ ~¢, findc,(c). By
Lemma 8, we know that ¢ ~¢; findc,(c). This means that in context Cj, ¢ and
findc, (¢) have the same equivalence class representative. Since ¢ and findc, (¢) are
corresponding children in u and signaturec, (u) respectively, we thus conclude
that v and signaturec, (u) have the same signature in context C;. |

Lemma 10. For arbitrary expressions u and v, as a result of executing
Assert (NewExpr (find(u) = find(v))) in context C;, it will be the case that
u ~cg; v for some j > i.

Proof: As mentioned above, NewExpr rewrites equalities into a normal form in
which the left hand side is simpler than the right hand side. Let a; = findc, (u)
and ay = findci(v). These are already normal form expressions (i.e. no rewrites
should apply), so as long as neither one is an interpreted function, the result of
NewExpr will simply be an equality with the simpler of the two on the left and
the other on the right. Thus the call to Assert leads directly to a call to Merge
and thus u ~¢,,, v. If ay or a; is an interpreted function such as add, NewExpr
will solve the equality to place the most complicated variable alone on the right
hand side of the equation. Thus we will have a new equation of the form o/ = 3
where (is a single variable which appears in either «; or as. Assume without
loss of generality that it appears in ;. When Assert is called on o/ = 3, we
will go through everything on the use list of # and eventually find ;. We will
replace 8 with o' in a; to get as (or a signature which eventually gets put in the
same equivalence class as as if other simplifications on ay; were pending when
the assertion took place). Now, since a; and s eventually end up in the same
equivalence class in some context j > i, it must be the case that u ~¢; v. O

We now proceed with the proof of Theorem 6. Suppose that C),, does not
satisfy Property 1. Then there exists some expression e such that it is not the
case that e ~¢, signaturec, (e). Let ¢ be the minimum for which e € C; A
—(e ~¢, signaturec,(e)) (obviously ¢ > 0). Consider C;_;. It cannot be the
case that e ¢ C;_1, because NewExpr ensures that each new expression is
both its own signature and its own equivalence class representative. It must
be the case, then, that e ~¢, , signaturec, ,(e). Obviously signaturec, ,(e) #
signaturec,(e). This means that for some child e’ of e, findc, | (e') # findc, (€').
The only way for this to happen is if C; is the result of calling wunion(a,b)
where b = findc,_,(e') and a = findc,(e’). In this case, signaturec,_,(e) is
on the use list of b. Assuming that we maintain sig pointers correctly so that
sig(u) = signature(u)®, the body of the loop will be executed with u set to
signaturec; ,(e). This will occur in some context C; where ¢ < j. By Lemma
9, signaturec;(u) = signaturec;(e). The result of the body being executed is
either nothing, if u ~¢; signaturec;(u), or a call to Merge which merges u and
signaturec; (u), or a call to Assert which results in u ~ Cj signaturec; (u) for
some j' > j by Lemma 10. In each case, we know that u ~¢, signaturec, (u)
where C}, is the context after executing the body of the loop (clearly k < n).
But by Lemma 9, signaturec,(u) = signaturec,(e). Thus, we have
signaturec,_,(e) ~¢, signaturec,(e). And by Lemma 8, we know that
e ~¢, signaturec,_,(e). So e ~¢, signaturec,(e) in contradiction to our
assumption that e was not equivalent to its signature in contexts C; through
Ch. O

5 It is easy to see that this is true for atomic expressions, the only relevant case in our
optimized algorithm.

References

1. J. R. Burch and D. L. Dill, “Automatic Verification of Microprocessor Countrol”, In
Computer Aided Verification, 6th International Conference, 1994.

2. D. Cyrluk, P. Lincoln and N. Shankar, “On Shostak’s Decision Procedure for Com-
binations of Theories”, Proceedings of the 13th International Conference on Auto-
mated Deduction, New Brunswick, NJ, July 1996, 463-477.

3. A.J.J. Dick, “An Introduction to Knuth-Bendix Completion”, The Computer Jour-
nal 34(1):2-15, 1991.

4. P. J. Downey, R. Sethi and R. E. Tarjan, “Variations on the Common Subexpression
Problem”, Journal of the ACM, 27(4):758-771, 1980.

5. K. Havelund and N. Shankar, “Experiments in Theorem Proving and Model Check-
ing for Protocol Verification”, In Proceedings of Formal Methods Europe, March
1996, 662-681.

6. R. B. Jones, D. L. Dill and J. R. Burch, “Efficient Validity Checking for Processor
Verification”, IEEE/ACM International Conference on Computer Aided Design,
1995.

7. D. E. Knuth and P. B. Bendix, “Simple Word Problems in Universal Algebras”,
In Computational Problems in Abstract Algebra, ed. J. Leech, 263-297, Pergamon
Press, 1970.

8. Z. Manna, et al., “STeP: the Stanford Temporal Prover”, Technique Report STAN-
CS-TR-94, Computer Science Department, Stanford, 1994.

9. G. Nelson and D. C. Oppen, “Simplification by Cooperating Decision Procedures”,
ACM Transactions on Programming Languages and Systems, 1(2):245-257, 1979.
10. G. Nelson, D. Detlefs, K. R. M. Leino and J. Saxe, “Extended Static Checking
Home page”, <URL:http://www.research.digital.com/SRC/esc/Esc.html>, 1996.
11. S. Owre, et al., “Formal Verification for Fault-Tolerant Architectures: Prolegomena
to the Design of PVS”, IEEE Transactions of Software Engineering, 21(2):107-125,

1995.

12. R. E. Shostak, “An Algorithm for Reasoning About Equality”, Communications
of the ACM, 21(7):583-585, 1978.

13. R. E. Shostak, “Deciding Combinations of Theories”, Journal of the ACM, 31(1):1-
12, 1984.

14. R. E. Tarjan, “Efficiency of a Good but not Linear Set Union Algorithm”, Journal
of the ACM, 22(2):215-225, 1975.

