
A Decision Procedure for Bit-Vector ArithmeticClark W. Barrett, David L. Dill, and Jeremy R. Levitt�Computer Systems Laboratory, Stanford UniversityStanford, CA 94305, USAAbstractBit-vector theories with concatenation and extraction havebeen shown to be useful and important for hardware veri-�cation. We have implemented an extended theory whichincludes arithmetic. Although deciding equality in such atheory is NP-hard, our implementation is e�cient for manypractical examples. We believe this to be the �rst such im-plementation which is e�cient, automatic, and complete.1 IntroductionAs designs grow in complexity, design veri�cation becomesincreasingly important and challenging. New and better ver-i�cation techniques are critical to ensure correctness, main-tain design cycle times, and protect designers from economiclosses due to undiscovered bugs. Formal methods for veri�-cation are especially attractive because they have the poten-tial to cover most or all of the behaviors in a design withouthaving to exhaustively simulate it.The Stanford Validity Checker (SVC) [2, 9] is an auto-matic veri�cation tool which has been in development forseveral years at Stanford University. The input to SVC isa Boolean formula in a quanti�er-free subset of �rst-orderlogic. It may also contain Boolean operators, uninterpretedfunctions, and various interpreted functions such as opera-tions on in�nite arrays and arithmetic. We have found theseconstructs to be useful for modeling hardware designs. Us-ing a combination of case-splitting and cooperating decisionprocedures, SVC determines whether a formula is valid (i.e.equivalent to true in every possible interpretation). If theformula is not valid, SVC returns a counterexample. SVCis used as the �nal step in the automatic hardware veri�-cation paradigm of Burch and Dill [4]. In their approach aspeci�cation and an implementation are each symbolicallysimulated and the resulting states are then compared to seeif they are equivalent. This method has been shown to besuccessful for veri�cation of actual designs and is currentlybeing applied to the TORCH microprocessor, an aggressivesuperscalar microprocessor developed for educational andresearch purposes at Stanford University [11]. The powerfuland e�cient decision procedures in SVC are critical for thesuccess of this e�ort.Other formal methods such as theorem proving and mo-del checking have been used extensively, but theorem proverssu�er from a lack of automation and model checking from�Now at 0-in Design Automation.

the inability to handle large designs due to state explosion.SVC attempts to take the best (and avoid the worst) ofboth worlds. First of all, SVC is able to reason at an ab-stract level and has built-in decision procedures much like atheorem prover. However, the logic of SVC is restricted tobe decidable, which enables it to prove or disprove all for-mulas automatically. Secondly, SVC uses a directed acyclicgraph (DAG) structure much like that used for binary de-cision diagrams (BDDs) in model checkers. However, SVCdoes not require the DAG to be canonical. As a result, SVCis more robust and can handle formulas that would blow upif represented with BDDs. Such formulas may still take avery long time to verify, but various heuristics can be ap-plied to speed up the veri�cation without fear of a suddenfailure due to BDD explosion.As mentioned, a nice feature of theorem provers is theirsupport for abstraction. A primary goal of SVC is to makeabstraction easier by providing uninterpreted functions andvarious interpreted theories. Most recently, we have com-pleted a decision procedure for a theory of bit-vectors inSVC. Bit-vectors (also called \words") are a critical abstrac-tion for reasoning about hardware structures. Intuitively, abit-vector is a �xed-length string of individual bits, and op-erations on bit-vectors can be described in terms of theire�ect on each bit. Alternatively, these operations can beviewed as transformations on bit-vectors as a whole. Theadvantage of the latter approach is that a property whichmay be complex and di�cult at the bit-level (such as addi-tion) can be expressed easily as an operation on bit-vectors.It is especially desirable to be able to reason about concate-nation, extraction, bit-wise Boolean operations, and arith-metic, since these correspond to hardware structures.As we describe in the next section, deciding equalityof arbitrary combinations of these operations is NP-hard.In spite of this fact, we have developed an automatic al-gorithm for reasoning about �xed-size bit-vector addition,negation, concatenation, and extraction which avoids expo-nential blow-up on many practical examples.1As mentioned above, the approach taken in SVC dif-fers from that of both theorem provers and model check-ers. However, there is closely related work in both areas.Recently, successful methods for reasoning about bit-vectoroperations in a model-checking paradigm have used BinaryMoment Diagrams (*BMDs) [1, 3]. These have been ableto automatically verify large arithmetic circuits. The set ofproblems solvable using *BMDs is comparable to those solv-able by SVC's bit-vector canonizer and a comparison of thetwo is presented in Section 5 below.Bit-vector libraries have also been developed for manytheorem provers including Boyer-Moore [8], SDVS [10], HOL[13] and PVS [6]. All of these libraries implement the ba-sic operations of concatenation and extraction, but none of1Although SVC is capable of representing other Boolean bit-vectoroperations, we will not discuss them in this paper.



x[n] A bit-vector of size n. We will sometimes omit the subscript if it is obvious from the context.val[n] A constant bit-vector which is the binary representation of the decimal value val. If n is larger than isrequired to represent val, then the upper bits are assumed to be 0. If n is omitted, it is assumed to bethe smallest value required to represent val. We only use values which are positive, except in the caseof (�1)[n] which we use to represent the vector of size n containing all 1's (i.e. having value 2n � 1).x[n][i : j] The extraction of bits i through j of x. We require 0 � j � i < n. We write x[i] as an abbreviationwhen i = j.x[m] � y[n] The concatenation of x and y to yield a new bit-vector of size m+ n.NOT x[n] The bit-vector whose bits are the negation of the bits of x.x[m] +[k] y[n] Addition of x[m] and y[n] modulo 2k. If k is omitted, we assume it is equal to the larger of m and n.Also, if m is less than k, then x is implicitly zero-extended to size k, whereas if k < m, the intendedmeaning is that only the lowest k bits of x are to be used (and similarly for n and y). Because modularaddition is associative, it is unnecessary to use parentheses when referring to more than two operands.x[m] = y[n] True if and only if m = n and corresponding bits of x and y are equal.Table 1: Bit-vector Theory and De�nitionsthem provide a complete and automatic implementation ofbit-vector arithmetic. Probably the most closely relatedwork is that of Cyrluk et al. in PVS. A comparison of oftheir work with SVC is included in Section 4 below.The rest of the paper is organized as follows. Section2 describes some notation and complexity results. Section3 explains in some detail the theory behind the SVC im-plementation and contains the main contributions of thepaper. Section 4, as mentioned, contains a comparison ofour method with that presented in [6], and Section 5 givesexperimental results obtained using SVC on microprocessorveri�cation examples. Finally, Section 6 gives some conclu-sions and directions for future work.2 Complexity of Bit-Vector LogicsIn contrast to those approaches which convert bit-vectorsinto natural numbers, our approach is to remain in the bit-vector domain; all operations, therefore, take bit-vectors asarguments and return bit-vectors as results. Table 1 lists theelements that make up our theory of bit-vectors. Note thatwe refer to the bits in a bit-vector of size n by index, withthe least signi�cant (right-most) bit being indexed with 0and the most signi�cant bit being indexed with n � 1.In order to evaluate our decision procedure it is neces-sary to answer the question of whether there exists a simplealgorithm for deciding expressions in this bit-vector theory.Some complexity results are given in [6]. It is shown thatequality of terms under the core theory of �xed-size bit-vectors with concatenation and extraction is decidable inpolynomial time. A subsequent extension to include bit-vector Boolean operations such as AND, OR and NOT,however, can easily be shown to produce a theory in whichdeciding equality is NP-hard as follows. Consider an arbi-trary instance of the Boolean satis�ability problem whichis a well-known NP-complete problem. A general Booleanproposition can be encoded using 1-bit bit-vectors and theBoolean operators. Call this encoding P . Then the satis-�ability problem can be solved by checking the validity ofP = FALSE. If valid, the formula is unsatis�able, other-wise it is satis�able.Alternatively, consider extending the core theory by in-cluding arithmetic operations. Unfortunately, even the mosttrivial extension can quickly be seen to be NP-hard. Allow-ing only the additional operation of adding one to any bit-vector immediately gives us the ability to express arbitrary

propositional logic statements sincex[1] + 1 = NOT x[1] and(x[1] � y[1] +[3] 1)[2] = x[1] AND y[1]:The same reduction as above shows that deciding equalityin this simple extended theory is NP-hard. This gives someinsight into the di�culty of handling bit-vector arithmeticautomatically.Finally, one additional complication when dealing withbit-vectors is that there are some bit-vector formulas whichare valid only because each bit-vector variable has a �nitenumber of possible values. For example,a[1] = b[1] _ b[1] = c[1] _ a[1] = c[1]:In order to correctly handle these formulas, we must manu-ally force SVC to consider all possible values for each vari-able. Fortunately, the examples we have encountered inpractice do not have this property.3 Our ApproachAs described in [2], SVC uses a framework for cooperat-ing decision procedures very much like that developed byShostak [5] and used in PVS. One of the requirements ofthis framework is that semantically equivalent terms shouldhave a unique representation, which we refer to as a canon-ical form. We call the process of transforming terms intotheir canonical form canonizing and we call the algorithmwhich does it a canonizer . In SVC, not all terms need tobe canonized. Only terms which do not contain Booleansubexpressions, which we call atomic, must be maintainedin canonical form. This policy is acceptable because non-atomic expressions contain at least one term which SVC canuse to perform a case-split. Since SVC exhausts all possiblecase-splits before reporting a counterexample, it is impossi-ble for a false negative to result. As we will see below, the
exibility of not having to canonize non-atomic expressionscan be exploited to delay canonization of complicated ex-pressions until absolutely necessary. Our framework furtherrequires that atomic equations be written in a speci�c formin which the left-hand side contains a single variable and theright-hand side containes the rest of the terms. We call thealgorithm to do this a solver. Every time a new theory isadded to SVC, a canonizer and solver for that theory mustbe provided. The canonizer and solver for bit-vectors in



(1) �[m] � �[n] ! 2n � �[m] +[m+n] �[n](2) NOT �[m] ! (�1)[m] � �[m] +[m] (�1)[m](3) w[m][i : j] ! y[i�j+1]Additionally; the following equation is added to the current knowledge database :w[m] = 2(i+1) � x[m�i�1] +[m] 2j � y[i�j+1] +[m] z[j]where x; y; and z are new variables: If i = m� 1 or j = 0 then the appropriateterms are omitted:(4) (x0 +[m] � � � xs)[i : 0] ! x0 +[i+1] � � � xs(5) (x0 +[m] � � � xs)[i : j] ! x0[i0 : j] +[i�j+1] � � � xs[is : j] +[i�j+1] if j > 0OVF[i:j](x0[j � 1 : 0] : : : xk[j � 1 : 0])(6) � +[i] (x0 +[j] � � � xs) ! � +[i] x0 +[i] � � � xs if j � i(7) � +[i] (x0 +[j] � � � xs) ! � +[i] x0 +[i] � � � xs +[i] 2j � (�1)[i�j] �OVF[i�1:j](x0 : : : xs) if j < i(8) OVF[i:j](�0 : : : �k) ! OVF[i:j](�0; (�1 +[j] � � � �k)) +[i�j+1] OVF[i:j](�1 : : : �k) if k > 1(9) OVF[i:j](�[m]; �[n]) ! �[m� 1 : j] +[i�j+1] �[n � 1 : j] +[i�j+1] if i > jOVF[j:j](�[j � 1 : 0]; �[j � 1 : 0])(10) OVF[n:n](�[n]; �[n]) ! OVF[n�1:n�1](ite(�[n � 1] = �[n � 1] ; �[n � 1] � 0[n�2] ; �[n � 2 : 0]); if n > 1ite(�[n � 1] = �[n � 1] ; �[n � 1] � 0[n�2] ; �[n� 2 : 0]))OVF[n:n](�[n]; �[n]) ! ite(� = � ; � ; 0[1]) if n = 1Table 2: Rules for eliminating concatenation, negation, and extraction, 
attening addition, and converting OVF terms tonon-atomic expressions. Note that � and � are arbitrary expressions and ik = min(i; nk) where nk is the size of xk.SVC are based on properties of hardware arithmetic. Theyconstitute the major contribution of this paper and are de-scribed in the next two subsections.3.1 CanonizerComing up with a canonical form for bit-vector expressionsis complicated by the inclusion of bit-vector arithmetic. Thisis because the same expression may be represented in non-trivially di�erent ways. For example, (x[n] +[n+1] x[n]) isequivalent to (x[n] � 0[1]). Similarly, (x[1] +[1] 1[1]) isequivalent to (NOT x[1]).To avoid such redundancy, we translate all bit-vector ex-pressions into a speci�c kind of arithmetic expression: theaddition (modulo 2n for some �xed bit-width n) of bit-vectorvariables with constant coe�cients. We call these bitplus ex-pressions. In order to ensure a unique representation, vari-ables are ordered with duplicates eliminated, and each co-e�cient is reduced modulo 2n. A set of transformationsfor converting bit-vector operations into bitplus expressionsis shown in Table 2. Some of these rules make use of theOVF operator, which we de�ne and explain below. The�rst two rules are simple transformations for dealing withconcatenation and negation. Rule (3) shows how to elimi-nate extraction at the cost of introducing new variables. Werefer to this process as slicing , and it is desirable to avoid itwhenever possible. Intuitively, repeated slicing moves fromthe bit-vector abstraction to the bit-level, and in the worsecase, each bit must be considered. Section 4 provides oneillustration of how slicing can be avoided. Rules (4) and (5)show how to eliminate extraction when applied to a bitplusexpression, and (6) and (7) show how to \
atten" bitplusexpressions to ensure that other bitplus expressions do notappear as subexpressions.However, a canonical form cannot always be obtained bysimple transformations (as we would expect given the factthat the general problem is NP-hard). The di�culty comesfrom the interaction of extraction and addition. Considerthe following two expressions.(8 � x[n] +[4] 7)[2]

(x[3] +[4] y[3])[3]In the �rst case, it is desirable to push the extraction insidethe bitplus expression which will result in 1[1]. However, inthe second case, there is no way to represent the result ofpushing the extraction inside the bitplus, because the resultdepends on whether adding x and y over
ows into the fourth(most signi�cant) bit. To deal with such cases, we introducea new over
ow operator, OVF[i:j] which represents bits ithrough j of the sum of its operands. Using this operator,we can rewrite the second expression above as(x[3] +[4] y[3])[3] = OVF[3:3](x; y):We de�ne over
ow for the general case as follows:OVF[i:j](x0[n0] : : : xk[nk ]) = (x0[n0] +[i+1] � � � xk[nk])[i : j]:Whenever the over
ow operator is applied, the expression is�rst checked using a simple algorithm to see if it is equivalentto a concatenation of variables or their negations. If it is,then the appropriate bits are extracted and then convertedback into a bitplus expression, for example,OVF[3:1](2 � y[2]; 9) = y[2] + 4:If the over
ow expression cannot be written in a simple formas above, we break it down using the last three rules shownin Table 2.To understand rule (8), notice that OVF[i:j](x; y; z) andOVF[i:j](x; (y +[j] z)) di�er by exactly OVF[i:j](y; z). Rule(8) is the generalization of this property which we use to splitan over
ow expression with k arguments into two over
owexpressions that have 2 and k � 1 arguments respectively.This rule is applied repeatedly until all over
ow expressionshave only two arguments. Then rule (9) is applied to convertover
ow expressions in which i > j to over
ow expressionsin which i = j (we show the case where m > j and n > j,but the other cases are similar). Finally, rule (10) takesover
ow expressions resulting from the application of rule(9) and turns them into non-atomic expressions. It does thisby making use of the ite operator which is used in SVC to



represent all Boolean operations. For arbitrary expressions,�, �, and 
, ite(�; �; 
) = if � then � else 
:The intuition behind rule (10) is that we are simply comput-ing the carry bit of an n-bit adder. If the most signi�cantbits are equal, then they determine and are equal to thecarry bit. If they are di�erent, then the carry bit is prop-agated from other n � 1 bits. The use of the ite operatoris of key importance. As we mentioned earlier, SVC doesnot require a canonical form for non-atomic expressions. Acanonical form would require expressing the full logic of aripple-carry adder and would require looking at all the bitsof the arguments. But the decomposition we have given isincremental, suspended until SVC does a case-split on theequality of the most signi�cant bits. If they are unequal,SVC will slice o� the next most signi�cant bits. In the worstcase, we will have to look at every bit. But the incrementalapproach will avoid this unless absolutely necessary.3.2 SolverThe other main contribution of this paper is a solver forequations involving bit-vector operations. The requirementsfor the solver are very similar to those of the canonizer. Infact, the solver can be viewed as a canonizer for equations.In SVC, canonical equations are required to have the mostcomplex variable or uninterpreted function isolated on theleft-hand side, with the rest of the terms on the right-handside. Complexity is de�ned by a total ordering on expres-sions (see [2]). In the case of bit-vectors, we arrange forlonger bit-vectors to be more complex than shorter ones, sothat we solve for the longest bit-vector in the equation. Thisavoids slicing bit-vectors unnecessarily. In general, we mustbe able to solve arbitrary equations of the forma0 � x0 +[n] � � � ap � xp = b0 � y0 +[n] � � � bq � yq:Using arithmetic modulo 2n, we can easily isolate the mostcomplex variable, say z[m], with coe�cient c on the left-handside. The resulting equation has the following form:c � z[m] = d0 � w0[m0] +[n] � � � dj � wj [mj ]:Now, we must eliminate c in order to isolate z. If c is odd,we can do this by �nding its multiplicative inverse, which isc2k�1 for some k � n � 2. We explain brie
y why this istrue. It is well-known [7] that the set of all positive integersless than and relatively prime to some positive integer pforms a group under multiplication modulo p, denoted U(p).In particular, when p = 2n, every odd positive integer lessthan p is in U(p). Furthermore, U(2n) is isomorphic tothe (external) direct product of the cyclic groups of order2 and 2n�2, which means that each element of U(2n) hasorder 2k for some k � 2n�2. Thus, if c is odd, there existsk � n � 2 such that c2k = 1 modulo 2n, and it follows thatthe inverse is c2k�1. To �nd the inverse i of c, we use thesimple algorithm shown in Figure 1.Thus, �nding the inverse of c requires at most 2(n �2) n-bit multiplies, and assuming uniform distribution, theexpected number of multiplies is about 2(n � 3). In theexamples we have done, however, the coe�cient is almostalways either 1 or 2n � 1, so the actual average numberof multiplications is actually much less (between 0 and 2).After calculating the inverse, we simply multiply all terms

i := c;while (c 6= 1) do beginc := (c � c) mod 2^n;i := (i � c) mod 2^n;endFigure 1: Algorithm to �nd the multiplicitive inverse of c.in the equation by the inverse and the resulting equationwill have z[m] alone on the left-hand side.Suppose on the other hand that c is even. Then we canwrite c = 2k � b for some k � 1 and b odd. We can then splitthe equation into two equations as follows:b � z = (d0 � w0 +[n] � � � dj � wj)[n� 1 : k] and0[k] = d0 � w0 +[k] � � � dj � wj :The �rst equation can now be solved by calculating the in-verse of b. Furthermore, though we will have to repeat thecanonization process on the second equation, we have elimi-nated z from it without adding any variables, ensuring thatthe process will terminate.Once we have an equation of the formz[m] = c0 � w0 +[n] � � � cj � wj ;there is one �nal step if m < n (which is possible since,as mentioned in Table 1, we do not put any restrictions onthe bit-widths of variables appearing in bitplus expressions).In this case, we know that the most signi�cant bits of theright-hand side of the equation must be zero. So as above,we split it into two equations:z[m] = c0 � w0 +[m] � � � cj � wj and0[n�m] = (c0 � w0 +[n] � � � cj � wj)[n � 1 : m]:Again, we may have to canonize the second equation. Even-tually, though, our initial equation will be transformed intoa conjunction of equations, each solved for a di�erent vari-able. We have found that it is very desirable for e�ciencyto transform these equations (via substitution) so that vari-ables appearing on the left-hand side do not appear in theright-hand sides of any of the other equations.4 Avoiding Bit-SlicingAs previously mentioned, whenever part of a bit-vector vari-able is extracted, that bit-vector is sliced into several parts,which reduces the level of abstraction and is thus to beavoided if possible. Our initial implementation of bit-vectorswas based on the work done by Cyrluk et al. in [6]. However,our decision to use bitplus expressions as our internal rep-resentation was a signi�cant departure from their method.As a result, we were able to increase the range of arithmeticexamples which can be veri�ed automatically.However, it turns out that for some examples, even theoriginal core theory of concatenation and extraction bene�tsfrom this change in the internal representation. This is be-cause bit-slicing can be avoided in many cases. Suppose wis a bit-vector of size n and consider the following example:w[n � 1 : 1] = w[n � 2 : 0] ) w[n � 1] = w[0]In order to canonize this formula, the decision procedure ofCyrluk et al. generates a new variable for every bit of w,



(x[0] = 0[1]) ) ((x[n� 1 : 1] + 1) � 0[1]) = x+ 2) (1)(x[0] = 1) ) ((x+ (�1)[n])[n� 1 : 1] = x[n � 1 : 1]) (2)NOT ((x+ y + (�1)[n])[0]) = (x+ y)[0] (3)((2n � 2) � x[n�1] +[n] (�1)[n])[n� 1 : 1] = NOT x[n�1] (4)(y[1] � x[n�2] +[n] 1)[n � 1] = (x[n�2] +[n] y[1])[n� 2] (5)Figure 2: Bit-Vector Arithmetic Veri�cation Examples. x and y are bit-vectors of size n unless otherwise speci�ed.resulting in a conjunction of n equations:(wn�1 = wn�2) ^(wn�2 = wn�3) ^...(w1 = w0) ^(w = wn�1 � wn�2 � � � w0)where each wi is a new bit-vector of length one. Using ourcanonizer, only the most and least signi�cant bits are sliced,resulting in the following two equations:(2n�2 � x[1] +[n�1] y[n�2] = 2 � y[n�2] +[n�1] z[1]) ^(w = x[1] � y[n�2] � z[1])We then invoke the solver and end up with:(y[n�2] = (�1)[n�2] � z[1]) ^(x[1] = z[1]) ^(w = x[1] � y[n�2] � z[1])Thus, instead of producing n equations, we produce onlythree. The information from the other equations is storedin the coe�cients. Most of w remains as an abstract bit-vector.5 ResultsThe examples shown in Figure 2 demonstrate the kinds offormulas which can be veri�ed using the methods describedabove. Formulas (1) through (3) are small pieces of muchlarger formulas from processor veri�cation, and (4) and (5)are simply test benchmarks which we feel are representa-tive of the complexity of the general problem. In general,SVC must solve many such small problems, as well as sim-ilar problems in other theories, as part of proving a largerformula.Examples three through �ve are easily veri�ed using onlythe SVC canonizer. These examples can also be veri�edusing *BMDs (in contrast, the �rst two examples cannotbe directly veri�ed using only *BMDs because they includeBoolean connectives). In Table 3, the column labeled \SVC"shows the time required to verify these examples runningSVC on a 200 MHz Pentium Pro. The second column showsthe time required to verify the same property on the samemachine using the *BMD package from Bryant and Chen[3]. The third column shows the time required on a 300 MHzUltraSparc-30 using Laurent Arditi's *BMD implementationwhich has special support for bit-vector and Boolean oper-ations [1]. For the two *BMD packages, the examples wererun with four typical variable orderings and the best timefor each example is reported. In order to better compare the

Example n SVC *BMD 1 *BMD 21 32 2 N/A 402 32 2 N/A 11003 8 2 440 303 16 2 265000 703 32 2 > 500000 1804 8 2 112 804 16 2 26400 7204 32 2 > 500000 87905 8 30 95 605 16 111 22700 3905 32 520 > 500000 3780A 32 0.2 32 80Table 3: Results on Bit-Vector Arithmetic Veri�cation Ex-amples. Times are in milliseconds. Examples 1 through 5are from Table 2. Example A is the expression x[n] + y[n].two di�erent *BMD implementations, a simple n-bit adderexample was also done and the result is listed as example A.Several important observations can be made from thesedata. First, it is clear that *BMDs bene�t greatly fromthe special-purpose algorithms in Arditi's implementation.From example A, which does not use the special-purposealgorithms, it also seems clear that Arditi's package couldbene�t further from implementation in a lower-level lan-guage (Bryant and Chen's package is in C, whereas Arditi'spackage is in Scheme). However, even given these possibleimprovements, SVC would still outperform *BMDs on allexamples with the possible exception of example 5 (whichwe will come back to in a moment). More importantly, theperformance of SVC is the same despite increasing bit widthon two out of three of the examples. The reason for this isthat SVC is able to maintain its bit-vector abstraction inthese examples and thus does not need to consider each bitindividually.The reason SVC does poorly in example 5 is that it endsup slicing x and thus the execution time depends on thenumber of bits in x. However, if SVC were to split on yinstead, it could avoid slicing x. This is a problem similarto variable ordering in *BMDs. We were able to write aslightly modi�ed version of example 5 which forced SVC tosplit on y �rst. The result was an execution time of lessthan 10 ms independent of bit-width. One of the areas ofongoing research in SVC is how to automatically choose thebest variables for case-splitting.The primary application for SVC is microprocessor ver-i�cation. As mentioned above, we are currently applying itto the TORCH microprocessor [11]. Table 4 shows the timesrequired to verify several formulas from this e�ort. Theseformulas are large and require cooperating decision proce-dures from several theories including the bit-vector theory



Example Size (KB) Case Splits Time (s)PCUnitDataPath 29 1254 1.67TakenBranch 31 38 0.15IFetchControl 65 29676 24.1IFetchPC 42 69374 317Table 4: TORCH Microprocessor Veri�cation Examples.Time is in seconds(thus they cannot be veri�ed using *BMDs alone and a di-rect comparison cannot be made). The �rst example, PCU-nitDataPath, veri�es that the program counter is calculatedcorrectly. The second example, TakenBranch, veri�es thatthe hardware correctly identi�es when a conditional branchshould be taken. The last two examples verify various prop-erties of the instruction fetch unit. For each example, weshow the size of the formula, the total number of case splits,and the time required to verify the formula. We would beunable to automatically verify these formulas without thebit-vector decision procedure.6 ConclusionsOur method for dealing with bit-vector arithmetic has manyadvantages. First, it is complete and automatic, and al-though the complexity of the problem dictates that there areexamples for which it will be exponentially slow, it is e�cienton the examples we have encountered so far. Second, wereason at the word-level and avoid slicing bit-vectors when-ever possible. This avoids some of the blow-ups in time andspace experienced by other methods. Finally, our methodis easy to implement and integrate into an environment ofcooperating decision procedures such as that found in SVC.As we have seen, one limitation of SVC is that the choiceof which variable to split on can greatly in
uence its e�-ciency. Additionally, there is no way to represent non-linearmultiplication of bit-vectors directly as there is with *BMDs.There is also currently no way to reason about bit-vectors ofunknown size. We are working on addressing some of theselimitations. For example, we have implemented a coupleof automatic learning strategies for choosing splitters whichdramatically increase the e�ciency of many examples.Some areas of future research include �nding an e�cientabstraction for Boolean bit-vector operations and �ndingmore e�cient ways of dealing with the over
ow operator.We would also like to explore extensions to bit-vectors ofunknown size and variable extraction indices, as well as non-linear arithmetic. We intend to continue to use SVC in ourveri�cation of TORCH and expect that it will continue todevelop towards an important and powerful tool for auto-matic hardware veri�cation.AcknowledgmentsWe would like to thank Yirng-An Chen for his help in under-standing and using *BMDs. We would like to thank othermembers of the TORCH veri�cation e�ort for their work inspecifying and translating examples for this paper: Je�reySu, Jens Skakkeb�k, and especially Laurent Arditi who alsoprovided insight and analysis for comparison with *BMDs.Also, we would like to thank the group at SRI Internationalfor valuable discussions, especially David Cyrluk whose workon bit-vectors provided a valuable starting point. This workwas sponsored by DARPA contract number DABT63-96-C-

0097 and by a National Defense Science and EngineeringGraduate Fellowship. The content of this paper does notnecessarily re
ect the position of the policy of the govern-ment and no o�cial endorsement should be inferred.References[1] Laurent Arditi. *BMDs Can Delay the Use of Theo-rem Proving for Verifying Arithmetic Assembly Instruc-tions. In Srivas [12], pages 34{48.[2] C. W. Barrett, D. L. Dill, and J. R. Levitt. ValidityChecking for Combinations of Theories with Equality.In Srivas [12], pages 187{201.[3] Randal E. Bryant and Yirng-An Chen. Veri�cationof Arithmetic Circuits with Binary Moment Diagrams.In 32nd ACM/IEEE Design Automation Conference,pages 535{541, San Francisco, CA (USA), 1995.[4] J. R. Burch and D. L. Dill. Automatic Veri�cationof Microprocessor Control. In Dill, editor, Computer-Aided Veri�cation, volume 818 of Lecture Notes inComputer Science, pages 68{79, Stanford, CA (USA),June 1994.[5] D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak'sDecision Procedure for Combinations of Theories. In13th International Conference on Automated Deduc-tion, pages 463{477, Rutgers University, NJ (USA),July 1996.[6] D. Cyrluk, O. M�oller, and H. Rue�. An E�cient De-cision Procedure for the Theory of Fixed-Sized Bitvec-tors. In 9th International Conference on Computer-Aided Veri�cation, 1997.[7] Joseph A. Gallian. Contemporary Abstract Algebra. D.C. Heath and Company, second edition, 1990.[8] Warren A. Hunt Jr. Microprocessor Design Veri�ca-tion. Journal of Automated Reasoning, 5(4), December1989.[9] R. B. Jones, D. L. Dill, and J. R. Burch. E�cient Valid-ity Checking for Processor Veri�cation. In IEEE Inter-nationl Conference on Computer-Aided Design, pages2{6, San Jose, CA (USA), November 1995. IEEE Com-puter Society Press.[10] Leo G. Marcus. SDVS 13 Users' Manual. TheAerospace Corporation, El Segundo, CA 90245, Octo-ber 1994. Aerospace Report ATR-94(4778)-5.[11] M. Smith, M. Lam, and M. Horowitz. Boosting BeyondStatic Scheduling in a Superscalar Processor. In Inter-national Symposium on Computer Architecture, pages344{354, Seattle, WA, May 1990. IEEE/ACM.[12] Srivas, editor. International Conference on FormalMethods in Computer-Aided Design, volume 818 of Lec-ture Notes in Computer Science, Palo Alto, CA (USA),November 1996. Springer-Verlag.[13] Wai Wong. Modelling Bit Vectors in HOL: the wordLibrary. In Joyce and Seger, editors, Higher OrderLogic Theorem Proving and Its Applications, volume780 of Lecture Notes in Computer Science, pages 371{384, Vancouver, Canada, August 1993.


