A Framework for Cooperating Decision
Procedures

Clark W. Barrett, David L. Dill, and Aaron Stump

Stanford University, Stanford, CA 94305, USA,
http://verify.stanford.edu
(© Springer-Verlag

Abstract. We present a flexible framework for cooperating decision pro-
cedures. We describe the properties needed to ensure correctness and
show how it can be applied to implement an efficient version of Nel-
son and Oppen’s algorithm for combining decision procedures. We also
show how a Shostak style decision procedure can be implemented in the
framework in such a way that it can be integrated with the Nelson-Oppen
method.

1 Introduction

Decision procedures for fragments of first-order or higher-order logic are po-
tentially of great interest because of their versatility. Many practical problems
can be reduced to problems in some decidable theory. The availability of robust
decision procedures that can solve these problem within reasonable time and
memory could save a great deal of effort that would otherwise go into imple-
menting special cases of these procedures.

Indeed, there are several publicly distributed prototype implementations of
decision procedures, such as Presburger arithmetic [15], and decidable combi-
nations of quantifier-free first-order theories [2]. These and similar procedures
have been used as components in applications, including interactive theorem
provers [13,9], infinite-state model checkers [7,10,4], symbolic simulators [18],
software specification checkers [14], and static program analyzers [8].

Nelson and Oppen [12] showed that satisfiability procedures for several the-
ories that satisfy certain conditions can be combined into a single satisfiability
procedure by propagating equalities. Many others have built upon this work,
offering new proofs and applications [19,1].

Shostak [17,6,16] gave an alternative method for combining decision pro-
cedures. His method is applicable to a more restricted set of theories, but is
reported to be more efficient and is the basis for combination methods found
in SVC [2], PVS [13], and STeP [9,3]. An understanding of his algorithm has
proven to be elusive.

Both STeP and PVS have at least some ability to combine the methods of
Nelson and Oppen and Shostak [5, 3], but not much detail has been given, and
the methods used in PVS have never been published. As a result, there is still

significant confusion about the relationship between these two methods and how
to implement them efficiently and correctly.

Our experience with SVC, a decision procedure for quantifier-free first-order
logic based loosely on Shostak’s method for combining cooperating decision pro-
cedures, has been both positive and negative. On the one hand, it has been
implemented and is efficient and reliable enough to enable new capabilities in
our research group and at a surprisingly large number of other sites. However,
efforts to extend and modify SVC have revealed unnecessary constraints in the
underlying theory, as well as gaps in our understanding of it.

This paper is an outcome of ongoing attempts to re-architect SVC to resolve
these difficulties. We present an architecture for cooperating decision procedures
that is simple yet flexible and show how the soundness, completeness, and ter-
mination of the combined decision procedure can be proved from a small list of
clearly stated assumptions about the constituent theories. As an example of the
application of this framework, we show how it can be used to implement and
integrate the methods of Nelson and Oppen and Shostak. In so doing, we also
describe an optimization applicable to the original Nelson and Oppen procedure
and show how our framework simplifies the proof of correctness of Shostak’s
method. Due to the scope of this paper and space restrictions, many of the
proofs have been abbreviated or omitted.

2 Definitions and Notation

Expressions in the framework are represented using the logical symbols true,
false, and ‘=", an arbitrary number of variables, and non-logical symbols con-
sisting of constants, and function and predicate symbols. We call true and false
constant formulas. An atomic formula is either a constant formula, an equality
between terms, or a predicate applied to terms. A literal is either an atomic for-
mula or an equality between a non-constant atomic formula and false. Equality
with false is used to represent negation. Formulas include atomic formulas, and
are closed under the application of equality, conjunction and quantifiers. An ex-
pression is either a term or a formula. An expression is a leaf if it is a variable or
constant. Otherwise, it is a compound expression, containing an operator applied
to one or more children.

A theory is a set of first-order sentences. For the purposes of this paper,
we assume that all theories include the axioms of equality. The signature of a
theory is the set of function, predicate, and constant symbols appearing in those
sentences. The language of a signature X' is the set of all expressions whose
function, predicate, and constant symbols come from X. Given a theory T with
signature X, if ¢ is a sentence in the language of X, then we write T' |= ¢ to
mean that every model of T is also a model of ¢. For a given model, M, an
interpretation is a function which assigns an element of the domain of M to
each variable. If I' is a set of formulas and ¢ is a formula, then we write I" = ¢
to mean that for every model and interpretation satisfying each formula in I,

the same model and interpretation satisfy ¢. Finally, if @ is a set of formulas,
then I' = @ indicates that I" = ¢ for each ¢ in &.

Expressions are represented using a directed acyclic graph (DAG) data struc-
ture such that any two expressions which are syntactically identical are uniquely
represented by a single DAG. The following operations on expressions are sup-
ported.

Op(e) the operator of e (just e itself if e is a leaf).
e[il the i*"* child of e, where e[1] is the first child.

If e; and ey are expressions, then we write e; = e, to indicate that e; and es
are the same expression (syntactically identical). In contrast, e; = ey is simply
intended to represent the expression formed by applying the equality operator
to e; and e,. Expressions can be annotated with various attributes. If a is an
attribute, e.a is the value of that attribute for expression e. Initially, e.a = L
for each e and a, where L is a special undefined value.

The following simple operations make use of an expression attribute called
find to maintain equivalence classes of expressions. We assume that these are
the only functions that reference the attribute. Note that when presenting pseu-
docode here and below, some required preconditions may be given next to the
name and parameters of the function.

HasFind (a) SetFind(a) {a.find = L }
RETURN a.find # 1; a.find := a;
Find(a) {HasFind(a)} Union(a,b) {a.find = a A b.find = b }

IF (a.find = a) THEN RETURN a; a.find := b.find;
ELSE RETURN Find(a.find);

In some similar algorithms, e.find is initially set to e, rather than 1. The
reason we don’t do this is that it turns out to be convenient to use an initialized
find attribute as a marker that the expression has been seen before. This not
only simplifies the algorithm, but it also makes it easier to describe certain
invariants about expressions.

The find attribute induces a relation ~ on expressions: a ~ b if and only if
HasFind(a) A HasFind(b) A [Find(a)=Find(b)]. For the set of all expressions
whose find attributes have been set, this relation is an equivalence relation.
The find database, denoted by F, is defined as follows: a =b € F iff a ~ b. The
following facts will be used below.

Find Database Monotonicity. If the preconditions for SetFind and Union
are met, then if F is the find database at some previous time and F' is the find
database now, then F C F'.

Find Lemma. If the preconditions for Find, SetFind, and Union hold, then
Find always terminates.

3 The Basic Framework

As mentioned above, the purpose of the framework presented in this paper is to
combine satisfiability procedures for several first-order theories into a satisfiabil-
ity procedure for their union. Suppose that 71, ...,T, are n first-order theories,
with signatures Xy,...X,. Let T = |JT; and X = |J X;. The goal is to provide
a framework for a satisfiability procedure which determines the satisfiability in
T of a set of formulas in the language of X'. Our approach follows that of Nelson
and Oppen [12]. We assume that the intersection of any two signatures is empty
and that each theory is stably-infinite. A theory T with signature X' is called
stably-infinite if any quantifier-free formula in the language of X is satisfiable
in T only if it is satisfiable in an infinite model of T'. We also assume that the
theories are convez. A theory is convex if there is no conjunction of literals in the
language of the theory which implies a disjunction of equalities without implying
one of the equalities itself.

The interface to the framework from a client program consists of three meth-
ods: AddFormula, Satisfiable, and Simplify. Conceptually, AddFormula adds
its argument (which must be a literal) to a set A, called the assumption history.
Simplify transforms an expression into a new expression which is equivalent
modulo T'U A, and Satisfiable returns false if and only if TUA |= false. Since
any quantifier-free formula can be converted to disjunctive normal form, after
which each conjunction of literals can be checked separately for satisfiability, the
restriction that the arguments to AddFormula be literals does not restrict the
power of framework.

The framework includes sets of functions which are parameterized by theory.
For example, if £ is such a function, we denote by f; the instance of f associated
with theory T;. If for some £ and T;, we do not explicitly define the instance £;, it
is assumed that a call to £; does nothing. It is convenient to be able to call these
functions based on the theory associated with some expression e. Expressions
are associated with theories as follows. First, variables are partitioned among
the theories arbitrarily. In some cases, one choice may be better than another,
as discussed in Sec. 5.1 below. An expression in the language of X' is associated
with theory T; if and only if it is a variable associated with T}, its operator is a
symbol in X;, or it is an equality and its left side is associated with theory T;. If
an expression is associated with theory T;, we call it an ¢-expression. We denote
by T'(e) the index i, where e is an i-expression.

Figure 1 shows pseudocode for the basic framework. An input formula is first
simplified it because it might already be known or reduce to something easier to
handle. Simplification involves the recursive application of Find as well as certain
rewrite rules. Assert calls Merge which merges two ~-equivalence classes. Merge
first calls Setup which ensures that the expressions are in an equivalence class.

There are four places in the framework in which theory-specific functional-
ity can be introduced. TheorySetup, TheoryRewrite and PropagateEqualities
are theory-parameterized functions. Also, each expression has a notify attribute
containing a set of pairs (f,d), where f is a function and d is some data. When-
ever Merge is called on an expression a = b, the find attribute of a changes to

AddFormula(e) { e is a literal }
Assert(e);
REPEAT
done := true;
FOREACH theory T; DO IF PropagateEqualities,() THEN done := false;
UNTIL done;

Assert(e) { e is a literal; T U A = e }
IF —Satisfiable() THEN RETURN;

e’ := Simplify(e);
IF e’ = true THEN RETURN;
IF Op(e’) # ‘=’ THEN e’ := (e’ = true);
Merge(e’);
Merge(e) { Op(e) = ‘="; T" U A kE e; see text for others }

Setup(e[1]); Setup(e[2]);

IF e[1] and e[2] are terms THEN TheorySetup;,(e);
Union(e[1],e[2]);

FOREACH (f,d) € e[1].notify DO f(e,d);

Setup(e)
IF HasFind(e) THEN RETURN;
FOREACH child ¢ of e DO Setup(c);
TheorySetup, ., (e) ;
SetFind(e);

Simplify(e)
IF HasFind(e) THEN RETURN Find(e);
Replace each child ¢ of e with Simplify(c);
RETURN Rewrite(e);

Rewrite(e)
IF HasFind(e) THEN RETURN Find(e);
IF Op(e) = ‘=’ THEN e’ := RewriteEquality(e);
ELSE e’ := TheoryRewrite;(e);
IF e # e’ THEN e’ := Rewrite(e’);
RETURN e’;

RewriteEquality(e)
IF e[1] = e[2] THEN RETURN true;
IF one child of e is true THEN RETURN the other child;
IF e[1] = false THEN RETURN (e[2] = e[1]);
RETURN e;

Satisfiable()
RETURN true false;

Fig. 1. Basic Framework

b, and f(a = b,d) is called for each (f,d) € a.notify. Typically, TheorySetup
adds callback functions to the notify attribute of various expressions to guar-
antee that the theory’s satisfiability procedure will be notified if one of those
expressions is merged with another expression. Finally, before returning from
AddFormula, each theory may notify the framework of additional equalities it
has deduced until each theory reports that there are no more equalities to prop-
agate.

Theory-specific code is distinguished from the framework code shown in Fig.
1 and from wuser code which is the rest of the program. It may call functions
in the framework, provided any required preconditions are met. Examples of
theory-specific code for both Nelson-Oppen and Shostak style theories are given
below, following a discussion of the abstract requirements which must be fulfilled
by theory-specific code to ensure correctness.

4 Correctness of the Basic Framework

In order to prove correctness, we give a specification in terms of preconditions and
postconditions and show that the framework meets the specification. Sometimes
it is necessary to talk about the state of the program. Each run of a program
is considered to be a sequence of states, where a state includes a value for each
variable in the program and a location in the code.

4.1 Preconditions and Postconditions

The preconditions for each function in the framework except for Merge are shown
in the pseudocode. In order to give the precondition for Merge, a few definitions
are required.

A path from an expression e to a sub-expression s of e is a sequence of
expressions eg, e1, ..., e, such that eg = e, e;;; is a child of e;, and s is a child
of e,. A sub-expression s of an expression e is called a highest find-initialized
sub-expression of e if HasFind(s) and there is a path from e to s such that
for each expression e’ on the path, “HasFind(e’). An expression e is called
find-reduced if Find(s) = s for each highest find-initialized sub-expression s of
e.

An expression e is called merge-acceptable if e is an equation and one of the
following holds: e is a literal; e[1] is false or an atomic predicate and e[2] = true;
or e[1] = true and e[2] = false.

Merge Precondition.
Whenever Merge (e) is called, the following must hold.

e is merge-acceptable,

. e[1] and e[2] are find-reduced,
. e[1] # e[2], and

.TUAEe.

N

In addition to the preconditions, the following postconditions must be satisfied
by the parameterized functions.

TheoryRewrite Postcondition.
After e’ := TheoryRewrite(e) or e’ := RewriteEquality(e) is executed,
the following must hold:

F is unchanged by the call,

if e is a literal, then e’ is a literal,

if e is find-reduced, then HasFind(e’) or e’ is find-reduced, and
4. TUFEe=e’.

W=

TheorySetup Postcondition.
After TheorySetup is executed, the find database is unchanged.

If all preconditions and postconditions hold for all functions called so far, we say
that the program is in an uncorrupted state. Also, if true % false, we say the
program is in a consistent state. A few lemmas are required before proving that
the preconditions and postconditions hold for the framework code.

Lemma 1. If the program is in an uncorrupted state and Union(a,b) has been
called, then since that call there have been no calls to Union where either argu-
ment was a.

Proof. Once Union(a,b) is called, a.find Z a and this remains true since it
can never again be an argument to SetFind or Union.

Lemma 2 (Equality Find Lemma). If e = a = b and the program is in
an uncorrupted and consistent state whose location is not between the call to
SetFind(e) and the next call to Union and HasFind(e), then a and b are terms
and Find(e) = false.

Proof. Suppose HasFind(e). Then Setup(e) was called. But by the defini-
tion of merge-acceptable, this can only happen if e[1] and e[2] are terms and
Merge (e = false) was called, in which case Union(e,false) is called immedi-
ately afterwards. It is clear from the definition of merge-acceptable, that Union
is never called with first argument false unless the second argument is true.
Thus, if true # false, it follows from Lemma 1 that Find(e) = false. a

Lemma 3 (Literal Find Lemma). If the program is in an uncorrupted state
and e is a literal, then Find (e) is either e, true, or false.

Proof. From the previous lemma, it follows that if e is an equality, then Find (e)
is either e, true, or false. A similar argument shows that the same is true for a
predicate. O

Lemma 4 (Simplify Lemma).
If the program is in an uncorrupted state after e’ := Simplify(e) is erecuted,
then following are true:

1. F is unchanged by the call,

2. if e is a literal then e’ is a literal,

3. if e is a literal or term, then e’ is find-reduced, and
4. TUFEe=c¢e’.

We must prove the following theorem. A similar theorem is required every time
we introduce theory-specific code.

Theorem 1. If the program is in an uncorrupted state located in the framework
code, then the next state is also uncorrupted.

Proof.
Find Precondition: Find is called in two places by the framework. In each
case, we check the precondition before calling it.
SetFind Precondition: SetFind(e) is only called from Setup(e) which re-
turns if HasFind(e). Otherwise, Setup performs a depth-first traversal of the
expression and calls SetFind. It follows from the TheorySetup Postcondition
and the fact that expressions are acyclic that the precondition is satisfied.
Union Precondition: Union(a,b) is only called if Merge(a = b) is called first.
By the Merge precondition, a and b are find-reduced. It is easy to see that after
Setup(a) and Setup(b) are called, Find(a) = a and Find(b) =b.
AddFormula Precondition: We assume that AddFormula is only called with
literals.
Assert Precondition: Assert (e) is only called from AddFormula. In this case,
e € A, so it follows that T U A = e.
Merge Precondition: Merge (e’) is called from Assert(e). We know that e is
a literal, so by the Simplify Lemma, Simplify(e) is a literal and is find-reduced.
It follows that e’ is merge-acceptable and e’[1] and e’[2] are find-reduced and
unequal. From the Simplify Lemma, we can conclude that TUF = e =e’. It
follows from the soundness property (described next) that TU A e =e’. We
know that T'U A |= e, so it follows that TU A = e’.
TheoryRewrite Postcondition: It is straight-forward to check that each of
the requirements hold for RewriteEquality.

O

4.2 Soundness

The satisfiability procedure is sound if whenever the program state is incon-
sistent, T'U A = false. Soundness depends on the invariance of the following

property.
Soundness Property. TU A = F.

Lemma 5. If the program is in an uncorrupted state, then the soundness prop-
erty holds.

Proof. Initially, the find database is empty. New formulas are added in two
places. The first is in Setup, when SetFind is called. This preserves the soundness
property since it only adds a reflexive formula to F. The other is in Merge (e),
when Union(e[1],e[2]) is called. This adds the formula e to F, but we know
that U A = e by the Merge Precondition. It also results in the addition of any
formulas which can be deduced using transitivity and symmetry, but these are
also entailed because 7' includes equality. O

Theorem 2. If the program is in an uncorrupted state, then the satisfiability
procedure is sound.

Proof. Suppose Satisfiable returns false. This means that true ~ false. It fol-
lows from the previous lemma that T'U A = true = false,soT U A |= false.
O

4.3 Completeness

The satisfiability procedure is complete if T'U A is satisfiable whenever the pro-
gram is in a consistent state in the user code.

We define the merge database, denoted M, as the set of all expressions e such
that there has been a call to Merge(e). In order to describe the property which
must hold for completeness, we first introduce a few definitions, adapted from
[19].

Recall that an expression in the language of X' is an i-expression if it is a
variable associated with 73, its operator is a symbol in Y;, or it is an equality
and its left side is an i-expression. A sub-expression of e is called an i-leaf if it
is a variable or a j-expression, with j # i, and every expression along some path
from e is an i-expression. An i-leaf is an i-alien if it is not an i-expression. An
i-expression in which every i-leaf is a variable is called pure (or i-pure).

With each term t which is not a variable, we associate a fresh variable v(t).
We define v(t) to be t when t is a variable. For some expression or set of
expressions S, we define «y;(S) by replacing all of the i-alien terms t in S by
v(t)! so that every expression in 7;(S) is i-pure. We denote by 70(S) the set
obtained from S by replacing all maximal terms (i.e. terms without any super-
terms) t by v(t). Let © be the set of all equations t = v(t), where t is a sub-term
of some formula in M. It is easy to see that T"U M is satisfiable ifft T U M U@
is satisfiable.

Let M; = {e| e € M Aeis an i-expression }. Define ©; similarly. Notice that
(MUO) is logically equivalent to | y;(M; U ©;), since each can be transformed
into the other by repeated substitutions.

! Since expressions are DAG’s, we must be careful about what is meant by replacing a
sub-expression. The intended meaning here and throughout is that the expression is
considered as a tree, and only occurrences of the term which qualify for replacement
in the tree are replaced. This means that some occurrences may not be replaced at
all, and the resulting DAG may look significantly different as a result.

We define V, the set of shared terms as the set of all terms t such that v(t)
appears in at least two distinct sets v;(M; U©;),1 <i < n. Let E(V) = {a =
b|abeVAa~b},andlet D(V)={a#Db|abeV Aab}. Fora set of
expressions S, an arrangement 7(S) is a set such that for every two expressions
a and b in S, exactly one of a = b or a # b is in 7(S). We denote by 7(V)
the arrangement E(V) U D(V) of V determined by ~. Now we can state the
property required for completeness.

Completeness Property. If the program is in a consistent state in the user
code, then T; U v;(M; Um(V)) is satisfiable.

The following lemmas are needed before proving completeness.
Lemma 6. If the program is in an uncorrupted state, then TU M |= F

Proof. Every formula in F is either in M or can be derived from formulas in M
using reflexivity, symmetry, and transitivity of equality. O

Lemma 7. If the program is in an uncorrupted and consistent state in the user
code, then TUM = A.

Proof. Suppose e € A. Then we know that Assert(e) was called at some time
previously. We can conclude by monotonicity of the find database that true %
false at the time of that call. Thus, e’ := Simplify(e) was executed. By the
Simplify Lemma, if 7; was the find database at the time of the call, T U F; |=
e =e’. Now, if ¢’ = true, then T'UF; = e and so by monotonicity and Lemma
6, T UM [= e. Otherwise, Merge is called. Let x be the argument to Merge. It
is easy to see that T U F; = e = x. But x € M, so T UM |= x. It then follows
easily by monotonicity and Lemma 6 that T'U M [= e. O

The following theorem is from [19].

Theorem 3. Let Ty and Ty be two stably-infinite, signature-disjoint theories
and let ¢1 be a set of formulas in the language of T and ¢o a set of formulas
in the language of T». Let v be the set of their shared variables and let w(v) be
an arrangement of v. If ¢; A w(v) is satisfiable in T; for i = 1, 2, then ¢1 A do
is satisfiable in 11 U 1.

Theorem 4. If the procedure always maintains an uncorrupted state and the
completeness property holds for each theory, then the procedure is complete.

Proof. Suppose that for a consistent state in the user code, T; U v;(M; U w(V))
is satisfiable for each i. This implies that T; Uv;(M; U ©; Un(V)) is satisfiable
(since each equation in @; simply defines a new variable), which is logically
equivalent (by applying substitutions from 6;) to T; U ~v;(M; U @;) U (w(V)).
Now, each set v;(M; U @;) is a set of formulas in the language of T, and o (7(V))
is an arrangement of the variables shared among these sets, so we can conclude
by repeated application of Theorem 3 that |J~y:(M; U ;) is satisfiable in T'.
But |J7i(M; U 6;) is equivalent to M U@ which is satisfiable in T iff T U M is
satisfiable. Finally, by Lemma 7, TU M = A. Thus we can conclude that T'U A
is satisfiable. O

4.4 Termination.

We must show that each function in the framework terminates. The following
requirements guarantee this.

Termination Requirements.

1. The preconditions for Find, SetFind, and Union always hold.

2. For each t-expression e, TheoryRewrite; (e) terminates.

3. If s is a sequence of expressions in which the next member of the sequence
e’ is formed from the previous member e by calling TheoryRewrite,(e),
then beyond some element of the sequence, all the expressions are identical.

4. For each i-expression e, TheorySetup, (e) terminates.

5. After Union(a,b) is called,

(a) No new entries are added to a.notify.
(b) Each call to each funtion in a.notify terminates.

6. For each theory Tj, PropagateEqualities; terminates and after calling
PropagateEqualities; some finite number of times, it will always return
false.

Theorem 5. If the termination requirements hold, then each function in the
framework terminates.

Proof. The first condition guarantees that Find terminates, from which it follows
that Satisfiable terminates. The next two ensure that Rewrite terminates. It
then follows easily that Simplify must terminate. The next few conditions are
sufficient to ensure that Setup and Merge terminate, from which it follows that
Assert terminates. This, together with the last condition allows us to conclude
that AddFormula terminates. O

It is not hard to see that without any theory-specific code, these requirements
hold.

5 Examples Using the Framework

In this section we will give two examples to show how the framework can ac-
commodate different kinds of theory-specific code.

5.1 Nelson-Oppen Theories

A Nelson-Oppen style satisfiability procedure for a theory 7; must be able to
determine the satisfiability of a set of formulas in the language of X; as well
as which equalities between variables are entailed by that set of formulas [12].
We present a method for integrating such theories which is flexible and efficient.

Suppose we have a Nelson-Oppen style satisfiability procedure which treats alien
terms as variables with the following methods:

AddFormula; Adds a new formula to the set A;.

Satisfiable; True iff T; U 'yi(Ai) is satisfiable.
AddTermToPropagate, Adds a term to the set A,

GetEqualities; Returns the largest set of equalities &; between terms

in A; such that 73 U vi(A4i) E vi(&).

A new expression attribute, shared is used to keep track of which terms
are relevant to more than one theory. Each theory is given an index, i, and the
shared attribute is set to 7 if the term is used by theory i. If more than one
theory uses the term, the shared attribute is set to 0. This is encapsulated in
the SetShared and IsShared methods shown below.

SetShared(e,i) IsShared(e)
IF e.shared = | THEN e.shared := i; RETURN e.shared = 0;
ELSE IF e.shared # i THEN e.shared := 0;
AddTermToPropagate; (e);

Figure 2 shows the theory-specific code needed to add a theory 7; with a satis-
fiability procedure as described above. We will refer to a theory implemented in
this way as a Nelson-Oppen theory. Each i-expression is passed to TheorySetup,;.
TheorySetup; marks these terms and their alien children as used by T5. It also
ensures that Notify, will be called if any of these expressions are merged with
something else. When Notify, is called, the formula is passed along to the satis-
fiability procedure for T;. These steps correspond to the decomposition into pure
formulas in other implementations (but without the introduction of additional
variables). PropagateEqualities; asserts any equations between shared terms
that have been deduced by the satisfiability procedure for T;. This corresponds
to the equality propagation step in other methods. It is sufficient to propagate
equalities between shared variables, a fact also noted in [19].

We also introduce a new optimization. Not all theories need to know about
all equalities between shared terms. A theory is only notified of an equality if the
left side of that equality is a term that it has seen before. In order to guarantee
that this results in fewer propagations, we have to ensure that whenever an
equality between two terms is in M, if one of the terms is not shared, then the
left term is not shared. We can easily do this by modifying RewriteEquality to
put non-shared terms on the left. However, this is not necessary for correctness, a
fact which allows the integration of Shostak-style satisfiability procedures which
require a different implementation of RewriteEquality as described in Sec. 5.2
below.

A final optimization is to associate variable with theories in such a way as
to to avoid causing terms to be shared unnecessarily. For example, if z =t is
a formula in M and z is a variable and ¢ is an i-term, it is desirable for z to
be an i-term as well (otherwise, ¢ immediately becomes a shared term). In our
implementation, expressions are type-checked and each type is associated with

TheorySetup, (e)

FOREACH ¢-alien child a of e DO BEGIN
a.notify := a.notify U { (Notify,, 0) };
SetShared(a,i);

END

e.notify := e.notify U { (Notify,, 0) };

IF e is a term THEN SetShared(e,i);

TheoryRewrite, (e)
RETURN e;

PropagateEqualities; ()
propagate := false;
IF Satisfiable() BEGIN
IF - Satisfiable;() THEN Merge(true = false));
ELSE FOREACH x = y € GetEqualities; DO
IF IsShared(x) AND IsShared(y) AND x o y THEN BEGIN

propagate := true;
Assert(x = y));
END

END
RETURN propagate;

Notify, (e)
IF e[1] is an i-alien term THEN BEGIN
x := Find(e[2]);
x.notify := x.notify U { (Notify,, 0) };
e := (e[1] = x);
END
AddFormula; (e) ;

Fig. 2. Code for implementing a Nelson-Oppen theory T;.

a theory. Thus, we can easily guarantee this by associating x with the theory
associated with its type.

Correctness. The proof of the following theorem is similar to that given for
the framework code and is omitted.

Theorem 6. If the program is in an uncorrupted state located in the theory-
specific code for a Nelson-Oppen theory, then the next state is also uncorrupted.

To show that the completeness property holds, we must show that if the
program is in a consistent state in the user code, then T; U y;(M; Un(V)) is
satisfiable. This requires the following invariant to hold for each theory T;.

Shared Term Requirement There has been a call to SetShared (e, i) if v(e)
appears in v;(M; U 0;).

Lemma 8. If T; is a Nelson-Oppen theory, then the shared term requirement
holds for T;.

Corollary 1. IfT; is a Nelson-Oppen theory, and v(t) appears in v;(M; U ©;),
then t € A;.

Let A = A; U{x | x is a term and t = x € A; for some term t}.

Lemma 9. IfT; is a Nelson-Oppen theory and the program is in an uncorrupted
state in the user code and x =y € M, where x € AL, then x = z € A;, where
z = Find(y) at some previous time.

Proof. Suppose x € A;. Then SetShared was called. It is easy to see from the
code that at the time it was called, Notify, was added to x.notify. If on the
other hand, x € A;, then t = x € A; for some t which is not an i-term. But
then, when t = x was added to A;, Notify, was added to x.notify. In each
case, Notify,(x = y) will be called after Merge(x = y) is called, so that x =
Find(y) is added to A;. O

Lemma 10. If T; is a Nelson-Oppen theory and the program is in an uncor-
rupted state in the user code and x ~ 'y, where x,y € AL, then T; U v;(A;) =

vilr =y).

Proof. We can show by the previous lemma that since Find (x) = Find (y), there
is a chain of equalities in 4; linking x to y. O

Let D;={a#b|abe (A;NV)}, and let D! = {a #£b | a,b € (A NV)}.

Lemma 11. If T; is a Nelson-Oppen theory and the program is in an uncor-
rupted and consistent state in the user code, then T; U~y;(A; U D;) is satisfiable.

Proof. No single disequality * # y € D; can be inconsistent because if it
were, that would mean T; U 7v;(A;) = vi(z = y). But if this is the case, since
PropagateEqualities; terminated, it must be the case that x ~ y. Since no
single equality x = y is entailed, it follows from the convexity of Tj, that no
disjunction of equalities can be entailed. O

Lemma 12. If T; is a Nelson-Oppen theory and the program is in an uncor-
rupted and consistent state in the user code, then T; U~;(A; U D)) is satisfiable.

Proof. If t] # t} € D}, we can find (by the definition of A}) some t; and t,
such that t; # t2 € D; and A; = (t1 = t] Aty = t}). The result follows by the
previous lemma. O

Theorem 7. If each theory satisfies the shared term requirement and the pro-
gram is in an uncorrupted and consistent state in the user code, then if T; is a
Nelson-Oppen theory, the completeness property holds for T;.

Proof. Tt is not hard to show that if v(x) € v;(A; U©;), then x € AL It then
follows that an interpretation satisfying T; U~;(A; U D}) can be modified to also
satisfy v;(w(V)). o

Termination. The only termination condition that is non-trivial is the last one.
The following requirement is sufficient to fulfill this condition.

Nelson-Oppen Termination Requirement

Suppose that before a call to Assert from PropagateEqualities;, n is the
number of equivalence classes in ~ containing at least one term t € V. Then,
either the state following the call to Assert is inconsistent or if m is the number
of equivalence classes in ~ containing at least one term t € V after returning
from Assert, m < n.

If every theory is a Nelson-Oppen theory, it is not hard to see that this require-
ment holds. This is because each call to Assert merges the equivalence classes
of two shared variables without creating any new ones.

5.2 Adding Shostak Theories

Suppose we have a theory 7; with no predicate symbols which provides two
functions, o and w which we refer to as the canonizer and solver respectively.
Note that if we have more than one such theory, we can often combine the
canonizers and solvers to form a canonizer and solver for the combined theory,
as described in [17]?. The functions o and w have the following properties.

2 Although it has been claimed that solvers can always be combined to form a solver
for the combined theory [6,17], this is not always possible, as pointed out in [11]

o is a canonizer for T; if

T; |E vi(a =) iff o(a) = o(b)

o(o(t)) = o(t) for all terms t.

vi(o(t)) contains only variables occurring in 7;(t).

o(t) =t if t is a variable or not an i-term.

If o(t) is a compound i-term, then o(x) = x for each child x of o(t).

Gk W=

w is a solver® for Tj if

IfT; = vi(z # y) then w(x = y) = false.

Otherwise, w(x = y) = a = b where a and b are terms,

T, (r=y) o (a=b),

vi(a) is a variable and does not appear in v;(b),

neither 7;(a) nor ;(b) contain variables not occurring in ~;(x = y),
w(@=>b)=a=">band o(b) =b.

S Utk =

We call such a theory a Shostak theory. The code in Fig. 3 shows the additional
code needed to integrate a Shostak theory.

Correctness. It is not hard to show that this code satisfies the preconditions
and requirements of the framework.

Theorem 8. If the program is in an uncorrupted state located in the theory-
specific code for a Shostak theory, then the next state is also uncorrupted.

Included in the Shostak code are the calls to SetShared necessary to allow this
theory to be integrated with Nelson-Oppen theories. We have not included the
code typically included for handling uninterpreted functions. This is because
our approach allows us to consider uninterpreted functions as belonging to a
separate Nelson-Oppen theory. Though we do not show how in this paper, any
simple congruence closure algorithm can be integrated as a Nelson-Oppen theory.
Omitting details related to uninterpreted functions simplifies the presentation
and proof. We have also included code for handling disequalities, which Shostak’s
original procedure does not handle directly. We will give some intuition for how
this works after making a few definitions.

Let A; = {t | t is an i-leaf in some expression e € M}. Let £ = {a =
b|a€ A;Ab=Find(a) }. For an expression e, define 7(e) to be the expression
obtained from e by replacing each i-leaf x in e by Find(x). Shostak’s method
works by ensuring that Find(t) = o(7(t)). This together with the properties
of the solver ensure that the set £ is equivalent to a substitution, meaning it is
easily satisfiable. These are the key ideas of the completeness argument.

Lemma 13. If the program is in an uncorrupted and consistent state which
is not inside of a call to Merge, then for each term t such that HasFind(t),
Find(t) = o(7(t)). Also, if Find(t) = t, then 7(t) = t.

% Shostak allows the solved form to be more general. To simplify the presentation, we
assume the solver returns a single, logically equivalent, equation.

RewriteEquality (e)
IF e[1] = e[2] THEN RETURN true;
IF one child of e is true THEN RETURN the other child;
IF e[1] = false THEN RETURN (e[2] = e[1]);
IF e[1] is a term THEN RETURN w(e);
RETURN e;

TheorySetup, (e)
FOREACH a which is an i-leaf in e DO BEGIN
IF Op(e) = ‘=’ THEN a.notify := a.notify U {(UpdateDisequality,e)};
ELSE a.notify := a.notify U {(UpdateShostak,e)};
SetShared(a,i);
END
IF e is a term THEN SetShared(e,i);

TheoryRewrite, (e)
RETURN o (e);

PropagateEqualities; ()
RETURN false;

UpdateDisequality(x,y)
IF —Satisfiable() V —HasFind(y) THEN RETURN;
Replace each i-leaf ¢ in y with Find(c);
y’ := Rewrite(y);
IF y’> # false THEN Merge(y’ = false);

UpdateShostak(x,y)
IF Find(y) = y THEN BEGIN
Replace each i-leaf ¢ in y with Find(c) to get y’;
Merge(y = o(y’));
END

Fig. 3. Code for implementing a Shostak theory T;.

Proof. When SetFind is first called on an expression e, the Merge preconditions
together with the solver and canonizer guarantee that e = o(7(e)). Then, when-
ever an i¢-leaf is merged, UpdateShostak is called to preserve the invariant. O

Lemma 14. If the program is in an uncorrupted and consistent state in the user
code, and T; is a Shostak theory, then T; U;(E) is satisfiable.

Proof. Let M be a model of T;, and let x € A;. If Find (x) = x, then assign v(x)
an arbitrary value. Otherwise, assign v(x) the same value as ;(Find(x)). By the
above lemma, this assignment satisfies v;(&). O

Lemma 15. If the program is in an uncorrupted and consistent state in the user
code and T; is a Shostak theory, then T; U~;(M;) is satisfiable.

Proof. Suppose e € M;. Clearly e[l] ~ e[2]. If e is an equality between terms,
it follows from Lemma 13 that o(7(e[1])) = o(7(e[2])). By properties of o, it
follows that T; = 7(e[l]) = 7(e[2]). Then, by the definition of &, it follows
that T; U € |= e[l] = e[2] and hence T; U v;(£) = vi(e[l] = e[2]). Suppose
on the other hand that e is the literal (x = y) = false, and suppose that
T; Uvi(E) E 7vi(x =y). The same argument as above in reverse shows that
Find(x) = Find(y). The UpdateDisequality code ensures that in this case
true will get merged with false, contradicting the assumption that the state
is consistent. Thus, T; U v;(€) £ vi(x = y). Since Tj is convex, it follows that
T; U (€ UM,;) is satisfiable. O

Theorem 9. If the program is in an uncorrupted and consistent state in the
user code and T; is a Shostak theory, then the completeness property holds for
T;.

Proof. The above lemma shows that T; U v;(£ U M;) is satisfiable. Suppose a
and b are shared terms. If a ~ b, a similar argument to that given above shows
that T; U () |E ~vi(a=0>). If, on the other hand a # b, it follows easily
that T; U v;(€) [~ vi(a =D). Since each equality in v;(M; Un(V)) is entailed
by T; U ~v;(£) and none of the disequalities are, it follows by convexity that
T; U~vyi(M; Unr(V)) is satisfiable. a

Termination. The idempotency of the solver and canonizer are sufficient to
guarantee termination of rewrites. For each expression e, it is not hard to show
that something is added to e.notify only if Find (e) = e. Consider the functions
called by Merge which are UpdateDisequality and UpdateShostak. Both of
them call Merge recursively. Each of them reduce the value of some measure of the
program state. For UpdateDisequality, the measure is the number of equality
expressions e such that HasFind(e) and w(7(e)) # false. For UpdateShostak,
the measure is the number of expressions e such that Find(e) = e and Find(c)
c for some i-leaf ¢ of e. With some effort, it can be verified that none of the
functions in the theory-specific code presented thus far which can be called after
Union increase either of these measures. The other termination conditions are
trivial.

Finally, in order to combine Shostak and Nelson-Oppen, the Shostak code
must not break the Nelson-Oppen Termination Requirement. Any new call to
Merge has the potential to “create” new shared terms by causing a new term to
show up in M; for some i. A careful analysis shows that if Assert(x = y) is
called from the Nelson-Oppen code, any resulting call to Merge does not increase
the number of equivalence classes containing shared terms. Lemma 13 ensures
that by the time Assert has returned, x ~ y, so the number of equivalence
classes containing shared terms decreases as required.

6 Conclusion

We have presented a framework for combining decision procedures for disjoint
first-order theories, and shown how it can be used to implement and integrate
Nelson-Oppen and Shostak style decision procedures.

This work has shed considerable light on the individual methods as well as
on what is required to combine them. We discovered that a more restricted set
of equalities can be propagated in the Nelson-Oppen framework without losing
completeness. Also, by separating the uninterpreted functions from the Shostak
method, the code is simpler and easier to verify.

We are working on an extension of the framework which would handle non-
convex theories and more general Shostak solvers. In future work, we hope also
to be able to relax the requirements that the theories be disjoint and stably-
infinite. We also plan to complete and distribute a new version of SVC based on
these results.

Acknowledgments

We would like to thank Natarajan Shankar at SRI for helpful discussions and
insight into Shostak’s decision procedure. This work was partially supported
by the National Science Foundation Grant MIPS-9806889 and NASA contract
NASI-98139. The third author is supported by a National Science Foundation
Graduate Fellowship.

References

1. F. Baader and C. Tinelli. A new approach for combining decision procedures for
the word problem, and its connection to the Nelson-Oppen combination method. In
W. McCune, editor, 14th International Conference on Computer Aided Deduction,
Lecture Notes in Computer Science, pages 19-33. Springer-Verlag, 1997.

2. Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combinations
of theories with equality. In M. Srivas and A. Camilleri, editors, Formal Methods
In Computer-Aided Design, volume 1166 of Lecture Notes in Computer Science,
pages 187—-201. Springer-Verlag, 1996.

3. N. Bjorner. Integrating Decision Procedures for Temporal Verification. PhD thesis,
Stanford University, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Michael A. Colon and Tomas E. Uribe. Generating finite-state abstractions of reac-

tive systems using decision procedures. In International Conference on Computer-
Aided Verification, volume 1427 of Lecture Notes in Computer Science, pages 293—
304. Springer-Verlag, 1998.

D. Cyrluk. Private communication. 1999.

D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s Decision Procedure for Com-
binations of Theories. In M. McRobbie and J. Slaney, editors, 13th International
Conference on Computer Aided Deduction, volume 1104 of Lecture Notes in Com-
puter Science, pages 463—477. Springer-Verlag, 1996.

Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate ab-
straction. In 11th International Conference on Computer-Aided Verification, pages
160-172. Springer-Verlag, July 1999. Trento, Italy.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, , and James B. Saxe. Extended
static checking. Technical Report 159, Compaq SRC, 1998.

Z. Manna et al. STeP: Deductive-Algorithmic Verification of Reactive and Real-
time Systems. In 8th International Conference on Computer-Aided Verification,
volume 1102 of Lecture Notes in Computer Science, pages 415—418. Springer-
Verlag, 1996.

H.Saidi and N.Shankar. Abstract and model check while you prove. In Proceed-
ings of the 11th Conference on Computer-Aided Verification. Springer-Verlag, July
1999. Trento, Italy.

J. Levitt. Formal Verification Techniques for Digital Systems. PhD thesis, Stanford
University, 1999.

G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245-57, 1979.

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In D. Kapur, editor, 11th International Conference on Automated Deduction, vol-
ume 607 of Lecture Notes in Artificial Intelligence, pages 748-752. Springer-Verlag,
1992.

David Y.W. Park, Jens U. Skakkebaek, Mats P.E. Heimdahl, Barbara J. Czerny,
and David L. Dill. Checking properties of safety critical specifications using effi-
cient decision procedures. In FMSP’98: Second Workshop on Formal Methods in
Software Practice, pages 34—43, March 1998.

William Pugh. The omega test: a fast and practical integer programming algorithm
for dependence analysis. In Communications of the ACM, volume 8, pages 102-114,
August 1992.

H. Ruess and N. Shankar. Deconstructing Shostak. In 17th International Confer-
ence on Computer Aided Deduction, 2000.

R. Shostak. Deciding combinations of theories. Journal of the Association for
Computing Machinery, 31(1):1-12, 1984.

J. Su, D. Dill, and J. Skakkebak. Formally verifying data and control with weak
reachability invariants. In Formal Method In Computer-Aided Design, 1998.

C. Tinelli and M. Harandi. A new Correctness Proof of the Nelson-Oppen Combi-
nation Procedure. In F. Baader and K. Schulz, editors, 1st International Workshop
on Frontiers of Combining Systems (FroCoS’96), volume 3 of Applied Logic Series.
Kluwer Academic Publishers, 1996.

