
A Framework for Cooperating DecisionProceduresClark W. Barrett, David L. Dill, and Aaron StumpStanford University, Stanford, CA 94305, USA,http://verify.stanford.educ
 Springer-VerlagAbstract. We present a
exible framework for cooperating decision pro-cedures. We describe the properties needed to ensure correctness andshow how it can be applied to implement an e�cient version of Nel-son and Oppen's algorithm for combining decision procedures. We alsoshow how a Shostak style decision procedure can be implemented in theframework in such a way that it can be integrated with the Nelson-Oppenmethod.1 IntroductionDecision procedures for fragments of �rst-order or higher-order logic are po-tentially of great interest because of their versatility. Many practical problemscan be reduced to problems in some decidable theory. The availability of robustdecision procedures that can solve these problem within reasonable time andmemory could save a great deal of e�ort that would otherwise go into imple-menting special cases of these procedures.Indeed, there are several publicly distributed prototype implementations ofdecision procedures, such as Presburger arithmetic [15], and decidable combi-nations of quanti�er-free �rst-order theories [2]. These and similar procedureshave been used as components in applications, including interactive theoremprovers [13, 9], in�nite-state model checkers [7, 10, 4], symbolic simulators [18],software speci�cation checkers [14], and static program analyzers [8].Nelson and Oppen [12] showed that satis�ability procedures for several the-ories that satisfy certain conditions can be combined into a single satis�abilityprocedure by propagating equalities. Many others have built upon this work,o�ering new proofs and applications [19, 1].Shostak [17, 6, 16] gave an alternative method for combining decision pro-cedures. His method is applicable to a more restricted set of theories, but isreported to be more e�cient and is the basis for combination methods foundin SVC [2], PVS [13], and STeP [9, 3]. An understanding of his algorithm hasproven to be elusive.Both STeP and PVS have at least some ability to combine the methods ofNelson and Oppen and Shostak [5, 3], but not much detail has been given, andthe methods used in PVS have never been published. As a result, there is still

signi�cant confusion about the relationship between these two methods and howto implement them e�ciently and correctly.Our experience with SVC, a decision procedure for quanti�er-free �rst-orderlogic based loosely on Shostak's method for combining cooperating decision pro-cedures, has been both positive and negative. On the one hand, it has beenimplemented and is e�cient and reliable enough to enable new capabilities inour research group and at a surprisingly large number of other sites. However,e�orts to extend and modify SVC have revealed unnecessary constraints in theunderlying theory, as well as gaps in our understanding of it.This paper is an outcome of ongoing attempts to re-architect SVC to resolvethese di�culties. We present an architecture for cooperating decision proceduresthat is simple yet
exible and show how the soundness, completeness, and ter-mination of the combined decision procedure can be proved from a small list ofclearly stated assumptions about the constituent theories. As an example of theapplication of this framework, we show how it can be used to implement andintegrate the methods of Nelson and Oppen and Shostak. In so doing, we alsodescribe an optimization applicable to the original Nelson and Oppen procedureand show how our framework simpli�es the proof of correctness of Shostak'smethod. Due to the scope of this paper and space restrictions, many of theproofs have been abbreviated or omitted.2 De�nitions and NotationExpressions in the framework are represented using the logical symbols true,false, and `=', an arbitrary number of variables, and non-logical symbols con-sisting of constants, and function and predicate symbols. We call true and falseconstant formulas. An atomic formula is either a constant formula, an equalitybetween terms, or a predicate applied to terms. A literal is either an atomic for-mula or an equality between a non-constant atomic formula and false. Equalitywith false is used to represent negation. Formulas include atomic formulas, andare closed under the application of equality, conjunction and quanti�ers. An ex-pression is either a term or a formula. An expression is a leaf if it is a variable orconstant. Otherwise, it is a compound expression, containing an operator appliedto one or more children.A theory is a set of �rst-order sentences. For the purposes of this paper,we assume that all theories include the axioms of equality. The signature of atheory is the set of function, predicate, and constant symbols appearing in thosesentences. The language of a signature � is the set of all expressions whosefunction, predicate, and constant symbols come from �. Given a theory T withsignature �, if � is a sentence in the language of �, then we write T j= � tomean that every model of T is also a model of �. For a given model, M , aninterpretation is a function which assigns an element of the domain of M toeach variable. If � is a set of formulas and � is a formula, then we write � j= �to mean that for every model and interpretation satisfying each formula in � ,

the same model and interpretation satisfy �. Finally, if � is a set of formulas,then � j= � indicates that � j= � for each � in �.Expressions are represented using a directed acyclic graph (DAG) data struc-ture such that any two expressions which are syntactically identical are uniquelyrepresented by a single DAG. The following operations on expressions are sup-ported.Op(e) the operator of e (just e itself if e is a leaf).e[i] the ith child of e, where e[1] is the first child.If e1 and e2 are expressions, then we write e1 � e2 to indicate that e1 and e2are the same expression (syntactically identical). In contrast, e1 = e2 is simplyintended to represent the expression formed by applying the equality operatorto e1 and e2. Expressions can be annotated with various attributes. If a is anattribute, e.a is the value of that attribute for expression e. Initially, e.a = ?for each e and a, where ? is a special unde�ned value.The following simple operations make use of an expression attribute calledfind to maintain equivalence classes of expressions. We assume that these arethe only functions that reference the attribute. Note that when presenting pseu-docode here and below, some required preconditions may be given next to thename and parameters of the function.HasFind(a) SetFind(a) fa.find = ? gRETURN a.find 6= ?; a.find := a;Find(a) fHasFind(a)g Union(a,b) fa.find � a ^ b.find � b gIF (a.find � a) THEN RETURN a; a.find := b.find;ELSE RETURN Find(a.find);In some similar algorithms, e.find is initially set to e, rather than ?. Thereason we don't do this is that it turns out to be convenient to use an initializedfind attribute as a marker that the expression has been seen before. This notonly simpli�es the algorithm, but it also makes it easier to describe certaininvariants about expressions.The find attribute induces a relation � on expressions: a � b if and only ifHasFind(a) ^ HasFind(b) ^ [Find(a)�Find(b)]. For the set of all expressionswhose find attributes have been set, this relation is an equivalence relation.The �nd database, denoted by F , is de�ned as follows: a = b 2 F i� a � b. Thefollowing facts will be used below.Find Database Monotonicity. If the preconditions for SetFind and Unionare met, then if F is the �nd database at some previous time and F 0 is the �nddatabase now, then F � F 0.Find Lemma. If the preconditions for Find, SetFind, and Union hold, thenFind always terminates.

3 The Basic FrameworkAs mentioned above, the purpose of the framework presented in this paper is tocombine satis�ability procedures for several �rst-order theories into a satis�abil-ity procedure for their union. Suppose that T1; : : : ; Tn are n �rst-order theories,with signatures �1; : : : �n. Let T = STi and � = S�i. The goal is to providea framework for a satis�ability procedure which determines the satis�ability inT of a set of formulas in the language of �. Our approach follows that of Nelsonand Oppen [12]. We assume that the intersection of any two signatures is emptyand that each theory is stably-in�nite. A theory T with signature � is calledstably-in�nite if any quanti�er-free formula in the language of � is satis�ablein T only if it is satis�able in an in�nite model of T . We also assume that thetheories are convex. A theory is convex if there is no conjunction of literals in thelanguage of the theory which implies a disjunction of equalities without implyingone of the equalities itself.The interface to the framework from a client program consists of three meth-ods: AddFormula, Satisfiable, and Simplify. Conceptually, AddFormula addsits argument (which must be a literal) to a set A, called the assumption history.Simplify transforms an expression into a new expression which is equivalentmodulo T [A, and Satisfiable returns false if and only if T [A j= false. Sinceany quanti�er-free formula can be converted to disjunctive normal form, afterwhich each conjunction of literals can be checked separately for satis�ability, therestriction that the arguments to AddFormula be literals does not restrict thepower of framework.The framework includes sets of functions which are parameterized by theory.For example, if f is such a function, we denote by fi the instance of f associatedwith theory Ti. If for some f and Ti, we do not explicitly de�ne the instance fi, itis assumed that a call to fi does nothing. It is convenient to be able to call thesefunctions based on the theory associated with some expression e. Expressionsare associated with theories as follows. First, variables are partitioned amongthe theories arbitrarily. In some cases, one choice may be better than another,as discussed in Sec. 5.1 below. An expression in the language of � is associatedwith theory Ti if and only if it is a variable associated with Ti, its operator is asymbol in �i, or it is an equality and its left side is associated with theory Ti. Ifan expression is associated with theory Ti, we call it an i-expression. We denoteby T (e) the index i, where e is an i-expression.Figure 1 shows pseudocode for the basic framework. An input formula is �rstsimpli�ed it because it might already be known or reduce to something easier tohandle. Simpli�cation involves the recursive application of Find as well as certainrewrite rules. Assert calls Merge which merges two �-equivalence classes. Merge�rst calls Setup which ensures that the expressions are in an equivalence class.There are four places in the framework in which theory-speci�c functional-ity can be introduced. TheorySetup, TheoryRewrite and PropagateEqualitiesare theory-parameterized functions. Also, each expression has a notify attributecontaining a set of pairs hf,di, where f is a function and d is some data. When-ever Merge is called on an expression a = b, the find attribute of a changes to

AddFormula(e) f e is a literal gAssert(e);REPEATdone := true;FOREACH theory Ti DO IF PropagateEqualitiesi() THEN done := false;UNTIL done;Assert(e) f e is a literal; T [A j= e gIF : Satisfiable() THEN RETURN;e' := Simplify(e);IF e' � true THEN RETURN;IF Op(e') 6= `=' THEN e' := (e' = true);Merge(e');Merge(e) f Op(e) = `='; T [A j= e; see text for others gSetup(e[1]); Setup(e[2]);IF e[1] and e[2] are terms THEN TheorySetupT (e)(e);Union(e[1],e[2]);FOREACH hf,di 2 e[1].notify DO f(e,d);Setup(e)IF HasFind(e) THEN RETURN;FOREACH child c of e DO Setup(c);TheorySetupT (e)(e);SetFind(e);Simplify(e)IF HasFind(e) THEN RETURN Find(e);Replace each child c of e with Simplify(c);RETURN Rewrite(e);Rewrite(e)IF HasFind(e) THEN RETURN Find(e);IF Op(e) = `=' THEN e' := RewriteEquality(e);ELSE e' := TheoryRewriteT (e)(e);IF e 6� e' THEN e' := Rewrite(e');RETURN e';RewriteEquality(e)IF e[1] � e[2] THEN RETURN true;IF one child of e is true THEN RETURN the other child;IF e[1] � false THEN RETURN (e[2] = e[1]);RETURN e;Satisfiable()RETURN true 6� false; Fig. 1. Basic Framework

b, and f(a = b,d) is called for each hf,di 2 a.notify. Typically, TheorySetupadds callback functions to the notify attribute of various expressions to guar-antee that the theory's satis�ability procedure will be noti�ed if one of thoseexpressions is merged with another expression. Finally, before returning fromAddFormula, each theory may notify the framework of additional equalities ithas deduced until each theory reports that there are no more equalities to prop-agate.Theory-speci�c code is distinguished from the framework code shown in Fig.1 and from user code which is the rest of the program. It may call functionsin the framework, provided any required preconditions are met. Examples oftheory-speci�c code for both Nelson-Oppen and Shostak style theories are givenbelow, following a discussion of the abstract requirements which must be ful�lledby theory-speci�c code to ensure correctness.4 Correctness of the Basic FrameworkIn order to prove correctness, we give a speci�cation in terms of preconditions andpostconditions and show that the framework meets the speci�cation. Sometimesit is necessary to talk about the state of the program. Each run of a programis considered to be a sequence of states, where a state includes a value for eachvariable in the program and a location in the code.4.1 Preconditions and PostconditionsThe preconditions for each function in the framework except for Merge are shownin the pseudocode. In order to give the precondition for Merge, a few de�nitionsare required.A path from an expression e to a sub-expression s of e is a sequence ofexpressions e0; e1; :::; en such that e0 � e, ei+1 is a child of ei, and s is a childof en. A sub-expression s of an expression e is called a highest �nd-initializedsub-expression of e if HasFind(s) and there is a path from e to s such thatfor each expression e' on the path, :HasFind(e'). An expression e is called�nd-reduced if Find(s) � s for each highest �nd-initialized sub-expression s ofe. An expression e is called merge-acceptable if e is an equation and one of thefollowing holds: e is a literal; e[1] is false or an atomic predicate and e[2] � true;or e[1] � true and e[2] � false.Merge Precondition.Whenever Merge(e) is called, the following must hold.1. e is merge-acceptable,2. e[1] and e[2] are �nd-reduced,3. e[1] 6� e[2], and4. T [A j= e.

In addition to the preconditions, the following postconditions must be satis�edby the parameterized functions.TheoryRewrite Postcondition.After e' := TheoryRewrite(e) or e' := RewriteEquality(e) is executed,the following must hold:1. F is unchanged by the call,2. if e is a literal, then e' is a literal,3. if e is �nd-reduced, then HasFind(e') or e' is �nd-reduced, and4. T [F j= e = e'.TheorySetup Postcondition.After TheorySetup is executed, the �nd database is unchanged.If all preconditions and postconditions hold for all functions called so far, we saythat the program is in an uncorrupted state. Also, if true 6� false, we say theprogram is in a consistent state. A few lemmas are required before proving thatthe preconditions and postconditions hold for the framework code.Lemma 1. If the program is in an uncorrupted state and Union(a,b) has beencalled, then since that call there have been no calls to Union where either argu-ment was a.Proof. Once Union(a,b) is called, a.find 6� a and this remains true since itcan never again be an argument to SetFind or Union.Lemma 2 (Equality Find Lemma). If e � a = b and the program is inan uncorrupted and consistent state whose location is not between the call toSetFind(e) and the next call to Union and HasFind(e), then a and b are termsand Find(e) � false.Proof. Suppose HasFind(e). Then Setup(e) was called. But by the de�ni-tion of merge-acceptable, this can only happen if e[1] and e[2] are terms andMerge(e = false) was called, in which case Union(e,false) is called immedi-ately afterwards. It is clear from the de�nition of merge-acceptable, that Unionis never called with �rst argument false unless the second argument is true.Thus, if true 6� false, it follows from Lemma 1 that Find(e) � false. utLemma 3 (Literal Find Lemma). If the program is in an uncorrupted stateand e is a literal, then Find(e) is either e, true, or false.Proof. From the previous lemma, it follows that if e is an equality, then Find(e)is either e, true, or false. A similar argument shows that the same is true for apredicate. utLemma 4 (Simplify Lemma).If the program is in an uncorrupted state after e' := Simplify(e) is executed,then following are true:

1. F is unchanged by the call,2. if e is a literal then e' is a literal,3. if e is a literal or term, then e' is �nd-reduced, and4. T [F j= e = e'.We must prove the following theorem. A similar theorem is required every timewe introduce theory-speci�c code.Theorem 1. If the program is in an uncorrupted state located in the frameworkcode, then the next state is also uncorrupted.Proof.Find Precondition: Find is called in two places by the framework. In eachcase, we check the precondition before calling it.SetFind Precondition: SetFind(e) is only called from Setup(e) which re-turns if HasFind(e). Otherwise, Setup performs a depth-�rst traversal of theexpression and calls SetFind. It follows from the TheorySetup Postconditionand the fact that expressions are acyclic that the precondition is satis�ed.Union Precondition: Union(a,b) is only called if Merge(a = b) is called �rst.By the Merge precondition, a and b are �nd-reduced. It is easy to see that afterSetup(a) and Setup(b) are called, Find(a) � a and Find(b) � b.AddFormula Precondition: We assume that AddFormula is only called withliterals.Assert Precondition: Assert(e) is only called from AddFormula. In this case,e 2 A, so it follows that T [A j= e.Merge Precondition: Merge(e') is called from Assert(e). We know that e isa literal, so by the Simplify Lemma, Simplify(e) is a literal and is �nd-reduced.It follows that e' is merge-acceptable and e'[1] and e'[2] are �nd-reduced andunequal. From the Simplify Lemma, we can conclude that T [F j= e = e'. Itfollows from the soundness property (described next) that T [A j= e = e'. Weknow that T [A j= e, so it follows that T [A j= e'.TheoryRewrite Postcondition: It is straight-forward to check that each ofthe requirements hold for RewriteEquality. ut4.2 SoundnessThe satis�ability procedure is sound if whenever the program state is incon-sistent, T [A j= false. Soundness depends on the invariance of the followingproperty.Soundness Property. T [A j= F .Lemma 5. If the program is in an uncorrupted state, then the soundness prop-erty holds.

Proof. Initially, the �nd database is empty. New formulas are added in twoplaces. The �rst is in Setup, when SetFind is called. This preserves the soundnessproperty since it only adds a re
exive formula to F . The other is in Merge(e),when Union(e[1],e[2]) is called. This adds the formula e to F , but we knowthat T [A j= e by the Merge Precondition. It also results in the addition of anyformulas which can be deduced using transitivity and symmetry, but these arealso entailed because T includes equality. utTheorem 2. If the program is in an uncorrupted state, then the satis�abilityprocedure is sound.Proof. Suppose Satisfiable returns false. This means that true � false. It fol-lows from the previous lemma that T [A j= true = false, so T [A j= false.ut4.3 CompletenessThe satis�ability procedure is complete if T [A is satis�able whenever the pro-gram is in a consistent state in the user code.We de�ne the merge database, denotedM, as the set of all expressions e suchthat there has been a call to Merge(e). In order to describe the property whichmust hold for completeness, we �rst introduce a few de�nitions, adapted from[19].Recall that an expression in the language of � is an i-expression if it is avariable associated with Ti, its operator is a symbol in �i, or it is an equalityand its left side is an i-expression. A sub-expression of e is called an i-leaf if itis a variable or a j-expression, with j 6= i, and every expression along some pathfrom e is an i-expression. An i-leaf is an i-alien if it is not an i-expression. Ani-expression in which every i-leaf is a variable is called pure (or i-pure).With each term t which is not a variable, we associate a fresh variable v(t).We de�ne v(t) to be t when t is a variable. For some expression or set ofexpressions S, we de�ne
i(S) by replacing all of the i-alien terms t in S byv(t)1 so that every expression in
i(S) is i-pure. We denote by
0(S) the setobtained from S by replacing all maximal terms (i.e. terms without any super-terms) t by v(t). Let � be the set of all equations t = v(t), where t is a sub-termof some formula in M. It is easy to see that T [M is satis�able i� T [M[�is satis�able.LetMi = fe j e 2M^e is an i-expression g. De�ne �i similarly. Notice that(M[�) is logically equivalent to S
i(Mi [�i), since each can be transformedinto the other by repeated substitutions.1 Since expressions are DAG's, we must be careful about what is meant by replacing asub-expression. The intended meaning here and throughout is that the expression isconsidered as a tree, and only occurrences of the term which qualify for replacementin the tree are replaced. This means that some occurrences may not be replaced atall, and the resulting DAG may look signi�cantly di�erent as a result.

We de�ne V , the set of shared terms as the set of all terms t such that v(t)appears in at least two distinct sets
i(Mi [�i); 1 � i � n. Let E(V) = fa =b j a; b 2 V ^ a � bg, and let D(V) = fa 6= b j a; b 2 V ^ a 6� bg. For a set ofexpressions S, an arrangement �(S) is a set such that for every two expressionsa and b in S, exactly one of a = b or a 6= b is in �(S). We denote by �(V)the arrangement E(V) [D(V) of V determined by �. Now we can state theproperty required for completeness.Completeness Property. If the program is in a consistent state in the usercode, then Ti [
i(Mi [�(V)) is satis�able.The following lemmas are needed before proving completeness.Lemma 6. If the program is in an uncorrupted state, then T [M j= FProof. Every formula in F is either inM or can be derived from formulas inMusing re
exivity, symmetry, and transitivity of equality. utLemma 7. If the program is in an uncorrupted and consistent state in the usercode, then T [M j= A.Proof. Suppose e 2 A. Then we know that Assert(e) was called at some timepreviously. We can conclude by monotonicity of the �nd database that true 6�false at the time of that call. Thus, e' := Simplify(e) was executed. By theSimplify Lemma, if F1 was the �nd database at the time of the call, T [F1 j=e = e'. Now, if e0 � true, then T [F1 j= e and so by monotonicity and Lemma6, T [M j= e. Otherwise, Merge is called. Let x be the argument to Merge. Itis easy to see that T [F1 j= e = x. But x 2 M, so T [M j= x. It then followseasily by monotonicity and Lemma 6 that T [M j= e. utThe following theorem is from [19].Theorem 3. Let T1 and T2 be two stably-in�nite, signature-disjoint theoriesand let �1 be a set of formulas in the language of T1 and �2 a set of formulasin the language of T2. Let v be the set of their shared variables and let �(v) bean arrangement of v. If �i ^ �(v) is satis�able in Ti for i = 1, 2, then �1 ^ �2is satis�able in T1 [T2.Theorem 4. If the procedure always maintains an uncorrupted state and thecompleteness property holds for each theory, then the procedure is complete.Proof. Suppose that for a consistent state in the user code, Ti [
i(Mi [�(V))is satis�able for each i. This implies that Ti [
i(Mi [�i [�(V)) is satis�able(since each equation in �i simply de�nes a new variable), which is logicallyequivalent (by applying substitutions from �i) to Ti [
i(Mi [�i) [
0(�(V)).Now, each set
i(Mi [�i) is a set of formulas in the language of Ti, and
0(�(V))is an arrangement of the variables shared among these sets, so we can concludeby repeated application of Theorem 3 that S
i(Mi [�i) is satis�able in T .But S
i(Mi [�i) is equivalent to M[� which is satis�able in T i� T [M issatis�able. Finally, by Lemma 7, T [M j= A. Thus we can conclude that T [Ais satis�able. ut

4.4 Termination.We must show that each function in the framework terminates. The followingrequirements guarantee this.Termination Requirements.1. The preconditions for Find, SetFind, and Union always hold.2. For each i-expression e, TheoryRewritei(e) terminates.3. If s is a sequence of expressions in which the next member of the sequencee' is formed from the previous member e by calling TheoryRewritei(e),then beyond some element of the sequence, all the expressions are identical.4. For each i-expression e, TheorySetupi(e) terminates.5. After Union(a,b) is called,(a) No new entries are added to a.notify.(b) Each call to each funtion in a.notify terminates.6. For each theory Ti, PropagateEqualitiesi terminates and after callingPropagateEqualitiesi some �nite number of times, it will always returnfalse.Theorem 5. If the termination requirements hold, then each function in theframework terminates.Proof. The �rst condition guarantees that Find terminates, from which it followsthat Satisfiable terminates. The next two ensure that Rewrite terminates. Itthen follows easily that Simplify must terminate. The next few conditions aresu�cient to ensure that Setup and Merge terminate, from which it follows thatAssert terminates. This, together with the last condition allows us to concludethat AddFormula terminates. utIt is not hard to see that without any theory-speci�c code, these requirementshold.5 Examples Using the FrameworkIn this section we will give two examples to show how the framework can ac-commodate di�erent kinds of theory-speci�c code.5.1 Nelson-Oppen TheoriesA Nelson-Oppen style satis�ability procedure for a theory Ti must be able todetermine the satis�ability of a set of formulas in the language of �i as wellas which equalities between variables are entailed by that set of formulas [12].We present a method for integrating such theories which is
exible and e�cient.

Suppose we have a Nelson-Oppen style satis�ability procedure which treats alienterms as variables with the following methods:AddFormulai Adds a new formula to the set Ai.Satisfiablei True iff Ti [
i(Ai) is satisfiable.AddTermToPropagatei Adds a term to the set �i.GetEqualitiesi Returns the largest set of equalities Ei between termsin �i such that Ti [
i(Ai) j=
i(Ei).A new expression attribute, shared is used to keep track of which termsare relevant to more than one theory. Each theory is given an index, i, and theshared attribute is set to i if the term is used by theory i. If more than onetheory uses the term, the shared attribute is set to 0. This is encapsulated inthe SetShared and IsShared methods shown below.SetShared(e,i) IsShared(e)IF e.shared = ? THEN e.shared := i; RETURN e.shared = 0;ELSE IF e.shared 6= i THEN e.shared := 0;AddTermToPropagatei(e);Figure 2 shows the theory-speci�c code needed to add a theory Ti with a satis-�ability procedure as described above. We will refer to a theory implemented inthis way as a Nelson-Oppen theory. Each i-expression is passed to TheorySetupi.TheorySetupi marks these terms and their alien children as used by Ti. It alsoensures that Notifyi will be called if any of these expressions are merged withsomething else. When Notifyi is called, the formula is passed along to the satis-�ability procedure for Ti. These steps correspond to the decomposition into pureformulas in other implementations (but without the introduction of additionalvariables). PropagateEqualitiesi asserts any equations between shared termsthat have been deduced by the satis�ability procedure for Ti. This correspondsto the equality propagation step in other methods. It is su�cient to propagateequalities between shared variables, a fact also noted in [19].We also introduce a new optimization. Not all theories need to know aboutall equalities between shared terms. A theory is only noti�ed of an equality if theleft side of that equality is a term that it has seen before. In order to guaranteethat this results in fewer propagations, we have to ensure that whenever anequality between two terms is in M, if one of the terms is not shared, then theleft term is not shared. We can easily do this by modifying RewriteEquality toput non-shared terms on the left. However, this is not necessary for correctness, afact which allows the integration of Shostak-style satis�ability procedures whichrequire a di�erent implementation of RewriteEquality as described in Sec. 5.2below.A �nal optimization is to associate variable with theories in such a way asto to avoid causing terms to be shared unnecessarily. For example, if x = t isa formula in M and x is a variable and t is an i-term, it is desirable for x tobe an i-term as well (otherwise, t immediately becomes a shared term). In ourimplementation, expressions are type-checked and each type is associated with

TheorySetupi(e)FOREACH i-alien child a of e DO BEGINa.notify := a.notify [f hNotifyi, ;i g;SetShared(a,i);ENDe.notify := e.notify [f hNotifyi, ;i g;IF e is a term THEN SetShared(e,i);TheoryRewritei(e)RETURN e;PropagateEqualitiesi()propagate := false;IF Satisfiable() BEGINIF : Satisfiablei() THEN Merge(true = false));ELSE FOREACH x = y 2 GetEqualitiesi DOIF IsShared(x) AND IsShared(y) AND x 6� y THEN BEGINpropagate := true;Assert(x = y));ENDENDRETURN propagate;Notifyi(e)IF e[1] is an i-alien term THEN BEGINx := Find(e[2]);x.notify := x.notify [f hNotifyi, ;i g;e := (e[1] = x);ENDAddFormulai(e);Fig. 2. Code for implementing a Nelson-Oppen theory Ti.

a theory. Thus, we can easily guarantee this by associating x with the theoryassociated with its type.Correctness. The proof of the following theorem is similar to that given forthe framework code and is omitted.Theorem 6. If the program is in an uncorrupted state located in the theory-speci�c code for a Nelson-Oppen theory, then the next state is also uncorrupted.To show that the completeness property holds, we must show that if theprogram is in a consistent state in the user code, then Ti [
i(Mi [�(V)) issatis�able. This requires the following invariant to hold for each theory Ti.Shared Term Requirement There has been a call to SetShared(e,i) if v(e)appears in
i(Mi [�i).Lemma 8. If Ti is a Nelson-Oppen theory, then the shared term requirementholds for Ti.Corollary 1. If Ti is a Nelson-Oppen theory, and v(t) appears in
i(Mi [�i),then t 2 �i.Let �0i = �i [fx j x is a term and t = x 2 Ai for some term tg.Lemma 9. If Ti is a Nelson-Oppen theory and the program is in an uncorruptedstate in the user code and x = y 2 M, where x 2 �0i, then x = z 2 Ai, wherez � Find(y) at some previous time.Proof. Suppose x 2 �i. Then SetShared was called. It is easy to see from thecode that at the time it was called, Notifyi was added to x.notify. If on theother hand, x 62 �i, then t = x 2 Ai for some t which is not an i-term. Butthen, when t = x was added to Ai, Notifyi was added to x.notify. In eachcase, Notifyi(x = y) will be called after Merge(x = y) is called, so that x =Find(y) is added to Ai. utLemma 10. If Ti is a Nelson-Oppen theory and the program is in an uncor-rupted state in the user code and x � y, where x; y 2 �0i, then Ti [
i(Ai) j=
i(x = y).Proof. We can show by the previous lemma that since Find(x)� Find(y), thereis a chain of equalities in Ai linking x to y. utLet Di = fa 6= b j a; b 2 (�i \ V)g, and let D0i = fa 6= b j a; b 2 (�0i \ V)g.Lemma 11. If Ti is a Nelson-Oppen theory and the program is in an uncor-rupted and consistent state in the user code, then Ti [
i(Ai [Di) is satis�able.

Proof. No single disequality x 6= y 2 Di can be inconsistent because if itwere, that would mean Ti [
i(Ai) j=
i(x = y). But if this is the case, sincePropagateEqualitiesi terminated, it must be the case that x � y. Since nosingle equality x = y is entailed, it follows from the convexity of Ti, that nodisjunction of equalities can be entailed. utLemma 12. If Ti is a Nelson-Oppen theory and the program is in an uncor-rupted and consistent state in the user code, then Ti [
i(Ai [D0i) is satis�able.Proof. If t01 6= t02 2 D0i, we can �nd (by the de�nition of �0i) some t1 and t2such that t1 6= t2 2 Di and Ai j= (t1 = t01 ^ t2 = t02). The result follows by theprevious lemma. utTheorem 7. If each theory satis�es the shared term requirement and the pro-gram is in an uncorrupted and consistent state in the user code, then if Ti is aNelson-Oppen theory, the completeness property holds for Ti.Proof. It is not hard to show that if v(x) 2
i(Ai [�i), then x 2 �0i. It thenfollows that an interpretation satisfying Ti [
i(Ai [D0i) can be modi�ed to alsosatisfy
i(�(V)). utTermination. The only termination condition that is non-trivial is the last one.The following requirement is su�cient to ful�ll this condition.Nelson-Oppen Termination RequirementSuppose that before a call to Assert from PropagateEqualitiesi, n is thenumber of equivalence classes in � containing at least one term t 2 V . Then,either the state following the call to Assert is inconsistent or if m is the numberof equivalence classes in � containing at least one term t 2 V after returningfrom Assert, m < n.If every theory is a Nelson-Oppen theory, it is not hard to see that this require-ment holds. This is because each call to Assert merges the equivalence classesof two shared variables without creating any new ones.5.2 Adding Shostak TheoriesSuppose we have a theory Ti with no predicate symbols which provides twofunctions, � and ! which we refer to as the canonizer and solver respectively.Note that if we have more than one such theory, we can often combine thecanonizers and solvers to form a canonizer and solver for the combined theory,as described in [17]2. The functions � and ! have the following properties.2 Although it has been claimed that solvers can always be combined to form a solverfor the combined theory [6, 17], this is not always possible, as pointed out in [11]

� is a canonizer for Ti if1. Ti j=
i(a = b) i� �(a) � �(b)2. �(�(t)) � �(t) for all terms t.3.
i(�(t)) contains only variables occurring in
i(t).4. �(t) � t if t is a variable or not an i-term.5. If �(t) is a compound i-term, then �(x) = x for each child x of �(t).! is a solver3 for Ti if1. If Ti j=
i(x 6= y) then !(x = y) � false.2. Otherwise, !(x = y) � a = b where a and b are terms,3. Ti j= (x = y)$ (a = b),4.
i(a) is a variable and does not appear in
i(b),5. neither
i(a) nor
i(b) contain variables not occurring in
i(x = y),6. !(a = b) � a = b and �(b) � b.We call such a theory a Shostak theory. The code in Fig. 3 shows the additionalcode needed to integrate a Shostak theory.Correctness. It is not hard to show that this code satis�es the preconditionsand requirements of the framework.Theorem 8. If the program is in an uncorrupted state located in the theory-speci�c code for a Shostak theory, then the next state is also uncorrupted.Included in the Shostak code are the calls to SetShared necessary to allow thistheory to be integrated with Nelson-Oppen theories. We have not included thecode typically included for handling uninterpreted functions. This is becauseour approach allows us to consider uninterpreted functions as belonging to aseparate Nelson-Oppen theory. Though we do not show how in this paper, anysimple congruence closure algorithm can be integrated as a Nelson-Oppen theory.Omitting details related to uninterpreted functions simpli�es the presentationand proof. We have also included code for handling disequalities, which Shostak'soriginal procedure does not handle directly. We will give some intuition for howthis works after making a few de�nitions.Let �i = ft j t is an i-leaf in some expression e 2 Mg. Let E = fa =b j a 2 �i^b � Find(a) g. For an expression e, de�ne �(e) to be the expressionobtained from e by replacing each i-leaf x in e by Find(x). Shostak's methodworks by ensuring that Find(t) � �(�(t)). This together with the propertiesof the solver ensure that the set E is equivalent to a substitution, meaning it iseasily satis�able. These are the key ideas of the completeness argument.Lemma 13. If the program is in an uncorrupted and consistent state whichis not inside of a call to Merge, then for each term t such that HasFind(t),Find(t) � �(�(t)). Also, if Find(t) � t, then �(t) � t.3 Shostak allows the solved form to be more general. To simplify the presentation, weassume the solver returns a single, logically equivalent, equation.

RewriteEquality(e)IF e[1] � e[2] THEN RETURN true;IF one child of e is true THEN RETURN the other child;IF e[1] � false THEN RETURN (e[2] = e[1]);IF e[1] is a term THEN RETURN !(e);RETURN e;TheorySetupi(e)FOREACH a which is an i-leaf in e DO BEGINIF Op(e) = `=' THEN a.notify := a.notify [fhUpdateDisequality,eig;ELSE a.notify := a.notify [fhUpdateShostak,eig;SetShared(a,i);ENDIF e is a term THEN SetShared(e,i);TheoryRewritei(e)RETURN �(e);PropagateEqualitiesi()RETURN false;UpdateDisequality(x,y)IF : Satisfiable() _ : HasFind(y) THEN RETURN;Replace each i-leaf c in y with Find(c);y' := Rewrite(y);IF y' 6� false THEN Merge(y' = false);UpdateShostak(x,y)IF Find(y) � y THEN BEGINReplace each i-leaf c in y with Find(c) to get y';Merge(y = �(y'));END Fig. 3. Code for implementing a Shostak theory Ti.

Proof. When SetFind is �rst called on an expression e, the Merge preconditionstogether with the solver and canonizer guarantee that e � �(�(e)). Then, when-ever an i-leaf is merged, UpdateShostak is called to preserve the invariant. utLemma 14. If the program is in an uncorrupted and consistent state in the usercode, and Ti is a Shostak theory, then Ti [
i(E) is satis�able.Proof. Let M be a model of Ti, and let x 2 �i. If Find(x) � x, then assign v(x)an arbitrary value. Otherwise, assign v(x) the same value as
i(Find(x)). By theabove lemma, this assignment satis�es
i(E). utLemma 15. If the program is in an uncorrupted and consistent state in the usercode and Ti is a Shostak theory, then Ti [
i(Mi) is satis�able.Proof. Suppose e 2 Mi. Clearly e[1] � e[2]. If e is an equality between terms,it follows from Lemma 13 that �(�(e[1])) � �(�(e[2])). By properties of �, itfollows that Ti j= �(e[1]) = �(e[2]). Then, by the de�nition of E , it followsthat Ti [E j= e[1] = e[2] and hence Ti [
i(E) j=
i(e[1] = e[2]). Supposeon the other hand that e is the literal (x = y) = false, and suppose thatTi [
i(E) j=
i(x = y). The same argument as above in reverse shows thatFind(x) � Find(y). The UpdateDisequality code ensures that in this casetrue will get merged with false, contradicting the assumption that the stateis consistent. Thus, Ti [
i(E) 6j=
i(x = y). Since Ti is convex, it follows thatTi [
i(E [Mi) is satis�able. utTheorem 9. If the program is in an uncorrupted and consistent state in theuser code and Ti is a Shostak theory, then the completeness property holds forTi.Proof. The above lemma shows that Ti [
i(E [Mi) is satis�able. Suppose aand b are shared terms. If a � b, a similar argument to that given above showsthat Ti [
i(E) j=
i(a = b). If, on the other hand a 6� b, it follows easilythat Ti [
i(E) 6j=
i(a = b). Since each equality in
i(Mi [�(V)) is entailedby Ti [
i(E) and none of the disequalities are, it follows by convexity thatTi [
i(Mi [�(V)) is satis�able. utTermination. The idempotency of the solver and canonizer are su�cient toguarantee termination of rewrites. For each expression e, it is not hard to showthat something is added to e.notify only if Find(e)� e. Consider the functionscalled by Merge which are UpdateDisequality and UpdateShostak. Both ofthem call Merge recursively. Each of them reduce the value of some measure of theprogram state. For UpdateDisequality, the measure is the number of equalityexpressions e such that HasFind(e) and !(�(e)) 6� false. For UpdateShostak,the measure is the number of expressions e such that Find(e) � e and Find(c)6� c for some i-leaf c of e. With some e�ort, it can be veri�ed that none of thefunctions in the theory-speci�c code presented thus far which can be called afterUnion increase either of these measures. The other termination conditions aretrivial.

Finally, in order to combine Shostak and Nelson-Oppen, the Shostak codemust not break the Nelson-Oppen Termination Requirement. Any new call toMerge has the potential to \create" new shared terms by causing a new term toshow up in Mi for some i. A careful analysis shows that if Assert(x = y) iscalled from the Nelson-Oppen code, any resulting call to Merge does not increasethe number of equivalence classes containing shared terms. Lemma 13 ensuresthat by the time Assert has returned, x � y, so the number of equivalenceclasses containing shared terms decreases as required.6 ConclusionWe have presented a framework for combining decision procedures for disjoint�rst-order theories, and shown how it can be used to implement and integrateNelson-Oppen and Shostak style decision procedures.This work has shed considerable light on the individual methods as well ason what is required to combine them. We discovered that a more restricted setof equalities can be propagated in the Nelson-Oppen framework without losingcompleteness. Also, by separating the uninterpreted functions from the Shostakmethod, the code is simpler and easier to verify.We are working on an extension of the framework which would handle non-convex theories and more general Shostak solvers. In future work, we hope alsoto be able to relax the requirements that the theories be disjoint and stably-in�nite. We also plan to complete and distribute a new version of SVC based onthese results.AcknowledgmentsWe would like to thank Natarajan Shankar at SRI for helpful discussions andinsight into Shostak's decision procedure. This work was partially supportedby the National Science Foundation Grant MIPS-9806889 and NASA contractNASI-98139. The third author is supported by a National Science FoundationGraduate Fellowship.References1. F. Baader and C. Tinelli. A new approach for combining decision procedures forthe word problem, and its connection to the Nelson-Oppen combination method. InW. McCune, editor, 14th International Conference on Computer Aided Deduction,Lecture Notes in Computer Science, pages 19{33. Springer-Verlag, 1997.2. Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combinationsof theories with equality. In M. Srivas and A. Camilleri, editors, Formal MethodsIn Computer-Aided Design, volume 1166 of Lecture Notes in Computer Science,pages 187{201. Springer-Verlag, 1996.3. N. Bjorner. Integrating Decision Procedures for Temporal Veri�cation. PhD thesis,Stanford University, 1999.

4. Michael A. Colon and Tomas E. Uribe. Generating �nite-state abstractions of reac-tive systems using decision procedures. In International Conference on Computer-Aided Veri�cation, volume 1427 of Lecture Notes in Computer Science, pages 293{304. Springer-Verlag, 1998.5. D. Cyrluk. Private communication. 1999.6. D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak's Decision Procedure for Com-binations of Theories. In M. McRobbie and J. Slaney, editors, 13th InternationalConference on Computer Aided Deduction, volume 1104 of Lecture Notes in Com-puter Science, pages 463{477. Springer-Verlag, 1996.7. Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate ab-straction. In 11th International Conference on Computer-Aided Veri�cation, pages160{172. Springer-Verlag, July 1999. Trento, Italy.8. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, , and James B. Saxe. Extendedstatic checking. Technical Report 159, Compaq SRC, 1998.9. Z. Manna et al. STeP: Deductive-Algorithmic Veri�cation of Reactive and Real-time Systems. In 8th International Conference on Computer-Aided Veri�cation,volume 1102 of Lecture Notes in Computer Science, pages 415{418. Springer-Verlag, 1996.10. H.Saidi and N.Shankar. Abstract and model check while you prove. In Proceed-ings of the 11th Conference on Computer-Aided Veri�cation. Springer-Verlag, July1999. Trento, Italy.11. J. Levitt. Formal Veri�cation Techniques for Digital Systems. PhD thesis, StanfordUniversity, 1999.12. G. Nelson and D. Oppen. Simpli�cation by cooperating decision procedures. ACMTransactions on Programming Languages and Systems, 1(2):245{57, 1979.13. S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System.In D. Kapur, editor, 11th International Conference on Automated Deduction, vol-ume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752. Springer-Verlag,1992.14. David Y.W. Park, Jens U. Skakkeb�k, Mats P.E. Heimdahl, Barbara J. Czerny,and David L. Dill. Checking properties of safety critical speci�cations using e�-cient decision procedures. In FMSP'98: Second Workshop on Formal Methods inSoftware Practice, pages 34{43, March 1998.15. William Pugh. The omega test: a fast and practical integer programming algorithmfor dependence analysis. In Communications of the ACM, volume 8, pages 102{114,August 1992.16. H. Ruess and N. Shankar. Deconstructing Shostak. In 17th International Confer-ence on Computer Aided Deduction, 2000.17. R. Shostak. Deciding combinations of theories. Journal of the Association forComputing Machinery, 31(1):1{12, 1984.18. J. Su, D. Dill, and J. Skakkeb�k. Formally verifying data and control with weakreachability invariants. In Formal Method In Computer-Aided Design, 1998.19. C. Tinelli and M. Harandi. A new Correctness Proof of the Nelson-Oppen Combi-nation Procedure. In F. Baader and K. Schulz, editors, 1st International Workshopon Frontiers of Combining Systems (FroCoS'96), volume 3 of Applied Logic Series.Kluwer Academic Publishers, 1996.

