
Checking Satis�ability of First-Order Formulasby Incremental Translation to SATClark W. Barrett, David L. Dill, and Aaron Stumpbarrett|dill|stump@cs.stanford.edu, http://verify.stanford.educ
 Springer-VerlagAbstract. In the past few years, general-purpose propositional satis-�ability (SAT) solvers have improved dramatically in performance andhave been used to tackle many new problems. It has also been shown thatcertain simple fragments of �rst-order logic can be decided e�ciently by�rst translating the problem into an equivalent SAT problem and thenusing a fast SAT solver. In this paper, we describe an alternative butsimilar approach to using SAT in conjunction with a more expressivefragment of �rst-order logic. However, rather than translating the entireformula up front, the formula is incrementally translated during a searchfor the solution. As a result, only that portion of the translation that isactually relevant to the solution is obtained. We describe a number of ob-stacles that had to be overcome before developing an approach which wasultimately very e�ective, and give results on veri�cation benchmarks us-ing CVC (Cooperating Validity Checker), which includes the Cha� SATsolver. The results show a performance gain of several orders of mag-nitude over CVC without Cha� and indicate that the method is morerobust than the heuristics found in CVC's predecessor, SVC.Key Words: Satis�ability, Decision Procedures, Propositional Satis�a-bility, First-Order Logic.1 IntroductionAutomated tools to check the satis�ability (or dually, the validity) of formulasare of great interest because of their versatility. Many practical problems canbe reduced to the question of whether some formula is valid in a given logicaltheory.Di�erent approaches have been taken to developing general-purpose deci-sion procedures. At one extreme, propositional satis�ability (SAT) solvers areblazingly fast, but only operate on propositional formulas, a very limited inputlanguage. At another extreme, general purpose �rst- or higher-order theoremprovers are capable of proving some sophisticated results, but since their logicsare undecidable, a result cannot be guaranteed.A middle road is to develop fast decision procedures for speci�c decidable�rst-order theories. One interesting way to do this which has recently seen alot of research activity is to translate the problem to SAT and then use a fast

SAT solver to obtain a solution. By using appropriate tricks to reduce the timeand space required for the translation, this approach seems to work well forsimple theories such as the theory of equality with uninterpreted functions [3,12]. However, it is not clear how or whether such an approach would work forother decidable theories.We propose a method designed to be more generally applicable: given a satis-�ability procedure SatFO for a conjunction of literals in some �rst-order theory,a fast SAT-based satis�ability procedure for arbitrary quanti�er-free formulasof the theory can be constructed by abstracting the formula to a propositionalapproximation and then incrementally re�ning the approximation until a su�-ciently precise approximation is obtained to solve the problem. The re�nementis accomplished by using SatFO to diagnose con
icts and then adding the ap-propriate con
ict clauses to the propositional approximation.In Section 2, we brie
y review propositional satis�ability. We then describethe problem in Section 3. Section 4 describes our approach to solving the prob-lem using SAT, and Section 5 describes a number of di�culties that had to beovercome in order to make the approach practical. Section 6 describes some re-lated work, and in Section 7, we give results obtained using CVC [15], a newdecision procedure for a combination of theories in a quanti�er-free fragmentof �rst-order logic which includes the SAT solver Cha� [10]. We compare withresults using CVC without Cha� and with our best previous results using SVC[1], the predecessor to CVC. The new method is generally faster, requires signif-icantly fewer decisions, and is able to solve examples that were previously toodi�cult.2 Propositional Satis�abilityThe SAT problem is the original classic NP-complete problem of computer sci-ence. A propositional formula is built as shown in Fig. 1 from propositionalvariables (i.e. variables that can either be assigned true or false) and Booleanoperators (^, _, :). Given such a formula, the goal of SAT is to �nd an assign-ment of true or false to each variable which results in the entire formula beingtrue.Instances of the SAT problem are typically given in conjunctive normal form(CNF). As shown in Fig. 1, CNF requires that the formula be a conjunction ofclauses, each of which is a disjunction of propositional literals. In Section 4.1,we describe a well-known technique for transforming any propositional formulainto an equisatis�able propositional formula in conjunctive normal form.Although the SAT problem is NP-complete, a wide variety of techniqueshave been developed that enable many examples to be solved very quickly. Alarge number of publicly distributed algorithms and benchmarks are available[14]. Cha� [10] is a SAT solver developed at Princeton University. As with mostother SAT solvers, it requires that its input be in CNF. It is widely regarded asone of the best performing SAT solvers currently available.

propositional formula ::= true | false | propositional variable| propositional formula ^ propositional formula| propositional formula _ propositional formula| :propositional formulaCNF formula ::= (clause ^ : : : ^ clause)clause ::= (propositional literal _ : : : _ propositional literal)propositional literal ::= propositional variable| :propositional variableFig. 1. Propositional logic and CNF3 The Problemformula ::= true | false | literal| term = term| predicate symbol (term, : : :, term)| formula ^ formula| formula _ formula| :formulaliteral ::= atomic formula | :atomic formulaatomic formula ::= atomic term = atomic term| predicate symbol (atomic term, : : :, atomic term)term ::= atomic term| function symbol (term, : : :,term)| ite(formula,term,term)atomic term ::= variable | constant symbol| function symbol (atomic term, : : :,atomic term)Fig. 2. A quanti�er-free fragment of �rst-order logic.We will show how to use SAT to aid in determining the satis�ability of aformula � in a language which is much more expressive than propositional logic:the basic variant of quanti�er-free �rst-order logic shown in Fig. 2. Note thatin the remainder of the paper, the term \literal" by itself will be used to referto an atomic formula or its negation, as de�ned in Fig. 2. This di�ers fromthe term \propositional literal" which we will use as in the previous section tomean a propositional variable or its negation. A small di�erence between thislogic and conventional �rst-order logic is the inclusion of the ite (if-then-else)operator which makes it possible to compactly represent a term which may

have one of two values depending on a Boolean condition, a situation which iscommon in applications. An ite expression contains a formula and two terms.The semantics are that if the formula is true, then the value of the expressionis the �rst term, otherwise the value of the expression is the second term. Notethat while both formulas and terms may contain proper Boolean sub-expressions,atomic formulas and atomic terms do not.Formulas in the logic of Fig. 2 are intended to be interpreted with respectto some �rst-order theory which gives meaning to the function, predicate, andconstant symbols in the formula. The theory of integer linear arithmetic, forexample, de�nes function symbols like \+" and \-", predicate symbols like \<",and \>", and arbitrary integer constant symbols. For a given theory and formula,the formula is satis�able if it is possible to assign values to the variables in theformula from elements of the domain associated with the theory in a way thatmakes the formula true.Signi�cant research has gone into fast algorithms for determining the satis�a-bility of conjunctions of literals with respect to some logical theory (or combina-tion of theories) [2, 11, 13]. CVC, for example, is such a decision procedure whichincludes theories for arithmetic, arrays, abstract data types, and uninterpretedfunctions. We do not address the issue of constructing such decision procedureshere, but rather assume that we are given a decision procedure SatFO for deter-mining the satis�ability, with respect to a theory of interest, of a conjunction ofliterals in the logic of Fig. 2.The problem we will address is how to use such a decision procedure to con-struct an e�cient SAT-based decision procedure for the satis�ability of arbitraryformulas (i.e. not just conjunctions of literals).4 Checking Satis�ability of Arbitrary Formulas usingSATSuppose we have, as stated, a core decision procedure SatFO for determiningthe satis�ability of conjunctions of literals, and we wish to determine whetheran arbitrary formula � is satis�able.An obvious approach would be to use propositional transformations (such asdistributivity and DeMorgan's laws) to transform � into a logically equivalentdisjunction of conjunctions of literals and then test each conjunct for satis�abilityusing SatFO . Unfortunately, this transformation can increase the size of theformula exponentially, and is thus too costly in practice.The approach taken by CVC's predecessors is equivalent to the recursivealgorithm shown in Fig. 3. The algorithm takes two parameters: the decisionsmade so far, and the formula whose satis�ability is in question. The formulais �rst simpli�ed relative to the decisions. Then, a number of base cases arechecked: if the formula is false or the decisions are inconsistent, the algorithmreturns ; (indicating that no satisfying assignment was found); if the formulais true, then the set decisions describes a consistent state in which the formulais satis�ed. If none of the base cases hold, then a case-split is done on the �rst

CheckSat(decisions,�)� := Simplify(decisions,�);IF � � false THEN RETURN ;;IF :SatFO(decisions) THEN RETURN ;;IF � � true THEN RETURN decisions;Choose the first atomic formula � appearing in �.result := CheckSat(decisions [f�g,�);IF result = ; THENresult := CheckSat(decisions [f:�g,�);RETURN result;Fig. 3. Simple recursive algorithm for checking satis�abilityatomic formula � in �. The algorithm is then called recursively: �rst consideringthe case when � is true and then considering the case when � is false . Althoughthis approach is straightforward and works well in some cases, it is not veryrobust: small changes or di�erences in formulas can cause a dramatic change inthe number of decisions made and the amount of time taken.Our new approach is designed to be fast and robust. The key idea is toincrementally form a propositional abstraction of a �rst-order formula. Consideran abstraction function Abs which maps �rst-order formulas to propositionalformulas. It is desirable that the abstraction have the following two properties:1. For any formula �, if Abs(�) is unsatis�able, then � is unsatis�able.2. If Abs(�) is satis�able, then the abstract solution can either be translatedback into a solution for � or be used to re�ne the abstraction.We �rst describe a process for determining an appropriate initial proposi-tional abstraction Abs . We then describe how to re�ne the abstraction if theproof attempt is inconclusive.4.1 Computing a Propositional Abstraction of a First-OrderFormulaThe basic idea of the process is to replace non-propositional formulas with propo-sitional variables. Each syntactically distinct atomic formula � is replaced witha new propositional variable, p�. Syntactically identical atomic formulas are re-placed with the same propositional variable.The result would be a purely propositional formula if not for the ite opera-tor. Handling this operator requires a bit more work. We use a transformationwhich preserves satis�ability and eliminates the ite expressions. First, each iteterm t is replaced with a new term variable vt . Again, syntactically identicalterms are replaced with the same variable. Then for each syntactically distinctterm t � ite(a; b; c) that is replaced, the following formula is conjoined to theoriginal formula: (a ! vt = b) ^ (:a ! vt = c). By repeating this process, allite operators can be eliminated (in linear time), and in the resulting formula,

all terms are atomic. Atomic formulas can then be replaced by propositionalvariables, as described above, and the resulting formula is purely propositional.To convert the resulting propositional formula to CNF in linear time, weemploy a standard technique [8]: a new propositional variable is introduced foreach syntactically distinct non-variable sub-formula. Then, a set of CNF clausesis produced for each sub-formula which describes the relationship of the formulato its children. The translations for each of the standard Boolean operators areas follows. a := :b �! (a _ b) ^ (:a _ :b)a := b ^ c �! (a _ :b _ :c) ^ (:a _ b) ^ (:a _ c)a := b _ c �! (:a _ b _ c) ^ (a _ :b) ^ (a _ :c)Now, suppose that Abs(�) is satis�able and that the solution is given asa conjunction of propositional literals. This solution can be converted intoan equivalent �rst-order solution by inverting the abstraction mapping on thesolution (replacing each propositional variable p� in with �). Call the resultAbs�1 (). Since Abs�1 () is a conjunction of literals, its satis�ability can bedetermined using SatFO . If Abs�1 () is satis�able, then in the interpretationwhich satis�es it, the original formula � must reduce to true, and thus � issatis�able. Otherwise, the result of the experiment is inconclusive, meaning thatthe abstraction must be re�ned. We describe how to do this next.4.2 Re�ning the AbstractionAn obvious approach to re�ning the abstraction is to add a clause to the propo-sitional formula that rules out the solution determined to be invalid by SatFO .Since is a conjunction of propositional literals, applying de Morgan's law to: yields a standard propositional clause. Thus, Abs(�) ^ : is a re�nementof the original abstraction which rules out the invalid solution . Furthermore,the re�nement is still in CNF as required. We call the clause : a a con
ictclause because it captures a set of propositional literals which con
ict, causingan inconsistency. This is in accordance with standard SAT terminology. How-ever, in standard SAT algorithms, con
ict clauses are obtained by analyzing aclause which has become false to see which decisions made by the SAT solver areresponsible. In our approach, the con
ict clause is obtained by an agent outsideof the SAT solver. After re�ning the abstraction by adding a con
ict clause,the SAT algorithm can be restarted. By repeating this process, the abstractionwill hopefully be re�ned enough so that it can either be proved unsatis�able bythe SAT solver or the solution provided by SAT can be shown to map to asatisfying assignment for the original formula.5 The Di�cult Path to SuccessThere are a surprising number of roadblocks on the way from the previous idea toa practical algorithm. In this section we describe some of these and our solutions.

5.1 Redundant ClausesThe most severe problem with the naive approach outlined above is that it tendsto produce an enormous number of redundant clauses. To see why, suppose thatSAT computes a solution consisting of n+2 propositional literals, but that onlythe last two propositional literals contribute to the inconsistency of the equiva-lent �rst-order set of literals. Then, for each assignment of values to the other npropositional variables which leads to a satisfying solution, the re�nement loopwill have to add another clause. In the worst case, the re�nement loop will haveto add 2n clauses. This is particularly troubling because a single clause, onecontaining just the two contributing propositional literals would su�ce.In order to avoid the problem just described, the re�nement must be moreprecise. In particular, when SatFO is given a set of literals to check for consis-tency, an e�ort must be made to �nd the smallest possible subset of the givenset which is still inconsistent. Then, a clause derived from only these literals canbe added to the propositional formula.One possible way to implement this is to minimize the solution by trial anderror: starting with n literals, pick one of the literals and remove it from theset. If the set is still inconsistent, leave that literal out; otherwise, return it tothe set. Continue with each of the other literals. At the end, the set will containa minimal set of literals. Unfortunately, this approach requires having SatFOprocess O(n) literals n times for each iteration of the re�nement loop (where nis the number of variables in the abstract formula). A few experiments with thisapproach quickly reveal that it is far too costly to give a practical algorithm.A more practical solution, though one which is not trivial to implement, isto have the decision procedure SatFO maintain enough information to be ableto report directly which subset of a set of inconsistent literals is responsible forthe inconsistency.Fortunately, through a discussion with Cormac Flanagan [6], we realizedthat this is not di�cult to do in CVC. This is because CVC is a proof-producingdecision procedure, meaning that it is possible to have CVC generate an actualproof of any fact that it can prove. Using the infrastructure for proof productionin CVC, we implemented a mechanism for generating abstract proofs. In abstractproof mode, CVC just tracks the external assumptions that are required foreach proof. The result is that when a set of literals is reported by CVC to beinconsistent, the abstract proof of inconsistency contains exactly the subset ofthose literals that would be used to generate a proof of the inconsistency. Theabstract proof thus provides a subset which is known to be inconsistent. Thissubset is not guaranteed to be minimal, but we found that in most cases it is veryclose to minimal. Since the overhead required to keep track of abstract proofs issmall (typically around 20%), abstract proofs provide an e�cient and practicalsolution for eliminating the problem of redundant clauses.5.2 Lazy vs. Eager Noti�cationThe approach described in the previous section is lazy (see the note in Section 6below) in the sense that the SAT solver is used as a black box and the �rst-order

procedure SatFO is not invoked until a solution is obtained from the SAT solver.Unfortunately, as shown in Table 3, the lazy approach becomes impractical forproblems which require many re�nements. In contrast, an eager approach isto notify the �rst-order procedure SatFO of every decision that is made (orunmade) by the SAT solver. Then, if an inconsistency is detected by SatFO ,it is immediately diagnosed, providing a new con
ict clause for SAT. The SATalgorithm then continues, never having to be restarted.The performance advantages of the eager approach are signi�cant. The dis-advantages are that it requires more functionality of both the SAT solver andthe decision procedure SatFO . The SAT solver is required to give noti�cationevery time it makes (or revokes) a decision. Furthermore, it must be able toaccept new clauses in the middle of solving a problem (CVC includes a modi�edversion of Cha� which has this functionality). The eager approach also requiresSatFO to be online: able quickly to determine the consistency of incrementallymore or fewer literals. Fortunately, CVC has this property.5.3 Decision HeuristicsThe decision heuristics used by Cha� and other SAT solvers consider every vari-able a possible target when choosing a new variable to do a case split on. How-ever, in the abstracted �rst-order formula, not all variables are created equally.For example, consider an ite expression: ite(�; t1; t2), and suppose that t1 andt2 are both large non-atomic terms. If the propositional variable associated with� is set to true, then all of the clauses generated by the translation of t2 canbe ignored since they can no longer a�ect the value of the original formula.Unfortunately, the SAT solver doesn't have this information, and as a resultit can waste a lot of time choosing irrelevant variables. This problem has beenaddressed by others [5], and our solution is similar. We annotate the propo-sitional variables with information about the structure of the original formula(i.e. parent/child relationships). Then, rather than invoking the built-in heuris-tic for variable selection, a depth-�rst search (DFS) is performed on the portionof the original formula which is relevant. The �rst variable corresponding to anatomic formula which is not already assigned a value is chosen. Although thiscan result in sub-optimal variable orders in some cases, it avoids the problemof splitting on irrelevant variables. Table 4 compares results obtained using thebuilt-in Cha� decision heuristic with those obtained using the DFS heuristic.These are discussed in Section 7.5.4 SAT Heuristics and CompletenessA somewhat surprising observation is that some heuristics used by SAT solversmust be disabled or the method will be incomplete. An example of this is the\pure literal" rule. This rule looks for propositional variables which have theproperty that only one of their two possible propositional literals appears in theformula being checked for satis�ability. When this happens, all instances of the

propositional literal in question can immediately be replaced with true, since ifa solution exists, a solution will exist in which that propositional literal is true.However, if the formula is an abstraction of a �rst-order formula, it may bethe case that a solution exists when the propositional literal is false even if asolution does not exist when the propositional literal is true. This is becausethe propositional literal is actually a place-holder for a �rst-order literal whosetruth may a�ect the truth of other literals. Propositional literals are guaranteedto be independent of each other, while �rst-order literals are not. Because ofthis, there is no obvious way to take advantage of pure literals and the rule mustbe disabled. Fortunately, this was the only such rule that had to be disabled inCha�.5.5 Theory-speci�c ChallengesFinally, a particularly perplexing di�culty is dealing with �rst-order theoriesthat need to do case splits in order to determine whether a set of literals issatis�able. For example, consider a theory of arrays with two function symbols,read and write . In this theory, read (a; i) is a term which denotes the value ofarray a at index i. Similarly, the term write(a; i ; v) refers to an array which isidentical to a everywhere except possibly at index i, where its value is v. Now,consider the following set of literals in this theory: fread(write(a; i ; v); j) =x ; x 6= v ; x 6= a[i]g. In order for the array decision procedure to determinethat such a set of literals is inconsistent, it must �rst do a case split on i =j. However, such additional case splits by the theories can cost a lot of time.Furthermore, they may not even be necessary to solve the problem. We foundit di�cult to �nd a strategy for integrating such case splits without adverselya�ecting performance. Our solution was to preprocess the formulas to try toeliminate such case splits. In particular, for the array theory, every instanceof read(write(a; i ; v); j) is rewritten to ite(i = j; v; read (a; i)). Furthermore, inorder to increase the likelihood of being able to apply this rewrite, every instanceof read(ite(a; b; c); v) is rewritten to ite(a; read(b; v); read (c; v)). These rewriteswere su�cient to obtain reasonable performance for our examples. However, wesuspect that for more complicated examples, something more sophisticated maybe required.6 Related WorkFlanagan, Joshi, and Saxe at Compaq SRC have independently developed avery similar approach to combining �rst-order decision procedures with SAT [7].Their translation process is identical to ours. Furthermore, their approach togenerating con
ict clauses is somewhat more sophisticated than ours. However,their prototype implementation is lazy (the nomenclature of \lazy" versus \ea-ger" is theirs). Also it only includes a very limited language and its performanceis largely unknown. Unfortunately, we have not been able to compare directlywith their implementation.

De Moura, Ruess, and Sorea at SRI have also developed a similar approachusing their ICS decision procedure [4]. However, ICS is unable to produce min-imal con
ict clauses, so they use an optimized variation of the trial and errormethod described in Section 5.1 to minimize con
ict clauses. Also, as with theCompaq approach, their implementation is lazy and its performance unknown.Though they do not report execution times, they do provide their benchmarks,and our implementation using CVC with Cha� was able to solve all of themeasily.It would also be interesting to compare with the approach for solving prob-lems in the logic of equality with uninterpreted functions by translating them(up front) to SAT problems. We made an attempt to perform direct comparisonswith [12], but their benchmarks are not provided in the language of equality withuninterpreted functions, and unfortunately, it is not clear how to translate them.As a result, we were unable to run their benchmarks. We suspect that our ap-proach would be competitive with theirs. However, since the logic is so simple,it is not clear that a more general approach like ours would be better.7 ResultsWe implemented the approach described above in the CVC decision procedureusing the Cha� SAT solver, and tested it using a suite of processor veri�ca-tion benchmarks. The �rst three benchmarks are purely propositional formu-las from Miroslav Velev's superscalar suite (http://www.ece.cmu.edu/�mvelev).The next three are also from Velev's DLX veri�cation e�orts, but they includearray and uninterpreted function operations. The rest are from our own e�ortsin processor veri�cation and also include array and uninterpreted function op-erations.These were run using gcc under linux on an 800MHz Pentium III with 2GBof memory. The best overall results were obtained by using an eager noti�cationstrategy and the DFS decision heuristic. Table 1 compares these results to resultsobtained by using CVC without Cha� (using the recursive algorithm of Fig. 3).As can be seen, the results are better, often by several orders of magnitude, inevery case but one (the easiest example which is solved by both methods veryquickly). These results show that CVC with Cha� is a signi�cant improvementover CVC alone.Our goal in integrating Cha� into CVC was not only to test the feasibility ofthe approach, but also to produce a tool that could compete with and improveupon the best results obtained by our previous tool, SVC. SVC uses a set ofclever but somewhat ad hoc heuristics to improve on the performance obtainedby the algorithm of Fig. 3 by learning which atomic formulas are best to spliton [9]. Table 2 compares the results obtained by SVC with the results obtainedby CVC with Cha�.SVC performs particularly well on the last 6 examples, a fact which is nottoo surprising since these are old benchmarks that were used to tune SVC'sheuristics. However, SVC's performance on the �rst six examples shows that it's

Table 1. Results comparing CVC without Cha� to CVC combined with Cha�Example CVC without Cha� CVC+Cha�Decisions Time (s) Decisions Time (s)bool-dlx1-c ? > 10000 2522 1.14bool-dlx2-aa ? > 10000 792 0.81bool-dlx2-cc-bug01 ? > 10000 573387 833v-dlx-pc 8642456 5082 6137 6.10v-dlx-dmem 2888268 2820 2184 3.48v-dlx-reg�le 29435 37.6 3833 6.64dlx-pc 515 0.68 529 1.04dlx-dmem 6031 4.50 1276 1.90dlx-reg�le 6386 5.27 2739 4.12pp-bloaddata-a 93714 79.1 1193 1.80pp-bloaddata 345569 338 4451 4.51pp-dmem2 367877 338 2070 1.52heuristics are simply not
exible enough to handle a large variety of formulas.CVC, on the other hand produces good results fairly consistently. Even in thefour cases where CVC is slower than SVC, the number of decisions is comparable,and in all other cases the number of decisions required by CVC is much less.This is encouraging because it means that CVC is �nding shorter proofs, andadditional performance gains can probably be obtained by tuning the code. Thus,overall, CVC seems to perform better and to be more robust than SVC, whichis the goal we set out to accomplish.Table 2. Results comparing SVC to CVCExample SVC CVC+Cha�Decisions Time (s) Decisions Time (s)bool-dlx1-c 11228452 776 2522 1.14bool-dlx2-aa ? > 10000 792 0.81bool-dlx2-cc-bug01 ? > 10000 573387 833v-dlx-pc 4620149 503 6137 6.10v-dlx-dmem 199540 31.7 2184 3.48v-dlx-reg�le 74600 18.2 3833 6.64dlx-pc 384 0.15 529 1.04dlx-dmem 655 0.21 1276 1.90dlx-reg�le 936 0.27 2739 4.12pp-bloaddata-a 902 0.66 1193 1.80pp-bloaddata 35491 5.35 4451 4.51pp-dmem2 47989 7.54 2070 1.52

7.1 Comparing Di�erent StrategiesFinally, we show experimental results for some of the di�erent strategies dis-cussed in the previous section. First, just to drive the point home, we showa simple comparison of the naive (lazy without minimal con
ict clauses), lazy(with minimal con
ict clauses), and eager (with minimal con
ict clauses) im-plementations on some simple examples. As can be seen, the naive and lazyapproaches quickly become impractical.Table 3. Results comparing naive, lazy, and eager implementationsExample Naive Lazy EagerIterations Time (s) Iterations Time (s) Time (s)read0 77 0.14 17 0.09 0.07pp-pc-s2i ? > 10000 82 1.36 0.10pp-invariant ? > 10000 239 5.81 0.22v-dlx-pc ? > 10000 6158 792 3.22v-dlx-dmem ? > 10000 ? > 10000 4.12Next, we compare two versions of the eager approach with minimal con
ictclauses: one using the standard Cha� decision heuristics, and one using the DFSheuristic discussed in Section 5.3. The results are shown in Table 4. As can beseen, DFS outperforms the standard technique on all but four examples. Twoof these are purely Boolean test cases, and so the DFS method wouldn't beexpected to provide any advantage. For purely propositional formulas, then, (or�rst-order formulas that are mostly propositional), the standard Cha� techniqueis probably better. It is particularly interesting to note how badly DFS does onthe example \bool-dlx2-cc-bug01". One area for future work is trying to �nd away to automatically choose between or combine these two methods.More information about these and other benchmarks (as well as the bench-marks themselves) is available from http://verify.stanford.edu/barrett/CAV02.CVC is available from http://verify.stanford.edu/CVC.AcknowledgmentsWe'd like to thank the anonymous reviewers for many helpful suggestions. Thiswork was partially supported by the National Science Foundation Grant CCR-9806889, and ARPA/AirForce contract number F33615-00-C-1693.References1. C. Barrett, D. Dill, and J. Levitt. Validity Checking for Combinations of Theorieswith Equality. In Mandayam Srivas and Albert Camilleri, editors, Formal MethodsIn Computer-Aided Design, pages 187{201, 1996.

Table 4. Variable selection by Cha� vs. by depth-�rst searchExample Cha� DFSDecisions Time (s) Decisions Time (s)bool-dlx1-c 1309 0.69 2522 1.14bool-dlx2-aa 4974 2.36 792 0.81bool-dlx2-cc-bug01 10903 11.4 573387 833v-dlx-pc 4387 3.22 6137 6.10v-dlx-dmem 5221 4.12 2184 3.48v-dlx-reg�le 6802 5.85 3833 6.64dlx-pc 39833 19.0 529 1.04dlx-dmem 34320 18.8 1276 1.90dlx-reg�le 47822 35.5 2739 4.12pp-bloaddata-a 8695 5.47 1193 1.80pp-bloaddata 9016 5.56 4451 4.51pp-dmem2 3167 2.24 2070 1.522. Clark W. Barrett. Checking Validity of Quanti�er-Free Formulas in Combinationsof First-Order Theories. PhD thesis, Stanford University, 2002.3. R. Bryant, S. German, and M. Velev. Exploiting Positive Equality in a Logicof Equality with Uninterpreted Functions. In 11th International Conference onComputer-Aided Veri�cation, pages 470{482, 1999.4. Leonardo de Moura, Harald Ruess, and Maria Sorea. Lazy Theorem Proving forBounded Model Checking over In�nite Domains. In 18th International Conferenceon Automated Deduction, 2002.5. L. e Silva, L. Silveira, and J. Marques-Silva. Algorithms for Solving Boolean Sat-is�ability in Combinational Circuits. In Proceedings of the IEEE/ACM Design,Automation and Test in Europe Conference (DATE), March 1999.6. C. Flanagan. Private Communication, 2000.7. Cormac Flanagan, Rajeev Joshi, and James B. Saxe. The Design of An E�cientTheorem Prover using Explicated Clauses. 2002. In Preparation.8. Tracy Larrabee. Test pattern generation using Boolean satis�ability. IEEE Trans-actions on Computer-Aided Design, 11(1):4{15, January 1992.9. Jeremy R. Levitt. Formal Veri�cation Techniques for Digital Systems. PhD thesis,Stanford University, 1999.10. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Cha�: Engineeringan E�cient SAT Solver. In Proceedings of the 39th Design Automation Conference,2001.11. G. Nelson and D. Oppen. Simpli�cation by cooperating decision procedures. ACMTransactions on Programming Languages and Systems, 1(2):245{57, 1979.12. A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality Formulasby Small-Domain Instantiations. In 11th International Conference on Computer-Aided Veri�cation, pages 455{469, 1999.13. H. Ruess and N. Shankar. Deconstructing Shostak. In 16th Annual IEEE Sympo-sium on Logic in Computer Science, pages 19{28, June 2001.14. Laurent Simon. The Sat-Ex Site. http://www.lri.fr/�simon/satex/satex.php3.15. A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In 14thInternational Conference on Computer-Aided Veri�cation, 2002.

