
A Generalization of Shostak's Method forCombining Decision ProceduresClark W. Barrett, David L. Dill, and Aaron StumpStanford University, Stanford, CA 94305, USA,http://verify.stanford.educ
 Springer-VerlagAbstract. Consider the problem of determining whether a quanti�er-free formula � is satis�able in some �rst-order theory T . Shostak's al-gorithm decides this problem for a certain class of theories with bothinterpreted and uninterpreted function symbols. We present two newalgorithms based on Shostak's method. The �rst is a simple subset ofShostak's algorithm for the same class of theories but without uninter-preted function symbols. This simpli�ed algorithm is easy to understandand prove correct, providing insight into how and why Shostak's algo-rithm works. The simpli�ed algorithm is then used as the foundation fora generalization of Shostak's method based on a variation of the Nelson-Oppen method for combining theories.1 IntroductionIn 1984, Shostak introduced a clever and subtle algorithm which decides thesatis�ability of quanti�er-free formulas in a combined theory which includes a�rst-order theory (or combination of �rst-order theories) with certain propertiesand the theory of equality with uninterpreted function symbols [12]. But despitethe fact that Shostak's method is less general than its predecessor, the Nelson-Oppen method [8, 9], it has generated considerable interest and is the basis fordecision procedures found in several tools, including PVS [10], STeP [4, 6], andSVC [1, 2, 7].There are several good reasons for this. First of all, it is easier to implement:the Nelson-Oppen method provides a framework for combining decision proce-dures, but gives no help on how to construct the individual decision procedures.But as we show in the next section, at the core of Shostak's procedure is asimple method for generating decision procedures for a large class of theories.A second reason for the success of Shostak's method is that despite requiringmore restrictive conditions in order to accommodate a theory, a wide varietyof useful theories have been shown to satisfy these conditions [4, 12]. Finally,empirical studies have shown that Shostak's method is an order of magnitudemore e�cient than the Nelson-Oppen method [5].Unfortunately, the original paper is di�cult to follow, due in part to the factthat it contains several errors, and despite an ongoing e�ort to understand andclarify the method [5, 11, 14], it remains di�cult to understand.

In this paper, we take a new approach to explaining Shostak's algorithm.We �rst present a subset of the original algorithm, in particular, the subsetwhich decides formulas without uninterpreted function symbols. This algorithmis surprisingly simple and straightforward, and gives considerable insight intohow Shostak's algorithm works.This algorithm then forms the basis for a more general algorithm that lies atan abstraction level somewhere between the general Nelson-Oppen frameworkand the highly-specialized Shostak procedure. The purpose is to describe analgorithm which is abstract enough that it can be understood and proved correct,but speci�c enough that it is not hard to see how to specialize it further to recoverShostak's original algorithm. The correctness proof of this algorithm relies ona new variation of the Nelson-Oppen procedure and new theorem which relatesconvexity (a requirement for Shostak) and stable-in�niteness (a requirement forNelson-Oppen).It is our hope that this exercise will not only shed light on how Shostak'smethod can be seen as an e�cient re�nement of the Nelson-Oppen method,but also provide a generalization which can be used to achieve other e�cientre�nements. Indeed, one such possible re�nement is described in the �rst author'sdissertation [3].In Section 2, below, some preliminary de�nitions and notation are given.The simple algorithm without uninterpreted function symbols is presented inSection 3. Section 4 reviews the Nelson-Oppen method in preparation for thegeneralized algorithm which is presented in Section 5. Finally, Section 6 comparesour approach to other work on Shostak's algorithm and describes the re�nementsnecessary to recover Shostak's original algorithm.2 Preliminary Concepts2.1 Some Notions from LogicA theory is a set of closed formulas. For the purposes of this paper, all theoriesare assumed to be �rst-order and to include the axioms of equality. The sig-nature of a theory is the set of function, predicate (other than equality), andconstant symbols appearing in those sentences. A literal is an atomic formula orits negation. To avoid confusion with the logical equality symbol =, we use thesymbol � to indicate that two logical expressions are syntactically identical.For a given model, M , a variable assignment � is a function which assigns toeach variable an element of the domain of M . We write M j=� � if � is true inthe model M with variable assignment �. If � is a set of formulas, then M j=� �indicates that M j=� � for each � 2 �. In general, whenever sets of formulas areused as logical formulas, the intended meaning is the conjunction of the formulasin the set. A formula � is satis�able if there exists some model M and variableassignment � such that M j=� �. If � is a set of formulas and � is a formula,then � j= � means that whenever a model and variable assignment satisfy � ,they also satisfy �. A set S of literals is convex in a theory T if T [S does not

entail any disjunction of equalities between variables without entailing one ofthe equalities itself. A theory T is convex if every set of literals in the languageof the theory is convex in T .2.2 Equations in Solved FormDe�nition 1. A set S of equations is said to be in solved form i� the left-handside of each equation in S is a variable which appears only once in S. We referto the variables which appear only on the left-hand sides as solitary variables.A set S of equations in solved form de�nes an idempotent substitution: the onewhich replaces each solitary variable with its corresponding right-hand side. IfS is an expression or set of expressions, we denote the result of applying thissubstitution to S by S(S). Another interesting property of equations in solvedform is that the question of whether such a set S entails some formula � in atheory T can be answered simply by determining the validity of S(�) in T :Proposition 1. If T is a theory with signature � and S is a set of �-equationsin solved form, then T [S j= � i� T j= S(�).Proof. Clearly, T [S j= � i� T [S j= S(�). Thus we need only show thatT [S j= S(�) i� T j= S(�). The \if" direction is trivial. To show the otherdirection, assume that T [S j= S(�). Any model of T can be made to satisfyT [S by assigning any value to the non-solitary variables of S, and then choosingthe value of each solitary variable to match the value of its corresponding right-hand side. Since none of the solitary variables occur anywhere else in S, thisassignment is well-de�ned and satis�es S. By assumption then, this model andassignment also satisfy S(�), but none of the solitary variables appear in S(�),so the initial arbitrary assignment to non-solitary variables must be su�cient tosatisfy S(�). Thus it must be the case that every model of T satis�es S(�) withevery variable assignment. utCorollary 1. If T is a satis�able theory with signature � and S is a set of�-equations in solved form, then T [S is satis�able.3 Algorithm S1In this section we present an algorithm, based on a subset of Shostak's algorithm,for deciding satis�ability of quanti�er-free formulas in a theory T which meetscertain conditions. We call such a theory a Shostak theory.De�nition 2. A satis�able theory T with signature � is a Shostak theory if thefollowing conditions hold.1. � does not contain any predicate symbols.2. T is convex.

3. There exists a canonizer canon, a computable function from �-terms to �-terms, with the property that T j= a = b i� canon(a) � canon(b).4. There exists a solver solve, a computable function from �-equations to setsof formulas de�ned as follows:(a) If T j= a 6= b, then solve(a = b) = ffalseg.(b) Otherwise, solve(a = b) returns a set S of equations in solved form suchthat T j= [(a = b)$ 9x:S], where x is the set of variables which appearin S but not in a or b. Each of these variables must be fresh.These requirements are slightly di�erent from those given by Shostak and others.These di�erences are discussed in Section 6 below. In the rest of this section,T is assumed to be a Shostak theory with signature �, canonizer canon, andsolver solve. As we will show, the solver can be used to convert an arbitraryset of equations into a set of equations in solved form. The canonizer is used todetermine whether a speci�c equality is entailed by a set of equations in solvedform, as shown by the following proposition.Proposition 2. If S is a set of �-equations in solved form, then T [S j= a = bi� canon(S(a)) � canon(S(b)).Proof. By Proposition 1, T [S j= a = b i� T j= S(a) = S(b). But T j= S(a) =S(b) i� canon(S(a)) � canon(S(b)) by the de�nition of canon. utS1(�; �; canon; solve)1. S := ;;2. WHILE � 6= ; DO BEGIN3. Remove some equality a = b from �;4. a� := S(a); b� := S(b);5. S� := solve(a� = b�);6. IF S� = ffalseg THEN RETURN FALSE;7. S := S�(S) [S�;8. END9. IF canon(S(a)) � canon(S(b)) for some a 6= b 2 � THEN RETURN FALSE;10. RETURN TRUE;Fig. 1. Algorithm S1: based on a simple subset of Shostak's algorithmAlgorithm S1 (shown in Fig. 1) makes use of the properties of a Shostak theory tocheck the joint satis�ability of an arbitrary set of equalities, � , and an arbitraryset of disequalities, �, in a Shostak theory with canonizer canon and solversolve. Since the satis�ability of any quanti�er-free formula can be determined by�rst converting it to disjunctive normal form, it su�ces to have a satis�abilityprocedure for a conjunction of literals. Since � contains no predicate symbols, all�-literals are either equalities or disequalities. Thus, Algorithm S1 is su�cientfor deciding the satis�ability of quanti�er-free �-formulas. Termination of thealgorithm is trivial since each step terminates and each time line 3 is executed thesize of � is reduced. The following lemmas are needed before proving correctness.

Lemma 1. If T 0 is a theory, � and � are sets of formulas, and S is a setof equations in solved form, then for any formula �, T 0 [� [� [S j= � i�T 0 [� [S(�) [S j= �.Proof. Follows trivially from the fact that � [S and S(�) [S are satis�ed byexactly the same models and variable assignments. utLemma 2. If � is any set of formulas, then for any formula �, and �-terms aand b, T [� [fa = bg j= � i� T [� [solve(a = b) j= �.Proof.): Given that T [� [fa = bg j= �, suppose that M j=� T [� [solve(a = b).It is easy to see from the de�nition of solve that M j=� a = b and hence by thehypothesis, M j=� �.(: Given that T [� [solve(a = b) j= �, suppose that M j=� T [� [fa = bg.Then, since T j= (a = b) $ 9x:solve(a = b), there exists a modi�ed assignment�� which assigns values to all the variables in x and satis�es solve(a = b) but isotherwise equivalent to �. Then, by the hypothesis, M j=�� �. But the variablesin x are new variables, so they do not appear in �, meaning that changing theirvalues cannot a�ect whether � is true. Thus, M j=� �. utLemma 3. If � , fa = bg, and S are sets of �-formulas, with S in solved form,and if S� = solve(S(a = b)) then if S� 6= ffalseg, then for every formula �,T [� [fa = bg [S j= � i� T [� [S� [S�(S) j= �.Proof.T [� [fa = bg [S j= � , T [� [fS(a = b)g [S j= � Lemma 1, T [� [S� [S j= � Lemma 2, T [� [S� [S�(S) j= � Lemma 1 utLemma 4. During the execution of Algorithm S1, S is always in solved form.Proof. Clearly, S is in solved form initially. Consider one iteration. By construc-tion, a� and b� do not contain any of the solitary variables of S, and thus bythe de�nition of solve, S� doesn't either. Furthermore, if S� = ffalseg then thealgorithm terminates at line 6. Thus, at line 7, S� must be in solved form. Ap-plying S� to S guarantees that none of the solitary variables of S� appear in S,so the new value of S is also in solved form. utLemma 5. Let �n and Sn be the values of � and S after the while loop inAlgorithm S1 has been executed n times. Then for each n, and any formula �,the following invariant holds: T [�0 j= � i� T [�n [Sn j= �.Proof. The proof is by induction on n. For n = 0, the invariant holds trivially.Now suppose the invariant holds for some k � 0. Consider the next iteration.

T [�0 j= � , T [�k [Sk j= � Induction Hypothesis, T [�k+1 [fa = bg [Sk j= � Line 3, T [�k+1 [S� [S�(Sk) j= � Lemmas 3 and 4, T [�k+1 [Sk+1 j= � Line 7 utNow we can show the correctness of Algorithm S1.Theorem 1. Suppose T is a Shostak theory with signature �, canonizer canon,and solver solve. If � is a set of �-equalities and � is a set of �-disequalities,then T [� [� is satis�able i� S1(�;�; canon; solve) = TRUE.Proof. Suppose S1(�;�; canon; solve) = FALSE. If the algorithm terminates atline 9, then, canon(S(a)) � canon(S(b)) for some a 6= b 2 �. It follows fromProposition 2 and Lemma 5 that T [� j= a = b, so clearly T [� [� isnot satis�able. The other possibility is that the algorithm terminates at line 6.Suppose the loop has been executed n times and that �n and Sn are the valuesof � and S at the end of the last loop. It must be the case that T j= a� 6= b�, soT [fa� = b�g is unsatis�able. Clearly then, T [fa� = b�g[Sn is unsatis�able, soby Lemma 1, T [fa = bg[Sn is unsatis�able. But fa = bg is a subset of �n, soT [�n [Sn must be unsatis�able, and thus by Lemma 5, T [� is unsatis�able.Suppose on the other hand that S1(�;�; canon; solve) = TRUE. Then thealgorithm terminates at line 10. By Lemma 4, S is in solved form. Let � bethe disjunction of equalities equivalent to :(�). Since the algorithm does notterminate at line 9, T [S does not entail any equality in �. Because T is convex,it follows that T [S 6j= �. Now, since T [S is satis�able by Corollary 1, it followsthat T [S [� is satis�able. But by Lemma 5, T [� j= � i� T [S j= �, so inparticular T [S j= � . Thus T [S [� [� is satis�able, and hence T [� [�is satis�able. ut3.1 An ExamplePerhaps the most obvious example of a Shostak theory is the theory of linearrational arithmetic. A simple canonizer for this theory can be obtained by im-posing an order on all variables (lexicographic or otherwise), and combining liketerms. For example, canon(z + 3y � x � 5z) � �x + 3y + (�4z). Similarly, asolver can be obtained simply by solving for one of the variables in an equation.Consider the following system of equations:x+ 3y � 2z = 1x� y � 6z = 12x+ 8y � 2z = 3The following table shows values for � , S, S(a = b), and S� at each iteration ofAlgorithm S1 starting with � = fx+3y�2z = 1; x�y�6z = 1; 2x+8y�2z = 3g:

� S S(a = b) S�x+ 3y � 2z = 1 ; x+ 3y � 2z = 1 x = 1� 3y + 2zx� y � 6z = 12x+ 8y � 2z = 3x� y � 6z = 1 x = 1� 3y + 2z 1� 3y + 2z � y � 6z = 1 y = �z2x+ 8y � 2z = 32x+ 8y � 2z = 3 x = 1 + 5z 2(1 + 5z) + 8(�z)� 2z = 3 falsey = �zThe solver detects an inconsistency when it tries to solve the equation obtainedafter applying the substitution from S. The solver indicates this by returningffalseg, which results in the algorithm returning FALSE.3.2 Combining Shostak TheoriesIn [12], Shostak claims that two Shostak theories can always be combined toform a new Shostak theory. A canonizer for the combined theory is obtainedsimply by composing the canonizers from each individual theory. A solver forthe combined theory is ostensibly obtained by repeatedly applying the solver foreach theory (treating terms in other theories as variables) until a true variableis on the left-hand side of each equation in the solved form. This does in factwork for many theories, providing a simple and e�cient method for combiningShostak theories. However, as pointed out in [7] and [11], the construction of thesolver as described is not always possible. We do not address this issue here, butmention it as a question which warrants further investigation.4 The Nelson-Oppen Combination MethodNelson and Oppen [8, 9] described a method for combining decision proceduresfor theories which are stably-in�nite and have disjoint signatures. A theory T isstably-in�nite if any quanti�er-free formula is satis�able in some model of T i�it is satis�able in an in�nite model of T . In this section, we assume T1 and T2are two such theories with signatures �1 and �2 respectively (the generalizationto more than two theories is straightforward). Furthermore, we let T = T1 [T2and � = �1 [�2. The Nelson-Oppen procedure decides the satis�ability in Tof a set � of �-literals.4.1 Tinelli and Harandi's ApproachThere have been many detailed presentations of the Nelson-Oppen method.Tinelli and Harandi's approach is particularly appealing because it is rigorousand conceptually simple [13]. Here we give a brief review of the method basedon their approach. First, a few more de�nitions are required.Members of �i, for i = 1,2 are called i-symbols. In order to associate all termswith some theory, each variable is also arbitrarily associated with either T1 or T2.

A variable is called an i-variable if it is associated with Ti (note that an i-variableis not an i-symbol, as it is not a member of �i). A �-term t is an i-term if itis an i-variable, a constant i-symbol, or an application of a functional i-symbol.An i-predicate is an application of a predicate i-symbol. An atomic i-formulais an an i-predicate or an equality whose left term is an i-term. An i-literal isan atomic i-formula or the negation of an atomic i-formula. An occurrence ofa j-term t in either a term or a literal is i-alien if i 6= j and all super-terms (ifany) of t are i-terms. An i-term or i-literal is pure if it contains only i-symbols(i.e. its i-alien sub-terms are all variables).Given an equivalence relation �, let dom� be the domain of the relation. Wede�ne the following sets of formulas induced by �:E� = fx = y j x; y 2 dom� and x � ygD� = fx 6= y j x; y 2 dom� and x 6� ygA� = E� [D�.Let Ar be a set of equalities and disequalities. If Ar = A� for some equivalencerelation � with domain V , we call Ar an arrangement of V .The �rst step in determining the satis�ability of � is to transform � intoan equisatis�able formula �1 ^ �2 where �i consists only of pure i-literals asfollows. Let be some i-literal in � containing a non-variable i-alien j-term t.Replace all occurrences of t in with a new j-variable z and add the equationz = t to �. Repeat until every literal in � is pure. The literals can then easilybe partitioned into �1 and �2. It is easy to see that � is satis�able if and onlyif �1 ^ �2 is satis�able.Now, let V be the set of all variables which appear in both �1 and �2. Asimple version of the Nelson-Oppen procedure simply guesses an equivalencerelation � on V nondeterministically, and then checks whether Ti [�i [A� issatis�able. The correctness of the procedure is based on the following theoremfrom [13].Theorem 2. Let T1 and T2 be two stably-in�nite, signature-disjoint theories andlet �i be a set of pure i-literals for i = 1; 2. Let V be the set of variables whichappear in both �1 and �2. Then T1 [T2 [�1 [�2 is satis�able i� there exists anarrangement Ar of V such that Ti [�i [Ar is satis�able for i = 1; 2.4.2 A Variation of the Nelson-Oppen ProcedureThe �rst step in the version of the Nelson-Oppen procedure described abovechanges the structure and number of literals in �. However, it is possible to givea version of the procedure which does not change the literals in � by insteadtreating alien terms as variables. This simpli�es the algorithm by eliminating theneed for the puri�cation step. But more importantly, this variation is requiredfor the combination of Shostak and Nelson-Oppen described next.First, we introduce a purifying operator which formalizes the notion of treat-ing alien terms as variables. Let v be a mapping from �-terms to variables suchthat for i = 1; 2, each i-term t is mapped to a fresh i-variable v(t). Then, for

some �-formula or �-term �, de�ne
i(�) to be the result of replacing all i-alienoccurrences of terms t by v(t). It is easy to see that as a result,
i(�) is i-pure.Since
i simply replaces terms with unique place-holders, it is injective. We willdenote its inverse by
�1i . We will also denote by
0(�) the result of replacingeach maximal term (i.e. terms without any super-terms) t in � by v(t). Thus,the only terms in
0(�) are variables.Our variation on the Nelson-Oppen procedure works as follows. Given a setof literals, �, �rst partition � into two sets �1 and �2, where �i is exactly theset of i-literals in �. Let V be the set of all terms which are i-alien (for somei) in some literal in � or in some sub-term of some literal in �. V consists ofexactly those terms that would end up being replaced by variables in the originalNelson-Oppen method. V will also be referred to as the set of shared terms. Asbefore, an equivalence relation � on V is guessed. If Ti[
i(�i [A�) is satis�ablefor each i, then T [� is satis�able, as shown by the following theorem.Theorem 3. Let T1 and T2 be two stably-in�nite, signature-disjoint theoriesand let � be a set of literals in the combined signature �. If �i is the set ofall i-literals in � and V is the set of shared terms in �, then T1 [T2 [� issatis�able i� there exists an equivalence relation � on V such that for i = 1; 2,Ti [
i(�i [A�) is satis�able.Proof.): Suppose M j=� T [�. Let a � b i� a; b 2 V and M j=� a = b. Then clearlyfor i = 1; 2, M j=� Ti [�i [A�. It is then easy to see that Ti [
i(�i [A�) issatis�able by choosing a variable assignment which assigns to each variable v(t)the corresponding value of the term t which it replaces.(: Suppose that for each i, Ti [
i(�i [A�) is satis�able. Consider i = 1. Let�1 be the set of all equations v(t) = t, where t 2 V is a 1-term. Consider
1(�1).Since
1 never replaces 1-terms and each v(t) is a new variable, it follows that
1(�1) is in solved form, and its solitary variables are exactly the variables whichare used to replace 1-terms. Thus, by Corollary 1, T1 [
1(�1) is satis�able. Fur-thermore, since none of the solitary variables of
1(�1) appear in
1(�1 [A�),a satis�able assignment for T1 [
1(�1) can be constructed from the satisfyingassignment for T1 [
1(�1 [A�) (which exists by hypothesis) so that the result-ing assignment satis�es T1 [
1(�1 [A� [�1). Now, each term in
1(A�) is theright-hand side of some equation in
1(�1), so by repeatedly applying equationsfrom
1(�1) as substitutions,
1(A�) can be transformed into
0(A�), and thusT1[
1(�1 [�1)[
0(A�) must also be satis�able. Applying the same argumentwith i=2, we conclude that T2[
2(�2 [�2)[
0(A�) is satis�able. But for eachi,
i(�i [�i) is a set of i-literals. Furthermore,
0(A�) is an arrangement of thevariables shared by these two sets, so Theorem 2 can be applied to conclude thatT [� [�1 [�2, and thus T [�, is satis�able. ut5 Combining the methodsLet T1; T2; �1; �2; T , and � be de�ned as in the previous section, with theadditional assumptions that T1 is a Shostak theory and that neither T1 nor T2

admits trivial models (typically, theories of interest do not admit trivial models,or can be easily modi�ed so that this is the case). The following theorem showsthat both theories are also stably-in�nite.Theorem 4. Every convex �rst-order theory with no trivial models is stably-in�nite.Proof. Suppose U is a �rst-order theory which is not stably-in�nite. Then thereexists some quanti�er-free set of literals � which is satis�able in a �nite modelof U , but not in an in�nite model of U . Let 9x� be the existential closure of�. Then 9x:� is true in some �nite model, but not in any in�nite model, of U .It follows that U [f9x:�g is a theory with no in�nite models. By �rst-ordercompactness, there must be some �nite cardinality n such that there is a modelof U [f9x:�g of cardinality n, but none of cardinality larger than n. Clearly,U [� is satis�able in some model of size n, but not in any models larger thann. It follows by the pigeonhole principle that if yi; 0 � i � n are fresh variables,then U [� j= Wi 6=j yi = yj , but because U has no trivial models (i.e. models ofsize 1), U [� 6j= yi = yj for any i; j with i 6= j. Thus, U is not convex. ut5.1 The Combined AlgorithmSuppose � is a set of �-literals. As in Section 4.2, divide � into �1 and �2where �i contains exactly the i-literals of �. Let V be the set of shared terms.By Theorem 3, T [�1 [�2 is satis�able i� there exists an equivalence relation� such that for i = 1; 2, Ti [
i(�i [A�) is satis�able.In order for the approach in Algorithm S1 to function in a multiple-theoryenvironment, it is necessary to generalize the de�nition of equations in solvedform to accommodate the notion of treating alien terms as variables. A set S ofequations is said to be in i-solved form if
i(S) is in solved form. If S is a set ofequations in i-solved form and V is an expression or set of expressions in a mixedlanguage including �i, then we de�ne S(V) to be the result of replacing each left-hand side in S which occurs as an i-alien in V with the corresponding right-handside. Formally, S(V) is rede�ned to be
�1i (
i(S)(
i(V))), i.e. the application of Sto V should be equivalent to �rst replacing all i-alien terms with variables in bothS and V , then doing the substitution, and then �nally restoring the i-alien termsto their places. We similarly need to extend the de�nitions of canon and solve.Let canon(�) denote
�11 (canon(
1(�))) and solve(�) denote
�11 (solve(
1(�))).Now, let � be the set of equalities in �1 and � the set of disequalities in �1.Furthermore, let Sat2 be a decision procedure for satis�ability of literals in T2:Sat2 (�) = TRUE i� T2 [
2(�) 6j= false:Algorithm S2 is a modi�cation of Algorithm S1 which accommodates the addi-tional theory T2. Essentially, the algorithm is identical except for the additionof lines 3 through 5 which check whether �2 is consistent in theory T2 with anarrangement A�. The equivalence relation � on V is derived from S as follows:

S2(�; �; canon; solve; �2; Sat2)1. S := ;;2. WHILE � = ; OR :Sat2 (�2 [A�) DO BEGIN3. IF :Sat2 (�2 [A�) THEN BEGIN4. IF :Sat2 (�2 [E�) THEN RETURN FALSE;5. ELSE Choose a 6= b 2 D� such that :Sat2 (�2 [E� [fa 6= bg);6. END ELSE Remove some equality a = b from �;7. a� := S(a); b� := S(b);8. S� := solve(a� = b�);9. IF S� = ffalseg THEN RETURN FALSE;10. S := S�(S) [S�;11. END12. IF a�b for some a 6= b 2 � THEN RETURN FALSE;13. RETURN TRUE;Fig. 2. Algorithm S2: a generalization of Shostak's algorithma � b i� a; b 2 V and canon(S(a)) � canon(S(b))In each iteration of the while loop, an equation is processed and integratedwith S. This equation is either the result of the current arrangement beinginconsistent in T2 (lines 3 through 5) or simply an equation from � (line 6). Asshown below, the de�nition of � ensures that S is consistent with A�. Similarly,equations are added to S until A� is also consistent with �2. Thus, when thealgorithm returns TRUE, both �1 and �2 are known to be consistent with thearrangement A�. Line 5 requires a little explanation. If the algorithm reachesline 5, it means that �2 [E� [D� is not satis�able in T2, but �2 [E� is. Itfollows from convexity of T2 that there must be a disequality a 6= b in D� suchthat �2 [E� [fa 6= bg is not satis�able in T2.Algorithm S2 terminates because each step terminates and in each iterationeither the size of � is reduced by one or two equivalence classes in � are merged.As before, the correctness proof requires a couple of preparatory lemmas.Lemma 6. Suppose S is a set of �-formulas in 1-solved form, V is a set of �-terms, and � is de�ned as above. If � is an equivalence relation on V such thatT1[
1(A� [S) is satis�able, then E� � A�. In other words, every arrangementof V consistent with S must include E�.Proof. Consider an arbitrary equation a = b between terms in V . a = b 2 E�i� canon(S(a)) � canon(S(b)) i� (by Proposition 2) T1 [
1(S) j=
1(a = b).So
1(a = b) must be true in every model and assignment satisfying T1 [
1(S).In particular, if T1 [
1(A� [S) is satis�able, the corresponding model andassignment must also satisfy
1(a = b). Since either the equation a = b or thedisequation a 6= b must be in A�, it must be the case that a = b 2 A�. Thus,E� � A�. ut

Lemma 7. Let �n and Sn be the values of � and S after the loop in AlgorithmS2 has been executed n times. Then for each n, the following invariant holds:T [� is satis�able i� there exists an equivalence relation � on V such that(1) T1 [
1(�n [� [A� [Sn) is satis�able, and(2) T2 [
2(�2 [A�) is satis�able.Proof. The proof is by induction on n. For the base case, notice that by Theorem3, T [� is satis�able i� there exists an equivalence relation � such that (1) and(2) hold with n = 0.Before doing the induction case, we �rst show that for some �xed equivalencerelation �, (1) and (2) hold when n = k i� (1) and (2) hold when n = k + 1.Notice that (2) is independent of n, so it is only necessary to consider (1). Thereare two cases to consider.First, suppose that the condition of line 3 is true and line 5 is executed. We�rst show that (1) holds when n = k i� the following holds:(3) T1 [
1(�k+1 [� [A� [fa = bg [Sk) is satis�able.Since line 6 is not executed, �k+1 = �k. The if direction is then trivial since theformula in (1) is a subset of the formula in (3). To show the only if direction,�rst note that it follows from line 5 that T2 [
2(�2 [E�) j=
2(a = b). Butby Lemma 6, E� � A�, so it follows that T2 [
2(�2 [A�) j=
2(a = b). Sinceeither a = b 2 A� or a 6= b 2 A�, it must be the case that a = b 2 A� and thus(3) follows trivially from (1). Now, by Lemma 3 (where � is false), if line 10 isreached, then (3) holds i�(4) T1 [
1(�k+1 [� [A� [S�(Sk) [S�) is satis�able,where S� = solve(S(a = b)). But Sk+1 = S�(Sk)[S�, so (4) is equivalent to (1)with n = k + 1.In the other case, line 6 is executed (so that �k+1 = �k�fa = bg). Thus, (1)holds with n = k i� T1 [
1(�k+1 [� [fa = bg [A� [Sk) is satis�able, whichis equivalent to (3). As in the previous case, it then follows from Lemma 3 that(1) holds at k i� (1) holds at k + 1.Thus, given an equivalence relation, (1) and (2) hold at k + 1 exactly whenthey hold at k. It follows easily that if an equivalence relation exists whichsatis�es (1) and (2) at k, then there exists an equivalence relation satisfying (1)and (2) at k + 1 and vice-versa. Finally, the induction case assumes that thatT [� is satis�able i� there exists an equivalence relation � such that (1) and(2) hold at k. It follows from the above argument that T [� is satis�able i�there exists an equivalence relation � such that (1) and (2) hold at k + 1. utTheorem 5. Suppose that T1 is a Shostak theory with signature �1, canonizercanon, and solver solve, and that T2 is a convex theory with signature �2 disjointfrom �1 and satis�ability procedure Sat2 . Suppose also that neither T1 nor T2admit trivial models, and let T = T1[T2 and � = �1[�2. Suppose � is a set of

�-literals. Let � be the subset of � which consists of 1-equalities, � the subsetof � which consists of 1-disequalities, and �2 the remainder of the literals in �.T [� is satis�able i� S2(�;�; canon; solve; �2;Sat2) = TRUE.Proof. First note that by the same argument used in Lemma 4, S is always in1-solved form.Suppose S2(�;�; canon; solve; �2;Sat2) = FALSE. If the algorithm terminatesat line 9 or 12, then the proof that � is unsatis�able is the same as that forAlgorithm S1 above. If it stops at line 4, then suppose there is an equivalencerelation � satisfying condition (1) of Lemma 7. It follows from Lemma 6 thatE� � A�. But since the algorithm terminates at line 4, T2 [
2(�2 [A�) mustbe unsatis�able. Thus condition (2) of Lemma 7 cannot hold. Thus, by Lemma7, T [� is unsatis�able.Suppose on the other hand that S2(�;�; canon; solve; �2;Sat2) = TRUE. Bythe de�nition of � and Proposition 2, a = b 2 A� i� T1 [
1(S) j=
1(a = b).It follows from the convexity of T1 and Corollary 1 that T1 [
1(S [A�) issatis�able. It then follows from the fact that S2 does not terminate at line 12 (aswell as convexity again) that T1[
1(S [� [A�) is satis�able. This is condition(1) of Lemma 7. Condition (2) must hold because the while loop terminates.Thus, by Lemma 7, T [� is satis�able. ut6 A Comparison with Shostak's Original MethodThere are two main ways in which this work di�ers from Shostak's originalmethod, which is best represented by Ruess and Shankar in [11]. The �rst isin the set of requirements a theory must ful�ll. The second is in the level ofabstraction at which the algorithm is presented.6.1 Requirements on the TheoryOf the four requirements given in our de�nition of a Shostak theory, the �rst twoare clari�cations which are either assumed or not addressed in other work, andthe last two are similar to, but slightly less restrictive, than the requirementslisted by others. The �rst requirement is simply that the theory contain nopredicate symbols. This is a minor point that is included simply to be explicitabout an assumption which is implicit in other work. Shostak's method does notgive any guidance on what to do if a theory includes predicate symbols. Onepossible approach is to encode predicates as functions, but this only works if theresulting encoding admits a canonizer and solver.The second requirement is that the theory be convex. This may seem overlyrestrictive since Shostak claims that non-convex theories can be handled [12].Consider, however, the following simple non-convex theory with signature fa; bg:fa 6= b;8x:(x = a _ x = b)g. It is easy to see that this theory admits a (trivial)canonizer and a solver. However, for the unsatis�able set of formulas fx 6= y; y 6=z; x 6= zg, any version of Shostak's algorithm will fail to detect the inconsistency.

Ruess and Shankar avoid this di�culty by restricting their attention to theproblem of whether T [� j= a = b for some set of equalities � . However, theability to solve this problem does not lead to a self-contained decision procedureunless the theory is convex.The third requirement on the theory is that a canonizer exist. Shostak gaveseveral additional properties that must be satis�ed by the canonizer. These arenot needed at the level of abstraction of our algorithms, though some e�cientimplementations may require the additional properties.A similar situation arises with the requirements on the solver: only a subsetof the original requirements are needed. Note that although we require the setof equalities returned by the solver to be equisatis�able with the input set inevery model of T , whereas Ruess and Shankar require only that it be equisatis-�able with the input set in every �-model1, it is not di�cult to show that theirrequirements on the canonizer imply that every model of T must be a �-model.6.2 Level of AbstractionAlgorithm S2 looks very di�erent from Shostak's original published algorithm aswell as most other published versions, though these are, in fact, closely related.An algorithm equivalent to that found in [11] can be obtained by making anumber of re�nements. We do not have the space to describe these in detail,but we outline them brie
y below. We also describe some general principles theyexemplify which could be used in other re�nements.The most obvious re�nement is to replace T2 by the theory of equality withuninterpreted function symbols. The data structure for S can be expanded toinclude all equations (not just the 1-equations), obviating the need to track�2 separately. The check for satis�ability in T2 is replaced by a simple checkfor congruence closure over the terms in S. The general principle here is thatif S can be expanded to track the equalities in another theory, then equalityinformation only needs to be maintained in one place, which is more e�cient.Another re�nement is that a more sophisticated substitution can be appliedat line 7 of Algorithm S2. The more sophisticated substitution considers eachsub-term t, and if it is known to be equivalent to a term u already appearing inS, then all instances of t are replaced with u. For terms in the Shostak theory,this is essentially accomplished by applying the canonizer. For uninterpretedfunction terms, it is a bit more subtle. For example, if x = y 2 S and f(x)appears in S, then if f(y) is encountered, it can be replaced by f(x). As a result,fewer total terms are generated and thus fewer terms need to be consideredwhen updating S or when performing congruence closure. The general principleis that simpli�cations and substitutions which reduce the total number of termscan improve e�ciency. This is especially important in a natural generalizationof Algorithm S2 to accommodate non-convex theories in which the search for anappropriate arrangement of the shared terms can take time which is more thanexponential in the number of shared terms [9].1 In the notation of Ruess and Shankar, the canonizer is denoted by �, and a �-modelM is one where M j= a = �(a) for any term a.

AcknowledgmentsWe are especially grateful to Natarajan Shankar for many helpful and productiveconversations regarding Shostak's method. We would also like to thank CesareTinelli and the anonymous referees who provided important corrections and valu-able feedback. This work was partially supported by the National Science Foun-dation Grant CCR-9806889, and the DARPA PCES program (DARPA/AirForcecontract number F33615-00-C-1693).References1. C. Barrett, D. Dill, and J. Levitt. Validity Checking for Combinations of Theorieswith Equality. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer-Aided Design, volume 1166 of Lecture Notes in Computer Science, pages 187{201.Springer-Verlag, 1996.2. C. Barrett, D. Dill, and A. Stump. A Framework for Cooperating Decision Proce-dures. In 17th International Conference on Automated Deduction, Lecture Notesin Computer Science. Springer-Verlag, 2000.3. Clark W. Barrett. Checking Validity of Quanti�er-Free Formulas in Combinationsof First-Order Theories. PhD thesis, Stanford University, 2002.4. Nikolaj S. Bj�rner. Integrating Decision Procedures for Temporal Veri�cation. PhDthesis, Stanford University, 1999.5. D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak's Decision Procedure for Com-binations of Theories. In M. McRobbie and J. Slaney, editors, 13th InternationalConference on Computer Aided Deduction, volume 1104 of Lecture Notes in Com-puter Science, pages 463{477. Springer-Verlag, 1996.6. Z. Manna et al. STeP: Deductive-Algorithmic Veri�cation of Reactive and Real-time Systems. In 8th International Conference on Computer-Aided Veri�cation,volume 1102 of Lecture Notes in Computer Science, pages 415{418. Springer-Verlag, 1996.7. Jeremy R. Levitt. Formal Veri�cation Techniques for Digital Systems. PhD thesis,Stanford University, 1999.8. G. Nelson and D. Oppen. Simpli�cation by Cooperating Decision Procedures.ACM Transactions on Programming Languages and Systems, 1(2):245{57, 1979.9. Derek C. Oppen. Complexity, Convexity and Combinations of Theories. TheoreticalComputer Science, 12:291{302, 1980.10. S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System.In D. Kapur, editor, 11th International Conference on Automated Deduction, vol-ume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752. Springer-Verlag,1992.11. H. Ruess and N. Shankar. Deconstructing Shostak. In 16th Annual IEEE Sympo-sium on Logic in Computer Science, pages 19{28, June 2001.12. Robert E. Shostak. Deciding Combinations of Theories. Journal of the Associationfor Computing Machinery, 31(1):1{12, 1984.13. C. Tinelli and M. Harandi. A New Correctness Proof of the Nelson-Oppen Combi-nation Procedure. In F. Baader and K. Schulz, editors, 1st International Workshopon Frontiers of Combining Systems (FroCoS'96), volume 3 of Applied Logic Series.Kluwer Academic Publishers, 1996.14. Ashish Tiwari. Decision Procedures in Automated Deduction. PhD thesis, StateUniversity of New York at Stony Brook, 2000.

