A Generalization of Shostak’s Method for
Combining Decision Procedures

Clark W. Barrett, David L. Dill, and Aaron Stump

Stanford University, Stanford, CA 94305, USA,
http://verify.stanford.edu
© Springer-Verlag

Abstract. Consider the problem of determining whether a quantifier-
free formula ¢ is satisfiable in some first-order theory 7. Shostak’s al-
gorithm decides this problem for a certain class of theories with both
interpreted and uninterpreted function symbols. We present two new
algorithms based on Shostak’s method. The first is a simple subset of
Shostak’s algorithm for the same class of theories but without uninter-
preted function symbols. This simplified algorithm is easy to understand
and prove correct, providing insight into how and why Shostak’s algo-
rithm works. The simplified algorithm is then used as the foundation for
a generalization of Shostak’s method based on a variation of the Nelson-
Oppen method for combining theories.

1 Introduction

In 1984, Shostak introduced a clever and subtle algorithm which decides the
satisfiability of quantifier-free formulas in a combined theory which includes a
first-order theory (or combination of first-order theories) with certain properties
and the theory of equality with uninterpreted function symbols [12]. But despite
the fact that Shostak’s method is less general than its predecessor, the Nelson-
Oppen method [8,9], it has generated considerable interest and is the basis for
decision procedures found in several tools, including PVS [10], STeP [4, 6], and
SVC [1,2,7].

There are several good reasons for this. First of all, it is easier to implement:
the Nelson-Oppen method provides a framework for combining decision proce-
dures, but gives no help on how to construct the individual decision procedures.
But as we show in the next section, at the core of Shostak’s procedure is a
simple method for generating decision procedures for a large class of theories.
A second reason for the success of Shostak’s method is that despite requiring
more restrictive conditions in order to accommodate a theory, a wide variety
of useful theories have been shown to satisfy these conditions [4,12]. Finally,
empirical studies have shown that Shostak’s method is an order of magnitude
more efficient than the Nelson-Oppen method [3].

Unfortunately, the original paper is difficult to follow, due in part to the fact
that it contains several errors, and despite an ongoing effort to understand and
clarify the method [5,11,14], it remains difficult to understand.

In this paper, we take a new approach to explaining Shostak’s algorithm.
We first present a subset of the original algorithm, in particular, the subset
which decides formulas without uninterpreted function symbols. This algorithm
is surprisingly simple and straightforward, and gives considerable insight into
how Shostak’s algorithm works.

This algorithm then forms the basis for a more general algorithm that lies at
an abstraction level somewhere between the general Nelson-Oppen framework
and the highly-specialized Shostak procedure. The purpose is to describe an
algorithm which is abstract enough that it can be understood and proved correct,
but specific enough that it is not hard to see how to specialize it further to recover
Shostak’s original algorithm. The correctness proof of this algorithm relies on
a new variation of the Nelson-Oppen procedure and new theorem which relates
convezity (a requirement for Shostak) and stable-infiniteness (a requirement for
Nelson-Oppen).

It is our hope that this exercise will not only shed light on how Shostak’s
method can be seen as an efficient refinement of the Nelson-Oppen method,
but also provide a generalization which can be used to achieve other efficient
refinements. Indeed, one such possible refinement is described in the first author’s
dissertation [3].

In Section 2, below, some preliminary definitions and notation are given.
The simple algorithm without uninterpreted function symbols is presented in
Section 3. Section 4 reviews the Nelson-Oppen method in preparation for the
generalized algorithm which is presented in Section 5. Finally, Section 6 compares
our approach to other work on Shostak’s algorithm and describes the refinements
necessary to recover Shostak’s original algorithm.

2 Preliminary Concepts

2.1 Some Notions from Logic

A theory is a set of closed formulas. For the purposes of this paper, all theories
are assumed to be first-order and to include the axioms of equality. The sig-
nature of a theory is the set of function, predicate (other than equality), and
constant symbols appearing in those sentences. A literal is an atomic formula or
its negation. To avoid confusion with the logical equality symbol =, we use the
symbol = to indicate that two logical expressions are syntactically identical.
For a given model, M, a variable assignment p is a function which assigns to
each variable an element of the domain of M. We write M =, ¢ if ¢ is true in
the model M with variable assignment p. If @ is a set of formulas, then M =, &
indicates that M }=, ¢ for each ¢ € &. In general, whenever sets of formulas are
used as logical formulas, the intended meaning is the conjunction of the formulas
in the set. A formula ¢ is satisfiable if there exists some model M and variable
assignment p such that M |=, ¢. If I' is a set of formulas and ¢ is a formula,
then I' = ¢ means that whenever a model and variable assignment satisfy I,
they also satisfy ¢. A set S of literals is conver in a theory 7 if 7 U S does not

entail any disjunction of equalities between variables without entailing one of
the equalities itself. A theory 7 is convex if every set of literals in the language
of the theory is convex in 7.

2.2 Equations in Solved Form

Definition 1. A set S of equations is said to be in solved form iff the left-hand
side of each equation in S is a variable which appears only once in S. We refer
to the variables which appear only on the left-hand sides as solitary variables.

A set S of equations in solved form defines an idempotent substitution: the one
which replaces each solitary variable with its corresponding right-hand side. If
S is an expression or set of expressions, we denote the result of applying this
substitution to S by S(S). Another interesting property of equations in solved
form is that the question of whether such a set S entails some formula ¢ in a
theory 7 can be answered simply by determining the validity of S(¢) in 7:

Proposition 1. If T is a theory with signature X and S is a set of X'-equations
in solved form, then TUS |E ¢ iff T = S(9).

Proof. Clearly, TUS E ¢ iff TUS | S(¢). Thus we need only show that
TUS E S(¢) iff T |= S(¢). The “if” direction is trivial. To show the other
direction, assume that 7 U S = S(¢). Any model of 7 can be made to satisfy
T US by assigning any value to the non-solitary variables of S, and then choosing
the value of each solitary variable to match the value of its corresponding right-
hand side. Since none of the solitary variables occur anywhere else in S, this
assignment is well-defined and satisfies S. By assumption then, this model and
assignment also satisfy S(¢), but none of the solitary variables appear in S(¢),
so the initial arbitrary assignment to non-solitary variables must be sufficient to
satisfy S(¢). Thus it must be the case that every model of T satisfies S(¢) with
every variable assignment. O

Corollary 1. If T is a satisfiable theory with signature X and S is a set of
Y -equations in solved form, then T US is satisfiable.

3 Algorithm S1

In this section we present an algorithm, based on a subset of Shostak’s algorithm,
for deciding satisfiability of quantifier-free formulas in a theory 7 which meets
certain conditions. We call such a theory a Shostak theory.

Definition 2. A satisfiable theory T with signature X is a Shostak theory if the
following conditions hold.

1. X does not contain any predicate symbols.
2. T is conver.

3. There exists a canonizer canon, a computable function from X -terms to X-
terms, with the property that T = a = b iff canon(a) = canon(b).
4. There exists a solver solve, a computable function from X -equations to sets
of formulas defined as follows:
(a) If T = a #b, then solve(a = b) = {false}.
(b) Otherwise, solve(a = b) returns a set S of equations in solved form such
that T |= [(a = b) «» 3T.S], where T is the set of variables which appear
in S but not in a or b. Each of these variables must be fresh.

These requirements are slightly different from those given by Shostak and others.
These differences are discussed in Section 6 below. In the rest of this section,
T is assumed to be a Shostak theory with signature X', canonizer canon, and
solver solve. As we will show, the solver can be used to convert an arbitrary
set of equations into a set of equations in solved form. The canonizer is used to
determine whether a specific equality is entailed by a set of equations in solved
form, as shown by the following proposition.

Proposition 2. If S is a set of ¥-equations in solved form, then TUS Ea =0>
iff canon(S(a)) = canon(S(D)).

Proof. By Proposition 1, TUS Fa=0iff T = S(a) = S(b). But T = S(a) =
S(b) iff canon(S(a)) = canon(S(b)) by the definition of canon. a

1(, A, canon, solve)
S :=0;
WHILE I' # () DO BEGIN
Remove some equality a =b from I';
a” :=8(a); b*:=8();
S* := solve(a™ =b");
IF §* = {false} THEN RETURN FALSE;
S§:=8"(S)US™;
END
IF canon(S(a)) = canon(S(b)) for some a #b € A THEN RETURN FALSE;
10. RETURN TRUE;

© 00N U WM+~ W

Fig. 1. Algorithm S1: based on a simple subset of Shostak’s algorithm

Algorithm S1 (shown in Fig. 1) makes use of the properties of a Shostak theory to
check the joint satisfiability of an arbitrary set of equalities, I', and an arbitrary
set of disequalities, A, in a Shostak theory with canonizer canon and solver
solve. Since the satisfiability of any quantifier-free formula can be determined by
first converting it to disjunctive normal form, it suffices to have a satisfiability
procedure for a conjunction of literals. Since X' contains no predicate symbols, all
X -literals are either equalities or disequalities. Thus, Algorithm S7 is sufficient
for deciding the satisfiability of quantifier-free X'-formulas. Termination of the
algorithm is trivial since each step terminates and each time line 3 is executed the
size of I" is reduced. The following lemmas are needed before proving correctness.

Lemma 1. If 7' is a theory, I' and @ are sets of formulas, and S is a set
of equations in solved form, then for any formula ¢, TTULTUOUS = ¢ iff
T'ULI'uSO)US E ¢.

Proof. Follows trivially from the fact that @ US and S(O) U S are satisfied by
exactly the same models and variable assignments. O

Lemma 2. If I' is any set of formulas, then for any formula ¢, and X-terms a
and b,
TUI'U{a=0b}|= ¢ iff TUI'Usolve(a =) = ¢.

Proof.

=: Given that 7T UI'U {a = b} = ¢, suppose that M |=, T UI' U solve(a = b).
It is easy to see from the definition of solve that M =, a = b and hence by the
hypothesis, M =, ¢.

<: Given that 7 U I' U solve(a = b) |= ¢, suppose that M |=, T UI'U{a = b}.
Then, since 7 = (a = b) <+ IT.solve(a = b), there exists a modified assignment
p* which assigns values to all the variables in T and satisfies solve(a = b) but is
otherwise equivalent to p. Then, by the hypothesis, M |=,+ ¢. But the variables
in T are new variables, so they do not appear in ¢, meaning that changing their
values cannot affect whether ¢ is true. Thus, M |=, ¢. O

Lemma 3. If I', {a = b}, and S are sets of X-formulas, with S in solved form,
and if §* = solve(S(a = b)) then if S* # {false}, then for every formula ¢,
TUIMNU{a=b}USE®HFTUTIUS*US*S) E ¢.

Proof.

TUlU{a=bUSE¢ & TUI'U{S(a=b}US|E¢ Lemmal
& TUTI'US*USE® Lemma 2
& TUTIUS*US*(S)Ee Lemma 1

O
Lemma 4. During the execution of Algorithm S1, S is always in solved form.

Proof. Clearly, S is in solved form initially. Consider one iteration. By construc-
tion, a* and b* do not contain any of the solitary variables of S, and thus by
the definition of solve, S* doesn’t either. Furthermore, if S* = {false} then the
algorithm terminates at line 6. Thus, at line 7, $* must be in solved form. Ap-
plying §* to S guarantees that none of the solitary variables of $* appear in S,
so the new value of S is also in solved form. O

Lemma 5. Let I, and S, be the values of I' and S after the while loop in
Algorithm S1 has been executed n times. Then for each n, and any formula ¢,
the following invariant holds: T Ul = ¢ iff TUILL,US, E ¢.

Proof. The proof is by induction on n. For n = 0, the invariant holds trivially.
Now suppose the invariant holds for some k£ > 0. Consider the next iteration.

TUlbE¢ & TUILUSE9 Induction Hypothesis

= TUFk_HU{a:b}USk ':¢ Line 3
& TUILUS*US*(Sk) E¢ Lemmas 3 and 4
s TU Fk+1 U8k+1 '= (;5 Line 7

Now we can show the correctness of Algorithm S1.

Theorem 1. Suppose T is a Shostak theory with signature X, canonizer canon,
and solver solve. If I' is a set of X -equalities and A is a set of X-disequalities,
then T UI'U A is satisfiable iff S1(I', A, canon, solve) = TRUE.

Proof. Suppose S1(I', A, canon, solve) = FALSE. If the algorithm terminates at
line 9, then, canon(S(a)) = canon(S(b)) for some a # b € A. It follows from
Proposition 2 and Lemma 5 that T UI = a = b, so clearly TUI' U A is
not satisfiable. The other possibility is that the algorithm terminates at line 6.
Suppose the loop has been executed n times and that I}, and S,, are the values
of I' and S at the end of the last loop. It must be the case that T | a* # b*, so
TuU{a* = b*} is unsatisfiable. Clearly then, TU{a* = b*} US, is unsatisfiable, so
by Lemma 1, 7 U {a = b} US,, is unsatisfiable. But {a = b} is a subset of I},, so
TUTI,US, must be unsatisfiable, and thus by Lemma 5, 7 U I is unsatisfiable.

Suppose on the other hand that S1(I, A, canon, solve) = TRUE. Then the
algorithm terminates at line 10. By Lemma 4, S is in solved form. Let A be
the disjunction of equalities equivalent to —(A). Since the algorithm does not
terminate at line 9, 7 US does not entail any equality in A. Because 7 is convex,
it follows that TUS & A. Now, since T US is satisfiable by Corollary 1, it follows
that 7 US U A is satisfiable. But by Lemma 5, TUI' = ¢ iff TUS = ¢, so in
particular 7 US | I'. Thus T USU AU I is satisfiable, and hence TUI'U A
is satisfiable. O

3.1 An Example

Perhaps the most obvious example of a Shostak theory is the theory of linear
rational arithmetic. A simple canonizer for this theory can be obtained by im-
posing an order on all variables (lexicographic or otherwise), and combining like
terms. For example, canon(z + 3y — ¢ — 5z) = —x + 3y + (—4z). Similarly, a
solver can be obtained simply by solving for one of the variables in an equation.
Consider the following system of equations:

r+3y—2z =1
r—y—6z =1
20+ 8y —22=3

The following table shows values for I', S, S(a = b), and §* at each iteration of
Algorithm S7 starting with I' = {z+3y—2z = 1,2 —y—6z = 1,22+8y—2z = 3}:

r S S(a =b) S*
r+3y—22=1 |0 r+3y—2z=1 r=1-3y+ 2z
r—y—6z=1
20 +8y —22=3
r—y—6z=1 |[z=1-3y+22]1-3y+2z—y—62=1 |y=—=
20 +8y —22=3
20 +8y—22=3lz =145z 2(1 + 52) + 8(—%) — 2z = 3|false
y=—z

The solver detects an inconsistency when it tries to solve the equation obtained
after applying the substitution from S. The solver indicates this by returning
{false}, which results in the algorithm returning FALSE.

3.2 Combining Shostak Theories

In [12], Shostak claims that two Shostak theories can always be combined to
form a new Shostak theory. A canonizer for the combined theory is obtained
simply by composing the canonizers from each individual theory. A solver for
the combined theory is ostensibly obtained by repeatedly applying the solver for
each theory (treating terms in other theories as variables) until a true variable
is on the left-hand side of each equation in the solved form. This does in fact
work for many theories, providing a simple and efficient method for combining
Shostak theories. However, as pointed out in [7] and [11], the construction of the
solver as described is not always possible. We do not address this issue here, but
mention it as a question which warrants further investigation.

4 The Nelson-Oppen Combination Method

Nelson and Oppen [8,9] described a method for combining decision procedures
for theories which are stably-infinite and have disjoint signatures. A theory T is
stably-infinite if any quantifier-free formula is satisfiable in some model of 7T iff
it is satisfiable in an infinite model of 7. In this section, we assume 7; and 75
are two such theories with signatures X; and X5 respectively (the generalization
to more than two theories is straightforward). Furthermore, we let 7 = T3 U T
and X = ¥; U X,. The Nelson-Oppen procedure decides the satisfiability in 7
of a set @ of Y-literals.

4.1 Tinelli and Harandi’s Approach

There have been many detailed presentations of the Nelson-Oppen method.
Tinelli and Harandi’s approach is particularly appealing because it is rigorous
and conceptually simple [13]. Here we give a brief review of the method based
on their approach. First, a few more definitions are required.

Members of X;, for i = 1,2 are called i-symbols. In order to associate all terms
with some theory, each variable is also arbitrarily associated with either 7; or 75.

A variable is called an i-variable if it is associated with 7; (note that an i-variable
is not an i-symbol, as it is not a member of X;). A Y-term ¢ is an i-term if it
is an ¢-variable, a constant ¢-symbol, or an application of a functional i-symbol.
An i-predicate is an application of a predicate i-symbol. An atomic i-formula
is an an i-predicate or an equality whose left term is an i-term. An i-literal is
an atomic i-formula or the negation of an atomic i-formula. An occurrence of
a j-term ¢ in either a term or a literal is i-alien if i # j and all super-terms (if
any) of ¢ are i-terms. An i-term or i-literal is pure if it contains only i-symbols
(i.e. its i-alien sub-terms are all variables).

Given an equivalence relation ~, let dom.. be the domain of the relation. We
define the following sets of formulas induced by ~:

E.={z=y|z,y€dom. and x ~ y}
D.={x#y|z,y€ dom. and z # y}
A.=E_UD..

Let Ar be a set of equalities and disequalities. If Ar = A for some equivalence
relation ~ with domain V, we call Ar an arrangement of V.

The first step in determining the satisfiability of @ is to transform @ into
an equisatisfiable formula @; A @, where ®; consists only of pure i-literals as
follows. Let 1) be some i-literal in @ containing a non-variable i-alien j-term t.
Replace all occurrences of ¢ in ¢ with a new j-variable z and add the equation
z =t to @. Repeat until every literal in @ is pure. The literals can then easily
be partitioned into ¢; and ®,. It is easy to see that @ is satisfiable if and only
if &1 A &5 is satisfiable.

Now, let V be the set of all variables which appear in both &; and ®5. A
simple version of the Nelson-Oppen procedure simply guesses an equivalence
relation ~ on V nondeterministically, and then checks whether 7; U ®; U AL is
satisfiable. The correctness of the procedure is based on the following theorem
from [13].

Theorem 2. Let T, and T3 be two stably-infinite, signature-disjoint theories and
let @; be a set of pure i-literals for i = 1,2. Let V be the set of variables which
appear in both &1 and ®. Then T; U T2 UP, U Dy is satisfiable iff there exists an
arrangement Ar of V such that T; U ®; U Ar is satisfiable for i =1,2.

4.2 A Variation of the Nelson-Oppen Procedure

The first step in the version of the Nelson-Oppen procedure described above
changes the structure and number of literals in . However, it is possible to give
a version of the procedure which does not change the literals in @ by instead
treating alien terms as variables. This simplifies the algorithm by eliminating the
need for the purification step. But more importantly, this variation is required
for the combination of Shostak and Nelson-Oppen described next.

First, we introduce a purifying operator which formalizes the notion of treat-
ing alien terms as variables. Let v be a mapping from Y-terms to variables such
that for i = 1,2, each i-term ¢ is mapped to a fresh i-variable v(t). Then, for

some Y-formula or X-term «, define v;(«) to be the result of replacing all i-alien
occurrences of terms ¢ by v(t). It is easy to see that as a result, v;(«) is i-pure.
Since ; simply replaces terms with unique place-holders, it is injective. We will
denote its inverse by v, 1. We will also denote by 7o(a) the result of replacing
each maximal term (i.e. terms without any super-terms) ¢ in a by v(t). Thus,
the only terms in vy («) are variables.

Our variation on the Nelson-Oppen procedure works as follows. Given a set
of literals, @, first partition @ into two sets ¢; and ®,, where @; is exactly the
set of i-literals in @. Let V be the set of all terms which are i-alien (for some
i) in some literal in @ or in some sub-term of some literal in . V consists of
exactly those terms that would end up being replaced by variables in the original
Nelson-Oppen method. V will also be referred to as the set of shared terms. As
before, an equivalence relation ~ on V is guessed. If T;U~;(®; U A.) is satisfiable
for each i, then 7 U @ is satisfiable, as shown by the following theorem.

Theorem 3. Let 71 and Ty be two stably-infinite, signature-disjoint theories
and let @ be a set of literals in the combined signature X. If ®; is the set of
all i-literals in @ and V is the set of shared terms in @, then T U To U @ is
satisfiable iff there exists an equivalence relation ~ on V such that for i = 1,2,
Ti Ui (@; U AL) is satisfiable.

Proof.

=: Suppose M }=, TU®P. Let a ~ biff a,b € V and M |=, a = b. Then clearly
fori =1,2, M |=, T; U®; U A_. It is then easy to see that 7; U y;($; U A) is
satisfiable by choosing a variable assignment which assigns to each variable v(t)
the corresponding value of the term ¢ which it replaces.

<: Suppose that for each i, T; U;(®; U A.) is satisfiable. Consider ¢ = 1. Let
©1 be the set of all equations v(t) = ¢, where t € V is a 1-term. Consider 7 (01).
Since 7, never replaces 1-terms and each v(t) is a new variable, it follows that
~1(0@1) is in solved form, and its solitary variables are exactly the variables which
are used to replace 1-terms. Thus, by Corollary 1, 73 U~y (61) is satisfiable. Fur-
thermore, since none of the solitary variables of v, (©1) appear in v1(®; U A.),
a satisfiable assignment for 73 U1 (©1) can be constructed from the satisfying
assignment for 7; U~ (1 U A.) (which exists by hypothesis) so that the result-
ing assignment satisfies 71 U1 ($1 U A~ U ©1). Now, each term in y; (A~) is the
right-hand side of some equation in 1 (©;), so by repeatedly applying equations
from 1 (©1) as substitutions, v;(A~) can be transformed into v (A~), and thus
Ti U7 (P17 UBO1) U (A~) must also be satisfiable. Applying the same argument
with i=2, we conclude that 7o Uva (P2 U O2) U~ (A~) is satisfiable. But for each
i, vi(P; U ©;) is a set of i-literals. Furthermore, y9(A~) is an arrangement of the
variables shared by these two sets, so Theorem 2 can be applied to conclude that
TUPUBO; UBO,, and thus T U @, is satisfiable. O

5 Combining the methods

Let 71,72,%21,%5,7, and X be defined as in the previous section, with the
additional assumptions that 77 is a Shostak theory and that neither 77 nor 7

admits trivial models (typically, theories of interest do not admit trivial models,
or can be easily modified so that this is the case). The following theorem shows
that both theories are also stably-infinite.

Theorem 4. Every convex first-order theory with no trivial models is stably-
infinite.

Proof. Suppose U is a first-order theory which is not stably-infinite. Then there
exists some quantifier-free set of literals @ which is satisfiable in a finite model
of U, but not in an infinite model of U. Let 3T be the existential closure of
&. Then JZ.9 is true in some finite model, but not in any infinite model, of U.
It follows that ¢/ U {3Z.9} is a theory with no infinite models. By first-order
compactness, there must be some finite cardinality = such that there is a model
of U U {IT.®} of cardinality n, but none of cardinality larger than n. Clearly,
U U @ is satisfiable in some model of size n, but not in any models larger than
n. It follows by the pigeonhole principle that if y;,0 < i < n are fresh variables,
then Y U@ =V, ,; yi = y;, but because U has no trivial models (i.e. models of
size 1), U U D [~ y; = y; for any ¢, j with ¢ # j. Thus, U is not convex. O

5.1 The Combined Algorithm

Suppose @ is a set of Y-literals. As in Section 4.2, divide @ into $; and &,
where @; contains exactly the i-literals of @. Let)V be the set of shared terms.
By Theorem 3, 7 U @; U &, is satisfiable iff there exists an equivalence relation
~ such that for i = 1,2, T; Uy;(®; U A.) is satisfiable.

In order for the approach in Algorithm S7 to function in a multiple-theory
environment, it is necessary to generalize the definition of equations in solved
form to accommodate the notion of treating alien terms as variables. A set S of
equations is said to be in i-solved form if v;(S) is in solved form. If S is a set of
equations in i-solved form and V is an expression or set of expressions in a mixed
language including X;, then we define S(V) to be the result of replacing each left-
hand side in & which occurs as an i-alien in V with the corresponding right-hand
side. Formally, S(V) is redefined to be v; ' (7:(S) (7:(V))), i.e. the application of S
to V should be equivalent to first replacing all i-alien terms with variables in both
S and V, then doing the substitution, and then finally restoring the i-alien terms
to their places. We similarly need to extend the definitions of canon and solve.
Let canon(c) denote v (canon(y1(e))) and solve(3) denote v; * (solve(y1(B))).

Now, let I" be the set of equalities in ¢; and A the set of disequalities in @;.
Furthermore, let Sate be a decision procedure for satisfiability of literals in 75:

Sata(P) = TRUE iff Tz U2(P) [~ false.

Algorithm S2 is a modification of Algorithm S7 which accommodates the addi-
tional theory 7>. Essentially, the algorithm is identical except for the addition
of lines 3 through 5 which check whether @, is consistent in theory 7, with an
arrangement A. . The equivalence relation ~ on V is derived from S as follows:

S2(I, A, canon, solve, P2, Satz)
S:=10;
WHILE I' =0 OR —Sats(P2 U A.) DO BEGIN
IF —Sats(®2 U A.) THEN BEGIN
IF —Satz(®2 U E.) THEN RETURN FALSE;
ELSE Choose a # b € D~ such that —Sats (P2 U E. U {a # b});
END ELSE Remove some equality a =b from [';
a* :=8(a); b*:=8();
S* := solve(a™ =b");
IF §" = {false} THEN RETURN FALSE;
S:=8*(S)US*;
. END
. IF a~b for some a #b & A THEN RETURN FALSE;
. RETURN TRUE;

O o0 N O d WN -

= e
= o -

=
w N

Fig. 2. Algorithm S2: a generalization of Shostak’s algorithm

a~b iff a,beV and canon(S(a)) = canon(S(b))

In each iteration of the while loop, an equation is processed and integrated
with §. This equation is either the result of the current arrangement being
inconsistent in 73 (lines 3 through 5) or simply an equation from I” (line 6). As
shown below, the definition of ~ ensures that S is consistent with A. . Similarly,
equations are added to S until A. is also consistent with @,. Thus, when the
algorithm returns TRUE, both #; and &, are known to be consistent with the
arrangement A.. Line 5 requires a little explanation. If the algorithm reaches
line 5, it means that &, U E. U D, is not satisfiable in 73, but @, U E., is. It
follows from convexity of 7, that there must be a disequality a # b in D~ such
that @, U E. U {a # b} is not satisfiable in 75.

Algorithm S2 terminates because each step terminates and in each iteration
either the size of " is reduced by one or two equivalence classes in ~ are merged.
As before, the correctness proof requires a couple of preparatory lemmas.

Lemma 6. Suppose S is a set of X-formulas in 1-solved form, V is a set of X-
terms, and ~ is defined as above. If = is an equivalence relation on V such that
TiUv (Ax US) is satisfiable, then E.. C Ax. In other words, every arrangement
of V consistent with S must include E...

Proof. Consider an arbitrary equation a = b between terms in V. a = b € E
iff canon(S(a)) = canon(S(b)) iff (by Proposition 2) 71 U1 (S) E 11(a =b).
So 71 (a = b) must be true in every model and assignment satisfying 7; U 1 (S).
In particular, if 73 U 11 (Ax US) is satisfiable, the corresponding model and
assignment must also satisfy 7, (a = b). Since either the equation a = b or the
disequation a # b must be in Ay, it must be the case that a = b € Ay. Thus,
E.CAL. O

Lemma 7. Let I, and S,, be the values of I' and S after the loop in Algorithm
S2 has been executed n times. Then for each n, the following invariant holds:
T U is satisfiable iff there exists an equivalence relation =~ on V such that

(1) TUn ([UAU AL US,) is satisfiable, and
(2) ToU7a(P2 U Ap) is satisfiable.

Proof. The proof is by induction on n. For the base case, notice that by Theorem
3, T U is satisfiable iff there exists an equivalence relation =~ such that (1) and
(2) hold with n = 0.

Before doing the induction case, we first show that for some fixed equivalence
relation =, (1) and (2) hold when n = k iff (1) and (2) hold when n = k + 1.
Notice that (2) is independent of n, so it is only necessary to consider (1). There
are two cases to consider.

First, suppose that the condition of line 3 is true and line 5 is executed. We
first show that (1) holds when n = k iff the following holds:

(3) TH U (Iky1 UAU Ax U {a = b} USk) is satisfiable.

Since line 6 is not executed, I'+1 = I[}. The if direction is then trivial since the
formula in (1) is a subset of the formula in (3). To show the only if direction,
first note that it follows from line 5 that 72 U y2($2 U EL) = 72(a =b). But
by Lemma 6, E. C Ay, so it follows that 72 U y2(®P2 U Ax) = 72(a = b). Since
either a = b € Ay or a # b € Ay, it must be the case that a = b € Ay and thus
(3) follows trivially from (1). Now, by Lemma 3 (where ¢ is false), if line 10 is
reached, then (3) holds iff

(4) TTUv(Le41 UAU Ay US*(Sk) US™) is satisfiable,

where S* = solve(S(a =b)). But Sg41 = S*(Sk) US*, so (4) is equivalent to (1)
with n =k + L.

In the other case, line 6 is executed (so that I'y4+1 = I, — {a = b}). Thus, (1)
holds with n =k iff 71 Uy ({41 UAU{a =0} U Ay U Si) is satisfiable, which
is equivalent to (3). As in the previous case, it then follows from Lemma 3 that
(1) holds at k iff (1) holds at k + 1.

Thus, given an equivalence relation, (1) and (2) hold at k + 1 exactly when
they hold at k. It follows easily that if an equivalence relation exists which
satisfies (1) and (2) at k, then there exists an equivalence relation satisfying (1)
and (2) at k£ + 1 and vice-versa. Finally, the induction case assumes that that
T U @ is satisfiable iff there exists an equivalence relation = such that (1) and
(2) hold at k. It follows from the above argument that 7 U @ is satisfiable iff
there exists an equivalence relation = such that (1) and (2) hold at k+1. O

Theorem 5. Suppose that Ty is a Shostak theory with signature Xy, canonizer
canon, and solver solve, and that Ty is a convex theory with signature Xy disjoint
from X1 and satisfiability procedure Saty. Suppose also that neither Ty nor Tz
admit trivial models, and let T = T1UTz and X = XU Xs. Suppose @ is a set of

X -literals. Let I' be the subset of ® which consists of 1-equalities, A the subset
of @ which consists of 1-disequalities, and @5 the remainder of the literals in @.
T U@ is satisfiable iff S2(I', A, canon, solve, P2, Sate) = TRUE.

Proof. First note that by the same argument used in Lemma 4, S is always in
1-solved form.

Suppose S2(I', A, canon, solve, o, Sats) = FALSE. If the algorithm terminates
at line 9 or 12, then the proof that & is unsatisfiable is the same as that for
Algorithm S1 above. If it stops at line 4, then suppose there is an equivalence
relation & satisfying condition (1) of Lemma 7. It follows from Lemma 6 that
E. C Ax. But since the algorithm terminates at line 4, 75 U 72 (®2 U Ax) must
be unsatisfiable. Thus condition (2) of Lemma 7 cannot hold. Thus, by Lemma
7, T U & is unsatisfiable.

Suppose on the other hand that S2(I") A, canon, solve, @, Sats) = TRUE. By
the definition of ~ and Proposition 2, a = b € Ao iff 71 U1 (S) = 11(a =0b).
It follows from the convexity of 7; and Corollary 1 that 7; Uy (SUAL) is
satisfiable. It then follows from the fact that S2 does not terminate at line 12 (as
well as convexity again) that 71 U1 (S U AU A.) is satisfiable. This is condition
(1) of Lemma 7. Condition (2) must hold because the while loop terminates.
Thus, by Lemma 7, T U @ is satisfiable. O

6 A Comparison with Shostak’s Original Method

There are two main ways in which this work differs from Shostak’s original
method, which is best represented by Ruess and Shankar in [11]. The first is
in the set of requirements a theory must fulfill. The second is in the level of
abstraction at which the algorithm is presented.

6.1 Requirements on the Theory

Of the four requirements given in our definition of a Shostak theory, the first two
are clarifications which are either assumed or not addressed in other work, and
the last two are similar to, but slightly less restrictive, than the requirements
listed by others. The first requirement is simply that the theory contain no
predicate symbols. This is a minor point that is included simply to be explicit
about an assumption which is implicit in other work. Shostak’s method does not
give any guidance on what to do if a theory includes predicate symbols. One
possible approach is to encode predicates as functions, but this only works if the
resulting encoding admits a canonizer and solver.

The second requirement is that the theory be convex. This may seem overly
restrictive since Shostak claims that non-convex theories can be handled [12].
Counsider, however, the following simple non-convex theory with signature {a, b}:
{a #b,Vz.(x =aVx =b)}. It is easy to see that this theory admits a (trivial)
canonizer and a solver. However, for the unsatisfiable set of formulas {z # y,y #
z,& # z}, any version of Shostak’s algorithm will fail to detect the inconsistency.

Ruess and Shankar avoid this difficulty by restricting their attention to the
problem of whether 7 U I' |= a = b for some set of equalities I". However, the
ability to solve this problem does not lead to a self-contained decision procedure
unless the theory is convex.

The third requirement on the theory is that a canonizer exist. Shostak gave
several additional properties that must be satisfied by the canonizer. These are
not needed at the level of abstraction of our algorithms, though some efficient
implementations may require the additional properties.

A similar situation arises with the requirements on the solver: only a subset
of the original requirements are needed. Note that although we require the set
of equalities returned by the solver to be equisatisfiable with the input set in
every model of 7, whereas Ruess and Shankar require only that it be equisatis-
fiable with the input set in every o-model®, it is not difficult to show that their
requirements on the canonizer imply that every model of 7 must be a o-model.

6.2 Level of Abstraction

Algorithm S2 looks very different from Shostak’s original published algorithm as
well as most other published versions, though these are, in fact, closely related.
An algorithm equivalent to that found in [11] can be obtained by making a
number of refinements. We do not have the space to describe these in detail,
but we outline them briefly below. We also describe some general principles they
exemplify which could be used in other refinements.

The most obvious refinement is to replace 72 by the theory of equality with
uninterpreted function symbols. The data structure for S can be expanded to
include all equations (not just the l-equations), obviating the need to track
&, separately. The check for satisfiability in 75 is replaced by a simple check
for congruence closure over the terms in . The general principle here is that
if S can be expanded to track the equalities in another theory, then equality
information only needs to be maintained in one place, which is more efficient.

Another refinement is that a more sophisticated substitution can be applied
at line 7 of Algorithm S2. The more sophisticated substitution considers each
sub-term ¢, and if it is known to be equivalent to a term u already appearing in
S, then all instances of ¢ are replaced with u. For terms in the Shostak theory,
this is essentially accomplished by applying the canonizer. For uninterpreted
function terms, it is a bit more subtle. For example, if z = y € S and f(z)
appears in S, then if f(y) is encountered, it can be replaced by f(z). As a result,
fewer total terms are generated and thus fewer terms need to be considered
when updating S or when performing congruence closure. The general principle
is that simplifications and substitutions which reduce the total number of terms
can improve efficiency. This is especially important in a natural generalization
of Algorithm S2 to accommodate non-convex theories in which the search for an
appropriate arrangement of the shared terms can take time which is more than
exponential in the number of shared terms [9].

! In the notation of Ruess and Shankar, the canonizer is denoted by o, and a o-model
M is one where M = a = o(a) for any term a.

Acknowledgments

We are especially grateful to Natarajan Shankar for many helpful and productive
conversations regarding Shostak’s method. We would also like to thank Cesare
Tinelli and the anonymous referees who provided important corrections and valu-
able feedback. This work was partially supported by the National Science Foun-
dation Grant CCR-9806889, and the DARPA PCES program (DARPA /AirForce
contract number F33615-00-C-1693).

References

1.

10.

11.

12.

13.

14.

C. Barrett, D. Dill, and J. Levitt. Validity Checking for Combinations of Theories
with Equality. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer-
Aided Design, volume 1166 of Lecture Notes in Computer Science, pages 187-201.
Springer-Verlag, 1996.

. C. Barrett, D. Dill, and A. Stump. A Framework for Cooperating Decision Proce-

dures. In 17th International Conference on Automated Deduction, Lecture Notes
in Computer Science. Springer-Verlag, 2000.

Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations
of First-Order Theories. PhD thesis, Stanford University, 2002.

Nikolaj S. Bjgrner. Integrating Decision Procedures for Temporal Verification. PhD
thesis, Stanford University, 1999.

D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s Decision Procedure for Com-
binations of Theories. In M. McRobbie and J. Slaney, editors, 13th International
Conference on Computer Aided Deduction, volume 1104 of Lecture Notes in Com-
puter Science, pages 463—-477. Springer-Verlag, 1996.

Z. Manna et al. STeP: Deductive-Algorithmic Verification of Reactive and Real-
time Systems. In 8th International Conference on Computer-Aided Verification,
volume 1102 of Lecture Notes in Computer Science, pages 415—418. Springer-
Verlag, 1996.

Jeremy R. Levitt. Formal Verification Techniques for Digital Systems. PhD thesis,
Stanford University, 1999.

G. Nelson and D. Oppen. Simplification by Cooperating Decision Procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245-57, 1979.
Derek C. Oppen. Complexity, Convexity and Combinations of Theories. Theoretical
Computer Science, 12:291-302, 1980.

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In D. Kapur, editor, 11th International Conference on Automated Deduction, vol-
ume 607 of Lecture Notes in Artificial Intelligence, pages 748-752. Springer-Verlag,
1992.

H. Ruess and N. Shankar. Deconstructing Shostak. In 16th Annual IEEE Sympo-
stum on Logic in Computer Science, pages 19-28, June 2001.

Robert E. Shostak. Deciding Combinations of Theories. Journal of the Association
for Computing Machinery, 31(1):1-12, 1984.

C. Tinelli and M. Harandi. A New Correctness Proof of the Nelson-Oppen Combi-
nation Procedure. In F. Baader and K. Schulz, editors, 1st International Workshop
on Frontiers of Combining Systems (FroCoS’96), volume 3 of Applied Logic Series.
Kluwer Academic Publishers, 1996.

Ashish Tiwari. Decision Procedures in Automated Deduction. PhD thesis; State
University of New York at Stony Brook, 2000.

