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Abstract. We describe a tool called TVOC, that uses the translation
validation approach to check the validity of compiler optimizations: for
a given source program, TVOC proves the equivalence of the source code
and the target code produced by running the compiler. There are two
phases to the verification process: the first phase verifies loop transforma-
tions using the proof rule PERMUTE; the second phase verifies structure-
preserving optimizations using the proof rule VALIDATE. Verification con-
ditions are validated using the automatic theorem prover CVC Lite.

1 Introduction

Verifying the correctness of modern optimizing compilers is challenging because
of their size, complexity, and evolution over time. Translation Validation [8] is
a novel approach that offers an alternative to the verification of translators in
general and of compilers in particular. Rather than verifying the compiler itself,
one constructs a wvalidating tool that, after every run of the compiler, formally
confirms that the target code produced is a correct translation of the source
program. A number of tools and techniques have been developed for compiler
validation based on translation validation[7,8,10]. In this paper, we introduce
TVOC, a tool for translation validation for compilers.

2 System Architecture

Fig. 1 shows the overall design of TVOC. TVOC accepts as input a source program
S and target program T, both in the WHIRL intermediate representation, a
format used by Intel’s Open Research Compiler (ORC) [9] among others. Just
as compilers perform optimizations in multiple passes, it is reasonable to break
the validation into multiple phases, each using a different proof rule and focusing
on a different set of optimizations. Currently, TVOC uses two phases to validate
optimizations performed by the compiler. Below, we explain these two phases in
more detail. Fig. 2 shows a program called TEST that we will use as a running
example. The transformation in question is loop fusion plus the addition of an
extra branch condition before the loop.
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Fig. 1. The architecture of TVOC.

3 Phase 1: Reordering Transformations

In phase 1, TVOC focuses on reordering transformations. These are transforma-
tions which simply permute the order in which statements are executed, without
adding or removing any statements. Examples of reordering transformations in-
clude loop interchange, loop fusion and distribution, and tiling [2]. Reordering
transformations are validated using the proof rule PERMUTE, which, given a bijec-
tive function defining the permutation, produces a set of verification conditions
which ensure the correctness of the transformation. Essentially, the verification
conditions specify that every pair of statements whose order is exchanged by
the permutation have the same result regardless of the order in which they are
executed.

if N>0{
doi=0to N doi=0to N { doi=0toN {
A[l] = 0; A[l] = 0; A[i] — 0;
Bli] = 1; B[i] = 1;
doi=0to N } }
B[i] = 1; }

Fig.2. S, S" and T for Program TEST

TVOC automatically determines the loop transformations by comparing the
number and structure of loops in the source and target. This approach is de-
scribed in [5,6] and works quite well in practice. Note that if TVOC guesses
wrong, this can only lead to false negatives, never to false positives. The valida-
tion performed is always sound. For program TEST, if ¢; is a loop index variable
for the first loop and i» is a loop index variable for the second loop, the permu-
tation function reorders two statements exactly when i, < i;. The verification
condition can thus be expressed as follows, where ~ denotes program equiva-
lence: (ZZ < Zl) — A[ll] = 0; B[Zz] =1~ B[lz] =1 A[ll] = 0. The vahdlty
of this verification condition can be checked automatically by CVC Lite [3].

Phase 1 also detects transformations such as skewing, peeling and alignment.
Even though these do not actually reorder the statements, they do change the
structure of the loops and so it is necessary to handle these transformations
before moving on to phase 2, which assumes that S’ and T have the same loop
structure.



4 Phase 2: Structure-Preserving Transformations

Phase 2 handles so-called structure-preserving transformations by applying rule
VALIDATE. This rule is quite versatile and can handle a wide variety of stan-
dard optimizations and transformations [1], including the insertion or deletion
of statements. The main requirement is that the loop structure be the same in
the source and target programs.

Two important mappings are required to apply rule VALIDATE, a control
mapping and a data mapping. The control mapping is formed by finding a corre-
spondance between a subset of locations in the target 7" and a subset of locations
in the source S’. These locations are called cut-points. The sets of cut-points must
include the initial and final locations in S" and T" and at least one location from
every loop. The other required mapping is the data mapping. Some of the source
variables are identified as observable. These are the variables whose values must
be preserved in order for a transformation to be correct. The data mapping gives
a value for each observable source variable in terms of expressions over target
variables. TVOC generates the control and data mappings automatically.

Fig. 3 shows program TEST annotated with cut-points. Assuming A and B
are the observable variables, the data mapping simply maps A to a and B to b.

epo: ifn>0{

CPy: doI=0toN { doi=0ton {
Chr: A[I] = 0 cpr a[i] = 0;
B[I] = 1; b[i] = 1;
} }
CPh; : }
Ccp2

Fig. 3. Cut-points for program TEST

Validation of the source against the target is done by checking that the data
mapping is preserved along every target path between a pair of cut-points. The
overall correctness follows by induction [4,10]. Initially, TVOC tries to show that
all variables correspond at all program locations. When it finds that the data
mapping is not preserved for a given variable at some cut-point, that variable is
removed from the data mapping at that location. As long as all of the observable
variables are still in the data mapping at the final cut-point, the validation
succeeds.

For the example, in Fig. 3, there are four possible target paths: 0 — 1,0 — 2,
1 — 1 and 1 — 2. Therefore, four verification conditions must be checked by CVC
Lite. Each verification condition checks that if the data mapping holds, and the
corresponding source and target transitions are taken, then the data mapping
still holds. Transitions are modeled using logical equations with primed variables
denoting the values of variables after the transition. The verification condition
for the transition from 1 to 1 is shown below:



A=a N B=bA
a' = write(a,i,0) ANV =write(b,i, 1) Ni' =i+ 1Ai+1<nAn =nA
A" =write(A,1,0) A B' =write(B, [, ))ANI' =I+1ANT+1<NAN' =N
_)
A'=d N B'=V.

In the general case, the data mapping may not be inductive, so additional
invariants may be needed to establish that it holds. TVOC calculates a simple
invariant for each cut-point based on data flow analysis. These invariants are
often sufficient to establish the induction. Another complication is that because
of branching, there may be multiple paths between two cut-points. In this case,
TVOC uses the disjunction of the path transition relations. This allows TVOC
for example to correctly identify a transformation in which multiple source paths
are merged into a single target path.

5 Conclusions and Future Work

At this point, TVOC still has some limitations: there are some optimizations and
language features that cannot yet be validated. For instance, we are still in the
process of adding support for procedures and pointers.

Although TVOC has primarily been used as a research prototype and experi-
mental platform for theoretical work, we are hoping it will be of use and interest
to a broader community. In addition, we hope to receive feedback and sugges-
tions for further improvement. We are thus making it freely available together
with basic examples and documentation at http://www.cs.nyu.edu/acsys/tv/.
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