
TVOC: A Translation Validator for OptimizingCompilersClark Barrett1 Yi Fang1 Benjamin Goldberg1 Ying Hu1 Amir Pnueli1Lenore Zu
k21New York University, barrett|yifang|goldberg|yinghu|amir�
s.nyu.edu2University of Illinois, Chi
ago, lenore�
s.ui
.edu

 Springer-VerlagAbstra
t. We des
ribe a tool
alled TVOC, that uses the translationvalidation approa
h to
he
k the validity of
ompiler optimizations: fora given sour
e program, TVOC proves the equivalen
e of the sour
e
odeand the target
ode produ
ed by running the
ompiler. There are twophases to the veri�
ation pro
ess: the �rst phase veri�es loop transforma-tions using the proof rule permute; the se
ond phase veri�es stru
ture-preserving optimizations using the proof rule Validate. Veri�
ation
on-ditions are validated using the automati
 theorem prover CVC Lite.1 Introdu
tionVerifying the
orre
tness of modern optimizing
ompilers is
hallenging be
auseof their size,
omplexity, and evolution over time. Translation Validation [8℄ isa novel approa
h that o�ers an alternative to the veri�
ation of translators ingeneral and of
ompilers in parti
ular. Rather than verifying the
ompiler itself,one
onstru
ts a validating tool that, after every run of the
ompiler, formally
on�rms that the target
ode produ
ed is a
orre
t translation of the sour
eprogram. A number of tools and te
hniques have been developed for
ompilervalidation based on translation validation[7,8,10℄. In this paper, we introdu
eTVOC, a tool for translation validation for
ompilers.2 System Ar
hite
tureFig. 1 shows the overall design of TVOC. TVOC a

epts as input a sour
e programS and target program T , both in the WHIRL intermediate representation, aformat used by Intel's Open Resear
h Compiler (ORC) [9℄ among others. Justas
ompilers perform optimizations in multiple passes, it is reasonable to breakthe validation into multiple phases, ea
h using a di�erent proof rule and fo
usingon a di�erent set of optimizations. Currently, TVOC uses two phases to validateoptimizations performed by the
ompiler. Below, we explain these two phases inmore detail. Fig. 2 shows a program
alled TEST that we will use as a runningexample. The transformation in question is loop fusion plus the addition of anextra bran
h
ondition before the loop.

Phase 1
S’

Phase 2TVOC
Valid
Invalid

CompilerSource S Target T

Verification Conditionsyes/no yes/no

Source program

CVC LiteFig. 1. The ar
hite
ture of TVOC.3 Phase 1: Reordering TransformationsIn phase 1, TVOC fo
uses on reordering transformations. These are transforma-tions whi
h simply permute the order in whi
h statements are exe
uted, withoutadding or removing any statements. Examples of reordering transformations in-
lude loop inter
hange, loop fusion and distribution, and tiling [2℄. Reorderingtransformations are validated using the proof rule permute, whi
h, given a bije
-tive fun
tion de�ning the permutation, produ
es a set of veri�
ation
onditionswhi
h ensure the
orre
tness of the transformation. Essentially, the veri�
ation
onditions spe
ify that every pair of statements whose order is ex
hanged bythe permutation have the same result regardless of the order in whi
h they areexe
uted.do i = 0 to NA[i℄ = 0;do i = 0 to NB[i℄ = 1; do i = 0 to N fA[i℄ = 0;B[i℄ = 1;g if N � 0 fdo i = 0 to N fA[i℄ = 0;B[i℄ = 1;ggFig. 2. S, S0 and T for Program TESTTVOC automati
ally determines the loop transformations by
omparing thenumber and stru
ture of loops in the sour
e and target. This approa
h is de-s
ribed in [5,6℄ and works quite well in pra
ti
e. Note that if TVOC guesseswrong, this
an only lead to false negatives, never to false positives. The valida-tion performed is always sound. For program TEST, if i1 is a loop index variablefor the �rst loop and i2 is a loop index variable for the se
ond loop, the permu-tation fun
tion reorders two statements exa
tly when i2 < i1. The veri�
ation
ondition
an thus be expressed as follows, where � denotes program equiva-len
e: (i2 < i1) �! A[i1℄ = 0; B[i2℄ = 1 � B[i2℄ = 1; A[i1℄ = 0. The validityof this veri�
ation
ondition
an be
he
ked automati
ally by CVC Lite [3℄.Phase 1 also dete
ts transformations su
h as skewing, peeling and alignment.Even though these do not a
tually reorder the statements, they do
hange thestru
ture of the loops and so it is ne
essary to handle these transformationsbefore moving on to phase 2, whi
h assumes that S0 and T have the same loopstru
ture.

4 Phase 2: Stru
ture-Preserving TransformationsPhase 2 handles so-
alled stru
ture-preserving transformations by applying ruleValidate. This rule is quite versatile and
an handle a wide variety of stan-dard optimizations and transformations [1℄, in
luding the insertion or deletionof statements. The main requirement is that the loop stru
ture be the same inthe sour
e and target programs.Two important mappings are required to apply rule Validate, a
ontrolmapping and a data mapping. The
ontrol mapping is formed by �nding a
orre-spondan
e between a subset of lo
ations in the target T and a subset of lo
ationsin the sour
e S0. These lo
ations are
alled
ut-points. The sets of
ut-points mustin
lude the initial and �nal lo
ations in S0 and T and at least one lo
ation fromevery loop. The other required mapping is the data mapping. Some of the sour
evariables are identi�ed as observable. These are the variables whose values mustbe preserved in order for a transformation to be
orre
t. The data mapping givesa value for ea
h observable sour
e variable in terms of expressions over targetvariables. TVOC generates the
ontrol and data mappings automati
ally.Fig. 3 shows program TEST annotated with
ut-points. Assuming A and Bare the observable variables, the data mapping simply maps A to a and B to b.CP0 : do I = 0 to N fCP1 : A[I℄ = 0;B[I℄ = 1;gCP2 :
p0 : if n � 0 fdo i = 0 to n f
p1 : a[i℄ = 0;b[i℄ = 1;gg
p2 :Fig. 3. Cut-points for program TESTValidation of the sour
e against the target is done by
he
king that the datamapping is preserved along every target path between a pair of
ut-points. Theoverall
orre
tness follows by indu
tion [4,10℄. Initially, TVOC tries to show thatall variables
orrespond at all program lo
ations. When it �nds that the datamapping is not preserved for a given variable at some
ut-point, that variable isremoved from the data mapping at that lo
ation. As long as all of the observablevariables are still in the data mapping at the �nal
ut-point, the validationsu

eeds.For the example, in Fig. 3, there are four possible target paths: 0! 1, 0! 2,1! 1 and 1! 2. Therefore, four veri�
ation
onditions must be
he
ked by CVCLite. Ea
h veri�
ation
ondition
he
ks that if the data mapping holds, and the
orresponding sour
e and target transitions are taken, then the data mappingstill holds. Transitions are modeled using logi
al equations with primed variablesdenoting the values of variables after the transition. The veri�
ation
onditionfor the transition from 1 to 1 is shown below:

A = a ^ B = b ^a0 = write(a; i; 0) ^ b0 = write(b; i; 1) ^ i0 = i+ 1 ^ i+ 1 � n ^ n0 = n^A0 = write(A; I; 0) ^B0 = write(B; I; 1) ^ I 0 = I + 1 ^ I + 1 � N ^N 0 = N!A0 = a0 ^ B0 = b0:In the general
ase, the data mapping may not be indu
tive, so additionalinvariants may be needed to establish that it holds. TVOC
al
ulates a simpleinvariant for ea
h
ut-point based on data
ow analysis. These invariants areoften suÆ
ient to establish the indu
tion. Another
ompli
ation is that be
auseof bran
hing, there may be multiple paths between two
ut-points. In this
ase,TVOC uses the disjun
tion of the path transition relations. This allows TVOCfor example to
orre
tly identify a transformation in whi
h multiple sour
e pathsare merged into a single target path.5 Con
lusions and Future WorkAt this point, TVOC still has some limitations: there are some optimizations andlanguage features that
annot yet be validated. For instan
e, we are still in thepro
ess of adding support for pro
edures and pointers.Although TVOC has primarily been used as a resear
h prototype and experi-mental platform for theoreti
al work, we are hoping it will be of use and interestto a broader
ommunity. In addition, we hope to re
eive feedba
k and sugges-tions for further improvement. We are thus making it freely available togetherwith basi
 examples and do
umentation at http://www.
s.nyu.edu/a
sys/tv/.Referen
es1. A. Aho, R. Sethi, and J. Ullman. Compilers Prin
iples, Te
hniques, and Tools.Addison Wesley, 1988.2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Ar
hite
tures. MorganKaufmann, 2002.3. C. Barrett and S. Berezin. CVC Lite: A new implementation of the
ooperatingvalidity
he
ker. In CAV, July 2004.4. R. Floyd. Assigning meanings to programs. In Symposia in Applied Mathemati
s,volume 19:19{32, 1967.5. B. Goldberg, L. Zu
k, and C. Barrett. Into the loops: Pra
ti
al issues in translationvalidation for optimizing
ompilers. In COCV, Apr. 2004.6. Y. Hu, C. Barrett, B. Goldberg, and A. Pnueli. Validating more loop optimizations.In COCV, Apr. 2005.7. G. Ne
ula. Translation validation of an optimizing
ompiler. In PLDI, 2000.8. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS'98,pages 151{166, 1998.9. S. C. R.D.-C. Ju and C. Wu. Open resear
h
ompiler (or
) for the itanium pro
essorfamily. In Mi
ro 34, 2001.10. L. Zu
k, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu. Translation andrun-time validation of loop transformations. FMSD, 2005.

