Electronic Notes in Theoretical Computer Science 89 No. 2 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume89.html| 19 pages

Run-Time Validation of Speculative
Optimizations using CVC. !

Clark Barrett Benjamin Goldberg Lenore Zuck

Department of Computer Science
New York University
Email:{ barrett, goldberg, zuck}@cs.nyu.edu

Abstract

Translation validation is an approach for validating the output of optimizing compil-
ers. Rather than verifying the compiler itself, translation validation mandates that
every run of the compiler generate a formal proof that the produced target code
is a correct implementation of the source code. Speculative loop optimizations are
aggressive optimizations which are only correct under certain conditions which can-
not be validated at compile time. We propose using an automatic theorem prover
together with the translation validation framework to automatically generate run-
time tests for such speculative optimizations. This run-time validation approach
must not only detect the conditions under which an optimization generates incor-
rect code, but also provide a way to recover from the optimization without aborting
the program or producing an incorrect result. In this paper, we apply the run-time
validation technique to a class of speculative reordering transformations and give
some initial results of run-time tests generated by the theorem prover CVC.

1 Introduction

There is a growing awareness, both in industry and academia, of the crucial
role of formally proving the correctness of safety-critical portions of systems.
Most verification methods focus on verification of specification with respect
to requirements, and high-level code with respect to specification. However,
if one is to prove that the high-level specification is correctly implemented in
low-level code, one needs to verify the compiler which performs the transla-
tions. Verifying the correctness of modern optimizing compilers is challenging
because of the complexity and reconfigurability of the target architectures,
as well as the sophisticated analysis and optimization algorithms used in the
compilers.

L This research was supported in by NSF grant CCR-0098299.
(©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume89.html

BARRETT, GOLDBERG, AND ZUCK

Formally verifying a full-fledged optimizing compiler, as one would verify
any other large program, is typically not feasible due to its size, its tendency
to evolve over time, and, possibly, proprietary considerations. Translation
validation is a novel approach that offers an alternative to the verification of
translators in general and of compilers in particular. Using the translation
validation approach, rather than verify the compiler itself one constructs a
validating tool which, after every run of the compiler, formally confirms that
the target code produced is a correct translation of the source program.

Prior work ([PSS98al) developed a tool for translation validation, CVT,
that succeeded in automatically verifying translations involving approximately
10,000 lines of source code in about 10 minutes. The success of CVT critically
depends on some simplifying assumptions that restrict the source and target
to programs with a single external loop, and assume a very limited set of
optimizations.

Our ultimate goal is to develop a methodology for the translation valida-
tion of advanced optimizing compilers. Our methods will handle an extensive
set of optimizations and can be used to implement fully automatic certifiers
for a wide range of compilers, ensuring an extremely high level of confidence in
the compiler. This will be particularly valuable in areas such as safety-critical
systems and compilation into silicon, where correctness is of paramount con-
cern. We also hope that as a result of this work, future compilers will know
how to incorporate appropriate additional outputs into the optimization mod-
ules which will facilitate validation. This will lead to a theory of construction
of self-certifying compilers.

Initial steps towards this goal are described in [ZPEGO03]. There, we de-
velop the theory of correct translation. We distinguish between structure
preserving optimizations, that admit a clear mapping of control points in the
target program to corresponding control points in the source program, and
structure modifying optimizations that admit no such mapping. Reordering
transformations comprise an important subclass of structure modifying opti-
mizations. Reordering transformations change the order of execution of state-
ments, without altering, deleting, or adding to them. Typical optimizations
belonging to this class are loop interchange, loop tiling, and loop fusion.

In some cases, it is impossible to determine at compilation time whether
a desired optimization is legal. This is usually because of limited capability
to check effectively that syntactically different index expressions refer to the
same array location. One possible remedy to this situation is to perform the
optimization anyway, adding a run-time check which can determine whether
the optimization is safe. If the run-time check fails, the code transfers control
to an unoptimized version of the code which completes the computation in a
manner which may be slower but is guaranteed to be correct.

In this paper, we focus on leveraging our general theory of correct trans-
lation to automatically derive appropriate run-time checks for speculative re-
ordering transformations.

BARRETT, GOLDBERG, AND ZUCK

The paper is organized as follows. Following a survey of related work,
Section Pl contains an overview of the theory of translation validation. Then, in
Section Bl, we discuss reordering transformations. We introduce a permutation
rule permuTE-2 for loop fusion and distribution, transformations which are not
covered by a similar rule introduced in [ZPFGO03JZPGF03]. In Section H, we
discuss the theorem prover CVC [SBD02], and show how it can be used to
verify instances of the permutation rules. Finally, in Section Bl we describe
and give examples of how CVC can be used to automatically derive run-time
tests for speculative reordering optimizations.

1.1 Related Work

The work here is an extension of the work in [ZPFGO3JZPGT03]. The work
in [NecO0] covers some important aspects of our work. For one, it extends
the source programs considered from single-loop programs to programs with
arbitrarily nested loop structure. An additional important feature is that
the method requires no compiler instrumentation at all, and applies various
heuristics to recover and identify the optimizations performed and the associ-
ated refinement mappings. The main limitation apparent in [NecO0] is that,
as is implied by the single proof method described in the report, it can only
be applied to structure-preserving optimizations. In contrast, our work can
also be applied to structure-modifying optimizations, such as the ones asso-
ciated with aggressive loop optimizations, which are a major component of
optimizations for modern architectures.

Another related work is [RM0O0] which proposes a comparable approach
to translation validation, where an important contribution is the ability to
handle pointers in the source program. However, the method proposed there
assumes full instrumentation of the compiler, which is not assumed here or in
[NecOn).

There is a very large body of literature in the area of optimization and
parallelization of loops. For extensive treatments of the subject, see the books
by Allen and Kennedy [AK02] and by Wolfe [Wol96]. Most of the litera-
ture, including that surveyed by these books, involves approaches for defining
notions of dependence, describing optimizations that can be performed once
dependence analysis has been performed, and devising compile-time tests to
solve the (typically linear) diophantine equations and inequalities that arise
when performing dependence analysis in the presence of arrays. These tests
include, among others, the GCD test, the Banerjee test [Ban8§|, the Omega
test [Pug92], and various other integer programming techniques such as sim-
plex (see [Fea96] for a description of some of these techniques).

There is also a much smaller body of work on speculative loop optimiza-
tions, where a run-time test is generated when the compiler cannot determine
if an optimization is safe. Much of this literature concentrates on issues of

parallization. Examples of this work include [GNI8JRPI4RPI5). In general,
3

BARRETT, GOLDBERG, AND ZUCK

papers published in these areas are directed at generating run-time tests to
support specific parallization and optimization techniques.

The work we describe in this paper differs from the literature cited above
in the following ways:

(i) Rather than developing techniques for generating run-time tests for spe-
cific loop optimizations, our run-time tests are automatically generated
by a theorem-provier using a general framework (i.e. the permutation
rule) for compiler validation. A new loop optimization can be added to a
compiler by a compiler writer and, if he or she specifies the permutation
that the optimization performs, validation and run-time tests could be
automatically generated for the new optimization.

(ii) CVC, the tool we use to prove the verification conditions that we generate
as part of the validation process, and the tool that generates the run-
time tests for speculative optimization, is a general-purpose automatic
theorem prover that has been used successfully in a number of verification
contexts. We are currently extending CVC to handle diophatine (i.e.
integer) equations in order to improve its effectiveness for validating loop
optimizations, but the focus of this work is not to improve the exisiting
technology (Omega test, simplex, etc.) for integer programming. Rather,
our interest lies in the integration of the compile-time validation process
and the generation of run-time tests to support speculative optimizations
via the support of a general-purpose theorem prover.

2 Translation Validation of Optimizing Compilers

We outline the general strategy for validation of optimizing compilers and
describe the theory of validation of structure preserving optimizations. A
more detailed description is in [ZPFGO3].

The compiler receives a source program written in some high-level lan-
guage, translates it into an Intermediate Representation (IR), and then applies
a series of optimizations to the program — starting with classical architecture-
independent global optimizations, and then architecture-dependent ones such
as register allocation and instruction scheduling. Typically, these optimiza-
tions are performed in several passes (up to 15 in some compilers), where each
pass applies a certain type of optimization.

The intermediate representation consists of a set of basic blocks. Each
basic block is a sequence of statements that contain no branches. The control
structure can be represented by a flow graph, a graph representation in which
each node represents a basic block, and the edges represent possible flows of
control from one basic block to another.

4

BARRETT, GOLDBERG, AND ZUCK

2.1 Transition Systems

In order to present the formal semantics of source and intermediate code
we introduce transition systems, TS’s, a variant of the transition systems of
[PSS98b]. A Transition System S = (V,O,0, p) is a state machine consisting
of:

V' a set of state variables,
* O CV aset of observable variables,
* O an initial condition characterizing the initial states of the system, and

* p a transition relation, relating a state to its possible successors.

The variables are typed, and a state of a TS is a type-consistent interpretation
of the variables. For a state s and a variable z € V| we denote by s[z] the value
that s assigns to . The transition relation refers to both unprimed and primed
versions of the variables, where the primed versions refer to the values of the
variables in the successor states, while unprimed versions of variables refer to
their value in the pre-transition state. Thus, e.g., the transition relation may
include “y’ = y+1” to denote that the value of the variable y in the successor
state is greater by one than its value in the old (pre-transition) state.

The observable variables are the variables we care about, where we treat
each 1/O device as a variable, and each I/O operation removes/appends el-
ements to the corresponding variable. If desired, we can also include among
the observables the history of external procedure calls for a selected set of pro-
cedures. When comparing two systems, we will require that the observable
variables in the two systems match.

A computation of a TS is a maximal finite or infinite sequence of states
0 Sp,S1,... ,Starting with a state that satisfies the initial condition such that
every two consecutive states are related by the transition relation.

A transition system 7T is called deterministic if the observable part of the
initial condition uniquely determines the rest of the computation. We restrict
our attention to deterministic transition systems and the programs which gen-
erate such systems. Thus, to simplify the presentation, we do not consider here
programs whose behavior may depend on additional inputs which the program
reads throughout the computation. It is straightforward to extend the theory
and methods to such intermediate input-driven programs.

Let P, = (V,,0,,0,,p,) and P, = (V,,0,,0,,p,) be two TS’s, to
which we refer as the source and target TS’s, respectively. Two such systems
are called comparable if there exists a one-to-one correspondence between the
observables of P, and those of P,. To simplify the notation, we denote by
X € O, and z € O, the corresponding observables in the two systems. A
source state s is defined to be compatible with the target state ¢, if s and ¢
agree on their observable parts. That is, s[X| = t[z] for every x € O,. We
say that P, is a correct translation (refinement) of P, if they are comparable

S
and, for every o, : ty,t;,... a computation of P, and every o : sg,s1,... a

5

BARRETT, GOLDBERG, AND ZUCK

computation of P, such that sq is compatible with %y, then o, is terminating
(finite) iff o is and, in the case of termination, their final states are compatible.

Suppose P, and P, are comparable TSs. In order to establish that P, is a
correct translation of P, for the cases that the structure of P, does not radi-
cally differ from the structure of P, we designed a proof rule, VaLiate, which
is inspired by the computational induction approach ([EIo67]), originally in-
troduced for proving properties of a single program. Rule VavipaTe provides a
proof methodology by which one can prove that one program refines another.
This is achieved by establishing a control mapping from target to source loca-
tions, a data abstraction mapping from source to target variables, and proving
that these abstractions are maintained along basic execution paths of the tar-
get program. The proof rule, its soundness, and examples of its applications
appear in [ZPFG03,ZPGT03)|.

3 Validating Loop Reordering Transformations

A reordering transformation is a program transformation that merely changes
the order of execution of the code, without adding or deleting any executions
of any statement [AK02]. Reordering transformations cover many of the loop
transformations, including fusion, distribution, interchange, tiling, unrolling,
and reordering of statements within a loop body.

Because loop transformations are not structure preserving, they cannot be
verified directly using rule Varmarte. In this section we review the reordering
loop transformations, and describe some proof rules to validate these trans-
formations.

3.1 Overview of Reordering Loop Transformations

Consider a loop of the form described in Fig. [l

for il = L1 to Hl do

for i,, = L,, to H,, do

B(iy,. .. ,im)

Fig. 1. A General Loop

Equivalently, we can write such a loop in the form for 2 € Z by <, do B(¢)
where ¢ = (41, ..., 1,,) is the list of nested loop indices, and Z is the set of the
values assumed by ¢ through the different iterations of the loop. The set 7
can be characterized by a set of linear inequalities. For example, for the loop

6

BARRETT, GOLDBERG, AND ZUCK
of Fig. Ml Z is
T = {(h, o sim) | Li<in <H AN oo AN Ly <ipy < Hp}

The relation <, is the ordering by which the various points of Z are traversed.
For example, for the loop of Fig. [l this ordering is the lexicographic order on
7.

In general, a loop transformation has the following form:
foricZ by <, doB(i) =— for jc J by <, do B(F(3)) (1)

In such a transformation, we may possibly change the domain of the loop
indices from Z to J, the names of loop indices from 2z to 7, and possibly
introduce an additional linear transformation in the loop’s body, changing
it from the source B(2) to the target body B(F'(J)). An example of such a
transformation is loop reversal which can be described as

fori=1to N doB(i) == for j=N to 1 do B(j)

For this example, Z = J = [1..N], the transformation F' is the identity, and
the two orders are given by i1 <, 1o < 1, < iy and j; <, jo <— J1 > Jo,
respectively.

Since we expect the source and target programs to execute the same in-
stances of the loop’s body (possibly in a different order), we should guarantee
that the mapping F' : J — T is a bijection from J to Z, i.e. a 1-1 onto map-
ping. Often, this guarantee can be ensured by displaying the inverse mapping
F~' : T — J, which for every value of ¢ € T provides a unique value of
Fl(i) e J.

Some common examples of transformations which fall into the class con-
sidered here are presented in Fig. @ and Fig. Bl For each transformation, we
describe the source loop, target loop, set of loop control variables for source
(Z) and target (J), their ordering (<, and <), and the bijection F': J +— Z.
For tiling we assume that ¢ divides m and d divides n.

There are two requirements we wish to establish in order to justify the
transformation described in ().

(i) The mapping F' is a bijection from J onto Z. That is, F' establishes a
1-1 correspondence between elements of J and the elements of Z.

(ii) For every 4¢; <, %y such that F~'(iy) <, F~'(4;), we require that
B(%1);B(2¢2) ~ B(%3);B(¢1). This requirement is based on the observa-
tion that in the source computation, B(%;) is executed before B(2,) while
the corresponding B(%;) is executed after B(is) in the target computa-
tion. The overall result is the same only if these permutation relations
hold between pairs of iterations whose order of execution is reversed in
the translation from source to target.

7

BARRETT, GOLDBERG, AND ZUCK

Interchange Skewing
for iy =1,m do for iy =1,m do
Source for ix = 1,n do for i» = 1,n do
B(i1,42) B(i1,42)
for ji1 =1,n do for j1 =1,m do
Target for jo =1,m do for j2=3ji1+1,j1+n do
B(j2,71) B(j2,J1 — j2)
z {1,...,m} x{1,...,n} {1,...,m} x{1,...,n}

{(1,32) : 1< <m A

J {1,...,n} x{1,...,m}
1+1<352 <j1+n}

i<, i <Jpx @' i <|px @'

j<] 3’ j<1exj’ j<1exj’
F(3) (J2,J1) (Jr,J2 — jr)
F~1(4) (42,11) (41,91 + t2)

Fig. 2. Some Loop Transformations

Reversal Tiling

for iy = 1,m do
for i =1,n do
Source for iz = 1,n do
B(i1,i2)

for j1 =1,m by ¢

for jo=1,n by d

Target i for jz =ji1,ji+c—1
B(4) L
for J4:J2,_]2-|—d—1
B(j3,74)
T {1,...,n} {1,...,m} x{1,...,n}

{(j1,72,73,73) : 1 <j1 <mji =1modc A
1<j2<nj2=1modd A

J {1..n} _ _ .
J1<Jgs<ji+c A
J2 < ja < j2 +d}
t <1 i< i <lox &'
i=<,7 i>J J<lex 3’
F(j) J (4334)
F=1(3) i (el 222 + Ld| 27 | + 1,41, 40)

Fig. 3. Some Loop Transformations

Our main rule for dealing with loop transformation is Rule pERMUTE pre-
sented in Fig. @l The ~ relation between two programs denotes that the two
programs translate one another, i.e., that if each is run from an arbitrary state,

the resulting states will be equivalent.
8

BARRETT, GOLDBERG, AND ZUCK

RL.VieZ :3jeJ: i=F(j)

R2.Vj, #£j,€ J: F(3,) # F(3,)

R3. Viy, 42 € T iy <, G ANF (i) <, Fl() —
B(41);B(42) ~ B(42);B(%1)

foricZ by <, doB(i) ~ forjec J by <, do B(F(j))

Fig. 4. Permutation Rule PERMUTE for reordering transformations

3.2 A Permutation Rule for Loop Fusion and Loop Distribution

The permuTE rule given above, does not apply to loop transformations which
involve multiple loops that are not nested. Consider the following loop trans-
formation:

for 2 € Z by <, do

B, (4) for : € 7 by <, do
By (i)
By(i)

for : € 7 by <, do

By (i)

This transformation is known as loop fusion (the inverse operation is loop
distribution). Although rule pErmuTE does not apply, the transformation is still
a simple permutation of blocks of code. In particular, suppose Z = {1...N}.
Then loop fusion transforms the sequence

Bi(1); B1(2);. .5 B1(IV); B2(1); B2(2); .. .5 B2(NV)
to
B1(1); B2(1); B1(2); B2(2); . . .3 B1(IV); B2 (IV)

It is easy to see that this transformation preserves equivalence if By(7)
is interchangeable with B;(j) whenever ¢ < j. The rule for loop fusion is
formalized in rule pErmUTE-2, shown in Fig. Bl

Since loop distribution is just the inverse of loop fusion, the same rule can
be used to verify loop distribution simply by switching the source and the
target programs.

BARRETT, GOLDBERG, AND ZUCK

Vil,ig € IZ 7:1 _<I 7:2 — Bl(’Lg),BQ(Zl) ~ BQ(Zl),Bl(Zg)

for ¢ € Z by <, do By(¢)

for i € T by <. do By(i) for 1 € 7 by <, do By(2);By(%)

Fig. 5. Permutation Rule PERMUTE-2

4 Using CVC to Check Program Equivalence

The Cooperating Validity Checker (CVC) is an automatic theorem prover de-
veloped at Stanford University [SBID02]. It is able to check the validity of
quantifier-free formulas over a relatively rich set of general-purpose first-order
theories. It includes, for example, theories of arrays, linear arithmetic, ab-
stract data types, and uninterpreted functions.

As we will describe in this section, CVC can be used to verify that two
pieces of code are equivalent. It is easiest to understand with an example.
Suppose we have the following pieces of code:

Bi(7) : alt] :=ali] + 1;
By(i) s ali + 1) :=ali — 1] — 1;

Now suppose we wish to show that these two statements are interchange-
able, that is By(2);By(i) ~ Bo(i);B1(i). This can be done by using appropriate
variables to model the state of the program before and after each statement.
These variables are related using the appropriate transition relation for the
statement. To represent the result of By(i);By(i), we first declare three vari-
ables for each of 7 and a. We declare the variables for 7 to be of type REAL,
indicating that they are real numbers. The type for the a variables is ARRAY
REAL OF REAL indicating an array which consists of real numbers and may
be indexed by real numbers. (This is actually a convenient abstraction of the
actual array. The fact that it is infinite is not a problem since any given for-
mula can only talk about a finite number of array indices.) We then use the
CVC ASSERT command to say what the relationship between these variables
is. The CVC input which represents executing By (7); By(7) is as follows.

i0, i1, i2 : REAL;
a0, al, a2 : ARRAY REAL OF REAL;

ASSERT (a1l
ASSERT (a2

a0 WITH [i0] := aO[i0]+1) AND (il = i0);
al WITH [i1+1] := al[i1-1]-1) AND (i2 = il);

The same thing can be done to represent the result of By(7); B1(i). We use the
same initial variables but must declare two new variables for each of 7 and a

10

BARRETT, GOLDBERG, AND ZUCK

to represent the state after executing each of these statements. We can then
ask CVC using the QUERY command whether the result of these two executions
is the same. The remaining CVC input is as follows.

i3, i4 : REAL;
a3, a4 : ARRAY REAL OF REAL;

ASSERT (a3
ASSERT (a4

a0 WITH [i0+1] := a0[i0-1]-1) AND (i3 = i0);
a3 WITH [i3] := a3[i3]+1) AND (i4 = i3);

QUERY (i2 = i4 AND a2 = a4d);

When we submit this query to CVC, it responds with “Valid”, indicating that
interchanging the two statements does indeed produce equivalent results.

Although the approach just described is probably the most straightforward
encoding, in practice we use a variation of this encoding which is more con-
cise. First of all, we can use the same name for variables that don’t change
(such as 7). Second, CVC supports a LET construct which can be used to name
an intermediate expression for future reference. Finally, instead of querying
whether the two arrays are equal, we query whether reading from the arrays
at an arbitrary address gives the same result. Although equivalent, this tech-
nique allows CVC to give better information when the proof fails. Using these
techniques, we can write the same query as follows.

i : REAL;
a : ARRAY REAL OF REAL;
arb_addr : REAL;

QUERY

(LET al : ARRAY REAL OF REAL = a WITH [i]
al WITH [i+1] := ail[i-1]-1) [arb_addr]

(LET al : ARRAY REAL OF REAL = a WITH [i+1] := a[i-1]-1 IN
al WITH [i] := al[il+1) [arb_addr];

ali]l+1 IN

Not only is this encoding more concise, it is also typically easier for CVC to
prove, primarily because there are fewer variables in the formula.

If a CVC query is not valid, CVC reports “Invalid”. When this occurs, the
CVC WHERE command gives a set of assumptions under which the formula is
not valid. For example, suppose we replace By(7) with the statement af[i+1] :=
a[i] — 1. The CVC query becomes

i : REAL;
a : ARRAY REAL OF REAL;
arb_addr : REAL;

QUERY
(LET al : ARRAY REAL OF REAL = a WITH [i] := a[i]+1 IN

11

BARRETT, GOLDBERG, AND ZUCK

al WITH [i+1] := all[il-1)[arb_addr] =
(LET al : ARRAY REAL OF REAL = a WITH [i+1] := a[i]-1 IN
al WITH [i] := al1[il+1) [arb_addr];

The query is invalid as expected. The “WHERE” command returns the following
information:

i Active assumptions:
ASSERT ((1 + 1 * i + -1 * arb_addr) = 0);

This indicates that in the case when the “arbitrary address” read from the
two arrays is equal to ¢ + 1, the two arrays may be different. This helps us
pinpoint the problem with interchanging the two statements: a[i + 1] may
have the incorrect value after executing the transformed code.

CVC has been designed for large and computationally demanding examples
and incorporates recent advances in SAT technology to improve its heuristics.
Thus, it is easily able to solve the verification conditions discussed in this
paper. CVC also has the ability to produce proofs so that results can be
confirmed by an independent proof-checker. This ability supports an ultimate
vision in which self-certifying compilers provide a proof which accompanies
optimized compiled code.

5 Run-time Validation of Speculative Optimizations

This section builds on the work described in [ZPGT03]. There, we gave an
overview of run-time validation of speculative loop optimizations, that is, using
run-time tests to ensure the correctness of loop optimizations when neither
the compiler nor a validation tool are able to. This technique is particularly
useful when memory aliasing, due to the use of pointers or arrays, inhibits the
static dependence analysis that loop optimizations rely on.

Run-time validation has not only the task of determining when an op-
timization has generated incorrect code, but also has the task of recovering
from the optimization without aborting the program or producing an incor-
rect result. It is possible in some instances to simply adjust the behavior of
the optimized code based on run-time tests, so that correctness is preserved
while also maintaining much of the performance benefit of the optimization.
In other instances, it is necessary to jump to an unoptimized version of the
code.

In [ZPGT03], we showed how run-time tests can enable certain specula-
tive versions of the optimizations discussed in Section Bl However, the run-
time tests presented there were constructed manually. We were interested
in whether we could use CVC to automatically derive and generate appropri-
ate run-time tests for speculative optimizations. This section presents initial
results from this effort.

12

BARRETT, GOLDBERG, AND ZUCK

5.1 Strategy

Suppose the compiler wishes to validate a particular loop optimization. As
described in Section Bl CVC can be used to check certain kinds of formulas
including those describing the equivalence of two blocks of code. In most
cases, the conditions listed in rules permuTE and pErMUTE-2 can be expressed
directly in the input language of CVC.

If CVC reports that the conditions are valid, then the loop optimization is
known to preserve the behavior of the program in all contexts. However, if
CVC reports that the conditions are not valid, it may still be the case that for
many common contexts and cases, the transformation is still valid.

Our strategy for speculative optimization is to use the counter-examples
produced by CVC to create run-time tests which guarantee that if the op-
timized code is used, the result will be correct. We begin by letting ¢ be
the (invalid) verification condition for the optimization we wish to perform
speculatively.

0. Let ¢ = 0.

1. Check A(y) — ¢ using CVC.

2. If the result is valid, exit.

3. Use the WHERE command to obtain a set 6 of assumptions under which the
formula ¢ is false.

4. Select a formula from 6, negate it, and add it to .

5. Goto 1.

When we are done with the loop, we have a set ¢ of conditions under which
the transformation is valid. As we will see, some additional work is required
to obtain a workable solution from the naive algorithm shown above.

5.2 Interchange Example

Consider the following loop interchange transformation:

for i =1 to M for j=1to N
for j=1toN for i =1to M
. = .
k =10 - j k=10 - j
Ali, jl = A[i-1, j-k] + C Ali, jl = A[i-1, j-k] + C

The benefits to this loop interchange are 1) the computation of k can be moved
out of the inner loop and 2) in a language with column-major arrays (such as
Fortran), the transformed loop has better locality.

For simplicity, we will only consider the reordering of the array operations,
since the correctness of the value of £ is trivial. We will use (i1, j;) and (42, j2)
as two pairs of loop indices. Then, using rule permuTE, our initial formula ¢
is:

(1, 51) <jex (2:J2) A (J2,02) <jpx (J1,91)) —
B(i1711)§B(i27j2) ~ B(i2;j2)§B(i17j1);
13

BARRETT, GOLDBERG, AND ZUCK

where B(i,j) is the statement A[i, j] = A[i-1, j-k] + C. The input for
CVC is:

i1, j1, i2, j2, k, C, arb_addr : REAL;
a : ARRAY REAL OF ARRAY REAL OF REAL;

QUERY
((i1 < i2 OR (it
(j2 < j1 OR (j2

i2 AND j1 < j2)) AND
j1 AND i2 < il1))) =>

((LET al : ARRAY REAL OF ARRAY REAL OF REAL =
a WITH [i1]1[j1] := ali1-11[j1-k]1+C IN
al WITH [i12]1[j2] := a1[i2-1][j2-k]+C) [arb_addr] =

(LET al : ARRAY REAL OF ARRAY REAL OF REAL =
a WITH [i2]1[j2] := ali2-11[j2-k]+C IN
al WITH [i1]1[j1] := a1[i1-1]1[j1-k]+C) [arb_addr]);

This query is invalid, as expected. According to the algorithm given above,
we next must select a formula from the counter-example generated by CVC.
Among the assumptions returned is the formula £ < 0. Assuming we are able
to automatically select this formula (we will discuss selection criteria below),
we negate it and add it as a hypothesis to the query. When we rerun the
query, CVC reports “Valid”.

Thus, we were able to determine automatically that =(k < 0) is sufficient
for the correctness of this loop. As described in [ZPGT03|, we can then use
this result to produce the following correct code. Note that in this example,
it is possible to spend part of the computation in the optimized loop, and the
rest in the unoptimized loop.

for j=1toN
k=10 - j
if (k < 0) goto escape_code
for i =1to M
Ali, jl = A[i-1, j-k]l + C

escape_code:

for ii =1 to M
for jj=3j toN
k=10 - jj
ATii, jjl = A[ii-1, jj-k]l + C

14

BARRETT, GOLDBERG, AND ZUCK

Selecting a Formula from the Counter-Example

The only difficult part about automatically generating the run-time test for
the example above is choosing a formula from the counter-example returned
from CVC.

In order to motivate the selection heuristics, observe that formulas which
only relate one of the ¢ variables to one of the j variables cannot contribute to a
run-time test. This is because they represent the loop variables at two different
points in time and thus cannot be captured by a test at a single point in time.
Similarly, some of the other formulas in the counter-example primarily involve
constructs which do not correspond to things that can actually be tested at
run-time. These include formulas about the introduced variable arb_addr or
internal CVC constructs. Finally, some formulas in the counter-example are
(positive) atomic formulas, and others are negated. The positive formulas
tend to express much more information than the negated formulas.

Our heuristic is to choose a positive formula which constrains at least one
of the testable variables in the formula, where a testable variable is something
other than the loop variables, arb_addr, and the internal CVC constructs. In
the example above, only A, k, and C are testable, and the only formula from
the counterexample which constrains one of these is the formula k& > 0.

5.3 Fusion Fxample

We now turn to a more sophisticated example. Suppose we have the following
procedure which copies N elements from the array pointed to by r to the array
pointed to by p.

copy(p, r, N)
begin
for i = 0 to N-1 do
*(p+i) = *(r+i)
end

Now suppose that somewhere in the program two calls are made to this pro-
cedure as follows.

copy(p, r, N);
copy(q, r, N);

A small procedure like copy is likely to be inlined. After inlining, we have the
following code.

for i = 0 to N-1 do
*(p+i) = *(r+i)

for i = 0 to N-1 do
*(q+i) = *(r+i)

15

BARRETT, GOLDBERG, AND ZUCK

This is a perfect candidate for loop fusion. The fused loop looks like this:

for i = 0 to N-1 do
*(pt+i) = *(r+i)
x(gq+i) = *(r+i)

This is a highly desirable optimization because it means that each value
in the array r only needs to be accessed once instead of twice. Given the
number of cycles required to access memory or even the cache (assuming the
value is still in the cache the second time), this optimization may result in a
significant increase in performance. Unfortunately, today’s compilers do not
make this optimization because of the danger that the arrays pointed to by
p, ¢, and r may overlap in some way. However, with an appropriate run-time
test, we can enable the optimized code.

In order to use CVC to derive the run-time test, we use one big array to
model all of memory. The pointers p, ¢, and r simply become indexes into
this array. Now, using rule permuTE-2, we obtain the following verification
condition.

1 < iy — Bl(lg),Bg(Zl) ~ Bg(il);Bl(ig),

where By (i) is *(p+1i) = *(r+i) and By(z) is *(q+i) = *(r+i). This verifi-
cation condition can be expressed in the input language of CVC as follows.

P> 9, r : REAL;
il, i2, arb_addr : REAL;
M : ARRAY REAL OF REAL;

QUERY
(i1 < i2) =>

((LET M1 : ARRAY REAL OF REAL =
M WITH [q+i1] := M[r+i1] IN
M1 WITH [p+i2] := Mi[r+i2]) [arb_addr] =

(LET M1 : ARRAY REAL OF REAL =
M WITH [p+i2] := M[r+i2] IN
M1 WITH [g+i1] := M1[r+i1]) [arb_addr]);

Running this query in CVC produces the following counter-example.

ASSERT ((0 + 1 * p + 1 * i2 + -1 * arb_addr) = 0);

ASSERT ((0 + 1 * g+ -1 xr + 1 *x il + -1 * i2) = 0);

ASSERT (0 + 1 * il + -1 % i2) < 0;

ASSERT (((0 + 1 *x r + 1 * i2 + -1 *x arb_addr) = 0) = FALSE);

ASSERT ((ML(O + 1 *x r + 1 % i2)] = M[(0 + 1 x r + 1 * i1)]) =
FALSE) ;

16

BARRETT, GOLDBERG, AND ZUCK

Only the first two assertions are positive formulas involving at least one
testable variable. However, since the first formula only has one testable vari-
able, it is not really expressing a constraint on that variable. Thus, we pick
the second formula which states ¢ — r = 15 — 4;. Although this formula in-
cludes the non-testable variables i; and i, we will be able to eliminate them
eventually (see below).

After adding the negation of the second assertion as a hypothesis, we get
another similar counter-example. Again, we choose the second formula which
this time is ¢ — p = i3 — 7;. Running the loop one more time yields another
counter-example and another assertion: r — p = 15 — i;. After adding this
hypothesis, the query is valid.

Thus, under the conditions ¢ —r # 1o — iy ANq—p F# io — i1 AT — P F# 19 — 11,
the transformation is valid. In order to derive a run-time test from this, notice
that we have bounds on ¢; and 45, so the value of 15 — 7; is always between
—N+1 and N —1 inclusive. In fact, because we are using the pERMUTE-2 rule,
we can also assume that 7; < 4o, so 19 — i1 must be between 1 and N — 1.
Thus, we can replace each instance of a # 19 — 43 with a < 0V a > N to get
our final run-time test:

(q—7r<0Vg—r>N)A(g=p<O0Vg—p>N)A(r—=p<0Vr—p>N).

After making this replacement, we can again run CVC to check that the
query is still valid under the run-time test condition. We must also add con-
ditions for the bounds on ¢; and i5: 0 <43 < N —-1land 0 <3 < N — 1.
As expected, CVC reports that the formula is valid. The final code with the
run-time test inserted is:

if ((g-r < 0 OR g-r > N) AND
(g-p < 0 OR g-p > N) AND
(r-p < 0 OR r-p > N)) begin
for i = 0 to N-1 do
*x(p+i) = *(r+i)
*(q+i) = *(r+i)
end
else begin
for i = 0 to N-1 do
*(pt+i) = *(r+i)
for i = 0 to N-1 do
x(gq+i) = *(r+i)

end

Except for small values of N, the transformed code almost certainly runs faster
than the original code.

17

BARRETT, GOLDBERG, AND ZUCK

6 Conclusion

In this paper, we began by reviewing the translation validation approach and
introducing a new permutaion rule for loop fusion and loop distribution. We
then showed how to use CVC to check the generated verification conditions.

For transformations that cannot be checked at compile-time, we propose
using CVC to help generate run-time tests. These tests check one or more con-
ditions which have been proven to guarantee the correctness of the optimized
code. If the tests fail, an unoptimized version of the code is run instead.

While the results of this paper are encouraging as a feasibility study in
automatically generating verification conditions, there is still much to be un-
derstood about the process. The examples given in Section Bl happen to work
with our heuristics, but there are other examples for which the current ap-
proach is inadequate. We hope that this will be the beginning of an effort to
use automatic methods such as those proposed here to generate run-time tests
for aggressive speculative compiler optimizations.

References

[AKO2] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer
Academic Publishers, 1988.

[Fea96] P. Feautrier. Automatic parallelization in the polytope model. In The
Data Parallel Programming Model, Lecture Notes in Computer Science
(LNCS), Vol. 1132, Springer-Verlag, 1996.

[Flo67] R.W. Floyd. Assigning meanings to programs. Proc. Symposia in
Applied Mathematics, 19:19-32, 1967.

[GN98] M. Gupta and R. Nim. Techniques for speculative run-time
parallelization. In Supercomputing’98. November 1998.

[NecOO] G. Necula. Translation validation of an optimizing compiler. In
Proceedings of the ACM SIGPLAN Conference on Principles of
Programming Languages Design and Implementation (PLDI) 2000,
pages 83-95, 2000.

[PSS98a] A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool
(CVT)- automatic verification of a compilation process. Software Tools
for Technology Transfer, 2(2):192-201, 1998.

[PSS98b] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
TACAS98, pages 151-166, 1998.

[Pug92] W. Pugh Eliminating false dependences using the omega test. In
Proceedings of the ACM SIGPLAN 1992 Conference on Programing
Language Design and Implementation (PLDI’92). July 1992.

18

BARRETT, GOLDBERG, AND ZUCK

[RP94] L. Rauchwerger and D. Padua. The privatizing doall test: a run-
time technique for doall loop identification and array privatization. In

Proceedings of the 1994 International Conference on Supercomputing,
July 1994.

[RP95] L. Rauchwerger and D. Padua. The LRPD test: speculative run-time
parallelization of loops with privatization and reductive parallelization.
In Proceedings of ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation. June 1995.

[RMO0O] M. Rinard and D. Marinov. Credible compilation with pointers. In
Proceedings of the Run-Time Result Verification Workshop, Trento, July
2000.

[SBD02] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: a cooperating
validity checker. In Proc. 14" Intl. Conference on Computer Aided
Verification (CAV’02), volume 2404 of Lect. Notes in Comp. Sci.
Springer-Verlag, pages 500-504, 2002.

[Wol96] M.E. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

[ZPFGO03] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjaming Goldberg. VOC:
a translation validator for optimizing compilers. To appear in Journal

of Universal Computer Science. Preliminary version in ENTCS, 65(2),
2002.

[ZPGT03] Lenore Zuck, Amir Pnueli, Benjaming Goldberg, Clark Barrett, Yi Fang,
and Ying Hu. Translation and run-time validation of optimized code.
To appear in Formal Methods in Systems Design. Preliminary version in
Third Workshop on Runtime Verification (RV), 2002.

19

	Introduction
	Related Work

	Translation Validation of Optimizing Compilers
	Transition Systems

	Validating Loop Reordering Transformations
	Overview of Reordering Loop Transformations
	A Permutation Rule for Loop Fusion and Loop Distribution

	Using CVC to Check Program Equivalence
	Run-time Validation of Speculative Optimizations
	Strategy
	Interchange Example
	Fusion Example

	Conclusion
	References

