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tTranslation validation is an approa
h for validating the output of optimizing 
ompil-ers. Rather than verifying the 
ompiler itself, translation validation mandates thatevery run of the 
ompiler generate a formal proof that the produ
ed target 
odeis a 
orre
t implementation of the sour
e 
ode. Spe
ulative loop optimizations areaggressive optimizations whi
h are only 
orre
t under 
ertain 
onditions whi
h 
an-not be validated at 
ompile time. We propose using an automati
 theorem provertogether with the translation validation framework to automati
ally generate run-time tests for su
h spe
ulative optimizations. This run-time validation approa
hmust not only dete
t the 
onditions under whi
h an optimization generates in
or-re
t 
ode, but also provide a way to re
over from the optimization without abortingthe program or produ
ing an in
orre
t result. In this paper, we apply the run-timevalidation te
hnique to a 
lass of spe
ulative reordering transformations and givesome initial results of run-time tests generated by the theorem prover CVC.1 Introdu
tionThere is a growing awareness, both in industry and a
ademia, of the 
ru
ialrole of formally proving the 
orre
tness of safety-
riti
al portions of systems.Most veri�
ation methods fo
us on veri�
ation of spe
i�
ation with respe
tto requirements, and high-level 
ode with respe
t to spe
i�
ation. However,if one is to prove that the high-level spe
i�
ation is 
orre
tly implemented inlow-level 
ode, one needs to verify the 
ompiler whi
h performs the transla-tions. Verifying the 
orre
tness of modern optimizing 
ompilers is 
hallengingbe
ause of the 
omplexity and re
on�gurability of the target ar
hite
tures,as well as the sophisti
ated analysis and optimization algorithms used in the
ompilers.1 This resear
h was supported in by NSF grant CCR-0098299.
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Barrett, Goldberg, and Zu
kFormally verifying a full-
edged optimizing 
ompiler, as one would verifyany other large program, is typi
ally not feasible due to its size, its tenden
yto evolve over time, and, possibly, proprietary 
onsiderations. Translationvalidation is a novel approa
h that o�ers an alternative to the veri�
ation oftranslators in general and of 
ompilers in parti
ular. Using the translationvalidation approa
h, rather than verify the 
ompiler itself one 
onstru
ts avalidating tool whi
h, after every run of the 
ompiler, formally 
on�rms thatthe target 
ode produ
ed is a 
orre
t translation of the sour
e program.Prior work ([PSS98a℄) developed a tool for translation validation, CVT,that su

eeded in automati
ally verifying translations involving approximately10,000 lines of sour
e 
ode in about 10 minutes. The su

ess of CVT 
riti
allydepends on some simplifying assumptions that restri
t the sour
e and targetto programs with a single external loop, and assume a very limited set ofoptimizations.Our ultimate goal is to develop a methodology for the translation valida-tion of advan
ed optimizing 
ompilers. Our methods will handle an extensiveset of optimizations and 
an be used to implement fully automati
 
erti�ersfor a wide range of 
ompilers, ensuring an extremely high level of 
on�den
e inthe 
ompiler. This will be parti
ularly valuable in areas su
h as safety-
riti
alsystems and 
ompilation into sili
on, where 
orre
tness is of paramount 
on-
ern. We also hope that as a result of this work, future 
ompilers will knowhow to in
orporate appropriate additional outputs into the optimization mod-ules whi
h will fa
ilitate validation. This will lead to a theory of 
onstru
tionof self-
ertifying 
ompilers.Initial steps towards this goal are des
ribed in [ZPFG03℄. There, we de-velop the theory of 
orre
t translation. We distinguish between stru
turepreserving optimizations, that admit a 
lear mapping of 
ontrol points in thetarget program to 
orresponding 
ontrol points in the sour
e program, andstru
ture modifying optimizations that admit no su
h mapping. Reorderingtransformations 
omprise an important sub
lass of stru
ture modifying opti-mizations. Reordering transformations 
hange the order of exe
ution of state-ments, without altering, deleting, or adding to them. Typi
al optimizationsbelonging to this 
lass are loop inter
hange, loop tiling, and loop fusion.In some 
ases, it is impossible to determine at 
ompilation time whethera desired optimization is legal. This is usually be
ause of limited 
apabilityto 
he
k e�e
tively that synta
ti
ally di�erent index expressions refer to thesame array lo
ation. One possible remedy to this situation is to perform theoptimization anyway, adding a run-time 
he
k whi
h 
an determine whetherthe optimization is safe. If the run-time 
he
k fails, the 
ode transfers 
ontrolto an unoptimized version of the 
ode whi
h 
ompletes the 
omputation in amanner whi
h may be slower but is guaranteed to be 
orre
t.In this paper, we fo
us on leveraging our general theory of 
orre
t trans-lation to automati
ally derive appropriate run-time 
he
ks for spe
ulative re-ordering transformations. 2



Barrett, Goldberg, and Zu
kThe paper is organized as follows. Following a survey of related work,Se
tion 2 
ontains an overview of the theory of translation validation. Then, inSe
tion 3, we dis
uss reordering transformations. We introdu
e a permutationrule permute-2 for loop fusion and distribution, transformations whi
h are not
overed by a similar rule introdu
ed in [ZPFG03,ZPG+03℄. In Se
tion 4, wedis
uss the theorem prover CVC [SBD02℄, and show how it 
an be used toverify instan
es of the permutation rules. Finally, in Se
tion 5, we des
ribeand give examples of how CVC 
an be used to automati
ally derive run-timetests for spe
ulative reordering optimizations.1.1 Related WorkThe work here is an extension of the work in [ZPFG03,ZPG+03℄. The workin [Ne
00℄ 
overs some important aspe
ts of our work. For one, it extendsthe sour
e programs 
onsidered from single-loop programs to programs witharbitrarily nested loop stru
ture. An additional important feature is thatthe method requires no 
ompiler instrumentation at all, and applies variousheuristi
s to re
over and identify the optimizations performed and the asso
i-ated re�nement mappings. The main limitation apparent in [Ne
00℄ is that,as is implied by the single proof method des
ribed in the report, it 
an onlybe applied to stru
ture-preserving optimizations. In 
ontrast, our work 
analso be applied to stru
ture-modifying optimizations, su
h as the ones asso-
iated with aggressive loop optimizations, whi
h are a major 
omponent ofoptimizations for modern ar
hite
tures.Another related work is [RM00℄ whi
h proposes a 
omparable approa
hto translation validation, where an important 
ontribution is the ability tohandle pointers in the sour
e program. However, the method proposed thereassumes full instrumentation of the 
ompiler, whi
h is not assumed here or in[Ne
00℄.There is a very large body of literature in the area of optimization andparallelization of loops. For extensive treatments of the subje
t, see the booksby Allen and Kennedy [AK02℄ and by Wolfe [Wol96℄. Most of the litera-ture, in
luding that surveyed by these books, involves approa
hes for de�ningnotions of dependen
e, des
ribing optimizations that 
an be performed on
edependen
e analysis has been performed, and devising 
ompile-time tests tosolve the (typi
ally linear) diophantine equations and inequalities that arisewhen performing dependen
e analysis in the presen
e of arrays. These testsin
lude, among others, the GCD test, the Banerjee test [Ban88℄, the Omegatest [Pug92℄, and various other integer programming te
hniques su
h as sim-plex (see [Fea96℄ for a des
ription of some of these te
hniques).There is also a mu
h smaller body of work on spe
ulative loop optimiza-tions, where a run-time test is generated when the 
ompiler 
annot determineif an optimization is safe. Mu
h of this literature 
on
entrates on issues ofparallization. Examples of this work in
lude [GN98,RP94,RP95℄. In general,3



Barrett, Goldberg, and Zu
kpapers published in these areas are dire
ted at generating run-time tests tosupport spe
i�
 parallization and optimization te
hniques.The work we des
ribe in this paper di�ers from the literature 
ited abovein the following ways:(i) Rather than developing te
hniques for generating run-time tests for spe-
i�
 loop optimizations, our run-time tests are automati
ally generatedby a theorem-provier using a general framework (i.e. the permutationrule) for 
ompiler validation. A new loop optimization 
an be added to a
ompiler by a 
ompiler writer and, if he or she spe
i�es the permutationthat the optimization performs, validation and run-time tests 
ould beautomati
ally generated for the new optimization.(ii) CVC, the tool we use to prove the veri�
ation 
onditions that we generateas part of the validation pro
ess, and the tool that generates the run-time tests for spe
ulative optimization, is a general-purpose automati
theorem prover that has been used su

essfully in a number of veri�
ation
ontexts. We are 
urrently extending CVC to handle diophatine (i.e.integer) equations in order to improve its e�e
tiveness for validating loopoptimizations, but the fo
us of this work is not to improve the exisitingte
hnology (Omega test, simplex, et
.) for integer programming. Rather,our interest lies in the integration of the 
ompile-time validation pro
essand the generation of run-time tests to support spe
ulative optimizationsvia the support of a general-purpose theorem prover.
2 Translation Validation of Optimizing CompilersWe outline the general strategy for validation of optimizing 
ompilers anddes
ribe the theory of validation of stru
ture preserving optimizations. Amore detailed des
ription is in [ZPFG03℄.The 
ompiler re
eives a sour
e program written in some high-level lan-guage, translates it into an Intermediate Representation (IR), and then appliesa series of optimizations to the program { starting with 
lassi
al ar
hite
ture-independent global optimizations, and then ar
hite
ture-dependent ones su
has register allo
ation and instru
tion s
heduling. Typi
ally, these optimiza-tions are performed in several passes (up to 15 in some 
ompilers), where ea
hpass applies a 
ertain type of optimization.The intermediate representation 
onsists of a set of basi
 blo
ks. Ea
hbasi
 blo
k is a sequen
e of statements that 
ontain no bran
hes. The 
ontrolstru
ture 
an be represented by a 
ow graph, a graph representation in whi
hea
h node represents a basi
 blo
k, and the edges represent possible 
ows of
ontrol from one basi
 blo
k to another.4



Barrett, Goldberg, and Zu
k2.1 Transition SystemsIn order to present the formal semanti
s of sour
e and intermediate 
odewe introdu
e transition systems, TS's, a variant of the transition systems of[PSS98b℄. A Transition System S = hV;O;�; �i is a state ma
hine 
onsistingof:� V a set of state variables,� O � V a set of observable variables,� � an initial 
ondition 
hara
terizing the initial states of the system, and� � a transition relation, relating a state to its possible su

essors.The variables are typed, and a state of a TS is a type-
onsistent interpretationof the variables. For a state s and a variable x 2 V , we denote by s[x℄ the valuethat s assigns to x. The transition relation refers to both unprimed and primedversions of the variables, where the primed versions refer to the values of thevariables in the su

essor states, while unprimed versions of variables refer totheir value in the pre-transition state. Thus, e.g., the transition relation mayin
lude \y0 = y+1" to denote that the value of the variable y in the su

essorstate is greater by one than its value in the old (pre-transition) state.The observable variables are the variables we 
are about, where we treatea
h I/O devi
e as a variable, and ea
h I/O operation removes/appends el-ements to the 
orresponding variable. If desired, we 
an also in
lude amongthe observables the history of external pro
edure 
alls for a sele
ted set of pro-
edures. When 
omparing two systems, we will require that the observablevariables in the two systems mat
h.A 
omputation of a TS is a maximal �nite or in�nite sequen
e of states� : s0; s1; : : : ; starting with a state that satis�es the initial 
ondition su
h thatevery two 
onse
utive states are related by the transition relation.A transition system T is 
alled deterministi
 if the observable part of theinitial 
ondition uniquely determines the rest of the 
omputation. We restri
tour attention to deterministi
 transition systems and the programs whi
h gen-erate su
h systems. Thus, to simplify the presentation, we do not 
onsider hereprograms whose behavior may depend on additional inputs whi
h the programreads throughout the 
omputation. It is straightforward to extend the theoryand methods to su
h intermediate input-driven programs.Let PS = hVS ;OS ;�S ; �Si and PT = hVT ;OT ;�T ; �T i be two TS's, towhi
h we refer as the sour
e and target TS's, respe
tively. Two su
h systemsare 
alled 
omparable if there exists a one-to-one 
orresponden
e between theobservables of PS and those of PT . To simplify the notation, we denote byX 2 OS and x 2 OT the 
orresponding observables in the two systems. Asour
e state s is de�ned to be 
ompatible with the target state t, if s and tagree on their observable parts. That is, s[X℄ = t[x℄ for every x 2 OT . Wesay that PT is a 
orre
t translation (re�nement) of PS if they are 
omparableand, for every �T : t0; t1; : : : a 
omputation of PT and every �S : s0; s1; : : : a5
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k
omputation of PS su
h that s0 is 
ompatible with t0, then �T is terminating(�nite) i� �S is and, in the 
ase of termination, their �nal states are 
ompatible.Suppose PS and PT are 
omparable TSs. In order to establish that PT is a
orre
t translation of PS for the 
ases that the stru
ture of PT does not radi-
ally di�er from the stru
ture of PS , we designed a proof rule, Validate, whi
his inspired by the 
omputational indu
tion approa
h ([Flo67℄), originally in-trodu
ed for proving properties of a single program. Rule Validate provides aproof methodology by whi
h one 
an prove that one program re�nes another.This is a
hieved by establishing a 
ontrol mapping from target to sour
e lo
a-tions, a data abstra
tion mapping from sour
e to target variables, and provingthat these abstra
tions are maintained along basi
 exe
ution paths of the tar-get program. The proof rule, its soundness, and examples of its appli
ationsappear in [ZPFG03,ZPG+03℄.3 Validating Loop Reordering TransformationsA reordering transformation is a program transformation that merely 
hangesthe order of exe
ution of the 
ode, without adding or deleting any exe
utionsof any statement [AK02℄. Reordering transformations 
over many of the looptransformations, in
luding fusion, distribution, inter
hange, tiling, unrolling,and reordering of statements within a loop body.Be
ause loop transformations are not stru
ture preserving, they 
annot beveri�ed dire
tly using rule Validate. In this se
tion we review the reorderingloop transformations, and des
ribe some proof rules to validate these trans-formations.3.1 Overview of Reordering Loop TransformationsConsider a loop of the form des
ribed in Fig. 1.for i1 = L1 to H1 do: : : for im = Lm to Hm doB(i1; : : : ; im)Fig. 1. A General LoopEquivalently, we 
an write su
h a loop in the form for i 2 I by �I do B(i)where i = (i1; : : : ; im) is the list of nested loop indi
es, and I is the set of thevalues assumed by i through the di�erent iterations of the loop. The set I
an be 
hara
terized by a set of linear inequalities. For example, for the loop6
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kof Fig. 1, I isI = f(i1; : : : ; im) j L1 � i1 � H1 ^ � � � ^ Lm � im � HmgThe relation �I is the ordering by whi
h the various points of I are traversed.For example, for the loop of Fig. 1, this ordering is the lexi
ographi
 order onI. In general, a loop transformation has the following form:for i 2 I by �I do B(i) =) for j 2 J by �J do B(F (j)) (1)In su
h a transformation, we may possibly 
hange the domain of the loopindi
es from I to J , the names of loop indi
es from i to j, and possiblyintrodu
e an additional linear transformation in the loop's body, 
hangingit from the sour
e B(i) to the target body B(F (j)). An example of su
h atransformation is loop reversal whi
h 
an be des
ribed asfor i = 1 to N do B(i) =) for j = N to 1 do B(j)For this example, I = J = [1::N ℄, the transformation F is the identity, andthe two orders are given by i1 �I i2  ! i1 < i2 and j1 �J j2  ! j1 > j2,respe
tively.Sin
e we expe
t the sour
e and target programs to exe
ute the same in-stan
es of the loop's body (possibly in a di�erent order), we should guaranteethat the mapping F : J 7! I is a bije
tion from J to I, i.e. a 1-1 onto map-ping. Often, this guarantee 
an be ensured by displaying the inverse mappingF�1 : I 7! J , whi
h for every value of i 2 I provides a unique value ofF�1(i) 2 J .Some 
ommon examples of transformations whi
h fall into the 
lass 
on-sidered here are presented in Fig. 2 and Fig. 3. For ea
h transformation, wedes
ribe the sour
e loop, target loop, set of loop 
ontrol variables for sour
e(I) and target (J ), their ordering (�I and �I ), and the bije
tion F : J 7! I.For tiling we assume that 
 divides m and d divides n.There are two requirements we wish to establish in order to justify thetransformation des
ribed in (1).(i) The mapping F is a bije
tion from J onto I. That is, F establishes a1-1 
orresponden
e between elements of J and the elements of I.(ii) For every i1 �I i2 su
h that F�1(i2) �J F�1(i1), we require thatB(i1); B(i2) � B(i2); B(i1). This requirement is based on the observa-tion that in the sour
e 
omputation, B(i1) is exe
uted before B(i2) whilethe 
orresponding B(i1) is exe
uted after B(i2) in the target 
omputa-tion. The overall result is the same only if these permutation relationshold between pairs of iterations whose order of exe
ution is reversed inthe translation from sour
e to target.7
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kInter
hange SkewingSour
e for i1 = 1; m dofor i2 = 1; n doB(i1; i2) for i1 = 1; m dofor i2 = 1; n doB(i1; i2)Target for j1 = 1; n dofor j2 = 1; m doB(j2; j1) for j1 = 1; m dofor j2 = j1 + 1; j1 + n doB(j2; j1 � j2)I f1; : : : ;mg � f1; : : : ; ng f1; : : : ;mg � f1; : : : ; ngJ f1; : : : ; ng � f1; : : : ;mg f(j1; j2) : 1 � j1 � m ^j1 + 1 � j2 � j1 + ngi �I i0 i <lex i0 i <lex i0j �J j0 j <lex j0 j <lex j0F (j) (j2; j1) (j1; j2 � j1)F�1(i) (i2; i1) (i1; i1 + i2)Fig. 2. Some Loop TransformationsReversal TilingSour
e for i = 1; n doB(i) for i1 = 1; m dofor i2 = 1; n doB(i1; i2)Target for j = n; 1 doB(j) for j1 = 1; m by 
for j2 = 1; n by dfor j3 = j1; j1 + 
� 1for j4 = j2; j2 + d� 1B(j3; j4)I f1; : : : ; ng f1; : : : ;mg � f1; : : : ; ngJ f1::ng f(j1; j2; j3; j3) : 1 � j1 � m j1 � 1 mod 
 ^1 � j2 � n j2 � 1 mod d ^j1 � j3 < j1 + 
 ^j2 � j4 < j2 + dgi �I i0 i < i0 i <lex i0j �J j0 j > j0 j <lex j0F (j) j (j3; j4)F�1(i) i (
b i1�1
 
+ 1; db i2�1d 
+ 1; i1; i2)Fig. 3. Some Loop TransformationsOur main rule for dealing with loop transformation is Rule permute pre-sented in Fig. 4. The � relation between two programs denotes that the twoprograms translate one another, i.e., that if ea
h is run from an arbitrary state,the resulting states will be equivalent.8
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kR1: 8i 2 I : 9j 2 J : i = F (j)R2: 8j1 6= j2 2 J : F (j1) 6= F (j2)R3: 8i1; i2 2 I : i1 �I i2 ^ F�1(i2) �J F�1(i1) �!B(i1); B(i2) � B(i2); B(i1)for i 2 I by �I do B(i) � for j 2 J by �J do B(F (j))Fig. 4. Permutation Rule permute for reordering transformations
3.2 A Permutation Rule for Loop Fusion and Loop DistributionThe permute rule given above, does not apply to loop transformations whi
hinvolve multiple loops that are not nested. Consider the following loop trans-formation:for i 2 I by �I doB1(i)for i 2 I by �I doB2(i) =) for i 2 I by �I doB1(i)B2(i)This transformation is known as loop fusion (the inverse operation is loopdistribution). Although rule permute does not apply, the transformation is stilla simple permutation of blo
ks of 
ode. In parti
ular, suppose I = f1 : : :Ng.Then loop fusion transforms the sequen
eB1(1); B1(2); : : : ; B1(N); B2(1); B2(2); : : : ; B2(N)toB1(1); B2(1); B1(2); B2(2); : : : ; B1(N); B2(N)It is easy to see that this transformation preserves equivalen
e if B2(i)is inter
hangeable with B1(j) whenever i < j. The rule for loop fusion isformalized in rule permute-2, shown in Fig. 5.Sin
e loop distribution is just the inverse of loop fusion, the same rule 
anbe used to verify loop distribution simply by swit
hing the sour
e and thetarget programs. 9
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k8i1; i2 2 I : i1 �I i2 �! B1(i2); B2(i1) � B2(i1); B1(i2)for i 2 I by �I do B1(i )for i 2 I by �I do B2(i ) � for i 2 I by �I do B1(i ); B2(i )Fig. 5. Permutation Rule permute-24 Using CVC to Che
k Program Equivalen
eThe Cooperating Validity Che
ker (CVC) is an automati
 theorem prover de-veloped at Stanford University [SBD02℄. It is able to 
he
k the validity ofquanti�er-free formulas over a relatively ri
h set of general-purpose �rst-ordertheories. It in
ludes, for example, theories of arrays, linear arithmeti
, ab-stra
t data types, and uninterpreted fun
tions.As we will des
ribe in this se
tion, CVC 
an be used to verify that twopie
es of 
ode are equivalent. It is easiest to understand with an example.Suppose we have the following pie
es of 
ode:B1(i) : a[i℄ := a[i℄ + 1;B2(i) : a[i + 1℄ := a[i� 1℄� 1;Now suppose we wish to show that these two statements are inter
hange-able, that is B1(i); B2(i) � B2(i); B1(i). This 
an be done by using appropriatevariables to model the state of the program before and after ea
h statement.These variables are related using the appropriate transition relation for thestatement. To represent the result of B1(i); B2(i), we �rst de
lare three vari-ables for ea
h of i and a. We de
lare the variables for i to be of type REAL,indi
ating that they are real numbers. The type for the a variables is ARRAYREAL OF REAL indi
ating an array whi
h 
onsists of real numbers and maybe indexed by real numbers. (This is a
tually a 
onvenient abstra
tion of thea
tual array. The fa
t that it is in�nite is not a problem sin
e any given for-mula 
an only talk about a �nite number of array indi
es.) We then use theCVC ASSERT 
ommand to say what the relationship between these variablesis. The CVC input whi
h represents exe
uting B1(i); B2(i) is as follows.i0, i1, i2 : REAL;a0, a1, a2 : ARRAY REAL OF REAL;ASSERT (a1 = a0 WITH [i0℄ := a0[i0℄+1) AND (i1 = i0);ASSERT (a2 = a1 WITH [i1+1℄ := a1[i1-1℄-1) AND (i2 = i1);The same thing 
an be done to represent the result of B2(i); B1(i). We use thesame initial variables but must de
lare two new variables for ea
h of i and a10
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kto represent the state after exe
uting ea
h of these statements. We 
an thenask CVC using the QUERY 
ommand whether the result of these two exe
utionsis the same. The remaining CVC input is as follows.i3, i4 : REAL;a3, a4 : ARRAY REAL OF REAL;ASSERT (a3 = a0 WITH [i0+1℄ := a0[i0-1℄-1) AND (i3 = i0);ASSERT (a4 = a3 WITH [i3℄ := a3[i3℄+1) AND (i4 = i3);QUERY (i2 = i4 AND a2 = a4);When we submit this query to CVC, it responds with \Valid", indi
ating thatinter
hanging the two statements does indeed produ
e equivalent results.Although the approa
h just des
ribed is probably the most straightforwarden
oding, in pra
ti
e we use a variation of this en
oding whi
h is more 
on-
ise. First of all, we 
an use the same name for variables that don't 
hange(su
h as i). Se
ond, CVC supports a LET 
onstru
t whi
h 
an be used to namean intermediate expression for future referen
e. Finally, instead of queryingwhether the two arrays are equal, we query whether reading from the arraysat an arbitrary address gives the same result. Although equivalent, this te
h-nique allows CVC to give better information when the proof fails. Using thesete
hniques, we 
an write the same query as follows.i : REAL;a : ARRAY REAL OF REAL;arb_addr : REAL;QUERY(LET a1 : ARRAY REAL OF REAL = a WITH [i℄ := a[i℄+1 INa1 WITH [i+1℄ := a1[i-1℄-1)[arb_addr℄ =(LET a1 : ARRAY REAL OF REAL = a WITH [i+1℄ := a[i-1℄-1 INa1 WITH [i℄ := a1[i℄+1)[arb_addr℄;Not only is this en
oding more 
on
ise, it is also typi
ally easier for CVC toprove, primarily be
ause there are fewer variables in the formula.If a CVC query is not valid, CVC reports \Invalid". When this o

urs, theCVC WHERE 
ommand gives a set of assumptions under whi
h the formula isnot valid. For example, suppose we repla
e B2(i) with the statement a[i+1℄ :=a[i℄� 1. The CVC query be
omesi : REAL;a : ARRAY REAL OF REAL;arb_addr : REAL;QUERY(LET a1 : ARRAY REAL OF REAL = a WITH [i℄ := a[i℄+1 IN11
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ka1 WITH [i+1℄ := a1[i℄-1)[arb_addr℄ =(LET a1 : ARRAY REAL OF REAL = a WITH [i+1℄ := a[i℄-1 INa1 WITH [i℄ := a1[i℄+1)[arb_addr℄;The query is invalid as expe
ted. The \WHERE" 
ommand returns the followinginformation:% A
tive assumptions:ASSERT ((1 + 1 * i + -1 * arb_addr) = 0);This indi
ates that in the 
ase when the \arbitrary address" read from thetwo arrays is equal to i + 1, the two arrays may be di�erent. This helps uspinpoint the problem with inter
hanging the two statements: a[i + 1℄ mayhave the in
orre
t value after exe
uting the transformed 
ode.CVC has been designed for large and 
omputationally demanding examplesand in
orporates re
ent advan
es in SAT te
hnology to improve its heuristi
s.Thus, it is easily able to solve the veri�
ation 
onditions dis
ussed in thispaper. CVC also has the ability to produ
e proofs so that results 
an be
on�rmed by an independent proof-
he
ker. This ability supports an ultimatevision in whi
h self-
ertifying 
ompilers provide a proof whi
h a

ompaniesoptimized 
ompiled 
ode.
5 Run-time Validation of Spe
ulative OptimizationsThis se
tion builds on the work des
ribed in [ZPG+03℄. There, we gave anoverview of run-time validation of spe
ulative loop optimizations, that is, usingrun-time tests to ensure the 
orre
tness of loop optimizations when neitherthe 
ompiler nor a validation tool are able to. This te
hnique is parti
ularlyuseful when memory aliasing, due to the use of pointers or arrays, inhibits thestati
 dependen
e analysis that loop optimizations rely on.Run-time validation has not only the task of determining when an op-timization has generated in
orre
t 
ode, but also has the task of re
overingfrom the optimization without aborting the program or produ
ing an in
or-re
t result. It is possible in some instan
es to simply adjust the behavior ofthe optimized 
ode based on run-time tests, so that 
orre
tness is preservedwhile also maintaining mu
h of the performan
e bene�t of the optimization.In other instan
es, it is ne
essary to jump to an unoptimized version of the
ode.In [ZPG+03℄, we showed how run-time tests 
an enable 
ertain spe
ula-tive versions of the optimizations dis
ussed in Se
tion 3. However, the run-time tests presented there were 
onstru
ted manually. We were interestedin whether we 
ould use CVC to automati
ally derive and generate appropri-ate run-time tests for spe
ulative optimizations. This se
tion presents initialresults from this e�ort. 12
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k5.1 StrategySuppose the 
ompiler wishes to validate a parti
ular loop optimization. Asdes
ribed in Se
tion 4, CVC 
an be used to 
he
k 
ertain kinds of formulasin
luding those des
ribing the equivalen
e of two blo
ks of 
ode. In most
ases, the 
onditions listed in rules permute and permute-2 
an be expresseddire
tly in the input language of CVC.If CVC reports that the 
onditions are valid, then the loop optimization isknown to preserve the behavior of the program in all 
ontexts. However, ifCVC reports that the 
onditions are not valid, it may still be the 
ase that formany 
ommon 
ontexts and 
ases, the transformation is still valid.Our strategy for spe
ulative optimization is to use the 
ounter-examplesprodu
ed by CVC to 
reate run-time tests whi
h guarantee that if the op-timized 
ode is used, the result will be 
orre
t. We begin by letting � bethe (invalid) veri�
ation 
ondition for the optimization we wish to performspe
ulatively.0. Let  = ;.1. Che
k V( )! � using CVC.2. If the result is valid, exit.3. Use the WHERE 
ommand to obtain a set � of assumptions under whi
h theformula � is false.4. Sele
t a formula from �, negate it, and add it to  .5. Goto 1.When we are done with the loop, we have a set  of 
onditions under whi
hthe transformation is valid. As we will see, some additional work is requiredto obtain a workable solution from the naive algorithm shown above.5.2 Inter
hange ExampleConsider the following loop inter
hange transformation:for i = 1 to Mfor j = 1 to Nk = 10 - jA[i, j℄ = A[i-1, j-k℄ + C=) for j = 1 to Nfor i = 1 to Mk = 10 - jA[i, j℄ = A[i-1, j-k℄ + CThe bene�ts to this loop inter
hange are 1) the 
omputation of k 
an be movedout of the inner loop and 2) in a language with 
olumn-major arrays (su
h asFortran), the transformed loop has better lo
ality.For simpli
ity, we will only 
onsider the reordering of the array operations,sin
e the 
orre
tness of the value of k is trivial. We will use (i1; j1) and (i2; j2)as two pairs of loop indi
es. Then, using rule permute, our initial formula �is: ((i1; j1) <lex (i2; j2) ^ (j2; i2) <lex (j1; i1)) �!B(i1; j1); B(i2; j2) � B(i2; j2); B(i1; j1),13
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kwhere B(i; j) is the statement A[i, j℄ = A[i-1, j-k℄ + C. The input forCVC is:i1, j1, i2, j2, k, C, arb_addr : REAL;a : ARRAY REAL OF ARRAY REAL OF REAL;QUERY((i1 < i2 OR (i1 = i2 AND j1 < j2)) AND(j2 < j1 OR (j2 = j1 AND i2 < i1))) =>((LET a1 : ARRAY REAL OF ARRAY REAL OF REAL =a WITH [i1℄[j1℄ := a[i1-1℄[j1-k℄+C INa1 WITH [i2℄[j2℄ := a1[i2-1℄[j2-k℄+C)[arb_addr℄ =(LET a1 : ARRAY REAL OF ARRAY REAL OF REAL =a WITH [i2℄[j2℄ := a[i2-1℄[j2-k℄+C INa1 WITH [i1℄[j1℄ := a1[i1-1℄[j1-k℄+C)[arb_addr℄);This query is invalid, as expe
ted. A

ording to the algorithm given above,we next must sele
t a formula from the 
ounter-example generated by CVC.Among the assumptions returned is the formula k < 0. Assuming we are ableto automati
ally sele
t this formula (we will dis
uss sele
tion 
riteria below),we negate it and add it as a hypothesis to the query. When we rerun thequery, CVC reports \Valid".Thus, we were able to determine automati
ally that :(k < 0) is suÆ
ientfor the 
orre
tness of this loop. As des
ribed in [ZPG+03℄, we 
an then usethis result to produ
e the following 
orre
t 
ode. Note that in this example,it is possible to spend part of the 
omputation in the optimized loop, and therest in the unoptimized loop.
for j = 1 to Nk = 10 - jif (k < 0) goto es
ape_
odefor i = 1 to MA[i, j℄ = A[i-1, j-k℄ + C...es
ape_
ode:for ii = 1 to Mfor jj = j to Nk = 10 - jjA[ii, jj℄ = A[ii-1, jj-k℄ + C14
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kSele
ting a Formula from the Counter-ExampleThe only diÆ
ult part about automati
ally generating the run-time test forthe example above is 
hoosing a formula from the 
ounter-example returnedfrom CVC.In order to motivate the sele
tion heuristi
s, observe that formulas whi
honly relate one of the i variables to one of the j variables 
annot 
ontribute to arun-time test. This is be
ause they represent the loop variables at two di�erentpoints in time and thus 
annot be 
aptured by a test at a single point in time.Similarly, some of the other formulas in the 
ounter-example primarily involve
onstru
ts whi
h do not 
orrespond to things that 
an a
tually be tested atrun-time. These in
lude formulas about the introdu
ed variable arb addr orinternal CVC 
onstru
ts. Finally, some formulas in the 
ounter-example are(positive) atomi
 formulas, and others are negated. The positive formulastend to express mu
h more information than the negated formulas.Our heuristi
 is to 
hoose a positive formula whi
h 
onstrains at least oneof the testable variables in the formula, where a testable variable is somethingother than the loop variables, arb addr, and the internal CVC 
onstru
ts. Inthe example above, only A, k, and C are testable, and the only formula fromthe 
ounterexample whi
h 
onstrains one of these is the formula k > 0.5.3 Fusion ExampleWe now turn to a more sophisti
ated example. Suppose we have the followingpro
edure whi
h 
opies N elements from the array pointed to by r to the arraypointed to by p.
opy(p, r, N)beginfor i = 0 to N-1 do*(p+i) = *(r+i)endNow suppose that somewhere in the program two 
alls are made to this pro-
edure as follows....
opy(p, r, N);
opy(q, r, N);...A small pro
edure like 
opy is likely to be inlined. After inlining, we have thefollowing 
ode.for i = 0 to N-1 do*(p+i) = *(r+i)for i = 0 to N-1 do*(q+i) = *(r+i) 15
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kThis is a perfe
t 
andidate for loop fusion. The fused loop looks like this:for i = 0 to N-1 do*(p+i) = *(r+i)*(q+i) = *(r+i)This is a highly desirable optimization be
ause it means that ea
h valuein the array r only needs to be a

essed on
e instead of twi
e. Given thenumber of 
y
les required to a

ess memory or even the 
a
he (assuming thevalue is still in the 
a
he the se
ond time), this optimization may result in asigni�
ant in
rease in performan
e. Unfortunately, today's 
ompilers do notmake this optimization be
ause of the danger that the arrays pointed to byp, q, and r may overlap in some way. However, with an appropriate run-timetest, we 
an enable the optimized 
ode.In order to use CVC to derive the run-time test, we use one big array tomodel all of memory. The pointers p, q, and r simply be
ome indexes intothis array. Now, using rule permute-2, we obtain the following veri�
ation
ondition.i1 < i2 ! B1(i2); B2(i1) � B2(i1); B1(i2);where B1(i) is *(p+i) = *(r+i) and B2(i) is *(q+i) = *(r+i). This veri�-
ation 
ondition 
an be expressed in the input language of CVC as follows.p, q, r : REAL;i1, i2, arb_addr : REAL;M : ARRAY REAL OF REAL;QUERY(i1 < i2) =>((LET M1 : ARRAY REAL OF REAL =M WITH [q+i1℄ := M[r+i1℄ INM1 WITH [p+i2℄ := M1[r+i2℄)[arb_addr℄ =(LET M1 : ARRAY REAL OF REAL =M WITH [p+i2℄ := M[r+i2℄ INM1 WITH [q+i1℄ := M1[r+i1℄)[arb_addr℄);Running this query in CVC produ
es the following 
ounter-example.ASSERT ((0 + 1 * p + 1 * i2 + -1 * arb_addr) = 0);ASSERT ((0 + 1 * q + -1 * r + 1 * i1 + -1 * i2) = 0);ASSERT (0 + 1 * i1 + -1 * i2) < 0;ASSERT (((0 + 1 * r + 1 * i2 + -1 * arb_addr) = 0) = FALSE);ASSERT ((M[(0 + 1 * r + 1 * i2)℄ = M[(0 + 1 * r + 1 * i1)℄) =FALSE); 16
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kOnly the �rst two assertions are positive formulas involving at least onetestable variable. However, sin
e the �rst formula only has one testable vari-able, it is not really expressing a 
onstraint on that variable. Thus, we pi
kthe se
ond formula whi
h states q � r = i2 � i1. Although this formula in-
ludes the non-testable variables i1 and i2, we will be able to eliminate themeventually (see below).After adding the negation of the se
ond assertion as a hypothesis, we getanother similar 
ounter-example. Again, we 
hoose the se
ond formula whi
hthis time is q � p = i2 � i1. Running the loop one more time yields another
ounter-example and another assertion: r � p = i2 � i1. After adding thishypothesis, the query is valid.Thus, under the 
onditions q� r 6= i2� i1 ^ q�p 6= i2� i1 ^ r�p 6= i2� i1,the transformation is valid. In order to derive a run-time test from this, noti
ethat we have bounds on i1 and i2, so the value of i2 � i1 is always between�N +1 and N �1 in
lusive. In fa
t, be
ause we are using the permute-2 rule,we 
an also assume that i1 < i2, so i2 � i1 must be between 1 and N � 1.Thus, we 
an repla
e ea
h instan
e of � 6= i2 � i1 with � � 0 _ � � N to getour �nal run-time test:(q� r � 0_ q� r � N)^ (q� p � 0_ q� p � N)^ (r� p � 0_ r� p � N):After making this repla
ement, we 
an again run CVC to 
he
k that thequery is still valid under the run-time test 
ondition. We must also add 
on-ditions for the bounds on i1 and i2: 0 � i1 � N � 1 and 0 � i2 � N � 1.As expe
ted, CVC reports that the formula is valid. The �nal 
ode with therun-time test inserted is:if ((q-r � 0 OR q-r � N) AND(q-p � 0 OR q-p � N) AND(r-p � 0 OR r-p � N)) beginfor i = 0 to N-1 do*(p+i) = *(r+i)*(q+i) = *(r+i)endelse beginfor i = 0 to N-1 do*(p+i) = *(r+i)for i = 0 to N-1 do*(q+i) = *(r+i)endEx
ept for small values ofN , the transformed 
ode almost 
ertainly runs fasterthan the original 
ode. 17
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k6 Con
lusionIn this paper, we began by reviewing the translation validation approa
h andintrodu
ing a new permutaion rule for loop fusion and loop distribution. Wethen showed how to use CVC to 
he
k the generated veri�
ation 
onditions.For transformations that 
annot be 
he
ked at 
ompile-time, we proposeusing CVC to help generate run-time tests. These tests 
he
k one or more 
on-ditions whi
h have been proven to guarantee the 
orre
tness of the optimized
ode. If the tests fail, an unoptimized version of the 
ode is run instead.While the results of this paper are en
ouraging as a feasibility study inautomati
ally generating veri�
ation 
onditions, there is still mu
h to be un-derstood about the pro
ess. The examples given in Se
tion 5 happen to workwith our heuristi
s, but there are other examples for whi
h the 
urrent ap-proa
h is inadequate. We hope that this will be the beginning of an e�ort touse automati
 methods su
h as those proposed here to generate run-time testsfor aggressive spe
ulative 
ompiler optimizations.Referen
es[AK02℄ Randy Allen and Ken Kennedy. Optimizing Compilers for ModernAr
hite
tures. Morgan Kaufmann, 2002.[Ban88℄ U. Banerjee. Dependen
e Analysis for Super
omputing. KluwerA
ademi
 Publishers, 1988.[Fea96℄ P. Feautrier. Automati
 parallelization in the polytope model. In TheData Parallel Programming Model, Le
ture Notes in Computer S
ien
e(LNCS), Vol. 1132, Springer-Verlag, 1996.[Flo67℄ R.W. Floyd. Assigning meanings to programs. Pro
. Symposia inApplied Mathemati
s, 19:19{32, 1967.[GN98℄ M. Gupta and R. Nim. Te
hniques for spe
ulative run-timeparallelization. In Super
omputing'98. November 1998.[Ne
00℄ G. Ne
ula. Translation validation of an optimizing 
ompiler. InPro
eedings of the ACM SIGPLAN Conferen
e on Prin
iples ofProgramming Languages Design and Implementation (PLDI) 2000,pages 83{95, 2000.[PSS98a℄ A. Pnueli, M. Siegel, and O. Shtri
hman. The 
ode validation tool(CVT)- automati
 veri�
ation of a 
ompilation pro
ess. Software Toolsfor Te
hnology Transfer, 2(2):192{201, 1998.[PSS98b℄ A. Pnueli, M. Siegel, and E. Singerman. Translation validation. InTACAS'98, pages 151{166, 1998.[Pug92℄ W. Pugh Eliminating false dependen
es using the omega test. InPro
eedings of the ACM SIGPLAN 1992 Conferen
e on ProgramingLanguage Design and Implementation (PLDI'92). July 1992.18



Barrett, Goldberg, and Zu
k[RP94℄ L. Rau
hwerger and D. Padua. The privatizing doall test: a run-time te
hnique for doall loop identi�
ation and array privatization. InPro
eedings of the 1994 International Conferen
e on Super
omputing,July 1994.[RP95℄ L. Rau
hwerger and D. Padua. The LRPD test: spe
ulative run-timeparallelization of loops with privatization and redu
tive parallelization.In Pro
eedings of ACM SIGPLAN'95 Conferen
e on ProgrammingLanguage Design and Implementation. June 1995.[RM00℄ M. Rinard and D. Marinov. Credible 
ompilation with pointers. InPro
eedings of the Run-Time Result Veri�
ation Workshop, Trento, July2000.[SBD02℄ Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: a 
ooperatingvalidity 
he
ker. In Pro
. 14th Intl. Conferen
e on Computer AidedVeri�
ation (CAV'02), volume 2404 of Le
t. Notes in Comp. S
i.Springer-Verlag, pages 500{504, 2002.[Wol96℄ M.E. Wolfe. High Performan
e Compilers for Parallel Computing.Addison-Wesley, 1996.[ZPFG03℄ Lenore Zu
k, Amir Pnueli, Yi Fang, and Benjaming Goldberg. VOC:a translation validator for optimizing 
ompilers. To appear in Journalof Universal Computer S
ien
e. Preliminary version in ENTCS, 65(2),2002.[ZPG+03℄ Lenore Zu
k, Amir Pnueli, Benjaming Goldberg, Clark Barrett, Yi Fang,and Ying Hu. Translation and run-time validation of optimized 
ode.To appear in Formal Methods in Systems Design. Preliminary version inThird Workshop on Runtime Veri�
ation (RV), 2002.

19


	Introduction
	Related Work

	Translation Validation of Optimizing Compilers
	Transition Systems

	Validating Loop Reordering Transformations
	Overview of Reordering Loop Transformations
	A Permutation Rule for Loop Fusion and Loop Distribution

	Using CVC to Check Program Equivalence
	Run-time Validation of Speculative Optimizations
	Strategy
	Interchange Example
	Fusion Example

	Conclusion
	References

