
Extending SMT Solvers to Higher-Order
Logic

Haniel Barbosa1, Andrew Reynolds1, Daniel El Ouraoui2(B), Cesare Tinelli1,
and Clark Barrett3

1 The University of Iowa, Iowa City, USA
2 University of Lorraine, CNRS, Inria, and LORIA, Nancy, France

daniel.elouraoui@gmail.com
3 Stanford University, Stanford, USA

Abstract. SMT solvers have throughout the years been able to cope
with increasingly expressive formulas, from ground logics to full first-
order logic (FOL). In contrast, the extension of SMT solvers to higher-
order logic (HOL) is mostly unexplored. We propose a pragmatic exten-
sion for SMT solvers to support HOL reasoning natively without com-
promising performance on FOL reasoning, thus leveraging the extensive
research and implementation efforts dedicated to efficient SMT solving.
We show how to generalize data structures and the ground decision pro-
cedure to support partial applications and extensionality, as well as how
to reconcile quantifier instantiation techniques with higher-order vari-
ables. We also discuss a separate approach for redesigning an HOL SMT
solver from the ground up via new data structures and algorithms. We
apply our pragmatic extension to the CVC4 SMT solver and discuss a
redesign of the veriT SMT solver. Our evaluation shows they are com-
petitive with state-of-the-art HOL provers and often outperform the tra-
ditional encoding into FOL.

1 Introduction

Higher-order (HO) logic is a pervasive setting for reasoning about numerous real-
world applications. In particular, it is widely used in proof-assistants (also known
as interactive theorem provers) to provide trustworthy, formal, and machine-
checkable proofs of theorems. A major challenge in these applications is to auto-
mate as much as possible the production of these formal proofs, thereby reduc-
ing the burden of proof on the users. An effective approach to achieve stronger
automation in proof assistants is to rely on less expressive but more automatic
theorem provers to discharge some of the proof obligations. Systems such as
HOLyHammer, MizAR, Sledgehammer, and Why3, which provide a one-click
connection from proof-assistants to first-order (FO) provers, have led in recent

This work was partially supported by the National Science Foundation under award
1656926.

c© Springer Nature Switzerland AG 2019
P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 35–54, 2019.
https://doi.org/10.1007/978-3-030-29436-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-29436-6_3

36 H. Barbosa et al.

years to considerable improvements in proof-assistant automation [14]. A simi-
lar layered approach is also used by automatic HO provers such as Leo-III [43]
and Satallax [17], which regularly invoke FO provers to discharge intermedi-
ate goals that depend solely on FO reasoning. However, as noted in previous
work [12,30,48], in both cases the reduction to FOL has its own disadvantages:
full encodings into FO, such as those performed by the hammers, may lead to
issues with performance, soundness, or completeness. On the other hand, the
combination of FO and HO reasoning in automatic HO provers may suffer from
the HO prover itself having to perform substantial FO reasoning, since it is not
optimized for FO proving. This would be the case in HO problems with a large
FO component, which occur often in practice. We aim to overcome these short-
comings by extending Satisfiability Modulo Theories (SMT) [8] solvers, a class
of highly successful automatic FO provers, to natively support HOL.

The two main challenges for extending SMT solvers to HOL lie in dealing
with partial function applications and with functional variables, i.e., quantifier
variables of higher-order type. The former mainly affects term representation and
core algorithms, which in FOL are based on the fact that all function symbols
are fully applied. The latter impacts quantifier instantiation techniques, which
must now account for quantified variables occurring in function symbol positions.
Moreover, often HO problems can only be proven if functional variables are
instantiated with synthesized λ-terms, typically via HO unification [23], which
is undecidable in general.

Contributions. We present two approaches for extending SMT solvers to
natively support HO reasoning (HOSMT). The first one, the pragmatic app-
roach (Sect. 3), targets existing state-of-the-art SMT solvers with large code
bases and complex data structures optimized for the FO case. In this approach,
we extend a solver with only minimal modifications to its core data structures
and algorithms. In the second approach, the redesign approach (Sect. 4), we
rethink a solver’s data structures and develop new algorithms aimed specifically
at HO reasoning. This approach may lead to better results but is better suited to
lightweight solvers, i.e., less optimized solvers with a smaller code base. Moreover,
this approach provides more flexibility to later develop new techniques especially
suited for higher-order reasoning. A common theme of both approaches is that
the instantiation algorithms are not extended with HO unification. This is a sig-
nificant enough challenge that we plan to explore in a later phase of this work.
We include proofs, more examples, and related work in a technical report [5].

We present an extensive experimental evaluation (Sect. 5) of our pragmatic
and redesign approaches as implemented respectively in the state-of-the-art
SMT solver CVC4 [6] and the lightweight solver veriT [16]. Besides compar-
isons against state-of-the-art HO provers, we also evaluate these solvers against
themselves, comparing a native HO encoding using the extensions in this paper
to the base versions of the solvers with the more traditional FO encoding (not
using the extensions).

Extending SMT Solvers to Higher-Order Logic 37

Related Work. The pioneering work of Robinson [41] on using a translation to
reduce higher-order reasoning to first-order logic inspired the successful tools
such as Sledgehammer [36] and CoqHammer [19] that build on this idea by
automating HO reasoning via automatic FO provers. Earlier works on native HO
proving are, e.g., Andrews’s higher-order resolution [1] and Kohlhase’s higher-
order tableau [29], inspire the modern day HO provers such as LEO-II [11] and
Leo-III [43], implementing variations of HO resolution, and Satallax [17], based
on a HO tableau calculus guided by a SAT solver. Our approach however is
conceptually closer to recent work by Blanchette et al. [9,48] on gracefully gen-
eralizing the superposition calculus [2,33] to support higher-order reasoning.
As a first step, they have targeted the λ-free fragment of higher-order logic,
presenting a refutationally complete calculus [9] and an initial implementation
as a prototype extension of the Zipperposition prover [18]. More recently they
integrated their approach into the state-of-the-art FO prover E [48], showing
competitive results against state-of-the-art HO provers. Their next step, as is
ours, is to extend their calculus to superposition with λ-terms while preserving
their completeness guarantees.

2 Preliminaries

Our monomorphic higher-order language L is defined in terms of right-
associative binary sort constructors →, × and pairwise-disjoint countably infinite
sets S, X and F , of atomic sorts, variables, and function symbols, respectively.
We use the notations ān and ā to denote the tuple (a1, . . . , an) or the cross
product a1 × · · · × an, depending on context, with n ≥ 0. We extend this nota-
tion to pairwise binary operations over tuples in the natural way. A sort τ is
either an element of S or a functional sort τ̄n → τ from sorts τ̄n = τ1 × · · · × τn
to sort τ . The elements of X and F are annotated with sorts, so that x : τ is a
variable of sort τ and f : τ̄n → τ is an n-ary function symbol of sort τ̄n → τ . We
identify function symbols of sort τ̄0 → τ with function symbols of sort τ , which
we call constants when τ is not a functional sort. Whenever convenient, we drop
the sort annotations when referring to symbols.

The set of terms is defined inductively: every variable x : τ is a term of sort
τ . For variables x̄n : τ̄n and a term t : τ of sort τ , the expression λx̄n. t is a term
of sort τ̄n → τ , called a λ-abstraction, with bound variables x̄n and body t. A
variable occurrence is free in a term if it is not bound by a λ-abstraction. For a
term t : τ̄n → τ and terms t1 : τ1, . . . , tm : τm with m ≤ n, the expression f(t̄n) is
a term, called an application of f, the head of the application, to the arguments
t̄m. The application is total and has sort τ if m = n; it is partial and has sort
τm+1 × · · · × τn → τ if m < n. A λ-application is an application whose head is a
λ-abstraction. The subterm relation is defined recursively: a term is a subterm of
itself; if a term is an application, all subterms of its arguments are also its sub-
terms. Note this is not the standard definition of subterms in HOL, which also
includes application heads and all partial applications. The set of all subterms
in a term t is denoted by T(t). We assume S contains a sort o, the Boolean

38 H. Barbosa et al.

sort, and that F contains Boolean constants �, ⊥, a Boolean unary function ¬,
Boolean binary functions ∧, ∨, and, for every sort τ , a family of equality sym-
bols 	 : τ × τ → o and a family of symbols ite : o × τ × τ → τ . These symbols
are interpreted in the usual way as, respectively, logical constants, connectives,
identity, and if-then-else (ITE). We refer to terms of sort o as formulas and to
terms of sort τ̄ → o as predicates. An atom is a total predicate application. A
literal or constraint is an atom or its negation. We assume the language con-
tains the ∀ and ∃ binders over formulas, defined as usual, in addition to the λ
binder. A formula or a term is ground if it is binder-free. We use the symbol =
for syntactic equality on terms. We reserve the names a, b, c, f, g, h, p for function
symbols; w, x, y, z for variables in general; F,G for variables of functional sort;
r, s, t, u for terms; and ϕ,ψ for formulas. The notation t[x̄n] stands for a term
whose free variables are included in the tuple of distinct variables x̄n; t[s̄n] is the
term obtained from t by a simultaneous substitution of s̄n for x̄n.

We assume F contains a family @ : (τ̄n → τ) × τ1 → (τ2 × · · · × τn → τ) of
application symbols for all n > 1. We use it to model (curried) applica-
tions of terms of functional sort τ̄n → τ . For example, given a function sym-
bol f : τ1 × τ2 → τ3 and application symbols @ : (τ1 × τ2 → τ3) × τ1 → (τ2 → τ3)
and @ : (τ2 → τ3) × τ2 → τ3, @(f, t1) and @(@(f, t1), t2) have, respectively, the
same denotation as λx2 : τ2.f(t1, x2) and f(t1, t2).

An applicative encoding is a well-known approach for performing HO rea-
soning using FO provers. This encoding converts every functional sort into an
atomic sort, every n-ary symbol into a nullary symbol, and uses @ to encode
applications. Thus, all applications, partial or not, become total, and quantifica-
tion over functional variables becomes quantification over regular FO variables.
We adopt Henkin semantics [10,27] with extensionality and choice, as is standard
in automatic HO theorem proving.

2.1 SMT Solvers and Quantified Reasoning

SMT solvers that process quantified formulas can be seen as containing three
main components: a preprocessing module, a ground solver, and an instantiation
module. Given an input formula ϕ, the preprocessing module applies various
transformations (for instance, Skolemization, clausification and so on) to it to
obtain another, equisatisfiable, formula ϕ′. The ground solver operates on the
formula ϕ′. It abstracts all of its atoms and quantified formulas and treats them
as if they were propositional variables. The solver for ground formulas provides
an assignment E ∪ Q, where E is a set of ground literals and Q is a set of
quantified formulas appearing in ϕ′, such that E ∪ Q propositionally entails
ϕ′. The ground solver then determines the satisfiability of E according to a
decision procedure for a combination of background theories. If E is satisfiable,
the instantiation module of the solver generates new instances, ground formulas
of the form ¬(∀x̄. ψ) ∨ ψσ where ∀x̄. ψ is a quantified formula in Q and σ is
a substitution from the variables in x̄ to ground terms. These instances will
be, after preprocessing, added conjunctively to the input of the ground solver,
which will proceed to derive a new assignment E′ ∪Q′, if possible. This interplay

Extending SMT Solvers to Higher-Order Logic 39

may terminate either if ϕ′ is proven unsatisfiable or if a model is found for an
assignment E ∪ Q that is also a model of ϕ′.

Extending SMT solvers to HOL can be achieved by extending these three
components so that: (1) the preprocessing module eliminates λ-abstractions; (2)
the ground decision procedure supports a ground extensional logic with partial
applications, which we denote QF HOSMT; and (3) the instantiation module
instantiates variables of functional type and takes into account partial applica-
tions and equations between functions. We can perform each of these tasks prag-
matically without heavily modifying the solver, which is useful when extending
highly optimized state-of-the-art SMT solvers (Sect. 3). Alternatively, we can
perform these extensions in a more principled way by redesigning the solver,
which better suits lightweight solvers (Sect. 4).

3 A Pragmatic Extension for HOSMT

We pragmatically extend the ground SMT solver to QF HOSMT by removing
λ-expressions (Sect. 3.1), checking ground satisfiability (Sect. 3.2), and generat-
ing models (Sect. 3.3). Extensions to the instantiation module are discussed in
Sect. 3.4.

3.1 Eliminating λ-Abstractions and Partial Applications
of Theory Symbols

To ensure that the formulas that reach the core solving algorithm are λ-free, a
preprocessing pass is used to first eliminate λ-applications and then eliminate
any remaining λ-abstractions. The former are eliminated via β-reduction, with
each application (λx̄. t[x̄])ū replaced by the equivalent term t[ū]. The substitution
renames bound variables in t as needed to avoid capture.

Two main approaches exist for eliminating (non-applied) λ-abstractions:
reduction to combinators [35] and λ-lifting [28]. Combinators allow λ-terms to be
synthesized during solving without the need for HO unification. This translation,
however, introduces a large number of quantifiers and often leads to performance
loss [13, Sect. 6.4.2]. We instead apply λ-lifting in our pragmatic extension.

In λ-lifting, each λ-abstraction is replaced by a fresh function symbol, and
a quantified formula is introduced to define the symbol in terms of the original
expression. Note this is similar to the typical approach used for eliminating ITE
expressions in SMT solvers. The new function takes as arguments the variables
bound by the respective λ-abstraction and the free variables occurring in its
body. More precisely, λ-abstractions of the form λx̄n. t[x̄n, ȳm] of type τ̄n → τ
with ȳm : ῡm occurring in a formula ϕ are lifted to (possibly partial) applications
f(ȳm) where f is a fresh function symbol of type ῡm × τ̄n → τ . Moreover, the
formula ∀ȳmx̄n. f(ȳm, x̄n) 	 t[x̄n, ȳm] is added conjunctively to ϕ. To minimize
the number of new functions and quantified formulas introduced, eliminated
expressions are cached so that the same definition can be reused.

40 H. Barbosa et al.

In the presence of a background theory T , the norm in SMT, a previous
preprocessing step is also needed to make all applications of theory, or inter-
preted, symbols total: each term of the form h(t̄m), where h : τ̄n → τ is a sym-
bol of T and m < n, is converted to λx̄n−m. h(t̄m, x̄n−m), which is then λ-
lifted as above to an uninterpreted symbol f, defined by the quantified formula
∀ȳ∀x̄n−m. f(x̄n−m) 	 h(t̄m, x̄n−m), with ȳ collecting the free variables of t̄m.

We stress that careful engineering is required to perform λ-lifting correctly
in an SMT solver not originally designed for it. For instance, using the existing
machinery for ITE removal may be insufficient, since this may not properly
handle instances occurring inside binders or as the head of applications.

3.2 Extending the Ground Solver to QF HOSMT

Since we operate after preprocessing in a λ-free setting in which only unin-
terpreted functions may occur partially applied, lifting the ground solver to
QF HOSMT amounts to extending the solver for ground literals in the theory
of Equality and Uninterpreted Functions (EUF) to handle partial applications
and extensionality.

The decision procedure for ground EUF adopted by SMT solvers is based
on classical congruence closure algorithms [24,31]. While the procedure is easily
extensible to HOL (with partial applications but no λ-abstractions) via a uni-
form applicative encoding [32], many SMT solvers require that function symbols
occurring in (FO) terms be fully applied. Instead of redesigning the solver to
accommodate partial applications, we apply a lazy applicative encoding where
only partial applications are converted.

Concretely, during term construction, all partial applications are converted
to total applications by means of the binary symbol @, while fully applied terms
are kept in their regular representation. Determining the satisfiability of a set
of EUF constraints E containing terms in both representations is done in two
phases: if E is determined to be satisfiable by the regular first-order procedure,
we introduce equalities between regular terms (i.e., fully applied terms without
the @ symbol) and their applicative counterpart and recheck the satisfiability
of the resulting set of constraints. However, we only introduce these equalities
for regular terms which interact with partially applied ones. This interaction is
characterized by function symbols appearing as members of congruence classes
in the E-graph, the congruence closure of E built by the EUF decision procedure.
A function symbol occurs in an equivalence class if it is an argument of an @
symbol or if it appears in an equality between function symbols. The equalities
between regular terms and their applicative encodings are kept internal to the
E-graph, therefore not affecting other parts of the ground decision procedure.

Example 1. Given f : τ × τ → τ , g, h : τ → τ and a : τ , consider the set of con-
straints E = {@(f, a) 	 g, f(a, a)
	 g(a), g(a) 	 h(a)}. We have that E is
initially found to be satisfiable. However, since f and g occur partially applied,
we augment the set of constraints with a correspondence between the HO and
FO applications of f, g:

Extending SMT Solvers to Higher-Order Logic 41

E′ = E ∪ {@(@(f, a), a) 	 f(a, a), @(g, a) 	 g(a)}
When determining the satisfiability of E′, the equality @(@(f, a), a) 	 @(g, a)
will be derived by congruence and hence, f(a, a) 	 g(a) will be derived by tran-
sitivity, leading to a conflict. Notice that we do not require equalities between
fully applied terms whose functions do not appear in the E-graph and their
equivalent in the applicative encoding. In particular, the equality h(a) 	 @(h, a)
is not introduced in this example. •

Fig. 1. Derivation rules for checking satisfiability of QF HOSMT constraints in EUF.

We formalize the above procedure via the calculus in Fig. 1. The derivation
rules operate on a current set E of constraints. A derivation rule can be applied
if its premises are met. A rule’s conclusion either adds an equality literal to E
or replaces it by ⊥ to indicate unsatisfiability. A rule application is redundant if
its conclusion leaves E unchanged. A constraint set is saturated if it admits only
redundant rule applications.

Rules Refl, Sym, Trans, Cong and Conflict are standard for EUF deci-
sion procedures based on congruence closure, i.e., the smallest superset of a set
of equations that is closed under entailment in the theory of equality. The rule
App-encode equates a full application to its applicative encoding equivalent,
and it is applied only to applications of functions which occur as subterms in E.
As mentioned above, this can only be the case if the function itself appears as
an argument of an application, which happens when it is partially applied (as
argument of @ or).

Rule Extensionality is similar to how extensionality is handled in decision
procedures for extensional arrays [21,44]. If two non-nullary functions are dise-
qual in E, then a witness of their disequality is introduced. The extensionality
property is characterized by the axiom ∀x̄n. f(x̄n) 	 g(x̄n) ⇔ f 	 g, for all func-
tions f and g of the same type. The rule ensures the left-to-right direction of the

42 H. Barbosa et al.

axiom (the opposite one is ensured by App-encode together with the congru-
ence closure rules). To simplify the presentation we assume that, for every term
@(. . . (@(f, t1), . . .), tm) : τ̄n → τ ∈ T(E), there is a fresh symbol f′ : τ̄n → τ
such that @(. . . (@(f, t1), . . .), tm) 	 f′ ∈ E.

Example 2. Consider the function symbols f, g : τ → τ , a : τ , and the set of con-
straints E = {f 	 g, f(a)
	 g(a)}. The constraints are initially satisfiable with
respect to the congruence closure rules, however, since f, g ∈ T(E), the rule
App-encode will be applied twice to derive f(a) 	 @(f, a) and g(a) 	 @(g, a).
Then, via Cong, from f 	 g we infer @(f, a) 	 @(g, a), which leads to a conflict
via transitivity. •

Decision Procedure. Any derivation strategy for the calculus that does not
stop until it saturates or generates ⊥ yields a decision procedure for the satisfia-
bility of QF HOSMT constraints in the EUF theory, according to the following
results for the calculus.

Proposition 1 (Termination). Every sequence of non-redundant rule appli-
cations is finite.

Proposition 2 (Refutation Soundness). A constraint set is unsatisfiable if
⊥ is derivable from it.

Proposition 3 (Solution Soundness). Every saturated constraint set is sat-
isfiable.

Even though we could apply the rules in any order, for better performance
we only apply App-Encode and Extensionality once other rules have only
redundant applications. Moreover, App-Encode has precedence over Exten-

sionality.

3.3 Model Generation for Ground Formulas

When our decision procedure for QF HOSMT saturates, it can produce a first-
order model M as a witness for the satisfiability of its input. Typically, the
models generated by SMT solvers for theories in first-order logic map uninter-
preted functions f : τ̄n → τ to functions, denoted M(f), of the form

λx̄n. ite(x1 	 t11∧. . . xn 	 t1n, s1, . . . , ite(x1 	 tm−1
1 ∧. . . xn 	 tm−1

n , sm−1, sm) . . .)

in which every entry but the last corresponds to an application f(ti1, . . . , tin),
modulo congruence, occurring in the problem. In other words, functions are
interpreted in models M as almost constant functions.

In the presence of partial applications, this scheme can sometimes lead to
functions with exponentially many entries. For example, consider the satisfiable
formula

f1(a) 	 f1(b) ∧ f1(b) 	 f2 ∧ f2(a) 	 f2(b) ∧ f2(b) 	 f3 ∧ f3(a) 	 f3(b) ∧ f3(b) 	 c

Extending SMT Solvers to Higher-Order Logic 43

in which f1 : τ × τ × τ → τ , f2 : τ × τ → τ , f3 : τ → τ , and a, b, c : τ . To produce
the model values of f1 as a list of total applications with three arguments into
an element of the interpretation of τ , we would need to account for 8 cases.
In other words, we require 8 ite cases to indicate f1(x, y, z) 	 c for all inputs
where x, y, z ∈ {a, b}. The number of entries in the model is exponential on the
“depth” of the chain of functions that each partial application is equal to, which
can make model building unfeasible if just a few functions are chained as in the
above example.

To avoid such an exponential behavior, model building assigns values for func-
tions in terms of the other functions that their partial applications are equated
to. In the above example f1 would have only two model values, depending on its
application’s first argument being a or b, by using the model values of f2 applied
on its two other arguments. In other words, we construct M(f1) as the term:

λxyz. ite(x 	 a, M(f2)(y, z), ite(x 	 b, M(f2)(y, z),))

where M(f2) is the model for f2 and is an arbitrary value. The model value of
f2 would be analogously built in terms of the model value of f3. This guarantees
a polynomial construction for models in terms of the number of constraints in
the problem in the presence of partial applications.

Extensionality and Finite Sorts. Model construction assigns different values to
terms not asserted equal. Therefore, if non-nullary functions f, g : τ̄n → τ occur
as terms in different congruence classes but are not asserted disequal, we ensure
they are assigned different model values by introducing disequalities of the form
f(s̄kn)
	 g(s̄kn) for fresh s̄kn. This is necessary because model values for functions
are built based on their applications occurring in the constraint set. However,
such disequalities are only always guaranteed to be satisfied if τ̄n, τ are infinite
sorts.

Example 3. Let E be a saturated set of constraints s.t. p1, p2, p3 : τ → o ∈ T(E)
and E
|= p1 	 p2 ∨ p1 	 p3 ∨ p2 	 p3 ∨ p1
	 p2 ∨ p1
	 p3 ∨ p2
	 p3. In
the congruence closure of E the functions p1, p2, p3 each occur in a different
congruence class but are not asserted disequal, so a naive model construction
would, in order to build their model values, introduce disequalities p1(sk1)
	
p2(sk1), p1(sk2)
	 p3(sk2), and p2(sk3)
	 p3(sk3), for fresh sk1, sk2, sk3 : τ .
However, if τ has cardinality one these disequalities make E unsatisfiable, since
sk1, sk2, sk3 must be equal and o has cardinality 2. •

To prevent this issue, whenever the set of constraints E is saturated, we
introduce, for every pair of functions f, g : τ̄n → τ ∈ T(E) s.t. n > 0 and
E
|= f 	 g∨ f
	 g, the splitting lemma f 	 g∨ f
	 g. In the above example this
would amount to add the lemmas p1 	 p2∨p1
	 p2, p1 	 p3∨p1
	 p3, and p2 	
p3 ∨p2
	 p3, thus ensuring that the decision procedure detects the inconsistency
before saturation.

44 H. Barbosa et al.

3.4 Extending the Quantifier Instantiation Module to HOMST

The main quantifier instantiation techniques in SMT solving are trigger-
based [22], conflict-based [4,38], model-based [26,40], and enumerative [37]. Lift-
ing any of them to HOSMT presents its own challenges. We focus here on extend-
ing the E-matching [20] algorithm, the keystone of trigger-based instantiation,
the most commonly used technique in SMT solvers. In this technique, instan-
tiations are chosen for quantified formulas ϕ based on triggers. A trigger is a
term (or set of terms) containing the free variables occurring in ϕ. Matching a
trigger term against ground terms in the current set of assertions E results in a
substitution that is used to instantiate ϕ.

The presence of higher-order constraints poses several challenges for E-
matching. First, notice that the @ symbol is an overloaded operator. Applications
of this symbol can be selected as terms that appear in triggers. Special care must
be taken so that applications of @ are not matched with ground applications of
@ whose arguments have different types. Second, functions can be equated in
higher-order logic. As a consequence, a match may involve a trigger term and a
ground term with different head symbols. Third, since we use a lazy applicative
encoding, our ground set of terms may contain a mixture of partially and fully
applied function applications. Thus, our indexing techniques must be robust to
handle combinations of the two. The following example demonstrates the last
two challenges.

Example 4. Consider E with the equality @(f, a) 	 g and the term f(a, b) where
f : τ × τ → τ and g : τ → τ . Notice that g(x) is equivalent modulo E to the
term f(a, b) under the substitution x �→ b. Such a match is found by indexing all
terms that are applications of either @(f, a) or g in a common term index. This
ensures when matching g(x), the term f(a, b), whose applicative counterpart is
@(@(f, a), b), is considered.

We extended the regular first-order E-matching algorithm of CVC4 as described
in this section. Extensions to the other instantiation techniques of CVC4, such
as model-based quantifier instantiation, are left as future work.

Extending Expressivity via Axioms. Even though not synthesizing λ-abstractions
prevents us from fully lifting the above instantiation techniques to HOL, we
remark that, as we see in Sect. 5, this pragmatic extension very often can prove
HO theorems, many times even at higher rates than full-fledged HO provers.
Success rates can be further improved by using well-chosen axioms to prove
problems that otherwise cannot be proved without synthesizing λ-abstractions.

Example 5. Consider the ground formula ϕ = a
	 b with a, b of sort τ and
the quantified formula ψ = ∀F,G : τ → τ . F 	 G. Intuitively ψ states that all
functions of sort τ → τ are equal. However, this is inconsistent with ϕ, which
forces τ to contain at least two elements and therefore τ → τ to contain at
least four functions. For a prover to detect this inconsistency it must apply an

Extending SMT Solvers to Higher-Order Logic 45

instantiation like {F �→ (λw. a), G �→ (λw. b)} to ψ, which would need HO
unification. However, adding the axiom

∀F : τ → τ .∀x, y : τ.∃G : τ → τ .∀z : τ.G(z) 	 ite(z 	 x, y, F (z)) (SAX)

makes the problem provable without the need to synthesize λ-abstractions. •
We denote the above axiom as the store axiom (SAX) because it simulates

how arrays are updated via the store operation. As we note in Sect. 5, introducing
this axiom for all functional sorts occurring in the problem often allows our
pragmatically extended solver to prove problems it would not be able to prove
otherwise. Intuitively, the reason is that instances can be generated not only
from terms in the original problem, but also from the larger set of functions
representable in the formula signature.

4 Redesigning a Solver for HOSMT

In the previous section we discussed how to address the challenges of HO rea-
soning in SMT while minimally changing the SMT solver. Alternatively, we
can redesign the solver to support HO features directly. However, this requires
a redesign of the core data structures and algorithms. We propose one such
redesign below. We again assume that the solver operates on formulas with
no λ-abstraction and no partial applications of theory symbols, which can be
achieved via preprocessing (Sect. 3.1).

4.1 Redesigning the Core Ground Solver for HOSMT

Efficient implementations of the congruence closure (CC) procedure for EUF
reasoning operate on Union-Find data structures and have asymptotic time
complexity O(n log n). To accommodate partial applications, we propose a sim-
pler algorithm which operates on an E-graph where nodes are terms, and edges
are relations (equality, congruence, disequality) between them. An equivalence
class is a connected component without disequality edges. All operations on the
graph (incremental addition of new constraints, backtracking, conflict analysis,
proof production) are implemented straightforwardly. This simpler implementa-
tion comes at the cost of higher worse-case time complexity (the CC algorithm
becomes quadratic) but integrates better with various other features such as
term addition, support of injective functions, rewriting or even computation,
in particular for β- and η-conversion, which now can be done during solving
rather than as preprocessing. In the redesigned approach, the solver keeps two
term representations, a curried representation and a regular one. In the regular
one, partial and total applications are distinguished by type information. The
curried representation is used only by the congruence closure algorithm. It is
integrated with the rest of the solver via an interface with translation functions
curry and uncurry between the two different representations. For conciseness,
instead of writing @(. . . (@(f, t1), . . .), tn) below, we use the curried notation
(· · · ((f t1) · · ·) tn), omitting parenthesis when unambiguous.

46 H. Barbosa et al.

Example 6. Given f : τ × τ → τ , g, h : τ → τ and a : τ , consider the constraints
{f(a) 	 g, f(a, a)
	 g(a), g(a) 	 h(a)}. The congruence closure module will
operate on {f a 	 g, f a a
	 g a, g a 	 h a}, thanks to the curry translation. •

SMT solvers generally perform theory combination via equalities over terms
shared between different theories. Given the different term representations kept
between the CC procedure and the rest of the solver, to ensure that theory
combination is done properly, the redesigned core ground solver keeps track of
terms shared with other theory solvers. Whenever an equality is inferred on a
term whose translation is shared with another theory, a shared equality is sent
out in terms of the translation.

Example 7. Consider the function symbols f : Int → Int, p : Int → o, a, b,
c1, c2, c3, c4 : Int, the set of arithmetic constraints {a ≤ b, b ≤ a, p(f(a) −
f(b)), ¬p(0), c1 	 c3 − c4, c2 	 0}, and the set of curried equality constraints
E = {p c1, ¬(p c2), c3 	 f a, c4 	 f b}. The equalities c3 	 f a and c4 	 f b keep
track of the fact that f a and f b are shared. The arithmetic module deduces a 	 b,
which is added to E′ = E ∪ {a 	 b}. By congruence, f a 	 f b is derived, which
propagates c3 	 c4 to the arithmetic solver. With this new equality, arithmetic
reasoning derives c1 	 c2, whose addition to the equality constraints produces
the unsatisfiable constraint set E′ ∪ {c1 	 c2}. •

Extensionality. The Extensionality rule (Fig. 1) is sufficient for handling
extensionality at the ground level. However, it has shortcomings when quan-
tifiers, even just first-order ones, are considered, as shown in the example below.
In the redesigned solver, extensionality is better handled via axioms.

Example 8. Consider the constraints E = {h f 	 b, h g
	 b, ∀x. f(x) 	 a,
∀x. g(x) 	 a}, with h : τ → τ → τ, f, g : τ → τ, a, b : τ . The pragmatic solver
could prove this problem unsatisfiable only with a ground decision procedure
that derives consequences of disequalities, since deriving f
	 g is necessary to
derive f(sk)
	 g(sk), via extensionality, which then leads to a conflict. But SMT
solvers are well known not to propagate all disequalities for efficiency consider-
ations. In contrast, with the axiom ∀F,G : τ̄n → τ. F
	 G ⇒ F (sk1, . . . , skn)
	
G(sk1, . . . , skn), the instantiation {F �→ f, G �→ g} (which may be derived, e.g.,
via enumerative instantiation, since f, g ∈ T(E)), provides the splitting lemma
f 	 g ∨ f(sk)
	 g(sk). The case E ∪ {f 	 g} leads to a conflict by pure ground
reasoning, while the case E ∪ {f sk
	 g sk} leads to a conflict from the instances
f(sk) 	 a, g(sk) 	 a of the quantified formulas in E. •

4.2 Quantifier Instantiation Module

In the pragmatic approach, the challenges for the E-matching procedure lied
in properly accounting for the @ symbol, functional equality, and the mixture
of partial and total applications, all of which lead to different term representa-
tions, in the term indexing data structure. In the redesign approach, the second

Extending SMT Solvers to Higher-Order Logic 47

challenge remains the same, and term indexing is extended in the same manner
of Sect. 3.4 to cope with it. The first and third challenge present themselves in
a different way, however, since the curried representation of terms is only used
inside the E-graph of the new CC procedure. To apply E-matching properly,
term indexing is extended to perform query by types, returning all the subterms
of a given type that occur in the E-graph, but translated back to the uncurried
representation.

Example 9. Consider E = {f(a, g(b, c)) 	 a,∀F. F (a) 	 h, ∀y. h(y)
	 a} and
the set of triggers {F (a), h(y)} where a, b, c : τ , h : τ → τ and f, g : τ × τ → τ .
The set of ground curried terms in E is {f a (g b c), f a, g b, g b c, f, g, a, b, c}. To
do E-matching with F (a) and h(y) the index returns the sets of uncurried sub-
terms {f(a, g(b, c)), a, g(b, c), b, c} and {f(a), g(b)} for the types τ and τ → τ ,
respectively. •

Since we do not perform HO unification, to instantiate functional variables it
suffices to extend the standard E-matching algorithm applied by SMT solvers by
accounting for function applications with variable heads. When matching a term
F (s̄n) with a ground term t the procedure essentially matches F with the head
of ground terms f(t̄n) congruent to t, as long as each si in s̄n can be matched
with each ti in t̄n. In the above example, matching the trigger F (a) with the
term f(a) yields the substitution {F �→ f}.

5 Evaluation

We have implemented the above techniques in the state-of-the-art CVC4 solver
and in the lightweight veriT solvers. We distinguish between two main versions
of each solver: one that performs a full applicative encoding (Sect. 2) into FOL
a priori, denoted @cvc and @vt, and another that implements the pragmatic
(Sects. 3) or redesigned (Sect. 4) extensions to HOL within the solvers, denoted
cvc and vt. Both CVC4 modes eliminate λ-abstractions via λ-lifting. Neither
veriT configuration supports benchmarks with λ-abstractions. The CVC4 con-
figurations that employ the “store axiom” (Sect. 3.4) are denoted by having the
suffix -sax.

We use the state-of-the-art HO provers Leo-III [43], Satallax [17,25] and
Ehoh [42,48] as baselines in our evaluation. The first two have refutationally
complete calculi for extensional HOL with Henkin semantics, while the third
only supports λ-free HOL without first-class Booleans. For Leo-III and Satallax
we use their configurations from the CASC competition [47], while for Ehoh we
report on their best non-portfolio configuration from Vukmirović et al., Ehoh
hb, [48].

We split our account between the case of proving HO theorems and that
of producing countermodels for HO conjectures since the two require different
strengths from the system considered. We discus only two of them, CVC4 and
Satallax, for the second evaluation. The reason is that Leo-III and veriT do not
provide models and Ehoh is not model-sound with respect to Henkin semantics,

48 H. Barbosa et al.

only with respect to λ-free Henkin semantics. We ran our experiments on a
cluster equipped with Intel E5-2637 v4 CPUs running Ubuntu 16.04, providing
one core, 60 s, and 8 GB RAM for each job. The full experimental data is publicly
available.1

We consider the following sets2 of HO benchmarks: the 3,188 monomorphic
HO benchmarks in TPTP [46], split into three subsets: the 530 problems that
are both λ-free and without first-class Booleans (TH0); the 743 that are only
λ-free (oTH0); and the 1,915 that are neither (λoTH0). The next sets are Sledge-
hammer (SH) benchmarks from the Judgment Day test harness [15], consisting
of 1,253 provable goals manually chosen from different Isabelle theories [34] and
encoded into λ-free monomorphic HOL problems without first-class Booleans.
The encoded problems are such that they are provable only if the original goal is.
These problems are split into four subsets, JD32

lift, JD32
combs, JD512

lift , and JD512
combs

depending, respectively, on whether they have 32 or 512 Isabelle lemmas, or
facts, and whether λ-abstractions are removed via λ-lifting or via SK-style com-
binators. The last set, λoSH1024, has 832 SH benchmarks from 832 provable goals
randomly selected from different Isabelle theories, encoded with 1,024 facts and
preserving λs and first-class Booleans. Considering a varying number of facts in
the SH benchmarks emulates the needs of increasingly larger problems in inter-
active verification, while different λ handling schemes allow us to measure from
which alternative each particular solver benefits more.

We point out that our extensions of CVC4 and veriT do not significantly
compromise their performance on FO benchmarks. The pragmatic extension of
CVC4 has virtually the same performance as the original solver on SMT-LIB [7],
the standard SMT test suite. The redesigned veriT does have a considerably
lower performance. However, while it is, for example, three times slower on the
QF UF category of SMT-LIB due to its slower ground solver for EUF, it still
performs better on this category than CVC4. This shows that despite the added
cost of supporting higher-order reasoning, the FO performance of veriT is still
on par with the state of the art.

5.1 Proving HO Theorems

The number of theorems proved by each solver configuration per benchmark
set is given in Table 1. Grayed out cells represent unsupported benchmark sets.
Figure 2 compares benchmarks solved per time. It only includes benchmark sets
supported by all solvers (namely TH0 and the JD benchmarks).

As expected, the results vary significantly between benchmark sets. Leo-
III and Satallax have a clear advantage on TPTP, which contains a significant
number of small logical problems meant to exercise the HO features of a prover.
Considering the TPTP benchmarks from less to more expressive, i.e., including
first-class Booleans and then λs, we see the advantages of these systems only

1 http://matryoshka.gforge.inria.fr/pubs/hosmt/.
2 Since veriT does not parse TPTP, its reported results are on the equivalent bench-

marks as translated by CVC4 into the HOSMT language [3].

http://matryoshka.gforge.inria.fr/pubs/hosmt/

Extending SMT Solvers to Higher-Order Logic 49

Table 1. Proved theorems per benchmark set. Best results are in bold.

Solver Total TH0 oTH0 λoTH0 JD32
lift JD32

combs JD512
lift JD512

combs λoSH1024

9032 530 743 1915 1253 1253 1253 1253 832

4318 384 344 940 457 459 655 667 412
4348 390 373 937 456 457 655 668 412

cvc 4232 389 342 865 463 447 667 654 405
cvc-sax 4275 389 376 883 458 443 667 654 405
Leo-III 4410 402 452 1178 491 482 609 565 231
Satallax 3961 392 457 1215 394 390 407 404 302

370 332 404 396 525 529
vt 369 346 426 424 550 556
Ehoh 394 489 481 637 630

increase. We also observe that both @cvc and cvc, but especially the latter,
benefit from -sax as more complex benchmarks are considered in TPTP, showing
that the disadvantage of not synthesizing λ-abstractions can sometimes be offset
by well-chosen axioms. Nevertheless, the results on λoTH0 show that this axiom
alone is far from enough to offset the gap between @cvc and cvc, with cvc giving
up more often from lack of instantiations to perform.

Fig. 2. Execution times in secs on 5,543 benchmarks, from TH0 and JD, supported by
all solvers.

Sledgehammer-generated problems stem from formalization efforts across dif-
ferent applications. As others note [45,48], the bottleneck in solving these prob-
lems is often scalability and efficient FO reasoning, rather than a refined handling
of HO constructs, especially as more facts are considered. Thus, the ability to
synthesize λ-abstractions is not sufficient for scalability as more facts are con-
sidered, and Ehoh and the CVC4 extensions eventually surpass the native HO
provers. In particular, in the largest set we considered, λoSH1024, both @cvc and
cvc have significant advantages. As in λoTH0, @cvc also solves more problems

50 H. Barbosa et al.

than cvc in λoSH1024, which we attribute again to @cvc being able to perform
more instantiations than cvc On commonly solved problems, however, cvc is
often faster than @cvc, albeit by a small margin: 15% on average.

Both CVC4 configurations dominate JD512 with a significantly margin over
Ehoh and Leo-III. Comparing the results between using λ-lifting or combinators,
the former favors cvc and the latter, @cvc. These results, as well as the previ-
ously discussed ones, indicate that for unsatisfiable benchmarks the pragmatic
extension of CVC4 should not, in its current state, substitute an encoding-based
approach but complement it. In fact, a virtual best solver of all the CVC4 config-
urations, as well as others employing interleaved enumerative instantiation [37],
in portfolio, would solve 703 problems in JD512

lift , 702 in JD512
combs, 453 in λoSH1024,

and 408 in TH0, the most in these categories, even also considering a virtual best
solver of all Ehoh configurations from [48]. The CVC4 portfolio would also solve
482 problems in JD32

lift, and 482 in JD32
combs, doing almost as well as Leo-III, and

1,001 problems in λoTH0, The virtual best CVC4 has a success rate 3% points
higher than @cvc on Sledgehammer benchmarks, as well as overall, which rep-
resents a significant improvement when considering the usage of these solvers as
backends for interactive theorem provers.

Differently from the pragmatic extension in CVC4, which provides more of an
alternative to the full applicative encoding, the redesigned veriT is an outright
improvement, with vt consistently solving more problems and with better solving
times than @vt, especially on harder problems, as seen by the wider separation
between them after 10s in Fig. 2. Overall, veriT’s performance, consistently with
it being a lightweight solver, lags behind CVC4 and Ehoh as bigger benchmarks
are considered. However, it is respectable compared with Leo-III’s and ahead of
Satallax’s performance, thus validating the effort of redesigning the solver for
a more refined handling of higher-order constructs and suggesting that further
extensions should be beneficial.

5.2 Providing Countermodels to HO Conjectures

The number of countermodels found by each solver configuration per benchmark
set is given in Table 2. We consider the two CVC4 extension, @cvc and cvc, run
in finite-model-finding mode (-fmf) [39]. The builtin HO support in cvc is vastly
superior to @cvc when it comes to model finding, as cvc-fmf greatly outperforms
@cvc-fmf-sax. We note that @cvc-fmf is only model-sound if combined with -sax.

Table 2. Conjectures with found countermodels per benchmark set. Best results in
bold.

Solver Total TH0 oTH0 λoTH0 JD32
lift JD32

combs JD512
lift JD512

combs λoSH1024

9032 530 743 1915 1253 1253 1253 1253 832

@cvc-fmf-sax 224 58 43 80 20 18 1 1 3

cvc-fmf 482 90 17 205 93 73 1 1 2

Satallax 186 72 15 98 0 0 0 0 1

Extending SMT Solvers to Higher-Order Logic 51

Differently from cvc-fmf, which fails to provide a model as soon as it is faced with
quantification over a functional sort, in @cvc-fmf functional sorts are encoded
as atomic sorts. Thus it needs the extra axiom to ensure model soundness. For
example, @cvc-fmf considers Example 5 satisfiable while @cvc-fmf-sax properly
reports it unsatisfiable.

The high number of countermodels in JD32 indicates, not surprisingly, that
providing few facts makes several SH goals unprovable. Nevertheless, it is still
useful to know where exactly the Sledgehammer generation is being “incomplete”
(i.e., making originally provable goals unprovable), something that is difficult to
determine without effective model finding procedures.

6 Concluding Remarks

We have presented extensions for SMT solvers to handle HOSMT problems. The
pragmatic extension of CVC4, which can be implemented in other state-of-the-
art SMT solver with similar level of effort, performs similarly to the standard
encoding-based approach despite its limited support for HO instantiation. More-
over, it allows numerous new problems to be solved by CVC4, with a portfolio
approach performing very competitively and often ahead of state-of-the-art HO
provers. The redesigned veriT on the other hand consistently outperforms its
standard encoding-based counterpart, showing it can be the basis for future
advancements towards stronger HO automation.

Acknowledgments. We are grateful to Jasmin Blanchette and Pascal Fontaine for
numerous discussions throughout the development of this work, for providing funding
for research visits and for suggesting many improvements. We also thank Jasmin for
generating several of the benchmarks with which we evaluate our approach; Simon
Cruanes and Martin Riener for many fruitful discussions on the intricacies of HOL;
Andres Nötzli for help with the table and plot scripts; Mathias Fleury, Hans-Jörg
Schurr and Sophie Tourret for suggesting many improvements. This work was partially
supported by the National Science Foundation under Award 1656926 and the European
Research Council (ERC) under starting grant Matryoshka (713999).

References

1. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-

tion and simplification. J. Log. Comput. 4(3), 217–247 (1994)
3. Barbosa, H., Blanchette, J.C., Cruanes, S., El Ouraoui, D., Fontaine, P.: Language

and proofs for higher-order SMT (work in progress). In: Dubois, C., Paleo, B.W.
(eds.) PXTP 2017. EPTCS, vol. 262, pp. 15–22 (2017)

4. Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 214–230.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 13

5. Barbosa, H., Reynolds, A., El Ouraoui, D., Tinelli, C., Barrett, C.: Extending SMT
solvers to higher-order logic. Technical report. The University of Iowa, May 2019

https://doi.org/10.1007/978-3-662-54580-5_13

52 H. Barbosa et al.

6. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

7. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report. Department of Computer Science, The University of Iowa (2017)

8. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories,
Chap. 26. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability. FAIA, vol. 185, pp. 825–885. IOS Press (2009)

9. Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for
lambda-free higher-order logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR 2018. LNCS, vol. 10900, pp. 28–46. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94205-6 3

10. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H.
(ed.) Computational Logic. Handbook of the History of Logic, vol. 9, pp. 215–254.
Elsevier (2014)

11. Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover
LEO-II. J. Autom. Reason. 55, 389–404 (2015)

12. Bhayat, A., Reger, G.: Set of support for higher-order reasoning. In: Konev, B.,
Urban, J., Rümmer, P. (eds.) PAAR-2018. CEUR Workshop Proceedings, vol.
2162, pp. 2–16. CEUR-WS.org (2018)

13. Blanchette, J.C.: Automatic proofs and refutations for higher-order logic. Ph.D.
thesis. Technical University Munich (2012)

14. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formaliz. Reason. 9(1), 101–148 (2016)

15. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14203-1 9

16. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS,
vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02959-2 12

17. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31365-3 11

18. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS, vol. 10483, pp. 172–188. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66167-4 10

19. Czajka, �L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory.
J. Autom. Reason. 61, 423–453 (2018)

20. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 183–198. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73595-3 13

21. de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In:
FMCAD 2009, pp. 45–52. IEEE (2009)

22. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52, 365–473 (2005)

23. Dowek, G.: Higher-order unification and matching. In: Robinson, J.A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1009–1062. Elsevier and
MIT Press (2001)

24. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27, 758–771 (1980)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-94205-6_3
https://doi.org/10.1007/978-3-319-94205-6_3
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/978-3-540-73595-3_13

Extending SMT Solvers to Higher-Order Logic 53

25. Färber, M., Brown, C.: Internal guidance for Satallax. In: Olivetti, N., Tiwari, A.
(eds.) IJCAR 2016. LNCS, vol. 9706, pp. 349–361. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40229-1 24

26. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

27. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)
28. Hughes, R.J.M.: Super combinators: a new implementation method for applicative

languages. In: Symposium on LISP and Functional Programming, pp. 1–10 (1982)
29. Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Hähnle, R., Possega,

J. (eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 294–309. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-59338-1 43

30. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reason. 40(1), 35–60 (2008)

31. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27, 356–364 (1980)

32. Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Inf. Com-
put. IC 2005(4), 557–580 (2007)

33. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 371–443.
Elsevier Science (2001)

34. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

35. Noshita, K.: Translation of Turner combinators in O(n log n) space. IPL 20, 71–74
(1985)

36. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pages 1–11. EasyChair
(2012)

37. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 112–131.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 7

38. Reynolds, A., Tinelli, C., de Moura, L.: Finding conflicting instances of quantified
formulas in SMT. In: FMCAD 2014, pp. 195–202. IEEE (2014)

39. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 42

40. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS, vol. 7898, pp. 377–391. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38574-2 26

41. Robinson, J.A.: Mechanizing higher order logic. Mach. Intell. 4, 151–170 (1969)
42. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15, 111–126 (2002)
43. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D.,

Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS, vol. 10900, pp. 108–116.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 8

44. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an
extensional theory of arrays. In: LICS 2001, pp. 29–37. IEEE Computer Society
(2001)

https://doi.org/10.1007/978-3-319-40229-1_24
https://doi.org/10.1007/978-3-319-40229-1_24
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/3-540-59338-1_43
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-642-39799-8_42
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-319-94205-6_8

54 H. Barbosa et al.

45. Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledge-
hammer test bench. J. Appl. Log. 11, 91–102 (2013)

46. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43, 337–362 (2009)

47. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37, 99–101
(2016)

48. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac
prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 192–210. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0 11

https://doi.org/10.1007/978-3-030-17462-0_11
https://doi.org/10.1007/978-3-030-17462-0_11

	Extending SMT Solvers to Higher-Order Logic
	1 Introduction
	2 Preliminaries
	2.1 SMT Solvers and Quantified Reasoning

	3 A Pragmatic Extension for HOSMT
	3.1 Eliminating -Abstractions and Partial Applications of Theory Symbols
	3.2 Extending the Ground Solver to QF_HOSMT
	3.3 Model Generation for Ground Formulas
	3.4 Extending the Quantifier Instantiation Module to HOMST

	4 Redesigning a Solver for HOSMT
	4.1 Redesigning the Core Ground Solver for HOSMT
	4.2 Quantifier Instantiation Module

	5 Evaluation
	5.1 Proving HO Theorems
	5.2 Providing Countermodels to HO Conjectures

	6 Concluding Remarks
	References

