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Abstract. Proof production for SMT solvers is paramount to ensure
their correctness independently from implementations, which are often
prohibitively difficult to verify. Historically, however, SMT proof pro-
duction has struggled with performance and coverage issues, resulting in
the disabling of many crucial solving techniques and in coarse-grained
(and thus hard to check) proofs. We present a flexible proof-production
architecture designed to handle the complexity of versatile, industrial-
strength SMT solvers and show how we leverage it to produce detailed
proofs, including for components previously unsupported by any solver.
The architecture allows proofs to be produced modularly, lazily, and with
numerous safeguards for correctness. This architecture has been imple-
mented in the state-of-the-art SMT solver cvc5. We evaluate its proofs
for SMT-LIB benchmarks and show that the new architecture produces
better coverage than previous approaches, has acceptable performance
overhead, and supports detailed proofs for most solving components.

1 Introduction

SMT solvers [9] are widely used as backbones of formal methods tools in a
variety of applications, often safety-critical ones. These tools rely on the solver’s
correctness to guarantee the validity of their results such as, for instance, that an
access policy does not inadvertently give access to sensitive data [4]. However,
SMT solvers, particularly industrial-strength ones, are often extremely complex
pieces of engineering. This makes it hard to ensure that implementation issues do
not affect results. As the industrial use of SMT solvers increases, it is paramount
to be able to convince non-experts of the trustworthiness of their results.

A solution is to decouple confidence from the implementation by coupling re-
sults with machine-checkable certificates of their correctness. For SMT solvers,
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this amounts to providing proofs of unsatisfiability. The main challenges are
justifying a combination of theory-specific algorithms while keeping the solver
performant and providing enough details to allow scalable proof checking, i.e.,
checking that is fundamentally simpler than solving. Moreover, while proof pro-
duction is well understood for propositional reasoning and common theories,
that is not the case for more expressive theories, such as the theory of strings,
or for more advanced solver operations such as formula preprocessing.

We present a new, flexible proof-production architecture for versatile, indus-
trial-strength SMT solvers and discuss its integration into the cvc5 solver [5]. The
architecture (Section 2) aims to facilitate the implementation effort via modular
proof production and internal proof checking, so that more critical components
can be enabled when generating proofs. We provide some details on the core
proof calculus and how proofs are produced (Section 3), in particular how we
support eager and lazy proof production with built-in proof reconstruction (Sec-
tion 3.2). This feature is particularly important for substitution and rewriting
techniques, facilitating the instrumentation of notoriously challenging function-
alities, such as simplification under global assumptions [6, Section 6.1] and string
solving [40, 46, 48], to produce detailed proofs. Finally, we describe (Section 5)
how the architecture is leveraged to produce detailed proofs for most of the the-
ory reasoning, critical preprocessing, and underlying SAT solving of cvc5. We
evaluate proof production in cvc5 (Section 6) by measuring the proof overhead
and the proof quality over an extensive set of benchmarks from SMT-LIB [8].

In summary, our contributions are a flexible proof-producing architecture
for state-of-the-art SMT solvers, its implementation in cvc5, the production of
detailed proofs for simplification under global assumptions and the full theory
of strings, and initial experimental evidence that proof-production overhead is
acceptable and detailed proofs can be generated for a majority of the problems.

Preliminaries We assume the usual notions and terminology of many-sorted
first-order logic with equality (≈) [29]. We consider signatures Σ all containing
the distinguished Boolean sort Bool. We adopt the usual definitions of well-sorted
Σ-terms, with literals and formulas as terms of sort Bool, and Σ-interpretations.
A Σ-theory is a pair T = (Σ, I) where I, the models of T , is a class of Σ-
interpretations closed under variable reassignment. A Σ-formula φ is T -valid
(resp., T -unsatisfiable) if it is satisfied by all (resp., no) interpretations in I.
Two Σ-terms s and t of the same sort are T -equivalent if s ≈ t is T -valid.
We write a⃗ to denote a tuple (a1, . . . , an) of elements, with n ≥ 0. Depending
on context, we will abuse this notation and also denote the set of the tuple’s
elements or, in case of formulas, their conjunction. Similarly, for term tuples s⃗, t⃗
of the same length and sort, we will write s⃗ ≈ t⃗ to denote the conjunction of
equalities between their respective elements.

2 Proof-production Architecture

Our proof-production architecture is intertwined with the CDCL(T ) architec-
ture [43], as shown in Figure 1. Proofs are produced and stored modularly by
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Fig. 1: Flexible proof-production architecture for CDCL(T )-based SMT solvers.

In the above, ψi ∈ {ϕ⃗, L⃗} for each i, with ψi not necessarily distinct from ψi+1.

each solving component, which also checks they meet the expected proof struc-
ture for that component, as described below. Proofs are combined only when
needed, via post-processing. The pre-processor receives an input formula φ and
simplifies it in a variety of ways into formulas ϕ1, . . . , ϕn. For each ϕi, the pre-
processor stores a proof P : φ→ ϕi justifying its derivation from φ.

The propositional engine receives the preprocessed formulas, and its clausifier
converts them into a conjunctive normal form C1 ∧ · · · ∧Cl. A proof P : ψ → Ci
is stored for each clause Ci, where ψ is a preprocessed formula. Note that sev-
eral clauses may derive from each formula. Corresponding propositional clauses
Cp

1 , . . . , C
p
l , where first-order atoms are abstracted as Boolean variables, are

sent to the SAT solver, which checks their joint satisfiability. The propositional
engine enters a loop with the theory engine, which considers a set of literals as-
serted by the SAT solver (corresponding to a model of the propositional clauses)
and verifies its satisfiability modulo a combination of theories T . If the set is
T -unsatisfiable, a lemma L is sent to the propositional engine together with its
proof P : L. Note that since lemmas are T -valid, their proofs have no assump-
tions. The propositional engine stores these proofs and clausifies the lemmas,
keeping the respective clausification proofs in the clausifier. The clausified and
abstracted lemmas are sent to the SAT solver to block the current model and
cause the assertion of a different set of literals, if possible. If no new set is
asserted, then all the clauses C1, . . . , Cm generated until then are jointly unsat-
isfiable, and the SAT solver yields a proof P : C1 ∧ · · · ∧ Cm → ⊥. Note that
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the proof is in terms of the first-order clauses, as are the derivation rules that
conclude ⊥ from them.

The post-processor of the propositional engine connects the assumptions of
the SAT solver proof with the clausifier proofs, building a proof P : ϕ1∧· · ·∧ϕn →
⊥. Since theory lemmas are T -valid, the resulting proof only has preprocessed
formulas as assumptions. The final proof is built by the SMT solver’s post-
processor combining this proof with the preprocessing proofs P : φ → ϕi. The
resulting proof P : φ→ ⊥ justifies the T -unsatisfiability of the input formula.

3 The Internal Proof Calculus

In this section, we specify how proofs are represented in the internal calculus of
cvc5. We also provide some low-level details on how proofs are constructed and
managed in our implementation.

The proof rules of the internal calculus are similar to rules in other calculi for
ground first-order formulas, except that they are made a little more operational
by optionally having argument terms and side conditions. Each rule has the form

r
φ1 · · · φn

ψ
or r

φ1 · · · φn | t1, . . . , tm
ψ

if C

with identifier r, premises φ1, . . . , φn, arguments t1, . . . , tm, conclusion ψ, and
side condition C. The argument terms are used to construct the conclusion from
the premises and can be used in the side condition together with the premises.

3.1 Proof Checkers and Proofs

The semantics of each proof rule r is provided operationally in terms of a proof-
rule checker for r. This is a procedure that takes as input a list of argument
terms t⃗ and a list of premises φ⃗ for r. It returns fail if the input is malformed,
i.e., it does not match the rule’s arguments and premises or does not satisfy the
side condition. Otherwise, it returns a conclusion formula ψ expressing the result
of applying the rule. All proof rules of the internal calculus have an associated
proof-rule checker. We say that a proof rule proves a formula ψ, from given
arguments and premises, if its checker returns ψ.

cvc5 has an internal proof checker built modularly out of the individual
proof-rule checkers. This checker is meant mostly for internal debugging dur-
ing development, to help guarantee that the constructed proofs are correct. The
expectation is that users will rely instead on third-party tools to check the proof
certificates emitted by the solver.

A proof object is constructed internally using a data structure that we will
describe abstractly here and call a proof node. This is a triple (r, N⃗ , t⃗) consisting

of a rule identifier r; a sequence N⃗ of proof nodes, its children; and a sequence t⃗ of
terms, its arguments. The relationships between proof nodes and their children
induces a directed graph over proof nodes, with edges from proofs nodes to
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Fig. 2: Core proof rules of the internal calculus.

their children. We call a single-root graph rooted at node N a proof. A proof
P is well-formed if it is finite, acyclic, and there is a total mapping Ψ from the
nodes of P to formulas such that, for each node N = (r, (N1, . . . , Nm), t⃗), Ψ(N)
is the formula returned by the proof checker for rule r when given premises
Ψ(N1), . . . , Ψ(Nn) and arguments t⃗. For a well-formed proof P with root N and
mapping Ψ , the conclusion of P is the formula Ψ(N); a subproof of P is any
proof rooted at a descendant of N in P . We will identify a well-formed proof
with its root node.

3.2 Core Proof Rules

In total, the internal calculus of cvc5 consists of 155 proof rules,1 which cover
all reasoning performed by the SMT solver, including theory-specific rules, rules
for Boolean reasoning, and others. In the remainder of this section, we describe
the core rules of the internal calculus, which are used throughout the system,
and are illustrated in Figure 2.

Proof rules for equality Many theory solvers in cvc5 perform theory-specific
reasoning on top of basic equational reasoning. The latter is captured by the
proof rules eq res, refl, symm, trans, and cong. The first rule is used to prove a
formula ψ from a formula φ that was proved equivalent to ψ. The rest are the
standard rules for computing the congruence closure of a set of term equalities.

Proof rules for rewriting, substitution and witness forms A single
coarse-grained rule, sr, is used for tracking justifications for core utilities in the
SMT solver such as rewriting and substitution. This rule, together with other
non-core rules with side conditions (omitted for brevity), allows the generation of
coarse-grained proofs that trust the correctness of complex side conditions. Those
conditions involve rewriting and substitution operations performed by cvc5 dur-
ing solving. More fine-grained proofs can be constructed from coarse-grained
ones by justifying the various rewriting and substitution steps in terms of sim-
pler proof rules. This is done with the aid of the equality rules mentioned above

1 See https://cvc5.github.io/docs/cvc5-1.0.0/proofs/proof_rules.html

https://cvc5.github.io/docs/cvc5-1.0.0/proofs/proof_rules.html
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and the additional core rules atom rewrite and witness. To describe atom rewrite,
witness, and sr, we first need to introduce some definitions and notations.

A rewriter R is a function over terms that preserves equivalence in the back-
ground theory T , i.e., returns a term t↓R T -equivalent to its input t. We call
t↓R the rewritten form of t with respect to R. Currently, cvc5 uses a handful
of specialized rewriters for various purposes, such as evaluating constant terms,
preprocessing input formulas, and normalizing terms during solving. Each indi-
vidual rewrite step executed by a rewriter R is justified in fine-grained proofs
by an application of the rule atom rewrite, which takes as argument both (an
identifier for) R and the term s the rewrite was applied to. Note that the rule’s
soundness requires that the rewrite step be equivalence preserving.

A (term) substitution σ is a finite sequence (t1 7→ s1, . . . , tn 7→ sn) of oriented
pairs of terms of the same sort. A substitution method S is a function that takes a
term r and a substitution σ and returns a new term that is the result of applying
σ to r, according to some strategy. We write S(r, σ) to denote the resulting term.
We distinguish three kinds of substitution methods for σ: simultaneous, which
returns the term obtained by simultaneously replacing every occurrence of term
ti in r with si, for i = 1, . . . , n; sequential, which splits σ into n substitutions
(t1 7→ s1), . . . , (tn 7→ sn) and applies them in sequence to r using the simultane-
ous strategy above; and fixed-point, which, starting with r, repeatedly applies σ
with the simultaneous strategy until no further subterm replacements are pos-
sible. For example, consider the application S(y, (x 7→ u, y 7→ f(z), z 7→ g(x))).
The steps the substitution method takes in computing its result are the fol-
lowing: y ⇝ f(z) if S is simultaneous; y ⇝ f(z) ⇝ f(g(x)) if S is sequential;
y ⇝ f(z)⇝ f(g(x))⇝ f(g(u)) if S is fixed-point.

In cvc5, we use a substitution derivation method D to derive a contextual
substitution (t1 7→ s1, . . . , tn 7→ sn) from a collection φ⃗ of derived formulas. The
substitution essentially orients a selection of term equalities ti ≈ si entailed by
φ⃗ and, as such, can be applied soundly to formulas derived from φ⃗.2 We write
D(φ⃗) to denote the substitution computed by D from φ⃗.

Finally, cvc5 often introduces fresh variables, or Skolem variables, which are
implicitly globally existentially quantified. This happens as a consequence of
Skolemization of existential variables, lifting of if-then-else terms, and some kinds
of flattening. Each Skolem variable k is associated with a term k↑ of the same
sort containing no Skolem variables, called its witness term. This global map
from Skolem variables to their witness term allows cvc5 to detect when two
Skolem variables can be equated, as a consequence of their respective witness
terms becoming equivalent in the current context [47]. Witness terms can also be
used to eliminate Skolem variables at proof output time. We write t↑ to denote
the witness form of term t, which is obtained by replacing every Skolem variable
in t by its witness term. For example, if k1 and k2 are Skolem variables with
associated witness terms ite(x ≈ z, y, z) and y − z, respectively, and φ is the
formula ite(x ≈ k2, k1 ≈ y, k1 ≈ z), the witness form φ↑ of φ is the formula

2 Observe that substitutions are generated dynamically from the formulas being pro-
cessed, whereas rewrite rules are hard-coded in cvc5’s rewriters.
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ite(x ≈ y− z, ite(x ≈ z, y, z) ≈ y, ite(x ≈ z, y, z) ≈ z). When a Skolem variable k
appears in a proof, the witness proof rule is used to explicitly constrain its value
to be the same as that of the term k↑ it abstracts.3

We can now explain the sr proof rule, which is parameterized by a substitution
method S, a rewriter R, and substitution derivation method D. The rule is used
to transform the proof of a formula φ into one of a formula ψ provided that the
two formulas are equal up to rewriting under a substitution derived from the
premises φ⃗. Note that this rule is quite general because its conclusion ψ, which
is provided as an argument, can be any formula that satisfies the side condition.

Proof rules for scoped reasoning Two of the core proof rules, assume
and scope, enable local reasoning. Together they achieve the effect of the ⇒-
introduction rule of Natural Deduction. However, separating the local assump-
tion functionality in assume provides more flexibility. That rule has no premises
and introduces a local assumption φ provided as an argument. The scope rule
is used to close the scope of the local assumptions φ1, . . . , φn made to prove a
formula φ, inferring the formula φ1 ∧ · · · ∧ φn ⇒ φ.

We say that φ is a free assumption in proof P if P has a node (assume, (), φ)
that is not a subproof of a scope node with φ as one of its arguments. A proof
is closed if it has no free assumptions, and open otherwise.

Soundness All proof rules other than assume are sound with respect to the
background theory T in the following sense: if a rule proves a formula ψ from
premises φ⃗, every model of T that satisfies φ⃗, and assigns the same values to
Skolem variables and their respective witness term, satisfies ψ as well. Based on
this and a simple structural induction argument, one can show that well-formed
closed proofs have T -valid conclusions. In contrast, open proofs have conclusions
that are T -valid only under assumptions. More precisely, in general, if φ⃗ are all
the free assumptions of a well-formed proof P with conclusion ψ and k⃗ are all
the Skolem variables introduced in P , then k⃗ ≈ k⃗↑ ∧ φ⃗⇒ ψ is T -valid.

3.3 Constructing Proof Nodes

We have implemented a library of proof generators that encapsulates common
patterns for constructing proof nodes. We assume a method getProof that takes
the proof generator g and a formula φ as input and returns a proof node with
conclusion φ based on the information in g. During solving, cvc5 uses a combina-
tion of eager and lazy proof generation. In general terms, eager proof generation
involves constructing proof nodes for inference steps at the time those steps are
taken during solving. Eager proof generation may be required if the computation
state pertinent to that inference cannot be easily recovered later. In contrast,
lazy proof generation occurs for inferred formulas associated with proof genera-
tors that can do internal bookkeeping to be able to construct proof nodes for the
formula after solving is completed. Depending on the formula, different kinds of

3 The proof rules that account for the introduction of Skolem variables in the first
place are not part of the core set and so are not discussed here.
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Algorithm 1 Proof generation for term-conversion generators, rewrite-once pol-
icy. B is a lazy proof builder, R a map from terms to their converted form, and
cpre, cpost are sets of pairs of equalities and the proof generators justifying them.

getProof(g, φ) where g contains cpre, cpost and φ is t1 ≈ t2

1: B := ∅, R := ∅
2: getTermConv(t1, cpre, cpost, B,R)
3: if R[t1] ̸= t2 then fail else return getProof(B, t1 ≈ R[t1])

getTermConv(s, cpre, cpost, B,R), where s = f(s1, . . . , sn)

1: if s in dom(R) then return
2: if (s ≈ s′, g′) ∈ cpre for some s′, g′ then
3: R[s] := s′, addLazyStep(B, s ≈ s′, g′)
4: return
5: for 1 ≤ i ≤ n do getTermConv(si, cpre, cpost, B,R)
6: R[s] := r, where r = f(R[s1], . . . , R[sn])
7: if s ̸= r then addStep(B, cong, (s1 ≈ R[s1], . . . , sn ≈ R[sn]), f)
8: else addStep(B, rfl, (), s ≈ s)
9: if (r ≈ r′, g′) ∈ cpost for some r′, g′ then
10: R[s] := r′, addLazyStep(B, r ≈ r′, g′), addStep(B, trans, (s ≈ r, r ≈ r′), ())

proof generators are used. For brevity, we only describe in detail (see Section 3.2)
the proof generator most relevant to the core calculus, the term-conversion proof
generator, targeted for substitution and rewriting proofs.

4 Proof Reconstruction for Substitution and Rewriting

Once it determines that the input formulas φ1, . . . , φn are jointly unsatisfi-
able, the SMT solver has a reference to a proof node P that concludes ⊥ from
the free assumptions φ1, . . . , φn. After the post-processor is run, the (closed)
proof (scope, P ′, (φ1, . . . , φn)) is then generated as the final proof for the user,
where P ′ is the result of optionally expanding coarse-grained steps (in particu-
lar, applications of the rule sr) in P into fine-grained ones. To do so, we require
the following algorithm for generating term-conversion proofs.

In particular, we focus on equalities t ≈ s whose proof can be justified by
a set of steps that replace subterms of t until it is syntactically equal to s. We
assume these steps are provided to a term-conversion proof generator. Formally,
a term-conversion proof generator g is a pair of sets cpre and cpost. The set cpre
(resp., cpost) contains pairs of the form (t ≈ s, gt,s) indicating that t should
be replaced by s in a preorder (resp., postorder) traversal of the terms that g
processes, where gt,s is a proof generator that can prove the equality t ≈ s. We
require that neither cpre nor cpost contain multiple entries of the form (t ≈ s1, g1)
and (t ≈ s2, g2) for distinct (s1, g1) and (s2, g2).

The procedure for generating proofs from a term-conversion proof generator
g is given in Algorithm 1. When asked to prove an equality t1 ≈ t2, getProof
traverses the structure of t1 and applies steps from the sets cpre and cpost from
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g. The traversal is performed by the auxiliary procedure getTermConv which
relies on two data structures. The first is a lazy proof builder B that stores the
intermediate steps in the overall proof of t1 ≈ t2. The proof builder is given these
steps either via addStep, as a concrete triple with the proof rule, a list of premise
formulas, and a list of argument terms, or as a lazy step via addLazyStep, with a
formula and a reference to another generator that can prove that formula. The
second data structure is a mapping R from terms to terms that is updated (using
array syntax in the pseudo-code) as the converted form of terms is computed
by getTermConv. For any term s, executing getTermConv(s, cpre, cpost, B,R) will
result in R[s] containing the converted form of s according to the rewrites in
cpre and cpost, and B storing a proof step for s ≈ R[s]. Thus, the procedure
getProof succeeds when, after invoking getTermConv(t1, cpre, cpost, B,R) with B
and R initially empty, the mapping R contains t2 as the converted form of t1.
The proof for the equality t1 ≈ R[t1] can then be constructed by calling getProof
on the lazy proof builder B, based on the (lazy) steps stored in it.

Each subterm s of t1 is traversed only once by getTermConv by checking
whether R already contains the converted form of s. When that is not the case,
s is first preorder processed. If cpre contains an entry indicating that s rewrites
to s′, this rewrite step is added to the lazy proof builder and the converted form
R[s] of s is set to s′. Otherwise, the immediate subterms of s, if any, are traversed
and then s is postorder processed. The converted form of s is set to some term
r of the form f(R[s1], . . . , R[sn]), considering how its immediate subterms were
converted. Note that B will contain steps for s⃗ ≈ R[s⃗]. Thus, the equality s ≈ r
can be proven by congruence for function f with these premises if s ̸= r, and by
reflexivity otherwise. Furthermore, if cpost indicates that r rewrites to r′, then
this step is added to the lazy proof builder; a transitivity step is added to prove
s ≈ r′ from t ≈ r and r ≈ r′; and the converted form R[s] is set to r′.

Example 1. Consider the equality t ≈ ⊥, where t = f(b)+f(a) < f(a−0)+f(b),
and suppose the conversion of t is justified by a term-conversion proof generator
g containing the sets cpre = {(f(b) + f(a) ≈ f(a) + f(b), gAC), (a− 0 ≈ a, gArith0 )}
and cpost = {(f(a)+f(b) < f(a)+f(b) ≈ ⊥, gArith1 )}. The generator gAC provides
a proof based on associative and commutative reasoning, whereas gArith0 and
gArith1 provide proofs based on arithmetic reasoning. Invoking getProof(g, t ≈ ⊥)
initiates the traversal with getTermConv(t, cpre, cpost, ∅, ∅). Since t is not in the
conversion map, it is preorder processed. However, as it does not occur in cpre,
nothing is done and its subterms are traversed. The subterm f(b) + f(a) is
equated to f(a) + f(b) in cpre, justified by gAC. Therefore R is updated with
R[f(b) + f(a)] = f(a) + f(b) and the respective lazy step is added to B. The
subterms of f(b)+f(a) are not traversed, therefore the next term to be traversed
is f(a−0)+f(b). Since it does not occur in cpre, its subterm f(a−0) is traversed,
which analogously leads to the traversal of a−0. As a−0 does occur in cpre, bothR
and B are updated accordingly and the processing of its parent f(a−0) resumes.
A congruence step added to B justifies its conversion to f(a) being added to R.
No more additions happen since f(a) does not occur in cpost. Analogously, R and
B are updated with f(b) not changing and f(a− 0) + f(b) being converted into
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f(a) + f(b). Finally, the processing returns to the initial term t, which has been
converted to R[f(b)+ f(a)] < R[f(a+0)+ f(b)], i.e., f(a)+ f(b) < f(a)+ f(b).
Since this term is equated to ⊥ in cpost, justified by gArith1 , the respective lazy
step is added to B, as well as a transitivity step to connect f(b) + f(a) <
f(a− 0) + f(b) ≈ f(a) + f(b) < f(a) + f(b) and f(a) + f(b) < f(a) + f(b) ≈ ⊥.
At this point, the execution terminates with R[f(b)+f(a) < f(a+0)+f(b)] = ⊥,
as expected. A proof for t ≈ ⊥ with the following structure can then be extracted
from B:

P0 : cong

Lazy
g
AC

f(b) + f(a) ≈ f(a) + f(b) P1 | <

f(b) + f(a) < f(a− 0) + f(b) ≈ f(a) + f(b) < f(a) + f(b)
P2 : refl

| f(b) ≈ f(b)

f(b) ≈ f(b)

trans
P0

Lazy
g
Arith
1

f(a) + f(b) < f(a) + f(b) ≈ ⊥
f(b) + f(a) < f(a− 0) + f(b) ≈ ⊥ P1 : cong

cong

Lazy
g
Arith
0

a− 0 ≈ a | f
f(a− 0) ≈ f(a) P2 | +

f(a− 0) + f(b) ≈ f(a) + f(b)

We use several extensions to the procedures in Algorithm 1. Notice that this
procedure follows the policy that terms on the right-hand side of conversion
steps (equalities from cpre and cpost) are not traversed further. The procedure
getTermConv is used by term-conversion proof generators that have the rewrite-
once policy. A similar procedure which additionally traverses those terms is used
by term-conversion proof generators that have a rewrite-to-fixpoint policy.

We now show how the term-conversion proof generator can be used for re-
constructing fine-grained proofs from coarse-grained ones. In particular we focus
on proofs Pψ1

of the form (sr, (Qψ0
, Q⃗), (S,R,D, ψ)). Recall from Figure 2 that

the proof rule sr concludes a formula ψ that can be shown equivalent to the
formula ψ0 proven by Qψ0

based on a substitution derived from the conclusions

of the nodes Q⃗. A proof like Pψ1
above can be transformed to one that involves

(atomic) theory rewrites and equality rules only. We show this transformation
in two phases. In the first phase, the proof is expanded to:

(eq res, (Qψ0
, (trans, (R0, (symm, R1 )))))

with Ri = (trans, ((subs, Q⃗φ⃗, (S,D, ψi)), (rewrite, (), (R,S(ψi,D(φ⃗)))))) for i ∈
{0, 1} where φ⃗ are the conclusions of Q⃗φ⃗, and subs and rewrite are auxiliary proof
rules used for further expansion in the second phase. We describe them next.

Substitution Steps Let Pt≈s be the subproof (subs, Q⃗φ⃗, (S,D, t)) of Ri above
proving t ≈ s with s = S(ψi,D(φ⃗)) and D(φ⃗) = (t1 7→ s1, . . . , tn 7→ sn). Sub-
stitution steps can be expanded to fine-grained proofs using a term-conversion
proof generator. First, for each j = 1, . . . , n, we construct a proof of tj ≈ sj ,
which involves simple transformations on the proofs of φ⃗. Suppose we store all
of these in an eager proof generator g. If S is a simultaneous or fixed-point
substitution, we then build a single term-conversion proof generator C, which
recall is modeled as a pair of mappings (cpre, cpost). We add (tj ≈ sj , g) to cpre
for all j. We use the rewrite-once policy for C if S is a simultaneous substi-
tution, and the rewrite-fixed-point policy for C otherwise. We then replace the
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proof Pt≈s by getProof(C, t ≈ s), which runs the procedure in Algorithm 1.
Otherwise, if S is a sequential substitution, we construct a term-conversion
generator Cj for each j, initializing it so that its cpre set contains the single
rewrite step (tj ≈ sj , g) and uses a rewrite-once policy. We then replace the
proof Pt≈s by (trans, (P1, . . . , Pn)) where, for j = 1, . . . , n: Pj is generated by
getProof(Cj , sj−1 ≈ sj); s0 = t; si is the result of the substitution D(φ⃗) after
the first i steps; and sn = s.

Rewrite Steps Let P be the proof node (rewrite, (), (R, t)), which proves the
equality t ≈ t↑↓R. During reconstruction, we replace P with a proof involving
only fine-grained rules, depending on the rewrite method R. For example, if
R is the core rewriter, we run the rewriter again on t in proof tracking mode.
Normally, the core rewriter performs a term traversal and applies atomic rewrites
to completion. In proof tracking mode, it also return two lists, for pre- and post-
rewrites, of steps (t1 ≈ s1, g), . . . , (tn ≈ sn, g) where g is a proof generator that
returns (atom rewrite, (), (R, ti)) for all equalities ti ≈ si. Furthermore, for each
Skolem k that is a subterm of t, we construct the rewrite steps (k ≈ k↑, g′) where
g′ is a proof generator that returns (witness, (), (k)) for equalities k ≈ k↑. We
add these rewrite proof steps to a term-conversion generator C with rewrite-
fixed-point policy, and replace P by getProof(C, t ≈ t↑↓R).

5 SMT Proofs

Here we briefly describe each component shown in Section 2 and how it produces
proofs with the infrastructure from Sections 3 and 3.2.

5.1 Preprocessing Proofs

The pre-processor transforms an input formula φ into a list of formulas to be
given to the core solver. It applies a sequence of preprocessing passes. A pass
may replace a formula φi with another one ϕi, in which case it is responsible for
providing a proof of φi ≈ ϕi. It may also append a new formula ϕ to the list,
in which case it is responsible for providing a proof for it. We use a (lazy) proof
generator that tracks these proofs, maintaining the invariant that a proof can be
provided for all (preprocessed) formulas when requested. We have instrumented
proof production for the most common preprocessing passes, relying heavily on
the sr rule to model transformations such as expansion of function definitions
and, with witness forms, Skolemization and if-then-else elimination [6].

Simplification under global assumptions cvc5 aggressively learns literals that
hold globally by performing Boolean constraint propagation over the input for-
mula. When a learned literal corresponds to a variable elimination (e.g., x ≈ 5
corresponds to x 7→ 5) or a constant propagation (e.g., P (x) corresponds to
P (x) 7→ ⊤), we apply the corresponding (term) substitution to the input. This
application is justified via sr, while the derivation of the globally learned literals
is justified via clausification and resolution proofs, as explained in Section 5.3.
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The key features of our architecture that make it feasible to produce proofs
for this simplification are the automatic reconstruction of sr steps and the ability
to customize the strategy for substitution application during reconstruction, as
detailed in Section 3.2. When a new variable elimination x 7→ t is learned, old
ones need to be normalized to eliminate any occurrences of x in their right-hand
sides. Computing the appropriate simultaneous substitution for all eliminations
requires quadratically many traversals over those terms. We have observed that
the size of substitutions generated by this preprocessing pass can be very large
(with thousands of entries), which makes this computation prohibitively expen-
sive. Using the fixed-point strategy, however, the reconstruction for the sr steps
can apply the substitution efficiently and its complexity depends on how many
applications are necessary to reach a fix-point, which is often low in practice.

5.2 Theory Proofs

The theory engine produces lemmas, as disjunctions of literals, from an indi-
vidual theory or a combination of them. In the first case, the lemma’s proof is
provided directly by the corresponding theory solver. In the second case, a the-
ory solver may produce a lemma ψ containing a literal ℓ derived by some other
theory solver from literals ℓ⃗. A lemma over the combined theory is generated by
replacing ℓ in ψ by ℓ⃗. This regression process, which is similar to the computa-
tion of explanations during solving, is repeated until the lemma contains only
input literals. The proof of the final lemma then uses rules like sr to combine the
proofs of the intermediate literals derived locally in various theories and their
replacement by input literals in the final lemma.

Equality and Uninterpreted Function (EUF) Proofs The EUF solver can be
easily instrumented to produce proofs [31,42] with equality rules (see Figure 2).
In cvc5, term equivalences are also derived via rewriting in some other theory
T : when a function from T has all of its arguments inferred to be congruent to
T -values, it may be rewritten into a T -value itself, and this equivalence asserted.
Such equivalences are justified via sr steps. Since generating equality proofs
incurs minimal overhead [42] and rewriting proofs are reconstructed lazily, EUF
proofs are generated during solving and stored in an eager proof generator.

Extensional Arrays and Datatypes Proofs While these two theories differ sig-
nificantly, they both combine equality reasoning with rules for handling their
particular operators. For arrays, these are rules for select, store, and array exten-
sionality (see [36, Sec. 5]). For datatypes, they are rules reflecting the properties
of constructors and selectors, as well as acyclicity. The justifications for lemmas
are also generated eagerly and stored in an eager proof generator.

Bit-Vector Proofs The bit-vector solver applies bit-blasting to reduce bit-vector
problems to equisatisfiable propositional problems. Thus, its lemmas amount to
the rewriting of the bit-vector literals into Boolean formulas, which will be solved
and proved by the propositional engine. The bit-vector lemmas are proven lazily,
analogous to sr steps, with the difference that the reconstruction uses the bit-
blaster in the bit-vector solver instead of the rewriter.



Flexible Proof Production in an Industrial-Strength SMT Solver 13

Arithmetic Proofs The linear arithmetic solver is based on the simplex algo-
rithm [24], and each of its lemmas is the negation of an unsatisfiable conjunction
of inequalities. Farkas’ lemma [30,49] guarantees that there exists a linear combi-
nation of these inequalities equivalent to ⊥. The coefficients of the combination
are computed during solving with minimal overhead [38], and the equivalence
is proven with an sr step. To allow the rewriter to prove this equivalence, the
bounds of the inequalities are scaled by constants and summed during recon-
struction. Integer reasoning is proved through rules for branching and integer
bound tightening, recorded eagerly.

Non-linear arithmetic lemmas are generated from incremental linearization
[16] or cylindrical algebraic coverings [1]. The former can be proven via propo-
sitional and basic arithmetic rules, with only a few, such as the tangent plane
lemma, needing a dedicated proof rule. The latter requires two complex rules
that are not inherently simpler than solving, albeit not as complex as those for
regular CAD-based theory solvers [2]. We point out that checking these rules
would require a significant portion of CAD-related theory, whose proper formal-
ization is still an open, if actively researched, problem [18,25,34,41,53].

Quantifier Proofs Quantified formulas not Skolemized during pre-processing are
handled via instantiation, which produces theory lemmas of the form (∀x⃗ φ) ⇒
φσ, where σ is a grounding substitution. An instantiation rule proves them
independently of how the substitution was actually derived, since any well-typed
one suffices for soundness.

String Proofs The strings solver applies a layered approach, distinguishing
between core [40] and extended operators [48]. The core operators consist of
(dis)equalities between string concatenations and length constraints. Reasoning
over them is proved by a combination of equality and linear integer arithmetic
proofs, as well as specific string rules. The extended operators are reduced to
core ones via formulas with bounded quantifiers. The reductions are proven with
rules defining each extended function’s semantics, and sr steps justifying the re-
ductions. Finally, regular membership constraints are handled by string rules
that unfold occurrences of the Kleene star operator and split up regular expres-
sion concatenations into different parts. Overall, the proofs for the strings theory
solver encompass not only string-specific reasoning but also equality, linear inte-
ger arithmetic, and quantifier reasoning, as well as substitution and rewriting.

Unsupported The theory solvers for the theories of floating-point arithmetic, se-
quences, sets and relations, and separation logic are currently not proof-producing
in cvc5. These are relatively new or non-standard theories in SMT and have not
been our focus, but we intend to produce proofs for them in the future.

5.3 Propositional Proofs

Propositional proofs justify both the conversion of preprocessed input formulas
and theory lemmas into conjunctive normal form (CNF) and the derivation of
⊥ from the resulting clauses. CNF proofs are a combination of Boolean trans-
formations and introductions of Boolean formulas representing the definition of
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Logics # cvc+os cvc+s cvc+sp cvc+spr

non-BVs 116,321 164k 166k 284k (1.7×) 299k (1.8×)
BVs 29,192 45k 57k 150k (2.6×) 224k (3.9×)

Table 1: Cumulative solving times (s) on benchmarks solved by all configurations,
with the slowdown versus cvc+s in parentheses.

Tseytin variables, used to ensure that the CNF conversion is polynomial. The
clausifier uses a lazy proof builder which stores the clausification steps eagerly,
with the preprocessed input formulas as assumptions, and the theory lemmas as
lazy steps, with associated proof generators.

For Boolean reasoning, cvc5 uses a version of MiniSat [27] instrumented to
produce resolution proofs. It uses a lazy proof builder to record resolution steps
for learned clauses as they are derived (see [7, Chap 1] for more details) and to
lazily build a refutation with only the resolution steps necessary for deriving ⊥.
The resolution rule, however, is ground first-order resolution, since the proofs are
in terms of the first-order clauses rather than their propositional abstractions.

6 Evaluation

In this section, we discuss an initial evaluation of our implementation in cvc5 of
the proof-production architecture presented in this paper. In the following, we
denote different configurations of cvc5 by cvc plus some suffixes. A configuration
using variable and clause elimination in the SAT solver [26], symmetry break-
ing [23] in the EUF solver, and black-box SAT solving in the bit-vector (BV)
solver, is denoted by the suffix o. These techniques are currently incompatible
with the proof production architecture. Other cvc5 techniques for which we do
not yet support fine-grained proofs, however, are active and have their inferences
registered in the proofs as trusted steps. A configuration that includes simpli-
fication under global assumptions is denoted by s; one that includes producing
proofs by p; and one that additionally reconstructs proofs by r. The default
configuration of cvc5 is cvc+os.

We split our evaluation into measuring the proof-production cost as well
as the performance impact of making key techniques proof-producing; the proof
reconstruction overhead; and the coverage of the proof production. We also com-
ment on how cvc5’s proofs compare with CVC4’s proofs. Note that the inter-
nal proof checking described in Section 3, which was invaluable for a correct
implementation, is disabled for evaluating performance. Experiments ran on a
cluster with Intel Xeon E5-2620 v4 CPUs, with 300s and 8GB of RAM for each
solver and benchmark pair. We consider 162,060 unsatisfiable problems from
SMT-LIB [8], across all logics except those with floating point arithmetic, as
determined by cvc5 [5, Sec. 4]. We split them into 38,732 problems with the BV
theory (the BVs set) and 123,328 problems without (the non-BVs set).
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Fig. 3c: Scatter plot of overall proof cost
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Fig. 3d: Reconstruction cost

Proof production cost The cost of proof production is summarized in Table 1 and
Figures 3a to 3d. The impact of running without o is negligible overall in non-
BVs, but steep for BVs, both in terms of solving time and number of problems
solved, as evidenced by the table and Figure 3b, respectively. This is expected
given the effectiveness of combining bit-blasting with black-box SAT solvers.
The overhead of p is similar for both sets, although more pronounced in BVs.
While the total time is around double that of cvc+s, Figure 3c shows a finer
distribution, with most problems having a less significant overhead. Moreover,
the total number of problems solved is quite similar, as shown in Figures 3a
and 3b, particularly for non-BVs. The difference in overhead due to p between
the BVs and non-BVs sets can be attributed to the cost of managing large
proofs, which are more common in BVs. This stems from the well-known blow-
up in problem size incurred by bit-blasting, which is reflected in the proofs.

The cost of generating fine-grained steps for the sr rule and for the similarly
reconstructed theory-specific steps mentioned in Section 5, varies again between
the two sets, but more starkly. While for non-BVs the overall solving time and
number of problems solved are very similar between cvc+sp and cvc+spr, for
the BVs set cvc+spr is significantly slower overall. This difference again arises
mainly because of the increased proof sizes. Nevertheless, r leads to only a small
increase in unsolved problems in BVs, as shown in Figure 3b.

The importance of being able to produce proofs for simplification under
global assumptions is made clear by Figure 3a: the impact of disabling s is virtu-
ally the same as that of adding p; moreover, cvc+spr significantly outperforms
cvc+pr. In Figure 3b the difference is less pronounced but still noticeable.
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Proofs coverage When using techniques that are not yet fully proof-producing,
but still active, cvc5 inserts trusted steps in the proof. These are usually steps
whose checking is not inherently simpler than solving. They effectively represent
holes in the proof, but are still useful for users who avail themselves of powerful
proof-checking techniques. Trusted steps are commonly used when integrating
SMT solvers into proof assistants [11,28,51].

The percentage of cvc+spr proofs without trusted steps is 92% for BVs and
80% for non-BVs. That is to say, out of 145,683 proofs, 120,473 of them are
fully fine-grained proofs. The vast majority of the trusted steps in the remaining
proofs are due to theory-specific preprocessing passes that are not yet fully proof-
producing. In non-BVs, the occurrence of trusted steps is heavily dependent
on the specific SMT-LIB logic, as expected. Common offenders are logics with
datatypes, with trusted steps for acyclicity checks, and quantified logics, with
trusted steps for certain α-equivalence eliminations. In non-linear real arithmetic
logics, all cylindrical algebraic coverings proofs are built with trusted steps (see
Section 5.2), but we note this is the state of the art for CAD-based proofs. As for
non-linear integer arithmetic logics, our proof support is still in its early stages,
so a significant portion of their theory lemmas are trusted steps.

We stress the extent of our coverage for string proofs, which were previously
unsupported by any SMT solver. In the string logics without length constraints,
100% of the proofs are fully fine-grained. This rate goes down to 80% in the
logics with length. For the remaining 20%, the overwhelming majority of the
trusted steps are for theory-specific preprocessing or some particular string or
linear arithmetic inference within the proof of a theory lemma.

Comparison with CVC4 Proofs We compare the proof coverage of cvc5 versus
CVC4. The cvc5 proof production replaces CVC4’s [32,36], which was incomplete
and monolithic. CVC4 did not produce proofs at all for strings, substitutions,
rewriting, preprocessing, quantifiers, datatypes, or non-linear arithmetic. In par-
ticular, simplification over global assumptions had to be disabled when producing
proofs. In fragments supported by both systems, CVC4’s proofs are at most as
detailed as cvc5’s. The only superior aspect of CVC4’s proof production was to
support proofs from external SAT solvers [45] used in the BV solver, which are
very significant for solving performance, as shown above. Integrating this feature
into cvc5 is left as future work, but we note that there is no limitation in the
proof architecture that would prevent it. We also point out that cvc5 produces
resolution proofs for the bit-blasted BV constraints, which can be checked in
polynomial time, whereas external SAT solvers produce DRAT proofs [33] (or
reconstructions of them via other tools [19,20,37,39]), which can take exponential
time to check. So there is a significant trade-off to be considered.

7 Related work

Two significant proof-producing state-of-the-art SMT solvers are z3 [22] and
veriT [14]. Both can have their proofs successfully reconstructed in proof assis-
tants [3, 12, 13, 51]. They can produce detailed proofs for the propositional and
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theory reasoning in EUF and linear arithmetic, as well as for quantifiers. How-
ever, z3’s proofs are coarse-grained for preprocessing and rewriting, and for bit-
vector reasoning, which complicates proof checking. Moreover, to the best of our
knowledge, z3 does not produce proofs for its other theories. In contrast, veriT
can produce fine-grained proofs for preprocessing and rewriting [6], which has led
to a better integration with Isabelle/HOL [51]. However, it does so eagerly, which
requires a tight integration between the preprocessing and the proof-production
code. In addition, it does not support simplification under global assumptions
when producing proofs, which significantly impacts its performance. Other proof-
producing SMT solvers are MathSAT5 [17] and SMTInterpol [15]. They produce
resolution proofs and theory proofs for EUF, linear arithmetic, and, in SMTIn-
terpol’s case, array theories. Their proofs are tailored towards unsatisfiable core
and interpolant generation, rather than external certification. Moreover, they do
not seem to provide proofs for preprocessing, clausification or rewriting.

While cvc5 is possibly the only proof-producing solver for the full theory of
strings, CertiStr [35] is a certified solver for the fragment with concatenation
and regular expressions. It is automatically generated from Isabelle/HOL [44]
but is significantly less performant than cvc5, although a proper comparison
would need to account for proof-checking time in cvc5’s case.

8 Conclusion and future work

We presented and evaluated a flexible proof production architecture, showing it
is capable of producing proofs with varying levels of granularity in a scalable
manner for a state-of-the-art and industrial-strength SMT solver like cvc5.

Since currently, there is no standard proof format for SMT solvers, our archi-
tecture is designed to support multiple proof formats via a final post-processing
transformation to convert internal proofs accordingly. We are developing back-
ends for the LFSC [52] proof checker and the proof assistants Lean 4 [21], Is-
abelle/HOL [44], and Coq [10], the latter two via the Alethe proof format [50].
Since using these tools requires mechanizing the respective target proof calculi in
their languages, besides external checking, another benefit is to decouple confi-
dence on the soundness of the proof calculi from the internal cvc5 proof calculus.

A considerable challenge for SMT proofs is the plethora of rewrite rules used
by the solvers, which are specific for each theory and vary in complexity. In
particular, string rewrites can be very involved [46] and hard to check. We are
also developing an SMT-LIB-based DSL for specifying rewrite rules, to be used
during proof reconstruction to decompose rewrite steps in terms of them, thus
providing more fine-grained proofs for rewriting.

Finally, we plan to incorporate into the proof-production architecture the
unsupported theories and features mentioned in Sections 5.2 and 6, particularly
those relevant for solving performance that currently either leave holes in proofs,
such as theory pre-processing or non-linear arithmetic reasoning, or that have
to be disabled, such as the use of external SAT solvers in the BV theory.
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Certistr: a certified string solver. In Andrei Popescu and Steve Zdancewic, editors,
Certified Programs and Proofs (CPP), pages 210–224. ACM, 2022.

36. Guy Katz, Clark W. Barrett, Cesare Tinelli, Andrew Reynolds, and Liana
Hadarean. Lazy proofs for DPLL(T)-based SMT solvers. In Ruzica Piskac and Mu-
ralidhar Talupur, editors, Formal Methods In Computer-Aided Design (FMCAD),
pages 93–100. IEEE, 2016.

37. Benjamin Kiesl, Adrián Rebola-Pardo, and Marijn J. H. Heule. Extended resolu-
tion simulates DRAT. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, International Joint Conference on Automated Reasoning (IJCAR), volume
10900 of Lecture Notes in Computer Science, pages 516–531. Springer, 2018.

38. Tim King. Effective algorithms for the satisfiability of quantifier-free formulas over
linear real and integer arithmetic, 2014.

39. Peter Lammich. Efficient verified (UN)SAT certificate checking. In Leonardo
de Moura, editor, Proc. Conference on Automated Deduction (CADE), volume
10395 of Lecture Notes in Computer Science, pages 237–254. Springer, 2017.



Flexible Proof Production in an Industrial-Strength SMT Solver 21

40. Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett, and Morgan
Deters. A DPLL(T) theory solver for a theory of strings and regular expressions.
In Armin Biere and Roderick Bloem, editors, Computer Aided Verification (CAV),
volume 8559 of Lecture Notes in Computer Science, pages 646–662. Springer, 2014.

41. Assia Mahboubi. Implementing the cylindrical algebraic decomposition within the
coq system. Mathematical Structures in Computer Science, 17(1):99–127, 2007.

42. Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure. In
Jürgen Giesl, editor, Rewriting Techniques and Applications (RTA), volume 3467
of Lecture Notes in Computer Science, pages 453–468. Springer, 2005.

43. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland Proce-
dure to DPLL(T). J. ACM, 53(6):937–977, November 2006.

44. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

45. Alex Ozdemir, Aina Niemetz, Mathias Preiner, Yoni Zohar, and Clark W. Barrett.
Drat-based bit-vector proofs in CVC4. In Mikolás Janota and Inês Lynce, editors,
Theory and Applications of Satisfiability Testing (SAT), volume 11628 of Lecture
Notes in Computer Science, pages 298–305. Springer, 2019.

46. Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli. High-
level abstractions for simplifying extended string constraints in SMT. In Isil Dillig
and Serdar Tasiran, editors, Computer Aided Verification (CAV), Part II, volume
11562 of Lecture Notes in Computer Science, pages 23–42. Springer, 2019.
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