
An Abstra
t De
ision Pro
edure for Satis�ability in the Theory ofRe
ursive Data TypesClark Barrett1 Igor Shikanian1 Cesare Tinelli21New York University, barrett|igor�
s.nyu.edu2The University of Iowa, tinelli�
s.uiowa.eduNovember 22, 2005New York University Te
hni
al Report: TR2005-878Abstra
tThe theory of re
ursive data types is a valuable modeling tool for software veri�
ation. In thepast, de
ision pro
edures have been proposed for both the full theory and its universal fragment.However, previous work has been limited in various ways, in
luding an inability to deal withmultiple
onstru
tors, multi-sorted logi
, and mutually re
ursive data types. More signi�
antly,previous algorithms for the universal
ase have been based on ineÆ
ient nondeterministi
 guessesand have been des
ribed in fairly
omplex pro
edural terms.We present an algorithm whi
h addresses these issues for the universal theory. The algorithmis presented de
laratively as a set of abstra
t rules whi
h are terminating, sound, and
omplete.We also des
ribe strategies for applying the rules and explain why our re
ommended strategyis more eÆ
ient than those used by previous algorithms. Finally, we dis
uss how the algorithm
an be used within a broader framework of
ooperating de
ision pro
edures.1 Introdu
tionRe
ursive data types are
ommonly used in programming. In parti
ular, fun
tional languagessupport su
h stru
tures expli
itly. The same notion is also a
onvenient abstra
tion for
ommondata types su
h as re
ords and data stru
tures su
h as linked lists used in more
onventionalprogramming languages. The ability to reason automati
ally and eÆ
iently about re
ursive datatypes thus provides an important tool for the analysis and veri�
ation of programs.Perhaps the best-known example of a simple re
ursive data type is the list type used in LISP.Lists are either the null list or are
onstru
ted from other lists using the
onstru
tor
ons. This
onstru
tor takes two arguments and returns the result of prepending its �rst argument to the listin its se
ond argument. In order to retrieve the elements of a list, a pair of sele
tors is provided:
ar returns the �rst element of a list and
dr returns the rest of the list.More generally, we are interested in any set of (possibly mutually) re
ursive data types, ea
h ofwhi
h
ontains one or more
onstru
tors. Ea
h
onstru
tor has sele
tors that
an be used to retrievethe original arguments as well as a tester whi
h indi
ates whether a given term was
onstru
tedusing that
onstru
ter. As an example, of the more general
ase,
onsider a set of three re
ursivedata types: nat, list, and tree. nat has two
onstru
tors: zero, whi
h takes no arguments (we
allsu
h a
onstru
tor a nullary
onstru
tor or
onstant); and su

, whi
h takes a single argument oftype nat, and with a
orresponding sele
tor pred. The list type is as before ex
ept that we nowspe
ify that the elements of the list are of type tree. The tree type in turn has two
onstru
tors:1

leaf, a
onstant; and node, whi
h takes two arguments, the �rst of type nat, and the se
ond of typelist, with
orresponding sele
tors data and
hildren respe
tively. We
an represent this set of typesusing the following
onvenient notation based on that used in fun
tional programming languages:nat := su

(pred : nat) j zero;list :=
ons(
ar : tree;
dr : list) j null;tree := node(data : nat;
hildren : list) j leaf;The testers for this set of data types are issu

, iszero, is
ons, isnull, isnode, and isleaf.Propositions about a set of re
ursive data types
an be
aptured in a sorted �rst-order languagewhi
h
losely resembles the stru
ture of the data types themselves in that it has fun
tion symbolsfor ea
h
onstru
tor and sele
tor, and a predi
ate symbol for ea
h tester. For instan
e, propositionsthat we would expe
t to be true for the example above in
lude the following:8x : nat: su

(x) 6= zero;8x : list: x = null _ 9 y : nat; z : list: x =
ons(y; z);8x : tree: isnode(x)! (data(x) = zero _ issu

(data(x))):In this paper, we dis
uss a pro
edure for de
iding su
h formulas. We fo
us on satis�ability of aset of literals, whi
h (through well-known redu
tions)
an be used to de
ide the validity of universalformulas. We do not
onsider quanti�er elimination, referring the reader instead to related worksu
h as [4, 16, 17℄.There are three main
ontributions of this work over earlier work on the topi
. First, our settingis more general: we allow mutually re
ursive types, ea
h with multiple
onstru
tors, sele
tors,and testers, and we use the more general setting of multi-sorted logi
. The rationale for a multi-sorted approa
h is that it more
losely
orresponds to potential appli
ations su
h as analysis ofprogramming languages. In parti
ular, the well-sortedness requirements rule out many synta
ti
al
onstru
ts that would not make sense in pra
ti
e.The se
ond
ontribution is in presentation. We present the theory itself in terms of an initialmodel rather than axiomati
ally as is often done. Also, the presentation of the de
ision pro
edureis given as abstra
t rewrite rules, making it more
exible and easier to analyze than if it were givenimperatively.Finally, as des
ribed in Se
tion 5, the
exibility provided by the abstra
t algorithm leads to analgorithm whi
h is more eÆ
ient than that given in previous work.Related Work. Term algebras over
onstru
tors provide the natural intended model for re
ursivedata types. The histori
ally foundational de
idability and quanti�er elimination results for termalgebras
an be found in [6℄. In other early work, [5℄ addresses the problem of satis�ability of oneequation in a term algebra, modulo other equations. The appli
ations and extension of the quanti�erelimination pro
edure to term algebras with queues is handled in [12℄. Another
ontribution tosolving satis�ability of equations over term algebras is given in [15℄, whi
h extends the languagewith a powerful subterm relation predi
ate. In [4℄ two dual axiomatizations of term algebras arepresented, one with
onstru
tors only, the other with sele
tors and testers only.More re
ently, several papers by Zhang et al. [16, 17℄ explore de
ision pro
edures for a sin-gle re
ursive data type. These papers fo
us on ambitious s
hemes for quanti�er elimination and
ombinations with other theories. Their work is largely orthogonal to ours sin
e we fo
us on thequanti�er-free de
ision problem whi
h is only mentioned brie
y in their work.Other work with an emphasis on the quanti�er-free
ase in
ludes that done by Nelson and Oppenin 1980[10, 11℄. In [11℄, Oppen gives a de
ision pro
edure for a single re
ursive data type with a2

single
onstru
tor. In [10℄, the theory of lists is shown to be NP-
omplete when it in
ludes the
onstru
tor null. Thus, an instan
e of the
lass of theories
overed by the
urrent paper alreadyyields NP-
ompleteness. As will be evident, the problem solved in this paper is also NP-
omplete.Shostak gives an algorithm for a simple theory of lists without null in [13℄. He also
laims thereis a generalization to arbitrary re
ursive data types. However, the
laim is unsubstantiated and itis un
lear how to generalize to the
ase of multiple
onstru
tors.Paper Organization. Se
tion 2 des
ribes our formulation of the �rst order theory of re
ursivedata types. In Se
tion 3, we present the algorithm as a set of abstra
t rules. The
orre
tness of thealgorithm is shown in Se
tion 4. In Se
tion 5, we dis
uss the eÆ
ien
y of the algorithm and show,in parti
ular, that it
an be exponentially more eÆ
ient than previous naive algorithms. Finally, inSe
tion 6, we dis
uss how the algorithm
an be extended, in
luding how to handle �nite sorts.2 The Theory of Re
ursive Data TypesPrevious work on re
ursive data types (RDTs) [16, 17℄ uses �rst-order axiomatizations in an attemptto
apture the main properties of a re
ursive data type and reason about it. Unfortunately, theresulting axiomatization is somewhat
ompli
ated. This axiomati
 approa
h makes the study ofde
ision pro
edures for RDTs and their
orre
tness more diÆ
ult than it needs to be.We �nd it simpler and
leaner to use a semanti
 approa
h instead, as is done in algebrai
spe
i�
ation. A set of RDTs
an be given a simple equational spe
i�
ation over a suitable signature.The intended model for our theory
an be formally, and uniquely, de�ned as the initial model ofthis spe
i�
ation. Reasoning about a set of RDTs then amounts to reasoning about formulas thatare true in this parti
ular initial model.2.1 Spe
ifying RDTsWe formalize RDTs in the
ontext of many-sorted equational logi
 (see [8℄ among others). We willassume that the reader is familiar with the basi
 notions in this logi
, and also with basi
 notionsof term rewriting.We start with the theory signature. We assume a many-sorted signature � whose set of sorts
onsists of a distinguished sort bool for the Booleans, and p � 1 sorts �1; : : : ; �p for the RDTs.We also allow and r � 0 additional (non-RDT) sorts �1; : : : ; �r. We will denote by s, possiblywith subs
ripts and supers
ripts, any sort in the signature other than bool, and by � any sort inf�1; : : : ; �rg.As mentioned earlier, the fun
tion symbols in our theory signature
orrespond to the
onstru
-tors, sele
tors, and testers of the set of RDTs under
onsideration. We assume for ea
h �i (1 � i � p)a set of mi � 1
onstru
tors of �i. We denote these symbols as Cij, where j ranges from 1 to mi. Wedenote the arity of Cij as nij (0-arity
onstru
tors are also
alled nullary
onstru
tors or
onstants)and its sort as sij;1 � � � � � sij;nij ! �i. For ea
h
onstru
tor Cij, we have a set of sele
tors, whi
h wedenote as Sij;k, where k ranges from 1 to nij, of sort �i ! sij;k. Finally, for ea
h
onstru
tor, there isa tester.1 isCij : �i ! bool.In addition to these symbols, we also assume that the signature
ontains two
onstants, true andfalse of sort bool, and an in�nite number of
onstants of ea
h sort �. The
onstants are meant tobe names for the elements of that sort, so for instan
e if �1 were a sort for the natural numbers, we1To simplify some of the proofs, and without loss of generality, we use fun
tions to bool instead of predi
ates forthe testers. 3

ould use all the numerals as the
onstants of sort �1. Having all these
onstants in the signatureis really not ne
essary for our approa
h, but it simpli�es the exposition. The real
onstraint is thatthe sorts �1; : : : ; �r be in�nite. We will see in Se
tion 6, however, that our approa
h
an be easilyextended to the
ase in whi
h some of these sorts are �nite.To summarize, the set of fun
tion symbols of the signature �
onsists of:Cij : sij;1 � � � � � sij;nij ! �i; for i = 1; : : : ; p; j = 1; : : : ;mi;Sij;k : �i ! sij;k; for i = 1; : : : ; p; j = 1; : : : ;mi; k = 1; : : : ; nij ;isCij : �i ! bool; for i = 1; : : : ; p; j = 1; : : : ;mi;true : bool; false : bool;An in�nite number of
onstants for ea
h �l; for l = 1; : : : ; r.As usual in many-sorted equational logi
, we also have p + r + 1 equality symbols (one for ea
hsort), all written as �.Our pro
edure requires one additional
onstraint on the set of RDTs: It must be well-founded.Informally, this means that ea
h sort must
ontain terms that are not
y
li
 or in�nite. Moreformally, we have the following de�nitions by simultaneous indu
tion over
onstru
tors and sorts:� a
onstru
tor Cij is well-founded if all of its argument sorts are well-founded;� the sorts �1; : : : ; �r are all well-founded;� a sort �i is well-founded if at least one of its
onstru
tors is well-founded.We require that every sort be well-founded a

ording to the above de�nition.In some
ases, it will be ne
essary to distinguish between �nite and in�nite � -sorts:� a
onstru
tor is �nite if it is nullary or if all of its argument sorts are �nite.� a sort �i is �nite if all of its
onstru
tors are �nite, and is in�nite otherwise.� the sorts �1; : : : ; �r are all in�nite;As we will see,
onsistent with the above terminology, our semanti
s will interpret �nite, resp. in�-nite, � -sorts indeed as �nite, resp. in�nite, sets.We denote by T (�) the set of well-sorted ground terms of signature � or, equivalently, the(many-sorted) term algebra over that signature.The RDTs with fun
tions and predi
ates denoted by the symbols of � is spe
i�ed by the followingset E of (universally quanti�ed) equations. For reasons explained below, we assume that asso
iatedwith every sele
tor Sij;k : �i ! sij;k is a distinguished ground term of sort sij;k
ontaining no sele
tors(or testers), whi
h we denote by tij;k.Equational Spe
i�
ation of the RDT: for i = 1; : : : ; p:8x1; : : : ; xnij : isCij(Cij(x1; : : : ; xnij)) � true (for j = 1; : : : ;mi)8x1; : : : ; xnij0 : isCij(Cij0(x1; : : : ; xnij0)) � false (for j; j0 = 1; : : : ;mi, j 6= j0)8x1; : : : ; xnij : Sij;k(Cij(x1; : : : ; xnij)) � xk (for k = 1; : : : ; nij , j = 1; : : : ;mi)8x1; : : : ; xnij0 : Sij;k(Cij0(x1; : : : ; xnij0)) � tij;k (for j; j0 = 1; : : : ;mi, j 6= j0)The last axiom spe
i�es what happens when a sele
tor is applied to the \wrong"
onstru
tor.Note that there is no obviously
orre
t thing to do in this
ase sin
e it would
orrespond to an error4

ondition in a real appli
ation. Our axiom spe
i�es that in this
ase, the result is the designatedground term for that sele
tor. This is di�erent from other treatments (su
h as [4, 16, 17℄) wherethe appli
ation of a wrong sele
tor is treated as the identity fun
tion. There are several reasonsfor this di�eren
e. First, in a multi-sorted logi
, the identity fun
tion approa
h does not work ingeneral be
ause the result may be ill-sorted. Se
ond, by
hoosing a small designated term (su
has a
onstant when possible), fewer
ase splits are required by the de
ision pro
edure, makingthe pro
edure more eÆ
ient. Finally, as des
ribed in Se
tion 6.2, the di�eren
e is immaterial forformulas in whi
h the appropriateness of the sele
tor
an be guaranteed.By standard results in universal algebra we know that E admits an initial model R. We referthe reader to [8℄ for a thorough treatment of initial models. For our purposes, it will be enough tomention the following properties that R enjoys by virtue of being an initial model.Lemma 2.1. Where �E is the equivalen
e relation on �-terms indu
ed by E, let T (�)=�E be thequotient of the term algebra T (�) by �E .1. For all ground �-terms t1; t2 of the same sort, t1 �E t2 i� R satis�es t1 � t2.2. R is isomorphi
 to T (�)=�E .Proof. These are appli
ations to R of standard results about initial models. See, for instan
eTheorem 5.2.11 and Theorem 5.2.17 of [8℄.Lemma 2.2. Let
 be the signature obtained from � by removing the sele
tors and the testers. Theredu
t of R to
 is isomorphi
 to T (
).Proof. By Lemma 2.1(2) we
an take R to
oin
ide with T (�)=�E , whose elements are the equiv-alen
e
lasses of �E on the ground �-terms. To prove the
laim then it is enough to show that (i)every ground �-term is equivalent in E to a ground
-term, and (ii) no two distin
t ground
-termsbelong to the same equivalen
e
lass.Consider the rewrite system R obtained by orienting the equations in E left to right. It is easyto show that R is terminating. It is also immediate that R
ontains no
riti
al pairs and so it is
on
uent. It follows by basi
 results in term rewriting that R is
anoni
al: every �-term has aunique normal form (wrt. R), and two �-terms are equivalent in E i� they have the same normalform.Now, by a simple indu
tive argument one
an show that the normal form of ea
h ground �-termis a ground
-term, whi
h proves (i) above. It is trivial that every ground
-term is irredu
ible byR. This entails that distin
t ground
-terms are inequivalent in E , proving (ii).Informally, the previous lemma means that R does in fa
t
apture the set of RDTs in question,as we
an take the
arrier of R to be the term algebra T (
). This also shows that in R ea
h datatype �i is generated using just its
onstru
tors, and that distin
t ground
onstru
tor terms of sort�i are distin
t elements of the data type. Using the two lemmas one
an also easily show that inR the sort bool denotes a two-element set, the sorts �1; : : : ; �r denote in�nite sets, and ea
h sort�i denotes an in�nite data type if and only if �i is in�nite in the sense spe
i�ed earlier. From amore formal point of view, these lemmas will be useful in proving the
orre
tness of the de
isionpro
edure.3 The De
ision Pro
edureBefore giving a formal des
ription of the algorithm, whi
h is quite te
hni
al, we start with aninformal overview based on examples. Our pro
edure builds on the algorithm by Oppen [11℄ for5

a single type with a single
onstru
tor. Consider, for example, the list datatype without nulland the following set of literals: f
ons(x; y) � z;
ar(w) � x;
dr(w) � y;w 6� zg. The idea ofOppen's algorithm is to use a graph whi
h relates terms a

ording to their meaning in the intendedmodel. Thus,
ons(x; y) is a parent of x and y and
ar(w) and
dr(w) are
hildren of w. Theequations indu
e an equivalen
e relation on the nodes of the graph. The Oppen algorithm pro
eedsby performing upwards (
ongruen
e) and downwards (uni�
ation)
losure on the graph and then
he
king for
y
les2 or for a violation of any disequalities. For our example, upwards
losure resultsin the
on
lusion w � z, whi
h
ontradi
ts the disequality w 6� z.Suppose we repla
e w 6� z with v � w and y 6�
dr(v) in the previous set. The new graphhas a node for v, with
ar(v) as its left
hild. A right
hild node with
dr(v) is then added for
ompleteness. Now, downwards
losure for
es
ar(v) �
ar(w) � x and
dr(v) �
dr(w) � y,
ontradi
ting the disequality y 6�
dr(v).An alternative algorithm for the
ase of a single
onstru
tor is to introdu
e new terms andvariables to repla
e variables that are inside of sele
tors. For example, for the �rst set of literalsabove, we would introdu
e w �
ons(s; t) where s; t are new variables. Now, by substituting and
ollapsing appli
ations of sele
tors to
onstru
tors, we get f
ons(x; y) � z; w �
ons(s; t); x � s; t �y;w 6� zg. In general, this approa
h only requires downwards
losure.Unfortunately, with the addition of more than one
onstru
tor, things are not quite as simple.In parti
ular, the simple approa
h of repla
ing variables with
onstru
tor terms does not workbe
ause one
annot establish a priori whether the value denoted by a given variable is built withone
onstru
tor or another. A simple extention of Oppen's algorithm for the
ase of multiple
onstru
tors is proposed [16℄. The idea is to �rst guess a type
ompletion, that is, a labeling of everyvariable by a
onstru
tor, whi
h is meant to
onstrain a variable to take only values built with theasso
iated
onstru
tor. On
e all variables are labeled by a single
onstru
tor, the Oppen algorithm
an be used to determine if the
onstraints
an be satis�ed under that labeling. The problem isthat the type
ompletion guess is very expensive.Our strategy
ombines ideas from all of these algorithms. There is a set of upward and downward
losure rules to mimi
 Oppen's algorithm. The idea of a type
ompletion is repla
ed by a set oflabeling rules that
an be used to re�ne the set of possible
onstru
tors for ea
h term (in parti
ular,this allows us to delay guessing as long as possible). And the notion of introdu
ing
onstru
torsand eliminating sele
tors is
aptured by a set of sele
tor rules. As we will see in Se
tions 4 and 5,the
exibility of our rules allows our algorithm to be both
omplete and eÆ
ient.We des
ribe our pro
edure formally in the following, as a set of derivation rules. We build onand adopt the style of similar rules for abstra
t
ongruen
e
losure [1℄ and synta
ti
 uni�
ation [7℄.3.1 De�nitions and NotationIn the following, we will
onsider well-sorted formulas over the signature � above and an in�niteset X of variables. To distinguish these variables, whi
h
an o

ur in formulas given to the de
isionpro
edure des
ribed below, from other internal variables used by the de
ision pro
edure, we willsometimes
all the elements of X input variables.Given a set � of literals (i.e., equations or negated equations) over � and variables from X,we wish to determine the satis�ability of � in the algebra R.3 We will assume for simpli
ity, andwith no loss of generality, that the only o

urren
es of terms of sort bool are in atoms of the form2A simple example of a
y
le is:
ons(x; y) � z;
ar(x) � z.3In both theory and pra
ti
e, the satis�ability of arbitrary quanti�er-free formulas
an be easily determined givena de
ision pro
edure for a set of literals. Using the fa
t that a universal formula 8x'(x) is true in a model exa
tlywhen :'(x) is unsatis�able in the model, this also provides a de
ision pro
edure for universal formulas.6

isCjk(t) � true, whi
h we will write just as isCjk(t). We will abbreviate negated equations :(t1 � t2)between non-Boolean terms as t1 6� t2.Following [1℄, we will make use of the sets V�i (V�i) of abstra
tion variables of sort �i (�i); ab-stra
tion variables are disjoint from input variables (variables in �) and fun
tion as equivalen
e
lassrepresentatives for the terms in �. We denote the set of all variables (both input and abstra
tion)in E as Var (E). We will use the expression labels(�i) for the set fCi1; : : : ; Cimig and de�ne labels(�l)to be the empty set of labels for ea
h �l. We will write sort(t) to denote the sort of the term t.The rules make use of three additional
onstru
ts that are not in the language of �: !, 7!, andInst.The symbol ! is used to represent oriented equations. Its left-hand side is a �-term t and itsright-hand side is an abstra
tion variable v. Given a variable assignment � into the elements of R,we say that � satis�es t! v in R i� � satis�es the equation t � v in R.The symbol 7! denotes labelings of abstra
tion variables with sets of
onstru
tor symbols. It isused to keep tra
k of possible
onstru
tors for instantiating a �i variable.4 A variable assignment �satis�es a labeling pair v 7! fCij1 ; : : : ; Cijng in R if � satis�es the formula isCij1(v) _ � � � _ isCijn(v)in R.Finally, the Inst
onstru
t is used to tra
k appli
ations of the Instantiate rules given below. Itis needed to ensure termination by preventing multiple appli
ations of the same Instantiate rule.It is a unary predi
ate that is applied only to abstra
tion variables. It is always satis�ed by everyvariable assignment.Let �C denote the set of all
onstant symbols in �, in
luding 0-arity
onstru
tors. We willdenote by � the set of all possible literals over � and input variables X. Note that this does notin
lude oriented equations (t ! v), labeling pairs (v 7! L), or appli
ations of Inst. In
ontrast,we will denote by E multisets of literals of �, oriented equations, labeling pairs, and appli
ationsof Inst. To simplify the presentation, we will
onsistently use the following meta-variables:
; ddenote
onstants (elements of �C) or input variables from X; u; v; w denote abstra
tion variables; tdenotes a
at term|i.e., a term all of whose proper sub-terms are abstra
tion variables|or a labelset, depending on the
ontext. u;v denote possibly empty sequen
es of abstra
tion variables; andu! v is shorthand for the set of oriented equations resulting from pairing
orresponding elementsfrom u and v and orienting them so that the left hand variable is greater than the right handvariable a

ording to �. Finally, v ./ t denotes any of v � t, t � v, v 6� t, t 6� v, or v 7! t. Tostreamline the notation, we will sometimes denote fun
tion appli
ation simply by juxtaposition.In the derivation rules we assume an arbitrary, but �xed, well-founded ordering � on the ab-stra
tion variables that is total on variables of the same sort. Ea
h rule
onsists of a premise and oneor more
on
lusions. Ea
h premise is made up of a multiset of literals, oriented equations, labelingpairs, and appli
ations of Inst. Con
lusions are either similar multisets or ?, where ? represents atrivially unsatis�able formula. As we show later, the soundness of our rule-based pro
edure dependson the fa
t that the premise E of a rule is satis�ed in R by a valuation � of Var (E) i� one of the
on
lusions E0 of the rule is satis�ed in R by an extension of � to Var(E0).3.2 The derivation rulesOur de
ision pro
edure
onsists of the following derivation rules on multisets E.4To simplify the writing of the rules, some rules may introdu
e labeling pairs for variables with a non-� sort, eventhough these play no role.
7

Abstra
tion rulesAbstra
t 1 p[
℄; E
! v; v 7! labels(s); p[v℄; E if p 2 �;
 : s;v fresh from VsAbstra
t 2 p[Ciju℄; ECiju! v; p[v℄; v 7! fCijg; E if p 2 �; v fresh from V�iAbstra
t 3 p[Sij;�u℄; ESij;1u! v1; : : : ; Sij;niju! vnij ; p[v�℄;v1 7! labels(s1); : : : ; vnij 7! labels(snij); E if p 2 �; Sij;k : �i ! sk;ea
h v� fresh from Vs�The abstra
tion or
attening rules essentially perform a pre-pro
essing step, assigning a newabstra
tion variable to every sub-term in the original set of literals. Abstra
tion variables are thenused as pla
e-holders or equivalen
e
lass representatives for those sub-terms. While we would notexpe
t a pra
ti
al implementation to a
tually introdu
e these variables, it greatly simpli�es thepresentation of the remaining rules.The Abstra
t 1 rule repla
es input variables or
onstants. Abstra
t 2 repla
es
onstu
torterms, and Abstra
t 3 repla
es sele
tor terms. Noti
e that in ea
h
ase, a labeling pair forthe introdu
ed variables is also
reated. This
orresponds to labeling ea
h sub-term with the set ofpossible
onstru
tors with whi
h it
ould have been
onstru
ted. Also noti
e that in theAbstra
t 3rule, whenever a sele
tor Sij;k is applied, we e�e
tively introdu
e all possible appli
ations of sele
torsasso
iated with the same
onstru
tor. This simpli�es the later sele
tor rules and
orresponds to thestep in the Oppen algorithm whi
h ensures that in the term graph, any node with
hildren has a
omplete set of
hildren.Literal level rulesOrient u � v; Eu! v; E if u � vIn
onsistent v 6� v; E? Remove 1 isCij v; Ev 7! fCijg; ERemove 2 :isCij v; Ev 7! labels(sort(v)) n fCijg; EThe simple literal level rules are almost self-explanatory. The Orient rule is used to repla
ean equation between abstra
tion variables (whi
h every equation eventually be
omes after applyingthe abstra
tion rules) with an oriented equation. Oriented equations are used in the remainingrules below. The In
onsistent rule dete
ts violations of re
exivity. The Remove rules removeappli
ations of testers and repla
e them with labeling pairs that impose the same
onstraints.Upward (i.e.,
ongruen
e)
losure rulesSimplify 1 u ./ t; u! v; Ev ./ t; u! v; ESimplify 2 fuuv! w; u! v; Efuvv! w; u! v; E Superpose t! u; t! v; Eu! v; t! v; E if u � vCompose t! v; v ! w; Et! w; v ! w; EThese rules are modeled after similar rules for abstra
t
ongruen
e
losure in [1℄. The Simplifyand Compose rules essentially provide a way to repla
e any abstra
tion variable with a smaller8

(a

ording to �) one if the two are known to be equal. The Superpose rule merges two equivalen
e
lasses if they
ontain the same term. Congruen
e
losure is a
hieved by these rules be
ause if twoterms are
ongruent, then after repeated appli
ations of the �rst set of rules, they will be
omesynta
ti
ally identi
al. Then the Superpose rule will merge their two equivalen
e
lasses.Downward (i.e., uni�
ation)
losure rulesDe
ompose Ciju! v; Cijv! v; ECiju! v; u! v; E Clash 1 Ciju! v; Cij0v! v; E? if j 6= j0Clash 2
! v; d! v; E? if
; d 2 �C ;
 : �; d : �;
 6= dCy
le Cinjnunuvn ! un�1; : : : ; Ci2j2u2u2v2 ! u1; Ci1j1u1u1v1 ! u; E? if n � 1The main downward
losure rule is the De
ompose rule: whenever two terms with the same
onstru
tor are in the same equivalen
e
lass, their arguments must be equal. The Clash rulessimply dete
t instan
es of terms that are in the same equivalen
e
lass that must be disequal in theintended model. The Cy
le rule dete
ts the (in
onsistent)
ases in whi
h a term would have to be
y
li
al.Sele
tor rulesInstantiate 1 Sij;1u! u1; : : : ; Sij;niju! unij ; u 7! fCijg; ECiju1 � � � unij ! u; u 7! fCijg; Inst(u); E if Inst(u) 62 E
Instantiate 2 v 7! fCijg; ECiju1 � � � unij ! v; Inst(v); Eu1 7! labels(sij;1); : : : ; unij 7! labels(sij;nij) if Inst(v) 62 E;v 7! L 62 E;Cij �nite
onstru
tor;Sab;
(v)! v0 62 E;uk fresh from Vsij;kCollapse 1 Ciju1 � � � unij ! u; Sij;ku! v; ECiju1 � � � unij ! u; uk � v; ECollapse 2 Sij;ku! v; u 7! L; Etij;k � v; u 7! L; E if Cij =2 LRule Instantiate 1 is used to eliminate sele
tors by repla
ing the argument of the sele
torswith a new term
onstru
ted using the appropriate
onstru
tor. Noti
e that only terms that havesele
tors applied to them
an be instantiated and then only on
e they are unambiguously labeled.All of the sele
tors applied to the term are eliminated at the same time. This is why the entire set ofsele
tors is introdu
ed in the Abstra
t 3 rule. Rule Instantiate 2 is used for �nite
onstru
tors.For
ompleteness, terms labeled with �nite
onstru
tors must always be instantiated, even when nosele
tors are applied to them.The Collapse rules eliminate sele
tors when the result of their appli
ation
an be determined.InCollapse 1, a sele
tor is applied to a term known to be equal to a
onstru
tor of the \right" type.9

In this
ase, the sele
tor expression is repla
ed by the appropriate argument of the
onstru
tor. InCollapse 2, a sele
tor is applied to a term whi
h must have been
onstru
ted with the \wrong"
onstru
tor. In this
ase, the designated term tij;k for the sele
tor repla
es the sele
tor expression.Labeling rulesRe�ne v 7! L1; v 7! L2; Ev 7! L1 \ L2; E Empty v 7! ;; E? if v : �iSplit 1 Sij;k(u)! v; u 7! fCijg [L; ESij;k(u)! v; u 7! fCijg; E Sij;k(u)! v; u 7! L; E if L 6= ;Split 2 u 7! fCijg [L; Eu 7! fCijg; E u 7! L; E if L 6= ;;fCijg [L all �nite
onstru
torsThe Re�ne rule simply
ombines labeling
onstraints that may arise from di�erent sour
es forthe same equivalen
e
lass. Empty enfor
es the
onstraint that every � -term must be
onstru
tedby some
onstru
tor. The Split rules are used to re�ne the set of possible
onstru
tors for a termand are the only rules that
ause bran
hing. If a term labeled with only �nite
onstru
tors
annotbe eliminated in some other way, Split 2 must be applied until it is labeled unambiguously. Forother terms, the Split 1 rule only needs to be applied to distinguish the
ase of a sele
tor beingapplied to the \right"
onstru
tor vs a sele
tor being applied to the \wrong"
onstru
tor. On eitherbran
h, one of the Collapse rules will apply immediately. We dis
uss this further in Se
tion 5,below.4 Corre
tnessThe satis�ability in R of a set � of �-literals with variables in X
an be
he
ked by applyingexhaustively to � the derivation rules in the previous se
tion. This set of rules is very
exible inthat the rules
an be applied in any order and still yield a de
ision pro
edure for the satis�ability inR. No spe
i�
 rule appli
ation strategy is needed to a
hieve termination, soundness or
ompleteness.We formalize this in the following in terms of a suitable notion of derivation for these rules.A derivation tree (for a set � of �-literals) is a �nite tree with root � and su
h that for ea
hinternal node E of the tree, its
hildren are the
on
lusions of some rule whose premise is E. Arefutation tree (for �) is a derivation tree all of whose leaves are ?. We say that a node in aderivation tree is (ir)redu
ible if (n)one of the derivation rules applies to it. A derivation is asequen
e of derivation trees starting with the single-node tree
ontaining �, where ea
h tree isderived from the previous one by the appli
ation of a rule to one of its leaves. A refutation is a�nite derivation ending with a refutation tree.Before proving
orre
tness, we start with a lemma that gives a few useful invariants. Sin
e the�rst property below deals with well-sortedness, we �rst de�ne what it means for the extra-logi
al
onstru
ts to be well-sorted: The oriented equation t ! v is well-sorted if t and v have the samesort. The expression v 7! L, labeling the variable v with the set L of
onstru
tor symbols, is
onsidered to be well-sorted if L � labels(sort(v)). Appli
ations of Inst are always well-sorted.Lemma 4.1. Let E0; E1; : : : ; be a bran
h on a derivation tree. Then the following holds for alli � 0.1. If E0 is well-sorted, then for all i, Ei is well-sorted.10

2. For all u! v 2 Ei, we have u � v.Proof. A simple examination of ea
h of the rules
on�rms that these invariants are maintained.Before proving termination, we introdu
e the following de�nitions. For an in�nite
onstru
torC, de�ne jCj = 0. For a �nite
onstru
tor Cij, de�ne jCij j to be 1 if Cij is nullary and Pnijk=1 jsij;kjotherwise, where for a �nite sort �i, we de�ne j�ij =Pmij=1 jCijj+ 1.Proposition 4.2 (Termination). Every derivation is �nite.Proof. It is enough to show that ea
h bran
h E0; E1; : : : of a derivation tree
an be mapped to a(stri
tly) des
ending sequen
e in a well-founded ordering.Let � be the set of
onstru
tor, sele
tor, and
onstant symbols from � together with the inputvariables from X. Then let A be any well-founded ordering of the elements of �.For i � 0, Let Si be a pair
onsisting of �rst, the number of sele
tor symbols in the �-literalsof Ei and se
ond, the total number of sele
tor symbols appearing in Ei. Let Ni be the multiset
onsisting of the sizes of the �-literals of Ei, where by size we mean the number of o

urren
es ofboth symbols from � (in
luding �) and input variables, but not of abstra
tion variables.Now, for ea
h abstra
tion variable v, let jvji =PC2L jCj+ 1, where L is the interse
tion of alllabels for v in Ei. De�ne Vi to be the sum of all jvji for all abstra
tion variables v in Var (Ei) thatdo not appear as an argument to Inst in Ei.Let Mi be the multiset of o

urren
es of symbols from � in either �-literals of Ei or in orientedequations from Ei. Let Oi be the multiset of all the o

urren
es of abstra
tion variables in Ei.Finally, let ni be the number of label o

urren
es in Ei, that is, o

urren
es of the
onstru
torsymbols in labeling pairs of Ei.Let >m, Am, and �m be the multiset orderings indu
ed respe
tively by the usual ordering > overthe natural numbers, the ordering A above, and the given ordering � over the abstra
tion variables.Let >2 be the lexi
ographi
 ordering of pairs of naturals indu
ed by >. Let �l be the lexi
ographi
ordering of pairs of naturals, tuples of naturals, multisets of symbols of �, multisets of naturals,multisets of abstra
tion variables, and naturals indu
ed by >2; >m; >;Am;�m; >. Observe that�l is well-founded. We will show that given some Ei, either Ei+1 = ? (in whi
h
ase the bran
hterminates trivially) or (Si; Ni; Vi;Mi; Oi; ni) �l (Si+1; Ni+1; Vi+1;Mi+1; Oi+1; ni+1). The proof isby
ases,
onsidering ea
h of the rules.The In
onsistent, Clash 1, Clash 2, Cy
le, and Empty rules are trivial, sin
e they have the
on
lusion ?.Suppose Abstra
t 1, Abstra
t 2, Orient, Remove 1, or Remove 2 is applied. Ea
h of these rulesleaves Si un
hanged while removing at least one �-symbol or input variable from a literal (without
hanging the other literals). In ea
h of these
ases, Ni >m Ni+1. For the
ase of Abstra
t 3, thenumber of sele
tor symbols appearing in literals is redu
ed by 1, so Si >2 Si+1.Suppose one of the
ongruen
e
losure rules is applied. In ea
h
ase, with the ex
eption ofSuperpose when t is not an abstra
tion variable, the only
hange is the repla
ement of an ab-stra
tion variable by another smaller abstra
tion variable. We know the repla
ement is smaller byLemma 4.1(2). Thus, Si, Ni, Vi, and Mi remain the same, while Oi �m Oi+1. In the
ase whereSuperpose is applied and t is not an abstra
tion variable, t must
ontain a symbol from �. If t
ontains a sele
tor, then
learly Si >2 Si+1. Otherwise, Mi Am Mi+1 (it is easy to see that Si, Niand Vi remain the same in this
ase).Now
onsider the De
ompose rule. De
ompose does not
hange the values of Si, Ni or Vi.However, it does eliminate one instan
e of the Cij symbol so that Mi Am Mi+1.11

Now
onsider the sele
tor rules. For the Instantiate 1 rule, if kj > 0, then Si >2 Si+1. Ifkj = 0, Si and Ni are un
hanged but Vi+1 = Vi � juji. By de�nition, juji must be positive. For theInstantiate 2 rule, Si and Ni are un
hanged. But Vi+1 = Vi � jvji +Pnijk=1 jukji+1. By de�nition,jvji = jCij j+ 1 =Pnijk=1 jsij;kj+ 1 =Pnijk=1 jukji+1 + 1. Thus, Vi+1 < Vi.For the
ollapse rules, exa
tly one sele
tor symbol is eliminated, so that Si >2 Si+1. Note thatin parti
ular, for rule Collapse 2, by de�nition tji must be a ground term
ontaining no sele
tors, sothe symbols introdu
ed by tji
an only be
onstru
tor and
onstant symbols.Finally,
onsider the labeling rules. The Re�ne rule eliminates an o

urren
e of an abstra
tionvariable (so that Oi �m Oi+1) while leaving Si, Ni, Vi, and Mi un
hanged. The split rules bothprodu
e two
on
lusions, ea
h of whi
h has fewer
onstru
tors appearing in labels than in thepremise. Furthermore, this is the only
hange, so Si, Ni, Mi, and Oi are un
hanged, Vi eitherde
reases or is un
hanged, and ni > ni+1.Sin
e ea
h rule either terminates the bran
h or moves downward in a well-founded ordering,every bran
h must be �nite.Lemma 4.3. The premise E of a derivation rule is satis�ed in R by a valuation � of Var(E), i�one of the
on
lusions E0 of the rule is satis�ed in R by an extension of � to Var (E0).Proof. Again, the proof is by
ases. For ea
h of the Abstra
t rules, the if dire
tion is immediate.In the other dire
tion, for the Abstra
t 1 rule, suppose that the premise is satis�ed by � in R. Weextend � by setting v to the value of
 under R; �. Noti
e that the labeling pair in the
on
lusionmust be satis�ed with any assignment. This is trivially the
ase if v is not of non-� sort. Whenv is of sort �i, it is a
onsequen
e of the Axiom (s
hema) 1 in R's spe
i�
ation and the fa
t that�(v) is a
onstru
tor term by Lemma 2.2. With this observation, it is
lear that the extendedvariable assignment satis�es the
on
lusion. For the Abstra
t 2 rule, a similar argument shows thatan extended variable assignment whi
h assigns v to the value of Ciju under R; � must satisfy the
on
lusion. For the Abstra
t 3 rule, the argument is again similar, but this time we must extend �to map ea
h v� to the value of Sij;�u under R; �.Now
onsider the literal level rules. The Orient and In
onsistent rules are obvious. Remove 1follows by de�nition of satisfa
tion for labeling pairs. The Remove 2 rule relies on the fa
t that forany v of sort �i, IsCijv holds for exa
tly one pair hi; ji. This follows from Lemma 2.2 and Axioms1 and 2.In ea
h of the
ongruen
e rules, the result follows from basi
 properties of equality. For thedownward
losure rules, the result follows from Lemma 2.2 and basi
 properties of the term algebraT (
).For the Instantiate rules, the result follows from the de�nition of satisfa
tion for labeling pairsand the Inst predi
ate, and Axioms 1, 2, and 3. For Collapse 1 the result follows by Axiom 3, andfor Collapse 2 by Axiom 4, Lemma 2.2 and the de�nition of satisfa
tion for labeling pairs.Finally, the labeling rules follow by simple Boolean reasoning and the de�nition of satisfa
tionfor labeling pairs.Proposition 4.4 (Soundness). If a set E0 has a refutation tree, then it is unsatis�able in R.Proof. The proof is immediate by stru
tural indu
tion and the previous lemma.To prove
ompleteness we will rely on the next two lemmas.Lemma 4.5. No irredu
ible leaf E in a derivation tree
ontains o

urren
es of sele
tor symbols.12

Proof. The
laim is trivially true is E = f?g, so assume that E 6= f?g. Sin
e E is irredu
ible, bythe Abstra
t 3 rule and Lemma 4.1(1), any o

urren
e of a sele
tor in E must be in an orientedequation of the form Sij;k(u) ! vk, where u is an abstra
tion variable of sort �i. So assume by
ontradi
tion that Sij;k(u)! vk 2 E. By the Abstra
t, Re�ne, Simplify 1, and Empty rules we alsoknow that u has at least one label in E, i.e., u 7! L 2 E with L 6= ;. Furthermore, by the Split1 rule, L must be a singleton, and in parti
ular, by the Collapse 2 rule, it must be fCijg. We alsoknow that no equation of the form Ciju ! u (with u �xed) is in E or in any prede
essor node ofE. In fa
t, an equation of that form, on
e introdu
ed, is either repla
ed by the rules by one of thesame form (i.e., Ciju0 ! u, for some u0) or by one of the form Ciju0 ! u0. The latter
ase
an onlyhappen as a
onsequen
e of the Superpose or Compose rules, whi
h however then introdu
e theoriented equation u! u0. Su
h an equation in turn
an only be repla
ed by one the form u! u00.Therefore, if Ciju! u o

urred in one of the an
estors of E in the derivation tree, then either someCijw ! u or some Cijw ! w and u ! w would o

ur in E. But this is not possible be
ause theneither Collapse 1 or Simplify 2 rule would respe
tively apply to Sij;k(u)! vk.Now, observe that Sij;k(u) ! vk
an only be the result of a sequen
e of upward
losure rulesapplied to an equation of the form Sij;k(u0)! v0k introdu
ed by the Abstra
t 3 rule. It is easy to seethat su
h
losure rules apply in the same way to all the equations Sij;1(u0)! v01; : : : ; Sij;nij(u0)! v0nijintrodu
ed by Abstra
t 3. From the absen
e of equations of the form Ciju ! u in the bran
h itfollows that E must
ontain Sij;1(u)! v1; : : : ; Sij;nij (u)! vnij . But then the Instantiate rule appliesto E, again
ontradi
ting the assumption that E is irredu
ible.Lemma 4.6. Every irredu
ible leaf E other than f?g in a derivation tree is satis�able in R.Proof. We build a valuation � of Var (E) that satis�es E in R. To start, letV = fv j t! v 2 E for some tgTv = ft j t! v 2 Eg for all v 2 VObserve that the sets Tu and Tv are disjoint for all distin
t u and v, otherwise E would
ontaintwo equations of the form t ! u and t ! v, and so would be redu
ible by the Superpose rule.Furthermore, for all v 2 V , Tv
ontains at most one non-variable term. To see that, re
alling thatE
ontains no o

urren
es of sele
tor symbols by Lemma 4.5, assume that Tv
ontains a
onstantsymbol
 of sort �. Clearly it
annot
ontain a term t of sort other than � be
ause otherwise either
! v or t! v would be ill-sorted, whi
h is not possible by Lemma 4.1(1). The only other possibleterms of sort � are other
onstant symbols d. But then, if d ! v were in E, Clash 2 would applyto E. Now assume that Tv
ontains a term of the form Ciju. Again by well-sortedness, it is enoughto argue that Tv
ontains no additional terms of the form Cij0v. But su
h terms
annot be in Tvbe
ause otherwise either the De
ompose or the Clash 1 rule would apply.Now
onsider the relation l over V de�ned as follows:ul v i� E
ontains an equation of the form Cijuuu0 ! v.By the Cy
le rule and the assumptions on E, the relation l is a
y
li
 and hen
e well founded. We
an de�ne a valuation � of V into R5 by well founded indu
tion on l.Let fv1; : : : ; vng be the set of all the l-minimal elements of V su
h that for i = 1; : : : ; n,
i !vi 2 E with
i a
onstant symbol.6 For i = 1; : : : ; n we de�ne �(vi) =
i. Now let fvn+1; : : : ; vn+kg5Whose universe, re
all, is the term algebra T (
).6This in
ludes the
ase in whi
h
i is a
onstru
tor of 0-arity.13

be the remaining l-minimal elements of V . For i = n + 1; : : : ; n + k, if vi is of sort �, we de�ne�(vi) = di where di is some
onstant of sort � in T (
) n f�(v1); : : : ; �(vn+i�1)g 7. If vi is of somesort �j , we know by a previous observation that vi 7! L 2 E with L 6= ;. Note that L must
ontainat least one non-�nite
onstru
tor. Suppose all
onstru
tors are �nite: if L is not a singleton, thenSplit 2 applies,
ontradi
ting irredu
ibility of E. If L is a singleton, and C 2 L is nullary, then bythe Instantiate 1 rule, an equation of the form C ! vk is in E. If C 2 L is non-nullary, then by theInstantiate 2 rule, an equation of the form Cu! vk is in E
ontradi
ting l-minimality of vk. Wethen de�ne �(vk) = Cijt1 � � � tnij where Cij is some non-zero-arity
onstru
tor in L and Cijt1 � � � tnij issome term in T (
) n f�(v1); : : : ; �(vn+k�1)g.We are now left with de�ning �(v) for all non-minimal v 2 V . If v is non-minimal, then theremust be an equation of the form Cu1 � � � uk ! v in E. Furthermore, k � 1 (otherwise v would beminimal) and ui l v for all i = 1; : : : ; k. We then de�ne �(v) = C�(u1) � � ��(uk).We now show by indu
tion on l that the valuation � just de�ned is an inje
tion of V into T (
).Let u; v be two distin
t elements of V of the same sort. If u and v are both l-minimal in the setfv1; : : : ; vng de�ned earlier, then �(u) 6= �(v) be
ause the sets Tv1 ; : : : ; Tvn are mutually disjoint. Ifone (or both) of them is in fvn+1; : : : ; vn+kg then �(u) 6= �(v) by
onstru
tion.If u, say, is not l-minimal, then both u and v must be of some sort �i. It follows that �(u); �(v)are terms of the form Cij�(u1) � � ��(unij); Cij0�(v1) � � ��(vnij0), respe
tively, with nij � 1 and nij0 � 1.Now, if j 6= j0, then �(u) and �(v) are trivially distin
t terms. If j = j0, then by indu
tion �(u1)and �(v1), say, are distin
t, therefore �(u) and �(v) are distin
t as well.Now we
an extend � to the whole Var (E) by de�ning it for the remaining (input or abstra
tion)variables of E. Ea
h su
h variable x o

urs in an equation of the form x! v in E. Hen
e we de�ne�(x) = �(v). For later referen
e, let �0 be the homomorphi
 extension of � to the set of �-termsover Var (E).The valuation � satis�es every element e of E. This is immediate if e has the form v � v orthe form v 7! L with v : �. If e has the form u 6� v with u; v distin
t, then � satis�es e for beinginje
tive over the abstra
tion variables of E. If e has the form t ! v, then � satis�es e be
ause�(v) = �0(t) by
onstru
tion. If e has the form v 7! L where v : �i
onsider the following two
ases.If Ciju1 � � � uk ! v 2 E for some Ciju1 � � � uk then it is not diÆ
ult to show that L must be fCijg.But then �(v) = Cij�(u1) � � ��(uk) by
onstru
tion. If there is no Ciju1 � � � uk ! v 2 E, then �(v) isde�ned as some term Cijt1 � � � tk where Cij 2 L. In both
ases, it is then immediate that � satis�esv 7! L.To
on
lude the proof it is enough to observe that, for being irredu
ible, E
an only
ontainelements of the forms listed above.Proposition 4.7 (Completeness). If a set E0 is unsatis�able in R, then it has a refutation.Proof. We prove the
ontrapositive of the proposition. Assume that E0 has no refutations. ByProposition 4.2, there is a derivation tree for E0 with an irredu
ible leaf E 6= f?g. By Lemma 4.6,E is satis�able in R. It follows by a repeated appli
ation of Lemma 4.3 that E0 is satis�able in Ras well.5 Strategies and EÆ
ien
yA strategy is a predetermined methodology for applying the rules. Di�erent strategies may bemore or less eÆ
ient. Before dis
ussing our re
ommended strategy, it is instru
tive to look at the7Using the assumption that all sorts � are in�nite. 14

losest related work. A naive algorithm for universal formulas is dis
ussed in [16℄. Although thepresentation there is somewhat di�erent, the essen
e of their algorithm
an be mimi
ked by ourrules8 with one small modi�
ation: repla
ing the Split 1 and Split 2 rules with the following basi
Split rule: Split u 7! fCijg [L; Eu 7! fCijg; E u 7! L; E if L 6= ;There are four steps in their naive algorithm: guess a \type
ompletion"; simplify;
ompute thebidire
tional
losure; and
he
k for
on
i
ts. These steps are roughly equivalent to the followingstrategy: after abstra
tion, apply the Split rule until it
an no longer be applied (this
orrespondsto guessing a type
ompletion). Next, apply the sele
tor rules to eliminate all instan
es of sele
torsymbols. Then, apply upward and downward
losure rules (the bidire
tional
losure). Finally,
he
kfor
on
i
ts using the remaining rules.One of the key
ontributions of this paper is to re
ognize that this naive strategy
an be improvedin two signi�
ant ways. First, the split rule should be delayed as long as possible, and se
ond, thenaive split rule
an be repla
ed with the smarter Split 1 and Split 2 rules. These two modi�
ationswork together and have the potential to dramati
ally redu
e the size of the resulting derivation.Noti
e that with the smarter splitting rules, unless an abstra
t variable u is labeled with all �nite
onstru
tors, Split 1 is only enabled when some sele
tor is applied to u. By itself, this eliminatesmany needless
ase splits. But by delaying the Split rules (in parti
ular by �rst applying sele
torrules), it may be possible to eliminate sele
tors and thus eliminate additional
ase splits.Suppose we have a simple tree data type. It has a binary
onstru
tor node : tree � tree ! treewith two asso
iated sele
tors, left : tree ! tree and right : tree ! tree. There is also a 0-arity
onstru
tor leaf whi
h is also the designated term for both sele
tors. Now,
onsider the followinginput: leftn(Z) � X ^ isnode(Z) ^ Z � XAfter applying all available rules ex
ept for the Split rules, the result will look something like this:f Z ! u0;X ! u0; u0 7! fnodeg;node(u1; v1)! u0; un ! u0;left(u1)! u2; : : : ; left(un�1)! un; u1 7! fleaf;nodeg; : : : ; un 7! fleaf;nodeg;right(u1)!v2;: : :; right(un�1)!vn; v1 7! fleaf;nodeg; : : : ; vn 7! fleaf;nodegg;Noti
e that there are 2n abstra
tion variables labeled with two labels ea
h. If we eagerly appliedthe naive Split rule at this point, the derivation tree would rea
h size O(22n).Suppose, on the other hand, that we follow our strategy. Split 1
an only be applied to someui; (1 < i < n), so let's say we split on ui. The result is two bran
hes, one with ui 7! fnodeg andthe other with ui 7! fleafg. The se
ond bran
h indu
es a
as
ade of (at most n) appli
ations ofCollapse 2 whi
h in turn results in uk 7! fleafg for ea
h k > i. This eventually results in ? via theEmpty and Re�ne rules. The other bran
h
ontains ui 7! fnodeg and results in the appli
ation ofthe Instantiate rule, but little else, and so we will have to split again, this time on a di�erent ui.This pro
ess will have to be repeated until we have split on all of the ui. At that point, there willbe a
y
le from u0 ba
k to u0, and so we will derive ? via the Cy
le rule.Be
ause ea
h split only requires at most O(n) rules and there are n� 1 splits, the total size ofthe derivation tree will be O(n2). In fa
t, we
an do better. If we start at un�1 and work our way8Unfortunately, there is not enough detail in [16℄ to be sure that this is an a

urate
hara
terization of theiralgorithm, but this re
e
ts our best understanding of it. 15

down, ea
h split will take only O(1), so the total size of the derivation tree will be O(n).9 This isnot a
oin
iden
e and leads to a �nal strategy suggestion: split on nodes that
orrespond to theleast deeply nested terms �rst.Of
ourse, in the worst
ase, our strategy will still be exponential be
ause the problem is NP-
omplete, but with this example as eviden
e, we
laim that our strategy is never worse than thenaive strategy, and is often far superior.6 Extending the AlgorithmIn this se
tion we brie
y dis
uss several ways in whi
h our algorithm
an be used as a
omponentin solving a larger or related problem.6.1 Finite SortsHere we
onsider how to lift the limitation imposed before that ea
h of � 2 f�1; : : : ; �rg is in�nitevalued. Sin
e we have no su
h restri
tions on sorts �i, the idea is to simply repla
e su
h a � by anew � -like sort ��, whose set of
onstru
tors (all of whi
h will be nullary) will mat
h the domain of�. For example, if � is a �nite s
alar of the form f1; : : : ; ng, then we
an let�� ::== null1 j : : : j nulln;We then pro
eed as before, after repla
ing all o

urren
es of � by �� and ea
h i by nulli.6.2 Simulating Partial Fun
tion Semanti
sAs mentioned earlier, it is not
lear how best to interpret the appli
ation of a sele
tor to the wrong
onstru
tor. One way to play it safe is to modify the model R so that sele
tors are interpretedas partial fun
tions. An evaluation of a formula in this model has three possible out
omes: true,false, or unde�ned. This approa
h may be espe
ially valuable in a veri�
ation appli
ation in whi
happli
ation of sele
tors is required to be guarded so that no formula should ever be unde�ned.Fortunately, this approa
h
an easily be implemented as des
ribed in [3℄: given a formula to
he
k,a spe
ial additional formula
alled a type-
orre
tness
ondition is
omputed (whi
h
an be done intime and spa
e linear in the size of the input formula). These two formulas
an then be
he
kedusing a de
ision pro
edure that interprets the partial fun
tions (in this
ase, the sele
tors) in somearbitrary way over the unde�ned part of the domain. The result
an then be interpreted to revealwhether the formula would have been true, false, or unde�ned under the 3-valued semanti
s.6.3 Cooperating with other De
ision Pro
eduresA �nal point is that that our pro
edure has been designed to easily integrate into a Nelson-Oppen-style framework for
ooperating de
ision pro
edures [9℄. In the many-sorted
ase, the key theoreti
alrequirements (see [14℄) for two de
ision pro
edures to be
ombined are that the signatures of theirtheories share at most sort symbols and ea
h theory is stably in�nite over the shared sorts.10A key operational requirement is that the de
ision pro
edure is also able to easily
ompute and
ommuni
ate equality information.9This does not mean the total time is ne
essarily O(n). In general, pro
essing a node in
ludes bidire
tional
losureand
he
king for
y
les whi
h requires O(n) steps (see [11℄, for example). So the total pro
essing time is bounded byO(n �m), where m is the size of the derivation tree. In this
ase, the total time is bounded by O(n2).10A many-sorted theory T is stably in�nite over a subset S of its sorts if every quanti�er-free formula satis�able inT is satis�able in a model of T where the sorts of S denote in�nite sets.16

The theory of R (i.e., the set of sententen
es true in R) is trivially stably in�nite over the sorts�1; : : : ; �r and over any � -sort
ontaining a non-�nite
onstru
tor|as all su
h sorts denote in�nitesets in R. Also, in our pro
edure the equality information is eventually
ompletely
aptured bythe oriented equations produ
ed by the derivation rules, and so entailed equalities
an be easilydete
ted and reported.7 Con
lusionWe have presented an algorithm for de
iding the theory of re
ursive data types. Novel features ofour treatment in
lude the ability to handle mutually re
ursive multi-sorted data types, a simplerpresentation of the theory, an abstra
t de
larative algorithm, and smarter splitting rules whi
h
angreatly enhan
e eÆ
ien
y. As future work, we propose to treat the subje
ts mentioned brie
y inthe last se
tion in more detail. Also, though a prototype implementation has been
ompleted, wehave begun work on implementing the de
ision pro
edure within the theorem prover CVC Lite [2℄.Referen
es[1℄ L. Ba
hmair, A. Tiwari, and L. Vigneron. Abstra
t
ongruen
e
losure. Journal of AutomatedReasoning, 31:129{168, 2003.[2℄ C. Barrett and S. Berezin. CVC Lite: A new implementation of the
ooperating validity
he
ker. In R. Alur and D. A. Peled, editors, Pro
eedings of the 16th International Conferen
eon Computer Aided Veri�
ation (CAV '04), volume 3114 of Le
ture Notes in Computer S
ien
e,pages 515{518. Springer-Verlag, July 2004. Boston, Massa
husetts.[3℄ S. Berezin, C. Barrett, I. Shikanian, M. Che
hik, A. Gur�nkel, and D. L. Dill. A pra
ti
alapproa
h to partial fun
tions in CVC Lite. In Pro
eedings of the 2nd International Workshopon Pragmati
s of De
ision Pro
edures in Automated Reasoning (PDPAR '04), July 2004. Cork,Ireland.[4℄ W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.[5℄ D. Kozen. Complexity of �nitely presented algebras. In Pro
eedings of the 9-th Annual ACMSymposium on Theory of Computing, pages 164{177, 1977. Boulder, Colorado.[6℄ A. I. Mal'
ev. On elementary theories of lo
ally free universal algebras. Soviet Mathemati
alDoklady, 2(3):768{771, 1961.[7℄ A. Martelli and U. Montanari. An eÆ
ient uni�
ation algorithm. ACM Transa
tions onProgramming Languages and Systems, 4(2):258{282, 1982.[8℄ K. Meinke and J. V. Tu
ker. Universal algebra. In S. Abramsky, D. V. Gabbay, and T. S. E.Maibaum, editors, Handbook of Logi
 in Computer S
ien
e, volume 1. Claredon Press, 1992.[9℄ G. Nelson and D. Oppen. Simpli�
ation by
ooperating de
ision pro
edures. ACM Transa
tionson Programming Languages and Systems, 1(2):245{57, 1979.[10℄ G. Nelson and D. C. Oppen. Fast de
ision pro
edures based on
ongruen
e
losure. Journal ofthe Asso
iation for Computing Ma
hinery, 27(2):356{364, April 1980.17

[11℄ D. C. Oppen. Reasoning about re
ursively de�ned data stru
tures. Journal of the Asso
iationfor Computing Ma
hinery, 27(3):403{411, July 1980.[12℄ T. Rybina and A. Voronkov. A de
ision pro
edure for term algebras with queues. ACMTransa
tions on Computational Logi
, 2(2):155{181, April 2001.[13℄ R. Shostak. De
iding
ombinations of theories. Journal of the Asso
iation for ComputingMa
hinery, 31(1):1{12, 1984.[14℄ C. Tinelli and C. Zarba. Combining de
ision pro
edures for sorted theories. In J. Alferes andJ. Leite, editors, Pro
eedings of the 9th European Conferen
e on Logi
 in Arti�
ial Intelligen
e(JELIA'04), Lisbon, Portugal, volume 3229 of Le
ture Notes in Arti�
ial Intelligen
e, pages641{653. Springer, 2004.[15℄ K. N. Venkataraman. De
idability of the purely existential fragment of the theory of termalgebras. Journal of the Asso
iation of Computing Ma
hinery, 34(2):492{510, April 1987.[16℄ T. Zhang, H. B. Sipma, and Z. Manna. De
ision pro
edures for term algebras with integer
onstraints. In Pro
eedings of the 2nd International Joint Conferen
e on Automated Reasoning(IJCAR '04) LNCS 3097, pages 152{167, 2004.[17℄ T. Zhang, H. B. Sipma, and Z. Manna. Term algebras with length fun
tion and boundedquanti�er alternation. In Pro
eedings of the 17th International Conferen
e on Theorem Provingin Higher Order Logi
s (TPHOLs '04), volume 3223 of Le
ture Notes in Computer S
ien
e,pages 321{336, 2004.

18

