
An Abstract Decision Procedure

for a Theory of Inductive Data Types

Clark Barrett barrett@cs.nyu.edu

Igor Shikanian igor@cs.nyu.edu

Department of Computer Science
Courant Institute of Mathematical Sciences
New York University

Cesare Tinelli∗ tinelli@cs.uiowa.edu

Department of Computer Science

University of Iowa

Abstract

Inductive data types are a valuable modeling tool for software verification. In the past,
decision procedures have been proposed for various theories of inductive data types, some
focused on the universal fragment, and some focused on handling arbitrary quantifiers. Be-
cause of the complexity of the full theory, previous work on the full theory has not focused
on strategies for practical implementation. However, even for the universal fragment, pre-
vious work has been limited in several significant ways. In this paper, we present a general
and practical algorithm for the universal fragment. The algorithm is presented declara-
tively as a set of abstract rules which we show to be terminating, sound, and complete.
We show how other algorithms can be realized as strategies within our general framework,
and we propose a new strategy and give experimental results indicating that it performs
well in practice. We conclude with a discussion of several useful ways the algorithm can be
extended.

Keywords: inductive data types, decision procedures, term algebras, satisfiability modulo
theories

1. Introduction

Inductive data types are commonly used in programming. In particular, functional lan-
guages support such structures explicitly. The same notion is also a convenient abstraction
for common data types such as records and data structures such as linked lists used in more
conventional programming languages. The ability to reason automatically and efficiently
about inductive data types thus provides an important tool for the analysis and verification
of programs.

Perhaps the best-known example of a simple inductive data type is the list type used in
LISP. Lists are either the null list or are constructed from other lists using the constructor
cons. This constructor takes two arguments and returns the result of prepending its first
argument to the list in its second argument. To access the elements of a list, a pair of
selectors is provided: car returns the first element of a list and cdr returns the rest of the
list.

∗ Partially supported by the National Science Foundation grant #0237422.

1

More generally, we are interested in any set of (possibly mutually recursive) inductive
data types, each of which is built with one or more constructors. Each constructor has
selectors that can be used to retrieve the original arguments as well as a tester which
indicates whether a given term was constructed using that constructor. As an example of
the more general case, suppose we want to model lists of trees of natural numbers. Consider
a set of three inductive data types: nat, list, and tree. The type nat has two constructors:
zero, which takes no arguments; and succ, which takes a single argument of type nat and
has the corresponding selector pred. The list type is as before, except that we now specify
that the elements of the list are of type tree. The tree type in turn has two constructors:
node, which takes an argument of type list and has the corresponding selector children, and
leaf, which takes an argument of type nat and has the corresponding selector data. We can
represent this set of types using the following convenient notation based on that used in
functional programming languages:

nat := succ(pred : nat) | zero;
list := cons(car : tree, cdr : list) | null;
tree := node(children : list) | leaf(data : nat);

The testers for this set of data types are is succ, is zero, is cons, is null, is node, and is leaf.
Propositions about a set of inductive data types can be captured in a sorted first-order

language which closely resembles the structure of the data types themselves in that it has
function symbols for each constructor and selector, and a predicate symbol for each tester.
For instance, propositions that we would expect to be true for the example above include
the following:

1. ∀x : nat. succ(x) 6≈ zero,

2. ∀x : list. x ≈ null ∨ is cons(x), and

3. ∀x : tree. is leaf(x) → (data(x) ≈ zero ∨ is succ(data(x))).

In this paper, we discuss a procedure for deciding such formulas. We focus on satisfia-
bility of a set of literals, which (through well-known reductions) can be used to decide the
validity of universal formulas. We do not consider quantifier elimination, which can be used
to decide the full theory, referring the reader instead to related work such as [7, 9, 20, 21].

There are three main contributions of this work over earlier work on the topic. First,
our setting is more general: we allow mutually recursive inductive types each with multiple
constructors, selectors, and testers, and we use the more general setting of many-sorted
logic. The rationale for a many-sorted approach is that it more closely corresponds to
potential applications such as analysis of programming languages. In particular, the well-
sortedness requirements rule out many syntactical constructs that would not make sense in
practice.

The second contribution is in presentation. We present the theory itself in terms of
an initial model rather than axiomatically as is often done. Also, the presentation of the
decision procedure is given as abstract rewrite rules, making it more flexible and easier to
analyze than if it were given imperatively.

Finally, as described in Section 5, the flexibility provided by the abstract algorithm
allows us to describe a new strategy with significantly improved practical efficiency.

2

Related Work. Term algebras over constructors provide the natural intended model for
inductive data types. The historically foundational decidability and quantifier elimination
results for term algebras can be found in [10]. In other early work, [8] addresses the problem
of satisfiability of one equation in a term algebra, modulo other equations. The applications
and extension of the quantifier elimination procedure to term algebras with queues is han-
dled in [16]. Another contribution to solving satisfiability of equations over term algebras
is given in [19], which extends the language with a powerful sub-term relation predicate. In
[7] two dual axiomatizations of term algebras are presented, one with constructors only, the
other with selectors and testers only.

An often-cited reference for the quantifier-free case is the treatment by Oppen in 1980
[15]. Oppen’s algorithm gives a detailed decision procedure for a single inductive data
type with a single constructor. The algorithm is linear for conjunctions of literals and
NP-complete for arbitrary quantifier-free formulas. The case of multiple constructors is
not addressed. In [14], Nelson and Oppen show that for a simple list data type with two
constructors, satisfiability of conjunctions of literals is NP-complete. However, no decision
procedure is given. Shostak gives an algorithm for a simple theory of lists without null in
[17]. He also claims there is a generalization to arbitrary inductive data types. However,
the claim is unsubstantiated and it is unclear how to generalize to the case of multiple
constructors.

More recently, several papers [9, 20, 21] explore decision procedures for a single in-
ductive data type. These papers focus on ambitious schemes for quantifier elimination and
combinations with other theories rather than the question of a simple and efficient algo-
rithm for the quantifier-free case. One possible extension of Oppen’s algorithm to the case
of multiple constructors is discussed briefly in [20]. A comparison of our algorithm with
that of [20] is made in Section 5.

Finally, a recent approach based on first-order reasoning with the superposition calculus
is described in [6]. This work shows how a decision procedure for an inductive data type with
a single constructor can be automatically inferred from the first-order axioms, even though
the axiomatization is infinite. While the algorithm as given is worst-case exponential, it
has the advantage of being easily implementable (any existing superposition-based theorem
prover can be used to implement the strategy) and can be easily combined with other
theories that have been shown to be decidable using superposition. We are also interested
in being able to combine with other theories (a topic we address in Section 6.3). However, as
far as the theory decision procedure is concerned, our focus is on generality and efficiency
rather than immediacy of implementation. The multiple-constructor case as well as an
investigation of practical efficiency are listed as future work in [6]. Success in these directions
would offer an interesting alternative to our approach.

Paper Organization. The paper, which improves and expands on a preliminary version
presented at the PDPAR’06 workshop [3] is organized as follows.1. Section 2 describes our
formulation of the first-order theory of inductive data types. In Section 3, we present the
algorithm as a set of abstract rules. The correctness of the algorithm is shown in Section
4. In Section 5, we discuss the efficiency of the algorithm and show, in particular, that it

1. The improvements include simpler notation, simplifications to and expanded explanations of the rules,
more detailed examples, and a section on correctness with complete proofs.

3

can be exponentially more efficient than previous naive algorithms. Finally, in Section 6,
we discuss how the algorithm can be extended, including how to handle finite sorts.

2. The Theory of Inductive Data Types

Previous work on inductive data types (IDTs) [20, 21] uses first-order axiomatizations in
an attempt to capture the main properties of an inductive data type and reason about it.
We find it simpler and cleaner to use a semantic approach instead, as is done in algebraic
specification. A set of IDTs can be given a simple equational specification over a suitable
signature. The intended model for our theory can be formally, and uniquely, defined as the
initial model of this specification. Reasoning about a set of IDTs then amounts to reasoning
about formulas that are true in this particular initial model.

2.1 Specifying IDTs

We formalize IDTs in the context of many-sorted equational logic (see [12] among others).
We will assume that the reader is familiar with the basic notions in this logic, and also with
basic notions of term rewriting.

We start with the theory signature. We assume a many-sorted signature Σ whose set
of sorts consists of a distinguished sort bool for the Booleans, and p ≥ 1 sorts τ1, . . . , τp

for the IDTs. We also allow r ≥ 0 additional (non-IDT) sorts σ1, . . . , σr. We will denote
by s, possibly with subscripts, any sort in the signature other than bool, by τ any sort in
{τ1, . . . , τp}, and by σ any sort in {σ1, . . . , σr}.

As mentioned earlier, the function symbols in our theory signature correspond to the
constructors, selectors, and testers of the set of IDTs under consideration. We assume for
each τ a set Cτ of mτ ≥ 1 constructors of τ . We will denote constructors by the letter
C, possibly primed or with subscripts. We will write C : s1 · · · sn → τ to denote that the
constructor C takes n ≥ 0 arguments of respective sort s1, . . . , sn and returns a value of
sort τ . Constructors with arity 0 are called nullary constructors or constants. For each
constructor C : s1 · · · sn → τ , we assume n corresponding selector symbols denoted by

S
(1)
C , . . . , S

(n)
C with S

(i)
C : τ → si, and a tester predicate symbol denoted by isC . To simplify

some of the proofs, and without loss of generality, we treat isC as a function symbol of type

τ → bool. We write S(i) instead of S
(i)
C when C is clear from context or not important.

In addition to these symbols, we also assume that the signature contains two constants,
true and false of sort bool, and an infinite number of distinct constants of each sort σ. The
constants are meant to be names for the elements of that sort, so for instance if σ1 were
a sort for the natural numbers, we could use all the numerals as the constants of sort σ1.
Having all these constants in the signature is not necessary for our approach, but in the
following exposition it provides an easy way of ensuring that the sorts in σ are infinite.
Section 6.1 shows that our approach can be easily extended to the case in which some of
these sorts are finite. As usual in many-sorted equational logic, we also have p + r + 1
equality symbols (one for each sort mentioned above), all written as ≈.

Our procedure requires one additional constraint on the set of IDTs: It must be well-
founded. A sort s is well-founded iff there exist ground (i.e., variable-free) Σ-terms of sort
s. Informally, each sort must contain terms that do not denote cyclic or otherwise infinite

4

data types. Note that because we assume the existence of constants of sort σi (for each i),
these sorts are automatically well-founded.

In some cases, it will be necessary to distinguish between finite and infinite sorts and
constructors:

• A sort s is finite iff there are only finitely many ground Σ-terms of sort s;

• a constructor C is finite if it is nullary or if all of its argument sorts are finite.

As we will see, consistent with the above terminology, our semantics will interpret finite,
resp. infinite, τ -sorts indeed as finite, resp. infinite, sets.

We denote by T (Σ) the set of (well-sorted) ground terms of signature Σ or, equivalently,
the many-sorted term algebra over that signature. The IDTs with functions and predicates
denoted by the symbols of Σ are specified by the set of universally quantified equations
given below. For reasons explained below, we assume that associated with every selector

S
(i)
C : τ → s is a distinguished ground term tiC of sort s containing no selectors (or testers).

Equational Specification of IDTs. Given a signature Σ of the form above, the associated
inductive data type is specified by the following set E of axiom schemas for each sort τ in
Σ and distinct constructors C : s1 · · · sn → τ and C ′ : s′1 · · · s

′
n′ → τ :

∀x1, . . . , xn. isC(C(x1, . . . , xn)) ≈ true

∀x1, . . . , xn. isC′(C(x1, . . . , xn)) ≈ false

∀x1, . . . , xn. S
(i)
C (C(x1, . . . , xn)) ≈ xi for all i = 1, . . . , n

∀x1, . . . , xn. S
(i)
C′ (C(x1, . . . , xn)) ≈ tiC′ for all i = 1, . . . , n′

The last axiom specifies what happens when a selector is applied to the “wrong” con-
structor. Note that there is no obviously correct thing to do in this case since it would
correspond to an error condition in a real application. Our axiom specifies that in this
case, the result is the designated ground term for that selector. This is different from other
treatments (such as [7, 20, 21]) where the application of a selector to the wrong constructor
is treated as the identity function. The main reason for this difference is that the identity
function would not always be well-sorted in many-sorted logic. It is important to notice
that as a result, our procedure may give counter-intuitive results if given as input a formula
whose satisfiability depends on the application of a selector to the wrong constructor. One
possible approach for dealing with this difficulty is discussed in Section 6.2.

By standard results in universal algebra we know that E admits an initial model R. We
refer the reader to [12] for a thorough treatment of initial models. For our purposes, it will
be enough to mention the following properties that R enjoys by virtue of being an initial
model.

Lemma 2.1. Where ≈E is the equivalence relation on Σ-terms induced by E, let T (Σ)/≈E

be the quotient of the term algebra T (Σ) by ≈E .

1. For all ground Σ-terms t1, t2 of the same sort, t1 ≈E t2 iff R satisfies t1 ≈ t2.

2. R is isomorphic to T (Σ)/≈E .

5

Proof. These are applications to R of standard results about initial models. See, for instance
Theorem 5.2.11 and Theorem 5.2.17 of [12].

Lemma 2.2. Let Ω be the signature obtained from Σ by removing the selectors and the
testers. The reduct of R to Ω is isomorphic to T (Ω).

Proof. By Lemma 2.1(2) we can take R to coincide with T (Σ)/≈E , whose elements are the
equivalence classes of ≈E on the ground Σ-terms. To prove the claim then it is enough to
show that (i) every ground Σ-term is equivalent in E to a ground Ω-term, and (ii) no two
distinct ground Ω-terms belong to the same equivalence class.

Consider the rewrite system R obtained by orienting the equations in E left to right.
It is easy to show that R is terminating. It is also immediate that R contains no critical
pairs and so it is confluent. It follows by basic results in term rewriting that R is canonical:
every Σ-term has a unique normal form (wrt. R), and two Σ-terms are equivalent in E iff
they have the same normal form.

Now, by a simple inductive argument, one can show that the normal form of each ground
Σ-term is a ground Ω-term, which proves (i) above. It is trivial that every ground Ω-term
is irreducible by R. This entails that distinct ground Ω-terms are inequivalent in E , proving
(ii).

We will call ground constructor terms the elements of the set T (Ω) defined in the
previous lemma. Informally, the lemma means that R does in fact capture the set of
IDTs in question, as we can take the carrier of R to be the term algebra T (Ω). This also
shows that in R each data type τ is generated using just its constructors, and that distinct
ground constructor terms of sort τ are distinct elements of the data type. Using the two
lemmas one can also easily show that in R the sort bool denotes a two-element set, the sorts
σ1, . . . , σr denote infinite sets, and each sort τ denotes an infinite data type if and only if
τ is infinite in the sense specified earlier. From a more formal point of view, these lemmas
will be useful in proving the correctness of the decision procedure.

3. The Decision Procedure

In this section, we present a decision procedure for the satisfiability of sets of Σ-literals over
R. Before giving a formal description of the algorithm, which is quite technical, we start
with an informal overview based on examples.

3.1 Overview and Examples

Our procedure builds on the algorithm by Oppen [15] for a single type with a single con-
structor. Let us first look at how Oppen’s procedure works on a simple example.

Example 3.1. Consider the list data type without the null constructor2. and the following
set of literals: {cons(x, y) ≈ z, car(w) ≈ x, cdr(w) ≈ y,w 6≈ z}.

2. Note that this data type is not well-founded. Indeed, because Oppen only considers data types with a
single constructor, there is no base case for terms (unless the constructor has arity 0), so his semantics
are over models with infinite terms. In contrast, we choose to disallow models with infinite terms while
allowing multiple constructors, a combination that we feel is more intuitive and corresponds better to
actual uses of IDTs.

6

w

cdr(w)car(w)x y

cons(x,y)z

Figure 1. Term graph for Example 3.1

Oppen’s procedure works as follows: first, a graph is constructed that relates terms ac-
cording to their meaning in the intended model. The graph for Example 3.1 is shown in
Figure 1. Notice that cons(x, y) is a parent of x and y and car(w) and cdr(w) are children
of w. The Oppen algorithm next computes the equivalence relation on nodes of the graph
induced by the set of all equations. It then proceeds by performing an upwards (congru-
ence) and downwards (unification) closure on the graph and then checking for cycles or for
a violation of disequalities. A cycle occurs if there exists a sequence of nodes beginning and
ending with the same node such that adjacent nodes are either distinct nodes in the same
equivalence class or are adjacent in the graph.3. For Example 3.1, upwards closure implies
that w ≈ cons(x, y). But since we also have cons(x, y) ≈ z, this contradicts the disequality
w 6≈ z, indicating that the set of literals is unsatisfiable.

An alternative algorithm for the case of a single constructor is to introduce new terms
and variables to replace variables that are inside of selectors. For Example 3.1, we would
introduce w ≈ cons(s, t) where s, t are new variables. Now, by substituting and collapsing
applications of selectors to constructors, we get {cons(x, y) ≈ z,w ≈ cons(s, t), x ≈ s, t ≈
y,w 6≈ z}. This approach, advocated in [17], only requires downwards closure.

Unfortunately, if a data type has more than one constructor, things are not quite as
simple. In particular, the simple approach of replacing variables with constructor terms
does not work because one cannot establish a priori which constructor should be used to
build the value denoted by a given variable.

Example 3.2. Consider again the list data type, this time with both the cons and the null
constructor, and the following set of literals: {cons(x, y) ≈ w, cdr(w) ≈ cdr(y), y 6≈ null}.

The graph for Example 3.2 is shown in Figure 2. Observe that the new graph has nodes
for both children of w and y, even though these terms do not all appear in the given set of
literals. For the sake of simplicity, we follow Oppen in requiring that every node with at
least one child has a complete set of children.

A simple extension of Oppen’s algorithm for the case of multiple constructors is proposed
in [20]. The idea is to first guess a type completion, that is, a labeling of every variable by
a constructor, which is meant to constrain a variable to take only values built with the
associated constructor. Once all variables are labeled by a single constructor, the Oppen
algorithm can be used to determine if the constraints can be satisfied under that labeling.

Unfortunately, the type completion guess can be very expensive in practice. In Example
3.2, there are 7 terms that are not constructor terms and thus could potentially have been

3. A simple example of a cycle is: cons(x, y) ≈ y.

7

w

cdr(w)car(w)x y

cons(x,y)

car(y) cdr(y)

null

Figure 2. Term graph for Example 3.2

constructed using either constructor. A naive type completion guess would require 27 cases.
However, most of these cases need not be considered. In fact, we only need to consider
which constructor is used to construct the value of y. If y is constructed with null, then
this contradicts the disequality y 6≈ null. On the other hand, if y is constructed with cons,
then downward closure requires y ≈ cdr(w) ≈ cdr(y), creating a cycle.

Our presentation combines ideas from previous work as well as introducing some new
ones. There is a set of upward and downward closure rules to mimic Oppen’s algorithm.
The idea of a type completion is replaced by a set of labeling rules that can be used to
refine the set of possible constructors for each term (in particular, this allows us to delay
guessing as long as possible). And the notion of introducing constructors and eliminating
selectors is captured by a set of selector rules. In addition to the presentation, one of our
key contributions is to provide precise side-conditions for when case splitting is necessary
as opposed to when it can be delayed. The results given in Section 5 show that with the
right strategy, significant gains in efficiency can be obtained.

We describe our procedure formally in the following, as a set of derivation rules. We
build on and adopt the style of similar rules for abstract congruence closure [1] and syntactic
unification [11].

3.2 Definitions and Notation

In the following, we will consider well-sorted formulas over the signature Σ above and an
infinite set X of implicitly existential variables. To distinguish these variables, which can
occur in formulas given to the decision procedure described below, from other internal
variables used by the decision procedure, we will sometimes call the elements of X input
variables.

Given a set Γ of literals over Σ and variables from X, we wish to determine the satisfia-
bility of Γ in the algebra R.4. That is, we wish to determine whether there exists a variable

4. In both theory and practice, the satisfiability of arbitrary quantifier-free formulas can be easily deter-
mined given a decision procedure for a set of literals. Using the fact that a universal formula ∀xϕ(x) is

8

assignment α, a mapping of input variables to ground terms, such that applying α to Γ
results in a set of ground literals all of which are true in R. We will assume for simplicity,
and with no loss of generality, that the only occurrences of terms of sort bool are in atoms
of the form isC(t) ≈ true, which we will write just as isC(t).

Following [1], for each sort τ (σ) we will make use of the sets Vτ (Vσ) of abstraction
variables of sort τ (σ); abstraction variables are disjoint from input variables (variables
in Γ) and function as equivalence class representatives for the terms in Γ. We assume an
arbitrary, but fixed, well-founded ordering ≻ on the abstraction variables that is total on
variables of the same sort. We denote the set of all variables (both input and abstraction)
in Γ as Var (Γ). Recall that for each sort τ the set Cτ denotes the set of τ ’s constructors.
To simplify the notation we will write Cs regardless of whether s is a τ -sort or a σ-sort. In
the latter case Cs will denote the empty set. We will write sort(t) to denote the sort of the
term t.

The rules make use of three additional constructs that are not in the language of Σ:
→, 7→, and Inst. The symbol → is used to represent oriented equations. Its left-hand side
is a Σ-term t and its right-hand side is an abstraction variable v. The symbol 7→ denotes
labelings of abstraction variables with sets of constructor symbols. It is used to keep track
of possible constructors for instantiating a τ variable.5. Finally, the Inst construct is used to
track applications of the Instantiate 2 rule given below. It is needed to ensure termination
by preventing multiple applications of the rule. It is a unary predicate that is applied only
to abstraction variables.

Let ΣC denote the set of all constant symbols in Σ, including nullary constructors. We
will denote by Λ the set of all possible literals over Σ and input variables X. Note that this
does not include oriented equations (t → v), labeling pairs (v 7→ L), or applications of Inst.
In contrast, we will denote by E multisets of literals of Λ, oriented equations, and labeling
pairs, and applications of Inst. To simplify the presentation, we will consistently use the
following meta-variables: c, d denote constants (elements of ΣC) or input variables from X;
u, v,w denote abstraction variables; t denotes a flat term—i.e., a term all of whose proper
sub-terms are abstraction variables—or a label set, depending on the context. u,v denote
possibly empty sequences of abstraction variables; and u → v is shorthand for the set of
oriented equations resulting from pairing corresponding elements from u and v and orienting
them so that the left hand variable is greater than the right hand variable according to ≻.
Finally, v ⊲⊳ t denotes any of v ≈ t, t ≈ v, v 6≈ t, t 6≈ v, or v 7→ t. To streamline the
notation, we will sometimes denote function application simply by juxtaposition.

Each rule consists of a premise and one or more conclusions. Each premise is made up
of a multiset of literals from Λ, oriented equations, labeling pairs, and applications of Inst.
Conclusions are either similar multisets or ⊥, where ⊥ represents a trivially unsatisfiable
formula. As we show later, the soundness of our rule-based procedure depends on the
fact that the premise E of a rule is satisfied in R by a valuation of Var(E) iff one of the
conclusions E′ of the rule is satisfied in R by an extension of that valuation.

true in a model exactly when ¬ϕ(x) is unsatisfiable in the model, this also provides a decision procedure
for universal formulas.

5. To simplify the writing of the rules, some rules may introduce labeling pairs for variables with a non-τ
sort, even though these play no role.

9

3.3 The derivation rules

Our decision procedure consists of the following derivation rules on multisets E.

Abstraction rules

Abstract 1
p[c], E

c → v, v 7→ Cs, p[v], E
if

p ∈ Λ, c : s,
v fresh from Vs

Abstract 2
p[C u], E

C u → v, p[v], v 7→ {C}, E
if p ∈ Λ, C ∈ Cτ v fresh from Vτ

Abstract 3

p[S
(k)
C u], E

S
(1)
C u → v1, . . . , S

(n)
C u → vn, p[vk],

v1 7→ Cs1
, . . . , vn 7→ Csn

, E

if
p ∈ Λ,
C : s1 · · · sn → τ,
each vi fresh from Vsi

The abstraction or flattening rules assign a new abstraction variable to every sub-term
in the original set of literals. Each rule contains a literal of the form p[t] in the premise and
p[v] in the conclusion. The meaning of this notation is that p[t] is some literal containing
the term t and p[v] is the literal obtained by replacing every occurrence of t in p[t] with
the abstraction variable v. Abstraction variables are used as place-holders or equivalence
class representatives for the sub-terms they replace. While we would not expect a practical
implementation to actually introduce these variables, it greatly simplifies the presentation
of the remaining rules.

The Abstract 1 rule replaces input variables or constants. Abstract 2 replaces con-
structor terms, and Abstract 3 replaces selector terms. Notice that in each case, a labeling
pair for the introduced variables is also created. This corresponds to labeling each sub-term
with the set of possible constructors with which it could have been constructed. Also notice
that in the Abstract 3 rule, whenever a selector is applied, we effectively introduce all
possible applications of selectors associated with the same constructor. This simplifies the
later selector rules and corresponds to the step in the Oppen algorithm which ensures that
in the term graph, any node with children has a complete set of children.

Literal level rules

Orient
u ≈ v, E

u → v, E
if u ≻ v

Inconsistent
v 6≈ v, E

⊥

Remove 1
isC v, E

v 7→ {C}, E

Remove 2
¬isC v, E

v 7→ Csort(v) \ {C}, E

The simple literal level rules are mostly self-explanatory. The Orient rule is used to
replace an equation between abstraction variables (which every equation eventually becomes
after applying the abstraction rules) with an oriented equation. Oriented equations are used
in the remaining rules below. The Inconsistent rule detects violations of the reflexivity of
equality. The Remove rules remove applications of testers and replace them with labeling
pairs that impose the same constraints.

10

Upward (i.e., congruence) closure rules

Simplify 1
u ⊲⊳ t, u → v, E

v ⊲⊳ t, u → v, E
Simplify 2

fuuv → w, u → v, E

fuvv → w, u → v, E

Superpose
t → u, t → v, E

u → v, t → v, E
if u ≻ v

Compose
t → v, v → w, E

t → w, v → w, E

These rules are modeled after similar rules for abstract congruence closure in [1]. The
Simplify and Compose rules essentially provide a way to replace any abstraction variable
with a smaller (according to ≻) one if the two are constrained to be equal. Note that
the symbol f in the Simplify 2 rule refers to an arbitrary function symbol from Σ. The
Superpose rule merges two equivalence classes if they contain the same term. Congruence
closure is achieved by these rules because if two terms are congruent, then after repeated
applications of the first set of rules, they will become syntactically identical. Then the
Superpose rule will merge their two equivalence classes.

Downward (i.e., unification) closure rules

Decompose
C u → v, C v → v, E

C u → v, u → v, E

Clash
c → v, d → v, E

⊥
if c, d ∈ ΣC, c : σ, d : σ, c 6= d

Cycle
Cn unuvn → un−1, . . . , C2 u2u2v2 → u1, C1 u1u1v1 → u, E

⊥
if n ≥ 1

The main downward closure rule is the Decompose rule: whenever two terms with
the same constructor are in the same equivalence class, their arguments must be equal.
Recall that u → v is shorthand for the set of oriented equations resulting from pairing
corresponding elements from u and v and orienting them so that the left hand variable is
greater than the right hand variable according to ≻. The Clash rule detects constants that
are in the same equivalence class despite the fact that they are disequal in the intended
model. The Cycle rule detects an inconsistency when a constructor term would have to be
equivalent to one of its sub-terms.

Selector rules

Instantiate 1
S

(1)
C u → u1, . . . , S

(n)
C u → un, u 7→ {C}, E

C u1 · · · un → u, u 7→ {C}, E
if

C : s1 · · · sn → τ,
n ≥ 1

Instantiate 2

u 7→ {C}, E

C u1 · · · un → u, u 7→ {C}, Inst(u),
u1 7→ Cs1

, . . . , un 7→ Csn
, E

if

C finite constructor,
C : s1 · · · sn → τ,
Inst(u) 6∈ E,
ui fresh from Vsi

11

Collapse 1
C u1 · · · un → u, S

(i)
C u → v, E

C u1 · · · un → u, ui ≈ v, E

Collapse 2
S

(i)
C u → v, u 7→ L, E

tiC ≈ v, u 7→ L, E
if C /∈ L

Rule Instantiate 1 is used to eliminate selectors by replacing the argument of the
selectors with a new term constructed using the appropriate constructor. Only terms that
have selectors applied to them can be instantiated and then only once they are uniquely
labeled. Notice that all of the selectors applied to the term are eliminated at the same time.
This is why the entire set of selectors is introduced in the Abstract 3 rule.

For completeness, a term labeled with a finite constructor must be instantiated even if
no selectors are applied to that term. This is accomplished by rule Instantiate 2. The
side conditions are similar to those in Instantiate 1, except that this rule only applies to
terms labeled with finite constructors. The Inst predicate ensures that the rule is applied
at most once for each such term.

The Collapse rules eliminate selectors when the result of their application can be de-

termined. In Collapse 1, a selector S
(i)
C is applied to a term constructed with constructor

C. In this case, the selector expression is replaced by the appropriate argument of the

constructed term. In Collapse 2, a selector S
(i)
C is applied to a term which must have been

constructed with a constructor other than C. In this case, the designated term tiC for the
selector replaces the selector expression.

Labeling rules

Refine
v 7→ L1, v 7→ L2, E

v 7→ L1 ∩ L2, E
Empty

v 7→ ∅, E

⊥
if v : τ

Split 1
S

(i)
C u → v, u 7→ {C} ∪ L, E

S
(i)
C u → v, u 7→ {C}, E S

(i)
C u → v, u 7→ L, E

if L 6= ∅

Split 2
u 7→ {C} ∪ L, E

u 7→ {C}, E u 7→ L, E
if

L 6= ∅,
{C} ∪ L all finite constructors

The Refine rule simply combines labeling constraints that may arise from different
sources for the same abstraction variable. Empty enforces the constraint that every τ -
term must be constructed by some constructor. The splitting rules are used to refine the
set of possible constructors for a term and are the only rules that cause branching. If a term
labeled with only finite constructors cannot be eliminated in some other way, Split 2 must
be applied until it is labeled with a single constructor. For other terms, the Split 1 rule
only needs to be applied to distinguish the case of a selector being applied to the “right”
constructor from a selector being applied to the “wrong” constructor. On either branch,
one of the Collapse rules will apply immediately. We discuss this further in Section 5,
below.

12

null → v1 v1 7→ {null} v5 → v4

x → v2 v2 7→ {cons,null} v9 → v7

y → v3 v3 7→ {cons,null} v3 6≈ v1

cons(v2, v3) → v4 v4 7→ {cons}
w → v5 v5 7→ {cons,null}
car(v5) → v6 v6 7→ {cons,null}
cdr(v5) → v7 v7 7→ {cons,null}
car(v3) → v8 v8 7→ {cons,null}
cdr(v3) → v9 v9 7→ {cons,null}

Figure 3. Example 3.2 after Abstraction and Orient

null → v1 v1 7→ {null} v5 → v4

x → v2 v2 7→ {cons,null} v9 → v7

y → v3 v3 7→ {cons,null} v3 6≈ v1

cons(v2, v3) → v4 v4 7→ {cons}
w → v4 v6 7→ {cons,null}
cons(v6, v7) → v4 v7 7→ {cons,null}
car(v3) → v8 v8 7→ {cons,null}
cdr(v3) → v7

Figure 4. Figure 3 after congruence rules, Refine, and Instantiate 1

3.4 An Example Using the Rules

Let us revisit Example 3.2 and see how the rules work on this example. Recall that we have
the following set of literals: {cons(x, y) ≈ w, cdr(w) ≈ cdr(y), y 6≈ null}. After applying
the Abstraction and Orient rules, we have the set of literals shown in Figure 3. Next,
the Simplify and Compose rules can be used to replace all occurrences in the first two
columns of v5 and v9 with v4 and v7 respectively. Then, Refine can be used to eliminate
two of the labeling pairs. Notice that after replacing v5 with v4, v4 can be instantiated
(the side conditions of Instantiate 1 are satisfied). The resulting set of literals is shown
in Figure 4. At this point, there are two cons terms equivalent to v4, so the Decompose
rule applies, yielding two new oriented equations: v6 → v2 and v7 → v3. These can again
be used together with the congruence rules and Refine to simplify the other literals. The
resulting set is shown in Figure 5.

At this point, the only rule that can be applied is the Split 1 rule. And only v3 satisfies
the necessary condition of having a selector applied to it. There are two cases. Consider first
the case where v3 7→ {cons}. In this case, Instantiate 1 applies, yielding cons(v8, v3) → v3

which yields ⊥ by the Cycle rule. In the other case, we have v3 7→ {null}. This time, since
null is a finite constructor, we can apply Instantiate 2 to get null → v3. The Superpose
rule then gives v3 → v1. This can be used together with v3 6≈ v1 to deduce ⊥ (via the
Simplify 1 and Inconsistent rules).

13

null → v1 v1 7→ {null} v5 → v4

x → v2 v2 7→ {cons,null} v9 → v3

y → v3 v3 7→ {cons,null} v3 6≈ v1

cons(v2, v3) → v4 v4 7→ {cons}
car(v3) → v8 v8 7→ {cons,null}
cdr(v3) → v3

v6 → v2

v7 → v3

Figure 5. Figure 4 after Decompose and congruence rules

4. Correctness

The satisfiability in R of a set Γ of Σ-literals with variables in X can be checked by applying
exhaustively to Γ the derivation rules in the previous section. This set of rules is very flexible
in that the rules can be applied in any order and still yield a decision procedure for the
satisfiability in R. No specific rule application strategy is needed to achieve termination,
soundness or completeness. We formalize this in the following in terms of a suitable notion
of derivation for these rules.

A derivation tree (for a set Γ of Σ-literals with variables in X) is a finite tree with root
Γ such that for each internal node E of the tree, its children are the conclusions of some
rule whose premise is E. A refutation tree (for Γ) is a derivation tree all of whose leaves are
⊥. We say that a node in a derivation tree is (ir)reducible if (n)one of the derivation rules
applies to it. A derivation is a sequence of derivation trees starting with the single-node
tree containing Γ, where each tree is derived from the previous one by the application of a
rule to one of its leaves. A refutation is a finite derivation ending with a refutation tree.

For a multiset E of literals, a variable assignment α is a mapping from Var (E) into the
elements of R that is well-sorted (i.e., sort(x) = sort(α(x)) for every x ∈ Var (E)). If α
is a variable assignment, then we denote by α the homomorphic extension of α that maps
arbitrary terms into elements of R. We say that α satisfies s ≈ t iff α(s) equals α(t).

For convenience, we extend the notion of satisfiability and well-sortedness to the extra-
logical constructs. The oriented equation t → v is well-sorted iff t and v have the same sort.
Furthermore, α satisfies t → v in R iff α satisfies the equation t ≈ v in R. The expression
v 7→ L, labeling a variable v of sort s with the set L of constructor symbols, is considered
to be well-sorted if L ⊆ Cs. The valuation α satisfies a labeling pair v 7→ L in R if v is of a
non-τ sort or α satisfies the formula isC(v) ≈ true for some C ∈ L. An application of Inst is
always well-sorted and satisfied by every variable assignment. We start with a lemma that
gives a couple of useful invariants.

Lemma 4.1. Let E0, E1, . . . , be a branch on a derivation tree. Then the following holds
for all i ≥ 0.

1. If E0 is well-sorted, then for all i, Ei is well-sorted.

2. For all u → v ∈ Ei, we have u ≻ v.

14

Proof. A simple examination of each of the rules confirms that these invariants are main-
tained.

Before proving termination, we need the following additional notation. For each con-
structor C ∈ Σ, let |C| denote 0 if C is infinite and otherwise denote the size of the (finite) set
containing all ground constructor terms whose top symbol is C, and all of their sub-terms.

Proposition 4.2 (Termination). Every derivation is finite.

Proof. Given a derivation tree, let E0, E1, . . . be any branch of the tree that does not end
with ⊥. It is enough to show that the branch can be mapped to a strictly descending
sequence in a well-founded ordering. The ordering ≻l we will use is a lexicographic ordering
over tuples of the form (s, t, S, T,M,A, n) where s, t, T , and n are natural numbers, S is a
multiset of naturals, M is a multiset of symbols from Σ and variables from X, and A is a
multiset of abstraction variables. The ordering ≻l is the one induced by the well-founded
orderings >,>,>m, >,=m,≻m, > where

• > is the usual ordering of the natural numbers,

• >m is the multiset ordering induced by >,

• =m is the multiset ordering induced by some arbitrary well-founded ordering of the
set Σ ∪ X, and

• ≻m is the multiset ordering induced by the given ordering ≻ over the abstraction
variables.

The descending sequence (si, ti, Si, Ti,Mi, Ai, ni) for i = 0, 1, . . . is defined as follows. Recall
that Σ-literals do not include oriented equations, labeling pairs, or applications of Inst.

• si is the number of selector symbols in the Σ-literals of Ei;

• ti is total number of selector symbols appearing in Ei;

• Si is the multiset consisting of the sizes of the Σ-literals of Ei, where by size we mean
the number of occurrences of symbols from Σ (including ≈) and input variables, but
not of abstraction variables;

• Ti is the sum of all |v|i for all abstraction variables v ∈ Var (Ei) that do not appear
as an argument to Inst in Ei where, for each v, |v|i =

∑
C∈Li

|C| and Li is the union
of all label sets for v in Ei;

• Mi is the multiset of occurrences of symbols from Σ and input variables from X in
Σ-literals or oriented equations of Ei;

• Ai is the multiset of all the occurrences of abstraction variables in Ei;

• ni is the number of label occurrences in Ei, that is, occurrences of the constructor
symbols in labeling pairs of Ei.

15

We show that for all consecutive nodes Ei, Ei+1 in the branch (si, ti, Si, Ti,Mi, Ai, ni) ≻l

(si+1, ti+1, Si+1, Ti+1,Mi+1, Ai+1, ni+1). The proof is by cases, depending on the rule used
to derive Ei+1 from Ei.

1. The cases corresponding to the rules Inconsistent, Clash, Cycle, and Empty do
not apply since they all have conclusion ⊥.

2. Suppose one of the rules Abstract 1, Abstract 2, Orient, Remove 1, or Remove
2 was applied. Each of these rules leaves si and ti unchanged while removing at least
one Σ-symbol or input variable from a literal (without changing the other literals).
In each of these cases, Si >m Si+1.

3. With Abstract 3, the number of selector symbols appearing in literals is reduced by
one, so si > si+1.

4. With all the congruence closure rules except for Superpose when the term t in the
rule is not an abstraction variable, the only change is the replacement of an abstraction
variable by another abstraction variable which is smaller by Lemma 4.1(2). Thus, si,
ti, Si, Ti, and Mi remain the same, while Ai ≻m Ai+1. In the case where Superpose
is applied and t is not an abstraction variable, t must contain a symbol from Σ ∪ X.
If t contains a selector, then si = si+1 and ti > ti+1. Otherwise, Mi =m Mi+1 (it is
easy to see that si, ti, Si, and Ti remain the same in this case).

5. The Decompose rule does not change the values of si, ti, Si, or Ti. However, it does
eliminate one occurrence of a constructor symbol. Hence, Mi =m Mi+1.

6. Now consider the selector rules. With Instantiate 1, since the constructor C in the
rule has positive arity (i.e., n ≥ 1) then si = si+1 and ti > ti+1. With Instantiate 2,
si, ti and Si are unchanged but

Ti+1 = (Ti − |u|i) +

n∑

k=1

|uk|i+1 .

It is not difficult to see that |u|i >
∑n

k=1 |uk|i+1. Thus, Ti > Ti+1.

7. With the collapse rules, exactly one selector symbol is eliminated from (a non-literal
of) Ei, so si = si+1 and ti > ti+1.

6.

8. Finally, consider the labeling rules. The Refine rule eliminates an occurrence of an
abstraction variable. Hence certainly Ai ≻m Ai+1. All the preceding components
of the tuple are unchanged with the possible exception of Ti which may get smaller
when L1 6= L2. The split rules both produce two conclusions, each of which has
fewer constructors appearing in labels than in the premise. Furthermore, this is the
only change, so Ti either decreases or is unchanged, ni > ni+1 and everything else is
unchanged.

6. Note that si = si+1 with Collapse 2 because, by definition, ti

C is a ground term with no selectors.

16

The soundness of the decision procedure is based on the following result.

Lemma 4.3. The premise E of a derivation rule is satisfied in R by a valuation α of
Var (E) iff one of the conclusions E′ of the rule is satisfied in R by an extension of α to
Var (E′).

Proof. Again, the proof is by cases.
(Abstraction rules) The if direction is immediate. For the other direction, for Abstract

1, suppose that the premise is satisfied by α in R. We extend α by setting v to the value
of c under R, α. Consider the labeling pair v 7→ Cs in the conclusion. It is trivially satisfied
if v is of a non-τ sort. When v is of sort τ , it is satisfied as a consequence of the first
axiom (schema) in R’s specification and the fact that α(v) is a constructor term by Lemma
2.2. With this observation, it is clear that the extended variable assignment satisfies the
conclusion. For Abstract 2, a similar argument shows that an extended variable assignment
which assigns v to the value of C u under R, α must satisfy the conclusion. For Abstract
3, the argument is again similar, but this time we must extend α to map each vi to the

value of S
(i)
C u under R, α.

(Literal level rules) The case of Orient and Inconsistent is obvious. For Remove 1
the claim follows by definition of satisfaction for labeling pairs. For Remove 2 we rely on
the fact that R, α satisfies isC v exactly when it satisfies v 7→ {C}, for any C. This follows
from Lemma 2.2 and the first and second axiom schemas.

(Upward closure rules) The claim follows from basic properties of equality.
(Downward closure rules) The result follows from Lemma 2.2 and basic properties of

the term algebra T (Ω).
(Selector rules) In case of Instantiate 1 and 2 the claims follow from the definition

of satisfaction for labeling pairs, the Inst predicate, the first three axiom schemas, and
Lemma 2.2. For Collapse 1 the result follows by the third axiom schema; for Collapse 2
by the fourth schema, Lemma 2.2 and the definition of satisfaction for labeling pairs.

(Labeling rules) The claim follows by simple Boolean reasoning and the definition of
satisfaction for labeling pairs.

Proposition 4.4 (Soundness). If a set E0 has a refutation tree, then it is unsatisfiable in
R.

Proof. By structural induction on refutation trees and the previous lemma.

To prove completeness we will rely on the next three lemmas. First we need a couple of
definitions. If E is a multiset of literals, we write ∼E for the equivalence relation induced
by oriented equations in E. We also define lblsE(u) as the intersection of all label sets L
where v 7→ L appears in E for some v ∼E u.

Lemma 4.5. Suppose E is a node in a derivation tree and that E contains an oriented

equation of the form S
(i)
C u → v for some C (of arity n), u, v, and i, where 1 ≤ i ≤ n. We

will call this an oriented selector equation. Then at least one of the following is also true:

(i) E also contains an oriented equation of the form C w → u′ for some w and u′ where
u′ ∼E u.

17

(ii) C 6∈ lblsE(u)

(iii) There exist u1, . . . , un and v1, . . . , vn such that for each 1 ≤ k ≤ n, S
(k)
C uk → vk ∈ E

and uk ∼E u.

Proof. The proof is by induction on derivation trees. The base case is trivial since the root
of a derivation tree has no oriented equations. For the inductive case, we consider each
of the rules. First note that if a rule does not introduce, change, or delete any oriented
selector equations and furthermore does not delete or change any oriented equations of the
form C w → u′, then the property is trivially preserved. This covers the following rules:
Abstract 1, Abstract 2, the literal level rules, Simplify 1, Clash, Cycle, Instantiate
2, and the labeling rules. We now consider the others:
Abstract 3. This rule introduces new oriented selector equations. For these, it is easy to
see that condition (iii) is satisfied. It is also easy to see that the property is preserved for
any other oriented selector equations.

Simplify 2. This rule may change an oriented selector equation from S
(i)
C u → v to S

(i)
C u′ →

v when u → u′. However, in this case, we have u ∼E u′, and it follows that the property is
preserved.

Superpose. If we have two oriented selector equations: S
(i)
C u → v and S

(i)
C u → v′, with

v ≻ v′, then the first of these may be eliminated by the Superpose rule. If the eliminated
oriented selector equation was needed to fulfill condition (iii) for some other oriented selector
equation in the premise, then we must ensure that the property still holds in the conclusion.

However, notice that S
(i)
C u → v′ may be used instead and so the property holds.

Compose. Suppose S
(i)
C u → v is rewritten to S

(i)
C u → v′. It is easy to see that the

property holds for the new oriented selector equation for the same reasons as it did for the
old. Also, if the old oriented selector equation was used to fulfill condition (iii) for some
other oriented selector equation, then the new one does so as well.
Decompose. This rule may eliminate an oriented equation of the form C w → u′ which
might affect condition (i) for some oriented selector equation. However, it only does so
when there exists another oriented equation of the form C v → u′ that is not eliminated.
This can be used to satisfy condition (i) instead.
Instantiate 1. This rule eliminates oriented selector equations which could affect condition
(iii) for some other oriented selector equation. However, it also introduces an oriented
equation of the form C w → u, so condition (i) will now apply to such oriented selector
equations.
Collapse 1. This rule eliminates an oriented selector equation which could affect condition
(iii) for some other oriented selector equation. However, it is easy to see that because we
have an oriented equation of the form C w → u, condition (i) must apply to such oriented
selector equations.
Collapse 2. This rule eliminates an oriented selector equation which could affect condition
(iii) for some other oriented selector equation. However, it is easy to see that because
C 6∈ lblsE(u), condition (ii) must apply to such oriented selector equations.

Lemma 4.6. No irreducible leaf E in a derivation tree contains occurrences of selector
symbols.

18

Proof. The claim is trivially true if E = {⊥}, so assume that E 6= {⊥}. Since E is
irreducible, by the rule Abstract 3 and Lemma 4.1(1), every occurrence of a selector in E

must be in an oriented equation of the form S
(i)
C u → v, for some constructor C : s1 · · · sn → τ

and an abstraction variable u of sort τ . So assume that S
(i)
C u → v ∈ E. By Lemma 4.5,

we know that one of three conditions applies. The first case is that condition (i) holds:
E also contains an oriented equation of the form C w → u′ for some w and u′ where
u′ ∼E u. Since E is irreducible, we must have that u′ = u, but then Collapse 1 applies,
contradicting the irreducibility of E. The second case is (ii): C 6∈ lblsE(u). Again, because
E is irreducible, this means that E contains u 7→ L and C 6∈ L. Thus, Collapse 2 applies,
again a contradiction. Finally, the third case is (iii): there exist u1, . . . , un and v1, . . . , vn

such that for each 1 ≤ k ≤ n, S
(k)
C uk → vk ∈ E and uk ∼E u. Again, because E is

irreducible, we must have that uk = u for each k. Also, since (ii) does not apply and Split
1 cannot be applied, E must contain u 7→ {C}. But this means that Instantiate 1 applies,
again yielding a contradiction.

Lemma 4.7. Every irreducible leaf E other than {⊥} in a derivation tree is satisfiable in
R.

Proof. We build a valuation α of Var (E) that satisfies E in R. To start, let

V = {v | t → v ∈ E for some t}

Tv = {t | t → v ∈ E} for all v ∈ V

Observe that the sets Tu and Tv are disjoint for all distinct u and v, otherwise E would
contain two equations of the form t → u and t → v, and so would be reducible by Super-
pose. Furthermore, for all v ∈ V , Tv contains at most one non-variable term. To see that,
recalling that E contains no occurrences of selector symbols by Lemma 4.6, assume that
Tv contains a constant symbol c of sort σ. Clearly it cannot contain a term t of sort other
than σ because otherwise either c → v or t → v would be ill-sorted, which is not possible
by Lemma 4.1(1). The only other possible terms of sort σ are other constant symbols d.
But then, if d → v were in E, Clash would apply to E. Now assume that Tv contains a
term of the form C u. Again by well-sortedness, it is enough to argue that Tv contains no
additional terms of the form C ′ u′ of the same sort as v’s. But such terms cannot be in Tv.
If C = C ′ then Decompose applies. If C 6= C ′, notice that whenever an oriented equation
of the form C u → v is introduced, we also have v 7→ {C}. Since label sets never grow, at
some point we have to have had both v 7→ {C} and v 7→ {C ′}. Since Refine must have
been applied to these two labeling pairs, E must now contain v 7→ ∅ and is thus reducible
by Empty.

Now consider the relation ⋖ over V defined as follows:

u ⋖ v iff E contains an equation of the form C uuu′ → v.

By the Cycle rule and the assumptions on E, the finite relation ⋖ is acyclic and hence well
founded. We can define a valuation α of V into R7. by well founded induction on ⋖.

7. Whose universe, recall, is the term algebra T (Ω).

19

Let {v1, . . . , vn} be the set of all the ⋖-minimal elements of V such that for i = 1, . . . , n,
ci → vi ∈ E with ci a constant symbol—possibly a nullary constructor. For i = 1, . . . , n
we define α(vi) = ci. Now let {vn+1, . . . , vn+k} be the remaining ⋖-minimal elements of V .
For i = n + 1, . . . , n + k, if vi is of sort σ, we define α(vi) = di where di is some constant of
sort σ in T (Ω) \ {α(v1), . . . , α(vn+i−1)}

8.. If vi is of some sort τ , we know by a previous
observation that vi 7→ L ∈ E. Note that by the Empty and the Split rules, C ∈ L for
some non-nullary C. Moreover, C must be an infinite constructor, or otherwise an equation
of the form C u → vk would be in E by Instantiate 2, making vk non-⋖-minimal. We
then define α(vk) = C t1 · · · tm where C is some infinite constructor in L of arity m > 0 and
C t1 · · · tm is some term in T (Ω) \ {α(v1), . . . , α(vn+k−1)}.

We are now left with defining α(v) for all non-minimal v ∈ V . If v is non-minimal,
then there must be an equation of the form C u1 · · · uk → v in E for some constructor C.
Furthermore, k ≥ 1 (otherwise v would be minimal) and ui ⋖ v for all i = 1, . . . , k. We then
define α(v) = C α(u1) · · ·α(uk).

We now show by induction on ⋖ that the valuation α just defined is an injection of V
into T (Ω). Let u, v be two distinct elements of V of the same sort.

If u and v are both ⋖-minimal in the set {v1, . . . , vn} defined earlier, then α(u) 6=
α(v) because the sets Tv1

, . . . , Tvn
are mutually disjoint. If one (or both) of them is in

{vn+1, . . . , vn+k} then α(u) 6= α(v) by construction.
If u, say, is not ⋖-minimal, then both u and v must be of some sort τ . It follows that

α(u), α(v) are terms of the form C α(u1) · · ·α(un), C ′ α(v1) · · ·α(vn′), respectively, with
n, n′ ≥ 1. Now, if C 6= C ′, then α(u) and α(v) are trivially distinct terms. If C = C ′, then
n = n′; however, ui 6= vi for some i otherwise C u1 · · · un → u and C u1 · · · un → v would
be in E and Superpose would apply. If ui and vi are distinct then by induction α(ui) and
α(vi) are distinct, therefore α(u) and α(v) are distinct as well.

Now we can extend α to the whole Var(E) by defining it for the remaining (input or
abstraction) variables of E. Each such variable x occurs in an equation of the form x → v in
E. Hence we define α(x) = α(v). For later reference, let α′ be the homomorphic extension
of α to the set of Σ-terms over Var (E).

The valuation α satisfies every element e of E. This is immediate if e has the form v ≈ v
or the form v 7→ L with v : σ. If e has the form u 6≈ v with u, v distinct, then α satisfies
e for being injective over the abstraction variables of E. If e has the form t → v, then α
satisfies e because α(v) = α′(t) by construction. If e has the form v 7→ L where v has sort
τ consider the following two cases. If C u1 · · · uk → v ∈ E for some C u1 · · · uk then it is not
difficult to show that L must be {C}. But then α(v) = C α(u1) · · ·α(uk) by construction. If
there is no C u1 · · · uk → v ∈ E, then α(v) is defined as some term C t1 · · · tk where C ∈ L.
In both cases, it is then immediate that α satisfies v 7→ L.

To conclude the proof it is enough to observe that, for being irreducible, E can only
contain elements of the forms listed above.

Proposition 4.8 (Completeness). If a set E0 is unsatisfiable in R, then it has a refutation.

Proof. We prove the contrapositive of the proposition. Assume that E0 has no refutations.
By Proposition 4.2, there is a derivation tree for E0 with an irreducible leaf E 6= {⊥}. By

8. Using the assumption that all sorts σ are infinite.

20

Lemma 4.7, E is satisfiable in R. It follows by a repeated application of Lemma 4.3 that
E0 is satisfiable in R as well.

5. Strategies and Efficiency

It is not difficult to see that the problem of determining the satisfiability of an arbitrary set
of literals is NP-complete. A subset of the problem (a simple case with two constructors)
was shown to be NP-hard in [14]. To see that it is in NP, we note that given a type
completion, no additional splits are necessary, and the remaining rules can be carried out
in polynomial time. However, as with other NP-complete problems (Boolean satisfiability
being the most obvious example), the right strategy can make a significant difference in
practical efficiency.

5.1 Strategies

A strategy is a predetermined methodology for applying the rules. Before discussing our
recommended strategy, it is instructive to look at the closest related work. Oppen’s original
algorithm is roughly equivalent to the following: After abstraction, apply the selector rules
to eliminate all instances of selector symbols. Next, apply upward and downward closure
rules (the bidirectional closure). As you go, check for conflicts using the rules that can
derive ⊥. We will call this the basic strategy. Note that it excludes the splitting rules:
because Oppen’s algorithm assumes a single constructor, the splitting rules are never used.
A generalization of Oppen’s algorithm is mentioned in [20]. They add the step of initially
guessing a “type completion”. To model this, consider the following simple Split rule:

Split
u 7→ {C} ∪ L, E

u 7→ {C}, E u 7→ L, E
if L 6= ∅

Now consider a strategy which invokes Split greedily (after abstraction) until it no longer
applies and then follows the basic strategy. We will call this strategy the greedy splitting
strategy.

One of the key contributions of this paper is to recognize that the greedy splitting
strategy can be improved in two significant ways. First, the simple Split rule should be
replaced with the smarter Split 1 and Split 2 rules. Second, these rules should be delayed
as long as possible. We call this the lazy splitting strategy. The lazy strategy reduces the
size of the resulting derivation in two ways. First, notice that Split 1 is only enabled when
some selector is applied to u. By itself, this eliminates many needless case splits. Second,
by applying the splitting rules lazily (in particular by first applying selector rules), it may
be possible to avoid splitting completely in many cases. We already saw in Section 3 that
Example 3.2 can be solved using only a single case split, instead of the 27 splits required by
a naive type completion. Here, we look at another example that emphasizes the advantages
of lazy splitting.

Example 5.1. Suppose we have the following simple tree data type:

tree := node(left : tree, right : tree) | leaf;

21

Z

left(left(Z)) right(left(Z))

left(Z) right(Z)

X

leftn−1(Z)

right(leftn−1(Z))leftn(Z)

Figure 6. Term graph for Example 5.1

Let leaf be the designated term for both selectors and then consider the following set of
literals: {leftn(Z) ≈ X, is node(Z), Z ≈ X}.

A term graph for Example 5.1 is shown in Figure 6. After applying all available rules
except for the splitting rules, the resulting set of literals looks like this:

{ Z → u0,X → u0, u0 7→ {node},node(u1, v1) → u0, un → u0,
left(u1) → u2, . . . , left(un−1) → un, u1 7→ {leaf,node}, . . . , un 7→ {leaf,node},
right(u1)→v2,. . ., right(un−1)→vn, v1 7→ {leaf,node}, . . . , vn 7→ {leaf,node}},

Notice that there are 2n abstraction variables labeled with two labels each. If we eagerly
applied the naive Split rule at this point, the derivation tree would reach size O(22n).

Suppose, on the other hand, that we use the lazy strategy. First notice that Split 1 can
only be applied to n of the abstraction variables (ui, 1 ≤ i ≤ n). Thus the more restrictive
side-conditions of Split 1 already reduce the size of the problem to at worst O(2n) instead
of O(22n). However, by only applying it lazily, we do even better: suppose we split on ui.
The result is two branches, one with ui 7→ {node} and the other with ui 7→ {leaf}. The
second branch induces a cascade of (at most n) applications of Collapse 2 which in turn
results in uk 7→ {leaf} for each k > i. This eventually results in ⊥ via the Empty and
Refine rules. The other branch contains ui 7→ {node} and results in the application of the
Instantiate 1 rule, but little else, and so we will have to split again, this time on a different
ui. This process will have to be repeated until we have split on all of the ui. At that point,
there will be a cycle from u0 back to u0, and so we will derive ⊥ via the Cycle rule.

22

Table 1. Greedy vs. Lazy Splitting

Worst Case Num. of Greedy Lazy
Splits Tests Sat Unsat Splits Time (s) Splits Time (s)

0 4416 306 4110 0 24.6 0 24.6

1-5 2520 2216 304 6887 16.8 2414 17.0

6-10 692 571 121 4967 5.8 1597 5.7

11-20 178 112 66 2422 2.3 517 1.6

21-100 145 73 72 6326 4.5 334 1.1

101+ 49 11 38 16593 9.8 73 0.3

Because each split only requires at most O(n) rules and there are n− 1 splits, the total
size of the derivation tree will be O(n2). In fact, if we start at un−1 and work our way
down, each split will take only O(1), so the total size of the derivation tree will be O(n).9.

5.2 Experimental Results

We have implemented both the lazy and the greedy splitting strategies in the theorem
prover CVC3 [4]. We are not aware of any application-based benchmarks for this theory,
but fortunately this is not necessary for comparing the two splitting strategies. What
is necessary is to have some benchmarks that require non-trivial amounts of splitting. To
produce such benchmarks, we randomly generated conjunctions of literals over the mutually
recursive inductive data types nat, list, and tree mentioned in the introduction.10.

As expected, most of the benchmarks are quite easy. In fact, over half of them are
solved without any case splitting at all. However, a few of them did prove to be somewhat
challenging, at least in terms of the number of splits required. We tried both the greedy
and lazy strategies on all benchmarks and categorized the benchmarks according to how
many case splits were required in the worst case by either strategy.

Table 1 shows the results. As expected, for easy benchmarks that don’t require many
splits, the two algorithms perform almost identically. However, as the difficulty increases,
the lazy strategy performs much better. For the hardest benchmarks, the lazy strategy
outperforms the greedy strategy by more than an order of magnitude. Notice that the
disparity in case splits is even greater: for nontrivial benchmarks, the number of case splits
taken by the lazy strategy is always much less than that taken by the greedy strategy: over
two orders of magnitude for the hardest benchmarks.

9. This does not mean the total time is necessarily O(n). In general, processing a node includes bidirectional
closure and checking for cycles which requires O(n) steps (see [15], for example). So the total processing
time is bounded by O(n · m), where m is the size of the derivation tree. In this case, the total time is
bounded by O(n2).

10. See http://www.cs.nyu.edu/∼barrett/datatypes for details on the benchmarks and results.

23

http://www.cs.nyu.edu/~barrett/datatypes

6. Extending the Algorithm

In this section we briefly discuss several ways in which our algorithm can be used as a
component in solving a larger or related problem.

6.1 Finite Sorts

Here we consider how to lift the limitation that each of σ ∈ {σ1, . . . , σr} is infinite valued.
Since we have no such restrictions on τ -sorts, the idea is to simply replace such a σ by a
new τ -like sort τσ, whose set of constructors (all of which will be nullary) will match the
domain of σ. For example, if σ is a finite scalar of the form {1, . . . , n}, then we can let

τσ ::== null1 | . . . | nulln

We then proceed as before, after replacing all occurrences of σ by τσ and each i by nulli.

6.2 Simulating Partial Function Semantics

As mentioned earlier, it is not clear how best to interpret the application of a selector to the
wrong constructor. One compelling approach is to interpret selectors as partial functions.
An evaluation of a formula then has three possible outcomes: true, false, or undefined.
This approach may be especially valuable in a verification application in which application
of selectors is required to be guarded so that no formula should ever be undefined. This
can easily be implemented by employing the techniques described in [5]: given a formula to
check, a special additional formula called a type-correctness condition is computed (which
can be done in time and space linear in the size of the input formula). These two formulas
can then be checked using a decision procedure that interprets the partial functions (in
this case, the selectors) in some arbitrary way over the undefined part of the domain. The
result can then be interpreted to reveal whether the formula would have been true, false,
or undefined under the partial function semantics. A similar approach is advocated in [9].

6.3 Cooperating with other Decision Procedures

A final point is that that our procedure has been designed to integrate easily into a Nelson-
Oppen-style framework for cooperating decision procedures [13]. In the many-sorted case,
the key theoretical requirements (see [18]) for two decision procedures to be combined
are that the signatures of their theories share at most sort symbols and each theory is
stably infinite over the shared sorts.11. A key operational requirement is that the decision
procedure is also able to easily compute and communicate equality information.

The theory of R (i.e., the set of sentences true in R) is trivially stably infinite over the
sorts σ1, . . . , σr and over any τ -sort containing a non-finite constructor—as all such sorts
denote infinite sets in R. Also, in our procedure the equality information is eventually
completely captured by the oriented equations produced by the derivation rules, and so
entailed equalities can be easily detected and reported.

For a detailed and formal discussion of how to integrate a rule-based decision procedure
such as this one into a general framework combining Boolean reasoning and multiple decision

11. A many-sorted theory T is stably infinite over a subset S of its sorts if every quantifier-free formula
satisfiable in T is satisfiable in a model of T where the sorts of S denote infinite sets.

24

procedures, we refer the reader to our related work in [2]. Note that, in particular, this
work shows how the internal theory case splits can be delegated on demand to the Boolean
engine; this is the implementation strategy followed in CVC3.

7. Conclusion

We have presented an algorithm for deciding a theory of inductive data types. Novel
features of our treatment include the ability to handle mutually recursive, many-sorted
types, a simpler presentation of the theory, an abstract declarative algorithm, and smarter
splitting rules which can greatly enhance efficiency. The algorithm has been proved correct
and is implemented in the theorem prover CVC3.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. JAR, 31:129–
168, 2003.

[2] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand in sat
modulo theories. In M. Hermann and A. Voronkov, editors, Proceedings of the 13th
International Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR’06), Phnom Penh, Cambodia, volume 4246 of Lecture Notes in Computer
Science, pages 512–526. Springer, 2006.

[3] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satisfiability
in the theory of recursive data types. In Proceedings of PDPAR, Aug. 2006.

[4] C. Barrett and C. Tinelli. Cvc3. In W. Damm and H. Hermanns, editors, Proceedings of
the 19th International Conference on Computer Aided Verification (CAV’07), Berlin,
Germany, Lecture Notes in Computer Science. Springer, 2007. (to appear).

[5] S. Berezin, C. Barrett, I. Shikanian, M. Chechik, A. Gurfinkel, and D. L. Dill. A
practical approach to partial functions in CVC Lite. In Selected Papers from the
Workshops on Disproving and the Second International Workshop on Pragmatics of
Decision Procedures (PDPAR ’04), volume 125(3) of ENTCS, pages 13–23, July 2005.

[6] M. P. Bonacina and M. Echenim. Generic theorem proving for decision proce-
dures. Technical report, Università degli studi di Verona, 2006. Available at
http://profs.sci.univr.it/∼echenim/.

[7] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[8] D. Kozen. Complexity of finitely presented algebras. In Proceedings of the 9-th Annual
ACM Symposium on Theory of Computing, pages 164–177, 1977.

25

[9] V. Kuncak and M. Rinard. On the theory of structural subtyping. Technical Report
MIT-LCS-TR-879, Massachusetts Institute of Technology, 2003.

[10] A. I. Mal’cev. On elementary theories of locally free universal algebras. Soviet Mathe-
matical Doklady, 2(3):768–771, 1961.

[11] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258–282, 1982.

[12] K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky, D. V. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 1. Claredon
Press, 1992.

[13] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–57, 1979.

[14] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
JACM, 27(2):356–364, April 1980.

[15] D. C. Oppen. Reasoning about recursively defined data structures. JACM, 27(3):403–
411, July 1980.

[16] T. Rybina and A. Voronkov. A decision procedure for term algebras with queues. ACM
Transactions on Computational Logic, 2(2):155–181, Apr. 2001.

[17] R. Shostak. Deciding combinations of theories. JACM, 31(1):1–12, 1984.

[18] C. Tinelli and C. Zarba. Combining decision procedures for sorted theories. In J. Alferes
and J. Leite, editors, Proceedings of JELIA ’04, volume 3229 of LNAI, pages 641–653.
Springer, 2004.

[19] K. N. Venkataraman. Decidability of the purely existential fragment of the theory of
term algebras. JACM, 34(2):492–510, Apr. 1987.

[20] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras with
integer constraints. In Proceedings of IJCAR ’04 LNCS 3097, pages 152–167, 2004.

[21] T. Zhang, H. B. Sipma, and Z. Manna. Term algebras with length function and bounded
quantifier alternation. In Proceedings of TPHOLs, 2004.

26

	Introduction
	The Theory of Inductive Data Types
	Specifying IDTs

	The Decision Procedure
	Overview and Examples
	Definitions and Notation
	The derivation rules
	An Example Using the Rules

	Correctness
	Strategies and Efficiency
	Strategies
	Experimental Results

	Extending the Algorithm
	Finite Sorts
	Simulating Partial Function Semantics
	Cooperating with other Decision Procedures

	Conclusion

