An Abstract Decision Procedure for Satisfiability in the
Theory of Recursive Data Types

Clark Barrett! Igor Shikanian! Cesare Tinelli?
'New York University, barrett|igor@cs.nyu.edu
2The University of Iowa, tinelli@cs.uiowa.edu

Abstract

The theory of recursive data types is a valuable modeling tool for software verifica-
tion. In the past, decision procedures have been proposed for both the full theory and
its universal fragment. However, previous work has been limited in various ways. In
this paper, we present a general algorithm for the universal fragment. The algorithm
is presented declaratively as a set of abstract rules which are terminating, sound, and
complete. We show how other algorithms can be realized as strategies within our
general framework. Finally, we propose a new strategy and give experimental results
showing that it performs well in practice.

1 Introduction

Recursive data types are commonly used in programming. The same notion is also a
convenient abstraction for common data types such as records and data structures such
as linked lists used in more conventional programming languages. The ability to reason
automatically and efficiently about recursive data types thus provides an important tool
for the analysis and verification of programs.

Perhaps the best-known example of a simple recursive data type is the list type used in
LISP. Lists are either the null list or are constructed from other lists using the constructor
cons. This constructor takes two arguments and returns the result of prepending its first
argument to the list in its second argument. In order to retrieve the elements of a list, a
pair of selectors is provided: car returns the first element of a list and cdr returns the rest
of the list.

More generally, we are interested in any set of (possibly mutually) recursive data types,
each of which contains one or more constructors. Each constructor has selectors that can
be used to retrieve the original arguments as well as a tester which indicates whether a
given term was constructed using that constructor. As an example of the more general
case, suppose we want to model lists of trees of natural numbers. Consider a set of three
recursive data types: nat, list, and tree. mat has two constructors: zero, which takes no
arguments (we call such a constructor a nullary constructor or constant); and succ, which
takes a single argument of type nat and has the corresponding selector pred. The list type
is as before except that we now specify that the elements of the list are of type tree. The
tree type in turn has two constructors: node, which takes an argument of type list and
has the corresponding selector children, and leaf, which takes an argument of type nat and
has the corresponding selector data. We can represent this set of types using the following
convenient notation based on that used in functional programming languages:

nat := succ(pred : nat) | zero;
list = cons(car: tree, cdr: list) | null;
tree := node(children : list) | leaf(data : nat);

The testers for this set of data types are is_succ, is_zero, is_cons, is_null, is_node, and
is_leaf.

Propositions about a set of recursive data types can be captured in a sorted first-
order language which closely resembles the structure of the data types themselves in that
it has function symbols for each constructor and selector, and a predicate symbol for
each tester. For instance, propositions that we would expect to be true for the example
above include: (i) Vz : nat. succ(x) # zero; (ii) Vx : list. v = null V is_cons(x); and (iii)
Vi : tree. is_leaf(x) — (data(x) = zero V is_succ(data(x))).

In this paper, we discuss a procedure for deciding such formulas. We focus on satis-
fiability of a set of literals, which (through well-known reductions) can be used to decide
the validity of universal formulas.

There are three main contributions of this work over earlier work on the topic. First,
our setting is more general: we allow mutually recursive types and multiple constructors.
The second contribution is in presentation. We present the theory itself in terms of an
initial model rather than axiomatically as is often done. Also, the presentation of the
decision procedure is given as abstract rewrite rules, making it more flexible and easier to
analyze than if it were given imperatively. Finally, as described in Section 4, the flexibility
provided by the abstract algorithm allows us to describe a new strategy with significantly
improved practical efficiency.

Related Work. Term algebras over constructors provide the natural intended model
for recursive data types. In [7] two dual axiomatizations of term algebras are presented,
one with constructors only, the other with selectors and testers only.

An often-cited reference for the quantifier-free case is the treatment by Nelson and
Oppen in 1980[11, 12] (where the problem is also shown to be NP-complete). In particular,
Oppen’s algorithm in [12] gives a detailed decision procedure for a single recursive data
type with a single constructor; however, the case of multiple constructors is discussed only
briefly and not rigorously.

More recently, several papers by Zhang et al. [14, 15] explore decision procedures for a
single recursive data type. These papers focus on ambitious schemes for quantifier elimina-
tion and combinations with other theories. A possible extension of Oppen’s algorithm to
the case of multiple constructors is discussed briefly in [14]. A comparison of our algorithm
with that of [14] is made in Section 4.

Finally, another approach based on first-order reasoning with the superposition calculus
is described in [5]. This work shows how a decision procedure for a recursive data type can
be automatically inferred from the first-order axioms, even though the axiomatization is
infinite. Although the results are impressive from a theoretical point of view, the scope is
limited to theories with a single constructor and the practical efficiency of such a scheme
has yet to be shown.

2 The Theory of Recursive Data Types

Previous work on recursive data types (RDTs) uses first-order axiomatizations in an at-
tempt to capture the main properties of a recursive data type and reason about it. We
find it simpler and cleaner to use a semantic approach instead, as is done in algebraic

specification. A set of RDT's can be given a simple equational specification over a suitable
signature. The intended model for our theory can be formally, and uniquely, defined as
the initial model of this specification. Reasoning about a set of RDTs then amounts to
reasoning about formulas that are true in this particular initial model.

2.1 Specifying RDTs

We formalize RDTs in the context of many-sorted equational logic (see [9] among others).
We will assume that the reader is familiar with the basic notions in this logic, and also
with basic notions of term rewriting.

We start with the theory signature. We assume a many-sorted signature ¥ whose set
of sorts consists of a distinguished sort bool for the Booleans, and p > 1 sorts 71,...,7,
for the RDTs. We also allow r > 0 additional (non-RDT) sorts o1, ...,0,. We will denote
by s, possibly with subscripts and superscripts, any sort in the signature other than bool,
and by o any sort in {o1,...,0,}.

As mentioned earlier, the function symbols in our theory signature correspond to the
constructors, selectors, and testers of the set of RDTs under consideration. We assume
for each 7; (1 <i < p) aset of m; > 1 constructors of 7;. We denote these symbols as C’Ji»,
where j ranges from 1 to m;. We denote the arity of C’; as nz (0-arity constructors are also

called nullary constructors or constants) and its sort as s, X -+ X Sﬁn; — 7;. For each
constructor C;, we have a set of selectors, which we denote as S; .» Where k ranges from 1
to n;'-, of sort 7, — s;k Finally, for each constructor, there is a tester! isti- 1 17; — bool.
In addition to these symbols, we also assume that the signature contains two constants,
true and false of sort bool, and an infinite number of distinct constants of each sort o. The
constants are meant to be names for the elements of that sort, so for instance if o; were
a sort for the natural numbers, we could use all the numerals as the constants of sort .
Having all these constants in the signature is not necessary for our approach, but in the
following exposition it provides an easy way of ensuring that the sorts in ¢ are infinite.
Section 5.1 shows that our approach can be easily extended to the case in which some
of these sorts are finite. To summarize, the set of function symbols of the signature X

consists of:

C]’-:S}J><---xs;ni_—w'i,fori:l,...,p,jzl,...,mi,
g

i i L o _ i
Sj’k.Ti—>sj7k,forz—1,...,p,]—1,...,mi, k=1,...,n,
isCh i1 — bool, for i =1,...,p, j=1,...,my,

true : bool, false : bool,

An infinite number of constants for each g;, for [=1,...,7r.

As usual in many-sorted equational logic, we also have p 47 + 1 equality symbols (one for
each sort mentioned above), all written as .

Our procedure requires one additional constraint on the set of RDTs: It must be well-
founded. Informally, this means that each sort must contain terms that are not cyclic or
infinite. More formally, we have the following definitions by simultaneous induction over
constructors and sorts: (i) a constructor C’; is well-founded if all of its argument sorts are
well-founded; (ii) the sorts o1, ..., 0, are all well-founded; (iii) a sort 7; is well-founded if
at least one of its constructors is well-founded. We require that every sort be well-founded
according to the above definition.

ITo simplify some of the proofs, and without loss of generality, we use functions to bool instead of
predicates for the testers.

In some cases, it will be necessary to distinguish between finite and infinite T-sorts: (i)
a constructor is finite if it is nullary or if all of its argument sorts are finite; (ii) a sort 7; is
finite if all of its constructors are finite, and is infinite otherwise; (iii) the sorts o1, ..., 0,
are all infinite. As we will see, consistent with the above terminology, our semantics will
interpret finite, resp. infinite, 7-sorts indeed as finite, resp. infinite, sets.

We denote by 7 (X) the set of well-sorted ground terms of signature X or, equivalently,
the (many-sorted) term algebra over that signature. The RDTs with functions and pred-
icates denoted by the symbols of ¥ are specified by the following set £ of (universally
quantified) equations. For reasons explained below, we assume that associated with every
selector S]Z B Ti s;k is a distinguished ground term of sort s;k containing no selectors

(or testers), which we denote by t; e

Equational Specification of the RDT: fori=1,...,p:

le,...,xné_. ZSC’]’(C’]’(xl,,a}nj)) A true (for j=1,...,m;)
VE1, . Ty iSC’]’:(C’;,(:El,...,a:n;/)) ~false (for 5,5/ =1,...,my, j#7)
J J
le,...,xng_. S;’k(C;(ZEl,...,:L‘n;'_)) R X (for k=1,....n5, j=1,...,m;)
VEL, - - S;i,k(cg,(xl,...,xnél)) ot (for j =1, ,my, j #j)

The last axiom specifies what happens when a selector is applied to the “wrong”
constructor. Note that there is no obviously correct thing to do in this case since it would
correspond to an error condition in a real application. Our axiom specifies that in this
case, the result is the designated ground term for that selector. This is different from other
treatments (such as [7, 14, 15]) where the application of a wrong selector is treated as the
identity function. The main reason for this difference is that identity function would not
always be well-sorted in multi-sorted logic.

By standard results in universal algebra we know that £ admits an initial model R and
we can show the following result:?> Let © be the signature obtained from ¥ by removing
the selectors and the testers; then, the reduct of R to € is isomorphic to 7 (€2). Informally,
this means that R does in fact capture the set of RDTs in question, as we can take the
carrier of R to be the term algebra 7(€2).

3 The Decision Procedure

In this section, we present a decision procedure for the satisfiability of sets of literals
over R. Our procedure builds on the algorithm by Oppen [12] for a single type with
a single constructor. As an example of Oppen’s algorithm, consider the list data type
without the null constructor and the following set of literals: {cons(z,y) = z, car(w) =~
x, cdr(w) =~ y,w % z}. Oppen’s algorithm uses a graph which relates terms according
to their meaning in the intended model. Thus, cons(z,y) is a parent of x and y and
car(w) and cdr(w) are children of w. The equations induce an equivalence relation on the
nodes of the graph. The Oppen algorithm proceeds by performing upwards (congruence)
and downwards (unification) closure on the graph and then checking for cycles® or for a
violation of any disequalities. For our example, upwards closure results in the conclusion
w = z, which contradicts the disequality w % z.

2Proofs of all results in this paper can be found in [4].
3 A simple example of a cycle is: cdr(z) ~ .

As another example, consider the following set of literals: {cons(x,y) =~ z, car(w) ~
x,cdr(w) = y,v = w,y % cdr(v)}. The new graph has a node for v, with cdr(v) as
its right child. The Oppen algorithm requires that every node with at least one child
have a complete set of children, so car(v) is added as a left child of v. Now, downwards
closure forces car(v) ~ car(w) = x and cdr(v) = cdr(w) ~ y, contradicting the disequality
y % cdr(v).

An alternative algorithm for the case of a single constructor is to introduce new terms
and variables to replace variables that are inside of selectors. For example, for the first set
of literals above, we would introduce w & cons(s,t) where s,t are new variables. Now, by
substituting and collapsing applications of selectors to constructors, we get {cons(z,y) ~
z,w =~ cons(s,t),r ~ s,t ~ y,w % z}. In general, this approach only requires downwards
closure.

Unfortunately, with the addition of more than one constructor, things are not quite as
simple. In particular, the simple approach of replacing variables with constructor terms
does not work because one cannot establish a priori whether the value denoted by a
given variable is built with one constructor or another. A simple extension of Oppen’s
algorithm for the case of multiple constructors is proposed in [14]. The idea is to first
guess a type completion, that is, a labeling of every variable by a constructor, which is
meant to constrain a variable to take only values built with the associated constructor.
Once all variables are labeled by a single constructor, the Oppen algorithm can be used to
determine if the constraints can be satisfied under that labeling. Unfortunately, the type
completion guess can be very expensive in practice.

Our presentation combines ideas from all of these algorithms as well as introducing
some new ones. There is a set of upward and downward closure rules to mimic Oppen’s
algorithm. The idea of a type completion is replaced by a set of labeling rules that can
be used to refine the set of possible constructors for each term (in particular, this allows
us to delay guessing as long as possible). And the notion of introducing constructors and
eliminating selectors is captured by a set of selector rules. In addition to the presentation,
one of our key contributions is to provide precise side-conditions for when case splitting is
necessary as opposed to when it can be delayed. The results given in Section 4 show that
with the right strategy, significant gains in efficiency can be obtained.

We describe our procedure formally in the following, as a set of derivation rules. We
build on and adopt the style of similar rules for abstract congruence closure [1] and syn-
tactic unification [8].

3.1 Definitions and Notation

In the following, we will consider well-sorted formulas over the signature 3 above and an
infinite set X of variables. To distinguish these variables, which can occur in formulas
given to the decision procedure described below, from other internal variables used by the
decision procedure, we will sometimes call the elements of X input variables.

Given a set I' of literals over ¥ and variables from X, we wish to determine the
satisfiability of I' in the algebra R. We will assume for simplicity, and with no loss
of generality, that the only occurrences of terms of sort bool are in atoms of the form
isCy(t) ~ true, which we will write just as isCy(¢).

Following [1], we will make use of the sets V,, (V;,) of abstraction variables of sort 7;
(0;); abstraction variables are disjoint from input variables (variables in I') and function
as equivalence class representatives for the terms in I'. We assume an arbitrary, but fixed,
well-founded ordering >~ on the abstraction variables that is total on variables of the same

sort. We denote the set of all variables (both input and abstraction) in E as Var(E). We
will use the expression Ibls(r;) for the set {C},...,Cy, } and define ibls(o;) to be the empty
set of labels for each o;. We will write sort(t) to denote the sort of the term ¢.

The rules make use of three additional constructs that are not in the language of >:
—, —, and Inst.

The symbol — is used to represent oriented equations. Its left-hand side is a X-term
t and its right-hand side is an abstraction variable v. The symbol — denotes labellings of
abstraction variables with sets of constructor symbols. It is used to keep track of possible
constructors for instantiating a 7; variable. Finally, the Inst construct is used to track
applications of the Instantiate rules given below. It is needed to ensure termination by
preventing multiple applications of the same Instantiate rule. It is a unary predicate
that is applied only to abstraction variables.

Let X€ denote the set of all constant symbols in ¥, including nullary constructors. We
will denote by A the set of all possible literals over ¥ and input variables X. Note that
this does not include oriented equations (¢t — v), labeling pairs (v +— L), or applications of
Inst. In contrast, we will denote by E multisets of literals of A, oriented equations, labeling
pairs, and applications of Inst. To simplify the presentation, we will consistently use the
following meta-variables: ¢,d denote constants (elements of ¥¢) or input variables from
X; u,v,w denote abstraction variables; ¢ denotes a flat term—i.e., a term all of whose
proper sub-terms are abstraction variables—or a label set, depending on the context.
u, v denote possibly empty sequences of abstraction variables; and u — v is shorthand
for the set of oriented equations resulting from pairing corresponding elements from u
and v and orienting them so that the left hand variable is greater than the right hand
variable according to . Finally, v 1 ¢t denotes any of v = t, t =~ v, v & ¢, t % v, or
v — t. To streamline the notation, we will sometimes denote function application simply
by juxtaposition.

Each rule consists of a premise and one or more conclusions. Each premise is made
up of a multiset of literals, oriented equations, labeling pairs, and applications of Inst.
Conclusions are either similar multisets or |, where | represents a trivially unsatisfiable
formula. The soundness of our rule-based procedure depends on the fact that the premise
E of a rule is satisfied in R by a valuation « of Var(E) iff one of the conclusions E’ of the
rule is satisfied in R by an extension of « to Var(E").

3.2 The derivation rules

Our decision procedure consists of the following derivation rules on multisets E.

Abstraction rules

plc], E .. DPEN c:s,
Abstract 1 ¢ — v, v lbls(s), plv], E " v fresh from V,
p[Ciu], E :
Abstract 2 C’j’:u ST T {C’;}, i) it peA, v fresh from V,
7 ¥ e\, S: T — s,
Abstract 3 Sj,lu UL, ey Sj,,L;U — Unis plvkl, if P gk F
vy — bls(s1), ..., v, — lbls(s,:), E each v, fresh from V;,
J J

4To simplify the writing of the rules, some rules may introduce labeling pairs for variables with a non-7
sort, even though these play no role.

The abstraction or flattening rules assign a new abstraction variable to every sub-
term in the original set of literals. Abstraction variables are then used as place-holders
or equivalence class representatives for those sub-terms. While we would not expect a
practical implementation to actually introduce these variables, it greatly simplifies the
presentation of the remaining rules. Notice that in each case, a labeling pair for the
introduced variables is also created. This corresponds to labeling each sub-term with the
set of possible constructors with which it could have been constructed. Also notice that
in the Abstract 3 rule, whenever a selector S;k is applied, we effectively introduce all
possible applications of selectors associated with the same constructor. This simplifies the
later selector rules and corresponds to the step in the Oppen algorithm which ensures that
in the term graph, any node with children has a complete set of children.

Literal level rules

) u v,) isC’j— v, B
Orient m if uw=w Remove 1 - {05}7 5
) v, E —isClv, E
I tent —L T ;
nconsisten L Remove 2 v — Ibls(sort(v)) \ {CJZ-}, FE

The simple literal level rules are mostly self-explanatory. The Orient rule is used to
replace an equation between abstraction variables (which every equation eventually be-
comes after applying the abstraction rules) with an oriented equation. Oriented equations
are used in the remaining rules below. The Remove rules remove applications of testers
and replace them with labeling pairs that impose the same constraints.

Upward (i.e., congruence) closure rules

Simplify 1 b u—v B S tou oo By
plily vdt, u— v, E uperpose w oo o0 B i u>=v

. . E

Simplify 2 Juuy = w, u = v, Compose tov,v—w B

fuvv — w, u — v, E t—w, v—ow, E

These rules are modeled after similar rules for abstract congruence closure in [1]. The
Simplify and Compose rules essentially provide a way to replace any abstraction variable
with a smaller (according to >) one if the two are known to be equal. The Superpose
rule merges two equivalence classes if they contain the same term. Congruence closure is
achieved by these rules because if two terms are congruent, then after repeated applications
of the first set of rules, they will become syntactically identical. Then the Superpose rule
will merge their two equivalence classes.

Downward (i.e., unification) closure rules

Ciu — v, Civ — v, E
J v M J

Decompose -
p Cu—v,u—v, E

c—uv,d—wv, E

Clash T

if c,deXC c:0,d:0,c#d

C]’-Zunuvn = Up_1,.- -, C’;i UgUoVa — U1, C’ﬁ wu vy —u, E

L

Cycle if n>1

The main downward closure rule is the Decompose rule: whenever two terms with
the same constructor are in the same equivalence class, their arguments must be equal.
The Clash rule detects instances of terms that are in the same equivalence class that
must be disequal in the intended model. The Cycle rule detects the (inconsistent) cases
in which a term would have to be cyclical.

Selector rules

) ;'»’lu—>u1, e S]i.nivu—>uni_, un—>{C§}, E
Instantiate 1 : e Kl if Inst(u) ¢ B
Clu - Ui = Uy U {C}, Inst(u), E
' Inst(v) € E,
' v {C}}, B v—L¢E,
Instantiate 2 Clug - Ui s Inst(v), E ‘ if C]Z: finite constructor,
uy— Ibls(s’ 1), ...) Ui = lbls(s;.vni_) Spo(v) = v € E,
! uy, fresh from Vi;
i
Collapse 1 Cji'u,l ey Sﬁlku —un b
C’j’ulunj —u, up ~v, B
Sl , L, E :
Collapse 2 —ak % 0™ it Ci¢lL

kR, u— L, FE

Rule Instantiate 1 is used to eliminate selectors by replacing the argument of the
selectors with a new term constructed using the appropriate constructor. Notice that
only terms that have selectors applied to them can be instantiated and then only once
they are unambiguously labeled. Rule Instantiate 2 is used for finite constructors. For
completeness, terms labeled with finite constructors must be instantiated even when no
selectors are applied to them. The Collapse rules eliminate selectors when the result of
their application can be determined. In Collapse 1, a selector is applied to a term known
to be equal to a constructor of the “right” type. In this case, the selector expression is
replaced by the appropriate argument of the constructor. In Collapse 2, a selector is
applied to a term which must have been constructed with the “wrong” constructor. In
this case, the designated term tz ;. for the selector replaces the selector expression.

Labeling rules

vi—s Ly, v Lo, E v— 0, E . o
Refine v LNk, E Empty n if vimy
i CyUL, E
lit 1 , i) v u (G UL, if L
Spli T =0 ue {C, B TwWovuL B L7
AUL, E
Split 2 u {GFU L, i L70

u {C’;}, E ur— L, E {C’]’} U L all finite constructors

The Refine rule simply combines labeling constraints that may arise from different
sources for the same equivalence class. Empty enforces the constraint that every 7-term
must be constructed by some constructor. The splitting rules are used to refine the set
of possible constructors for a term and are the only rules that cause branching. If a term
labeled with only finite constructors cannot be eliminated in some other way, Split 2 must
be applied until it is labeled unambiguously. For other terms, the Split 1 rule only needs
to be applied to distinguish the case of a selector being applied to the “right” constructor
from a selector being applied to the “wrong” constructor. On either branch, one of the
Collapse rules will apply immediately. We discuss this further in Section 4, below. The
rules are proved sound, complete and terminating in our full report [4].

4 Strategies and Efficiency

It is not difficult to see that the problem of determining the satisfiability of an arbitrary
set of literals is NP-complete. The problem was shown to be NP-hard in [12]. To see
that it is in NP, we note that given a type completion, no additional splits are necessary,
and the remaining rules can be carried out in polynomial time. However, as with other
NP-complete problems (Boolean satisfiability being the most obvious example), the right
strategy can make a significant difference in practical efficiency.

4.1 Strategies

A strategy is a predetermined methodology for applying the rules. Before discussing our
recommended strategy, it is instructive to look at the closest related work. Oppen’s original
algorithm is roughly equivalent to the following: After abstraction, apply the selector rules
to eliminate all instances of selector symbols. Next, apply upward and downward closure
rules (the bidirectional closure). As you go, check for conflicts using the rules that can
derive 1. We will call this the basic strategy. Note that it excludes the splitting rules:
because Oppen’s algorithm assumes a single constructor, the splitting rules are never used.
A generalization of Oppen’s algorithm is mentioned in [14]. They add the step of initially
guessing a “type completion”. To model this, consider the following simple Split rule:

u— {CI}UL, E

Split == [CI E w—1IL. E

if L#0Q

Now consider a strategy which invokes Split greedily (after abstraction) until it no longer
applies and then follows the basic strategy. We will call this strategy the greedy splitting
strategy. One of the key contributions of this paper is to recognize that the greedy splitting
strategy can be improved in two significant ways. First, the simple Split rule should be
replaced with the smarter Split 1 and Split 2 rules. Second, these rules should be delayed
as long as possible. We call this the lazy splitting strategy. The lazy strategy reduces the
size of the resulting derivation in two ways. First, notice that Split 1 is only enabled when
some selector is applied to u. By itself, this eliminates many needless case splits. Second,
by applying the splitting rules lazily (in particular by first applying selector rules), it may
be possible to avoid splitting completely in many cases.

Example. Consider the following simple tree data type: tree := node(left : tree, right :
tree) | leaf with leaf as the designated term for both selectors. Suppose we receive the
input formula left"(Z) ~ X A is-node(Z) N Z ~ X. After applying all available rules
except for the splitting rules, the result will look something like this:

Worst Case Greedy Lazy

Number of Splits | Benchmarks | Sat | Unsat | Splits | Time (s) | Splits | Time (s)
0 4416 | 306 | 4110 0 24.6 0 24.6
1-5 2520 | 2216 304 | 6887 16.8 | 2414 17.0
6-10 692 | 571 121 | 4967 5.8 | 1597 5.7
11-20 178 112 66 | 2422 2.3 517 1.6
21-100 145 73 72| 6326 4.5 334 1.1
101+ 49 11 38 | 16593 9.8 73 0.3

Table 1: Greedy vs. Lazy Splitting

{ Z — uy, X — ug,ug — {node}, node(uy,v1) — up, u, — ug,
left(uy) — uo, ..., leftl(up—1) — un,us — {leaf, node}, ..., u, — {leaf, node},
right(uy) — va,. . ., Tight(un—1) — vy, v1 +— {leaf, node}, ..., v, — {leaf, node}},

Notice that there are 2n abstraction variables labeled with two labels each. If we eagerly
applied the naive Split rule at this point, the derivation tree would reach size O(2%").

Suppose, on the other hand, that we use the lazy strategy. First notice that Split
1 can only be applied to n of the abstraction variables (u;,1 < i < n). Thus the more
restrictive side-conditions of Split 1 already reduce the size of the problem to at worst
O(2") instead of O(22"). However, by only applying it lazily, we do even better: suppose
we split on u;. The result is two branches, one with u; — {node} and the other with
u; — {leaf}. The second branch induces a cascade of (at most n) applications of Collapse
2 which in turn results in uy — {leaf} for each k > 7. This eventually results in L via
the Empty and Refine rules. The other branch contains u; +— {node} and results in the
application of the Instantiate rule, but little else, and so we will have to split again, this
time on a different u;. This process will have to be repeated until we have split on all of
the u;. At that point, there will be a cycle from ug back to ug, and so we will derive L via
the Cycle rule. Because each split only requires at most O(n) rules and there are n — 1
splits, the total size of the derivation tree will be O(n?).

4.2 Experimental Results

We have implemented both the lazy and the greedy splitting strategies in the theorem
prover CVC Lite [2]. Using the mutually recursive data types nat, list, and tree mentioned
in the introduction, we randomly generated 8000 benchmarks.®

As might be expected with a large random set, most of the benchmarks are quite easy.
In fact, over half of them are solved without any case splitting at all. However, a few
of them did prove to be somewhat challenging (at least in terms of the number of splits
required). Table 1 shows the total time and case splits required to solve the benchmarks.
The benchmarks are divided into categories based on the the maximum number of case
splits required to solve the benchmark.

For easy benchmarks that don’t require many splits, the two algorithms perform almost
identically. However, as the difficulty increases, the lazy strategy performs much better.
For the hardest benchmarks, the lazy strategy outperforms the greedy strategy by more
than an order of magnitude.

®See http://www.cs.nyu.edu/ barrett/datatypes for details on the benchmarks and results.

5 Extending the Algorithm

In this section we briefly discuss several ways in which our algorithm can be used as a
component in solving a larger or related problem.

5.1 Finite Sorts

Here we consider how to lift the limitation imposed before that each of o € {o1,...,0,} is
infinite valued. Since we have no such restrictions on sorts 7;, the idea is to simply replace
such a o by a new 7-like sort 7,, whose set of constructors (all of which will be nullary)
will match the domain of o. For example, if o is a finite scalar of the form {1,...,n},
then we can let 7, :==nully | ... | null,. We then proceed as before, after replacing all
occurrences of o by 7, and each i by null;.

5.2 Simulating Partial Function Semantics

As mentioned earlier, it is not clear how best to interpret the application of a selector to the
wrong constructor. One compelling approach is to interpret selectors as partial functions.
An evaluation of a formula then has three possible outcomes: true, false, or undefined.
This approach may be especially valuable in a verification application in which application
of selectors is required to be guarded so that no formula should ever be undefined. This
can easily be implemented by employing the techniques described in [6]: given a formula to
check, a special additional formula called a type-correctness condition is computed (which
can be done in time and space linear in the size of the input formula). These two formulas
can then be checked using a decision procedure that interprets the partial functions (in
this case, the selectors) in some arbitrary way over the undefined part of the domain. The
result can then be interpreted to reveal whether the formula would have been true, false,
or undefined under the partial function semantics.

5.3 Cooperating with other Decision Procedures

A final point is that that our procedure has been designed to integrate easily into a Nelson-
Oppen-style framework for cooperating decision procedures [10]. In the many-sorted case,
the key theoretical requirements (see [13]) for two decision procedures to be combined
are that the signatures of their theories share at most sort symbols and each theory is
stably infinite over the shared sorts.® A key operational requirement is that the decision
procedure is also able to easily compute and communicate equality information.

The theory of R (i.e., the set of sentences true in R) is trivially stably infinite over the
sorts o1,...,0, and over any 7-sort containing a non-finite constructor—as all such sorts
denote infinite sets in R. Also, in our procedure the equality information is eventually
completely captured by the oriented equations produced by the derivation rules, and so
entailed equalities can be easily detected and reported.

For a detailed and formal discussion of how to integrate a rule-based decision procedure
such as this one into a general framework combining Boolean reasoning and multiple
decision procedures, we refer the reader to our related work in [3]. Note that, in particular,
this work shows how the internal theory case splits can be delegated on demand to the
Boolean engine; this is the implementation strategy followed in CVC Lite.

5A many-sorted theory T is stably infinite over a subset S of its sorts if every quantifier-free formula
satisfiable in T is satisfiable in a model of T" where the sorts of S denote infinite sets.

References

1]
2]

3]

[14]

[15]

L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. JAR, 31:129-168,
2003.

C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In Proceedings of CAV, pages 515-518, July 2004.

C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand in sat-
isfiability modulo theories. Technical report, University of Iowa, 2006. Available at
ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/BarNOT-RR-06.pdf.

C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satisfiability in
the theory of recursive data types. Technical Report TR2005-878, Department of Computer
Science, New York University, Nov. 2005.

M. P. Bonacina and M. Echenim. Generic theorem proving for decision proce-
dures. Technical report, Universita degli studi di Verona, 2006. Available at
http://profs.sci.univr.it/~echenim/.

S. B. et al. A practical approach to partial functions in CVC Lite. In W. A. et al., editor,
Selected Papers from PDPAR ’04, volume 125(3) of ENTCS, pages 13—23. Elsevier, July 2005.

W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4(2):258-282, 1982.

K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky, D. V. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 1. Claredon Press, 1992.

G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM Transac-
tions on Programming Languages and Systems, 1(2):245-57, 1979.

G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. JACM,
27(2):356-364, April 1980.

D. C. Oppen. Reasoning about recursively defined data structures. JACM, 27(3):403-411,
July 1980.

C. Tinelli and C. Zarba. Combining decision procedures for sorted theories. In J. Alferes and
J. Leite, editors, Proceedings of JELIA 04, volume 3229 of LNAI, pages 641-653. Springer,
2004.

T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras with integer
constraints. In Proceedings of IJCAR 04 LNCS 3097, pages 152-167, 2004.

T. Zhang, H. B. Sipma, and Z. Manna. Term algebras with length function and bounded
quantifier alternation. In Proceedings of TPHOLs, 2004.

