CVC3

Clark Barrett and Cesare Tinefli

INew York Universitybarrett @s. nyu. edu
2Universi’[y of lowastinel | i @s. ui owa. edu
(© Springer-Verlag

Abstract. CVC3, a joint project of NYU and U lowa, is the new and latest ve
sion of the Cooperating Validity Checker. CVC3 extends amittls on the func-
tionality of its predecessors and includes many new featsweh as support for
additional theories, an abstract architecture for Booleasoning, and SMT-LIB
compliance. We describe the system and discuss some dppigand continu-
ing work.

1 Introduction

Like its predecessors, SVC [5], CVC [12], and CVC Lite [1], C¥ is an automatic
theorem prover for th&atisfiability Modulo Theorie€SMT) problem: given an input
formulag in first order logic, CVC3 attempts to determine the valididy dually, the
satisfiability) of@ with respect to one or more background theories.

CVC3 builds on the architecture and features of the sucgkeS$fC and CVC Lite
systems, but it also differs in important ways. First of #ile project is under new man-
agement: it is being developed at NYU and the University efddqunlike its prede-
cessors, all of which were hosted at Stanford Universitgkddd, the system is mature
enough now that it seemed best to drop the “Lite” monikes tdlled CVC3 because it
is the third major release of a system with the CVC name. Mopbrtantly, many new
features have been added and most of the code has been m@viseditten. For these
reasons, a new major release and accompanying systenmpdiescseemed appropriate.

2 System Description

A high-level view of CVC3'’s architecture is shown in Fig. 1IVC3 provides several
different user interfaces including high-level API's footh C and C++, an interac-
tive command-driven interface, and a file interface. TheriiPl supports two main
types of operations: formula creation and methods for itglghtisfiability checking.
The main deduction engine is called the Search Engine. lkssdo link the Boolean
reasoning capabilities of the DPLL engine with the theopsming capabilities of the
Theory Solver. The DPLL engine relies on a Boolean SAT sdivelo its work and the
Theory Solver relies on a set of decision procedures, onedoin supported theory.

Because of space limitations, we focus on new features snpiiper, referring the
reader to previous work for a discussion of the more basitifea of the system. The
new features can be broadly partitioned into three categotine search engine, new
theories, and enhanced usability.

User Interface

Main API
DPLL Search
Engine Engine

SAT Solve+ Theory 1

Fig. 1. CVC3 System design
2.1 The Search Engine

Theory
Solver

CVC3 features a new Search Engine. The Search Engine pescies®ming queries,
first using standard techniques to convert them into edsfidile formulas in con-
junctive normal form. The Boolean structure is then fed ® BiPLL Engine. One of
the primary reasons for developing a new Search Engine waske it easy to plug
in different implementations of the DPLL Engine. To do thassimple abstract API
was developed based on the Extended Abstract DPLL Moduloridseframework [3].
Ideas developed in this theoretical framework, such asyh@opagation and splitting
on demand, made it possible to implement a simple API thatneasenough to be
practical and efficient. Implementations of this API argédy shielded from the rest of
the system and communicate with the Search Engine using@esiminimal interface
which references only basic data-structures for Booleaabis, literals, and clauses.

One measure of success is that we were quickly able to intetyva different SAT
solvers. In fact, our experience has been that the mainuwliffics not in implementing
the API, but in adapting the SAT solvers to support necestatures like dynamic
addition of clauses and variables. The SAT solvers cuiyeatailable in CVC3 are
zchaff [11] and MiniSat [7]. Another measure of success & thith the new Search
Engine, CVC3 outperforms CVC Lite on nearly all benchmat¥gically by a factor
of 2 or 3, but by up to an order of magnitude on benchmarks vigthificant Boolean
structure.

2.2 New Theories

Abstract Data Types.While its predecessors could reason about simple aggrdgtite
types like records and tuples, CVC3 has the ability to readmut arbitrary recursive
and mutually recursive data types. A simple example of arsdveidata type is thist
type from LISP with constructonsull andconsand selectorgar andcdr. A simple
example of a query that CVC3 can solve over this typ&is: list. x = null vV 3yz x =
congy,z). The implementation is based on our abstract decision guoeedescribed
in [4].

Bitvectors. Support for a theory of bitvectors was a late addition to tMEQ ite sys-
tem. In CVC3, the bitvector theory has been largely reworkigkd a resulting substan-
tial improvement in performance. However, the implemeateit still rather naive and
based on a simple combination of pre-processing and bstibta We consider improv-
ing the efficiency of bitvector reasoning to be an importasearch challenge.
Quantifiers. CVC3 treats quantified formulas as if they belonged to a stpdquan-
tifier” theory. This convenient mechanism allows CVC3 to asspecial strategy for
guantified formulas: existential formulas are skolemizad then passed back to the
main theory solver for additional processing; universafrfolas are accumulated and a
set of heuristics is used to instantiate the formulas witdugd terms from other literals
known to the theory solver. CVC3 contains a new instantiati@chanism that extends
the “matching” techniques of the Simplify theorem provef. [BVC3 is significantly
better than CVC Lite on formulas with quantifiers and our ekpents on the SMT-
LIB benchmarks indicate that it can solve more problems tthar instantiation-based
systems [9].

2.3 Enhanced Usability

SMT-LIB. In order to support the SMT-LIB initiative, a powerful trdaton module
was added to CVC Lite. It has been updated and improved in CY@3 module is
capable of translating benchmarks to and from the SMT-Lifat. The most difficult
part of this is inferring the correct SMT-LIB logic based omtactic properties of the
benchmark. CVC3 has been used to verify the correct logegoaization of all bench-
marks currently in the SMT-LIB library, and it is currentlye standard for checking
the syntax and categorization of new benchmarks submitéuktlibrary.

Model Generation.An important feature of CVC3 is that it can produce concredelm
els after a satisfiable query. For example, instead of raygpxt~ y, CVC3 can assign
actual values ta andy, such ax = 0 andy = 1. This is useful for tools that use CVC3
as a back-end and need to provide meaningful feedback tosére lushould be men-
tioned that this feature was already present in CVC Lite,ibutas added after the
system description was published and so is worth emphadiare.

Incremental Use.It has always been possible to use the CVC tools incremgnisithg

a stack-based push and pop mechanism. Several new featweddéen added to aid
incremental use. First of all, the Minisat implementatiéthe DPLL Engine has been
enhanced to be incremental. This means that it is possibéaite lemmas learned from
one query in another related query. Second, it is possitdedcch for additional models
after a model has been found by using a “continue” commamaulllyj it is also possible
to search for models that satisfy an additional assumplibis is implemented with a
command called “restart”. The restart command is is usefuréfining abstractions
and has been implemented in such a way that the work done imditide first model
can be reused, which is important for efficiency.

3 Conclusion

CVC3 aims to continue the tradition of its predecessors loyiding a free, robust,
automatic, and feature-rich tool suitable for a variety @aarch and industrial ap-
plications. Some applications of previous versions of CY€lde a proof-producing

decision procedure for HOL Light [10]; a verification tookf@ programs [8], a trans-
lation validator for optimizing compilers [2], and a studg the verification of clock
synchronization algorithms [13].

We expect that these and similar future applications wiltl flitVC3 even more
useful. In particular, we currently have collaborationgplace with research groups
at the University of Dublin, Microsoft Research, and Rockv@»llins on using CVC3
respectively within an extended static checker for Javaiaomated unit test generator
for NET programs, and a model checker for programs writtehé dataflow language
Lustre.

There is still much that we plan to do to improve CVC3. Currawotk includes
improvements to the arithmetic, bitvector, and quantifieoties. New theories under
consideration include a theory of strings, a theory of satsl a theory of subtypes.
One important enhancement we expect to make soon is to alewdefined symbols
to have polymorphic types. We also plan to improve the cusepport for proofs and
models. Finally, of course, we would like to continue to iy overall performance
of the system.

CVC3 has an active user and development community. Morerivdgtion, including
instructions for downloading and installing the tool, cafbdund on the CVC3 web site
athttp://ww. cs. nyu. edu/ acsys/ cvc3.

References

1. C. Barrett and S. Berezin. CVC Lite: A new implementatidrttee cooperating validity
checker. INCAV, pages 515-518, 2004.
2. C. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L.cku TVOC: A translation
validator for optimizing compilers. ICAV, pages 291-295, 2005.
3. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinellpli§ing on demand in SAT modulo
theories. INLPAR 2006.
4. C. Barrett, I. Shikanian, and C. Tinelli. An abstract demi procedure for satisfiability in
the theory of recursive data types. RDPAR 2006.
5. C. W. Barrett, D. L. Dill, and J. R. Levitt. Validity cheatg for combinations of theories
with equality. INFMCAD, pages 187-201, 1996.
6. D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorprover for program checking.
Technical Report HPL-2003-148, HP System Research C&te8.
7. N. Eén and N. Sorensson. An extensible sat-solveBAT) 2003.
8. J.-C. Filliatre and C. Marché. Multi-Prover Verificai of C Programs. INCFEM, pages
15-29, 2004.
9. Y. Ge, C. Barrett, and C. Tinelli. Solving quantified vexdfiion condisions using satisfiability
modulo theories. CADE, July 2007. To appear.
10. S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theppeovers: A case study combining
HOL-Light and CVC Lite. INPDPAR pages 43-51, 2006.
11. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and SliklaChaff: Engineering an
Efficient SAT Solver. IrDAC, 2001.
12. A. Stump, C. W. Barrett, and D. L. Dill. CVC: A cooperatinalidity checker. I"CAV, pages
500-504, 2002.
13. A.Tiu, D. Barsotti, and L. Prensa. Verification of clogkshronization algorithms: Exper-
iments on a combination of deductive tools. AMOCS 2005.

