Design and Results of the 1st Satisfiability Modulo Theories
Competition (SMT-COMP 2005)

Clark Barrett
Department of Computer Science
New York University

Leonardo de Moura
Computer Science Laboratory
SRI International

Aaron Stump
Department of Computer Science and Engineering
Washington University in St. Louis

Abstract. The Satisfiability Modulo Theories Competition (SMT-COM®)ntended to spark
further advances in the decision procedures field, espeétalapplications in hardware and
software verification. Public competitions are a well-kmomeans of stimulating advance-
ment in automated reasoning. Evaluation of SMT solversredten SMT-COMP took place
while CAV 2005 was meeting. Twelve solvers were entered21881chmarks were collected
in seven different divisions.

Keywords: satisfiability modulo theories, decision procedures, cetitipn

1. Introduction

Decision procedures for checking satisfiability of logifrainulas are crucial
for many verification applications (e.g., [35, 32, 19, 13, 28, 12, 11]).
Of patrticular recent interest are solvers for SatisfighiModulo Theories
(SMT). SMT solvers decide logical satisfiability (or dualalidity) of for-
mulas in classical multi-sorted first-order logic with eljiyawith respect
to a background theory. The success of SMT for verificatioplieations
is largely due to the suitability of supported backgroundoties for ex-
pressing verification conditions. These theories inclutie: empty theory,
which gives rise to the so-called logic of equality and uerpteted func-
tions (EUF) [18, 25]; real or integer arithmetic; and thesrof program or
hardware structures such as bitvectors [22] and arrays3[3,It3is usually
necessary to adopt some syntactic restriction on the inpumilas to be
checked in order to ensure efficient decidability. For examformulas are
often required to be quantifier-free. For arithmetic, mdfigient algorithms
are known fordifference formulaswhere atomic formulas consist of differ-
ence constraints of the form — y < ¢, with z andy variables and: a
numeric constant [28, 2]. Many solvers further increaseasgivity by taking

p;‘w © 2006KIluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 11/09/2006; 12:42; p.1

2 Barrett, de Moura, Stump

the background theory to be a combination of several indalidheories,
and some solvers include limited support for quantified des, further
increasing expressive power.

The Satisfiability Modulo Theories Competition (SMT-COM#®&intended
to spark further advances in the SMT field, especially folliappons in veri-
fication. Public competitions are a well-known means of gtating advance-
ment in automated reasoning. Examples include the CASC Etitiop [24]
for first-order reasoning, the SAT Competition for propiasial reasoning,
and the Termination Competition for checking terminatidrtesm rewrit-
ing systems [24, 10]. Participants report that competitifurel significant
improvements in tool capabilities from year to year.

The idea of holding SMT-COMP came out of discussions of theTSM
LIB initiative at the 2nd International Workshop on Pragiosiof Decision
Procedures in Automated Reasoning (PDPAR) at IJCAR 2004T-5I&
is an initiative of the SMT community to build a library of SMidench-
marks in a proposed standard format. SMT-COMP aims to séiigegbal
by contributing collected benchmark formulas used for thragetition to the
library, and by providing an incentive for implementors & solvers to
support the SMT-LIB format. Selettp://combination.cs.uiowa.
edu/smtlib/ for more information on SMT-LIB.

The 1st SMT-COMP was held July 6 - 8, 2005, as a satellite evithie
17th International Conference on Computer-Aided Veriftma{CAV). The
primary goals of SMT-COMP at CAV 2005 were:

— To collect benchmarks in a common format, namely the SMT-0IB
mat [26].

— Tojump-start definition of SMT theories, again using thegused SMT-
LIB format.

— To spur development of SMT solver implementations, in palér, sup-
port for SMT-LIB format.

— To connect implementors of SMT solvers with potential usarghe
verification community.

Evaluation of SMT solvers entered in SMT-COMP took placela/QiIAV
2005 was meeting, in the style of CASC. Intermediate resudiee posted
periodically on the SMT-COMP websitaitp://www.csl.sri.com/
users/demoura/smt-comp/ , as SMT-COMP proceeded. Final results
were announced in a special session on the last day of CAVCHvworga-
nizers arranged for SMT-COMP to have exclusive access towpgef GNU
Linux machines (detailed in Section 5 below), which wereduserun the
competition.

paper.tex; 11/09/2006; 12:42; p.2

SMT-COMP 2005 3

Even before evaluation began, SMT-COMP was already a ssic&es
months before the competition, there were no solvers EpISMT-LIB for-
mat, and there were no benchmarks collected. 1352 benchrima8MT-LIB
format were collected for SMT-COMP, in seven different dighs (called
logicsin SMT-LIB terminology). Twelve solvers were entered sugting the
SMT-LIB format. Comments from some of the participants,tipatarly of
less mature systems, suggest that the competition wasificgighmotivator
to make progress on their implementations.

The rest of this paper describes the rules and competitionaiofor SMT-
COMP, which were designed by the authors (Section 2); thetlaarks col-
lected (Section 3); the scripts and actual execution of dheess (Section 5);
and of course, the final results (Section 6).

2. Rules and Competition Format

The rules and competition format for SMT-COMP draw subsdigton ideas
from the design and organization of CASC.

2.1. BENTRANTS

Participants were allowed to enter SMT solvers into SMT-GOM either
source code or binary format. The organizers reserved g t submit
their own systems, and indeed did so in the form of CVC, CV Lé&nd
Yices; as well as systems SVC and Simplics, of which orgasinere co-
implementors. For solvers submitted in source code forepthanizers stated
they would take reasonable precautions to ensure that tlieescode was not
viewed by anyone other than the organizers. No solver waseaghthowever,
where concerns over intellectual property were an issudicipants were
encouraged to be physically present at SMT-COMP, but wetresgiired to
be so to participate or win. The organizers committed to ntakeasonable
efforts to install each system, but reserved the right tectegn entrant if its
installation process was overly difficult. In several casedrers as submitted
did not quite conform to some of the requirements below. Urately, with
some extra effort by the submitters and the organizersetheaformance
problems were repaired before the competition began. Iimach entrant to
SMT-COMP was required to include a short (1-2 pages) systesargbtion
which can be found on the SMT-COMP web page.

2.2. SOLVER INTERFACE

Each SMT-COMP entrant, when executed, was required to residge
SMT-LIB benchmark file presented on its standard input cbafrhese bench-
mark files were given in the concrete syntax of the SMT-LIBxat, version

paper.tex; 11/09/2006; 12:42; p.3

4 Barrett, de Moura, Stump

(benchmark int_incompleteness2.smt
:source { Leonardo de Moura }
:notes "Check completeness of the integer DP."
:status unsat
:logic QF_LIA
.extrafuns ((x1 Int) (x2 Int) (x3 Int) (x4 Int))
:formula
(and (> (+ x1 x2) 0)
(< (+ x1 x2) 3)
(= x1 (* 3 x3))
(= x2 (* 6 x4))))

Figure 1. Example Benchmark in SMT-LIB Format

1.1 [26]. An example SMT-LIB benchmark is shown in Figure heTformat
requires the name of the SMT-LIBgic (a restriction on the set of formulas
considered, together with a background theory) for the tdamit contains
the status of the formula; for the competition, the status, wicourse, always
listed as “unknown”. Extra function and predicate symbotydnd those
provided by the logic can be declared. A single formula isitgeven, in a
LISP-like prefix syntax. In standard mathematical notatitre formula in
the Figure is:

(x1+22>0) AN (z1+22<3) A (21 =3%x3) A (2 =06%1z4)

The SMT-LIB format also includes a simple sort system. SMINIP
entrants were allowed to operate under the assumption hbgtvwould be
given only well-sorted formulas. For a given input formwach SMT-COMP
entrant was then expected to report on its standard outpaneth whether the
formula is satisfiable or unsatisfiable. An entrant could aéport ‘Unknown ”
to indicate that it could not determine satisfiability of #foemula. Aborts,
timeouts, other output, and exhaustion of memory were aditéd as if the
tool had reportedunknown .

2.3. JUDGING AND SCORING

Scoring was done using the system of points and penaltiegyurd=-2. Un-

sound or incomplete solvers were penalized, but not digodl The mo-
tivation for this requires some explanation. First, benahs in SMT-LIB

format did not exist prior to the competition. The authorgevable to make
some benchmarks available in early April, 2005, but manyeweere being
collected (and made available) into June. Hence, impleonglid not have
a long time to stress test their tools on the competitionischenarks. Fur-
thermore, it is relatively difficult to achieve a mature, Hoge SMT solver

paper.tex; 11/09/2006; 12:42; p.4

SMT-COMP 2005 5

Reported Points for correct response Penalty for incorrectresponse

unsat +1 -8
sat +1 -4
unknown 0 0
timeout 0 0

Figure 2. Points and Penalties

implementation. This is due to the fact that the reasonimgired is more
specialized (and thus, more logically elaborate) than forenuniversal auto-
mated reasoning domains (e.g., first-order theorem pravirtgpse domains
can certainly have implementations that are at least asleaniut their com-

plexity is due to sophisticated implementation of reldtiv&@mple inference
rules. Finally, smaller penalties were assessed for intetenpess than for
unsoundness, due to the belief that achieving completésessre difficult

for SMT solving than soundness. These rules were not urm@sial, and
they are likely to be modified for SMT-COMP 2006. But indedtk brga-

nizers concerns proved to be justified: fully a third of thenpetition’s field

reported a wrong answer on at least one benchmark.

The organizers took responsibility for determining in at@whether for-
mulas are satisfiable or unsatisfiable. This was done eitfieg kknowledge
about how the benchmarks were generated, or by runningadeeassonably
trusted existing solvers (with no time or memory limits) tet @n answer.
Although this is not as strong a guarantee as one might likeppears no
further validation mechanism was necessary: mature sokiragreed on
the competition benchmarks, and no incorrect classifioativere reported
before or after the competition. In the event of a tie in totainber of points,
the solver with the lower total CPU time on formulas for whittdid not
report “unknown ” was considered the winner.

2.4. PROBLEM DIVISIONS

Definitions of the following SMT-LIB logics and their corggsnding theories
were made publicly available in advance of the competitianttee SMT-
LIB web page. The prefix “QF below means the formulas in the logic are
guantifier-free.

— QF_UF: uninterpreted functions

— QF_RDL. real difference logic

paper.tex; 11/09/2006; 12:42; p.5

6 Barrett, de Moura, Stump
— QF.IDL: integer difference logic
— QF_UFIDL: uninterpreted functions and integer differenceidog
— QF_LRA: linear real arithmetic
— QF_LIA: linear integer arithmetic

— QF.AUFLIA: arrays, uninterpreted functions and linear integeith-
metic.

3. Benchmarks

3.1. COLLECTING BENCHMARKS

One of the primary challenges for the first SMT-COMP was tHEction of
benchmarks in the SMT-LIB format. After the format had sliabd, a call for
benchmarks was sent to the SMT community. The response wasmging,
but none of the benchmarks initially received were in the SNB format.
Fortunately, many groups had benchmarks in CVC format [8taBise its ar-
chitecture can easily accommodate new input and outputiges, the CVC
Lite [7] system was chosen as a platform to support tramsidtiom CVC
format to SMT-LIB format. This turned out to be fairly straifprward. A
more challenging task was to automatically identify whidkision a bench-
mark belongs to. CVC Lite was instrumented to accomplishtdmk as well.
Arithmetic posed a particular challenge because CVC Lit foaidentify
not just whether arithmetic symbols were used, but whetieuse fell into
the difference logic category or the more general lineghimetic category.
Most of the benchmarks collected for the first SMT-COMP weasadlated
using the CVC Lite translator. The rest were translated aodged by Albert
Oliveras. Each benchmark contains an attribute indicatsgpurce. Most are
from real applications. The benchmarks can be found on th&-B& and
SMT-COMP web pages.

In order to verify the syntactic and type correctness ofthedlated bench-
marks, a separate parser and syntax checker was written amOUThe
syntax checker checked that each benchmark was well-formedwell-
typed. It also parsed the theory and logic SMT-LIB files andated that
the sorts and symbols used in the benchmarks were defined Fierally, the
CVC Lite translator, which can also accept input in SMT-LiBrhat, was
re-run on each generated SMT-LIB benchmark to check thabcepsing it
would return the same (SMT-LIB) benchmark. This turned ugess subtle
problems in the benchmark suite.

paper.tex; 11/09/2006; 12:42; p.6

SMT-COMP 2005 7

Both the CVC Lite translator and the OCaml syntax checkereweade
available on the SMT-COMP web page. The strategy of caredumstation
and checking of the benchmarks paid off as there were no grablwith
benchmark syntax during the competition. There were somgtints that
the benchmarks were not in their most natural representaliot as far as
known, the syntax and categorization was correct in alhimsts. The excel-
lent work done by Cesare Tinelli and Silvio Ranise to definegoressive
yet precise format for SMT-LIB was also very conducive to @ad set of
benchmarks.

3.2. FLECTION OFCOMPETITION BENCHMARKS

There was not enough time during the competition to run &lgblvers on
all the benchmarks. This was not necessarily desirable aynpecause using
all the benchmarks in a division might result in a suboptitiatribution in
terms of satisfiable versus unsatisfiable and difficult \eeasy.

It was decided that the competition benchmarks would cooEE0 bench-
marks from each division. The criteria for selection werddlews. There
should be a spectrum of difficulty ranging from easy to difticAs much as
possible, each benchmark source should be equally repeese3ince most
of the benchmarks collected are unsatisfiable, it was ndtilplesto put an
equal number of satisfiable and unsatisfiable benchmarkadh division,
subject to the other constraints. Each division had appratély 42 unsat-
isfiable benchmarks and 8 satisfiable benchmarks in eaciativiTogether
with the scoring system, this distribution at least ensuhed there was no
expected benefit to guessing: with 8 satisfiable benchmatks acore of -8
for each incorrect answer on those benchmarks, guessirdisfiele would
be expected to result in a negative score. Nevertheleshgit twere any
solvers that were much stronger on satisfiable than unsétisfboenchmarks,
they were at a significant disadvantage with this distrdyutCollecting more
satisfiable benchmarks is an important priority for nextrigegompetition.

The benchmark selection strategy worked fairly well, butilddbe im-
proved in the future. The fact that there was a wide distitioudf scores and
no solver was able to solve every benchmark in any divisiawstthat there
was a reasonable diversity of difficulties. However, somlgese got near-
perfect scores in some divisions, indicating that more aiffibenchmarks
will be needed in the future. Adopting a rating system sucthasused by
CASC or the SAT competition, where problems are deemed h#rtaver
systems can solve them, would help improve the selectiorm¢iimarks.

The strategy for mixing satisfiable and unsatisfiable beracheworked
well except in the QRJFIDL division where only two satisfiable benchmarks
were available. As a result, a tool which guessed “unsabtifisfor every

paper.tex; 11/09/2006; 12:42; p.7

8 Barrett, de Moura, Stump

benchmark in this division would have placed third. Indesak tool which
answered incorrectly on both of the satisfiable benchmaditkdid quite well.

For divisions based on the theory of integers, it was alsludted at least
one hand-crafted benchmark which was unsatisfiable oveintbgers but
satisfiable over the reals. The rationale for this was thatyrb@nchmarks are
equisatisfiable over the reals and the integers, but integeoning is much
more challenging. The idea was to make sure that some effarhvade to test
this integer reasoning. It is significant to note that thiggger completeness”
benchmark did trip up one solver in the QFA division. More than anything,
this reveals the need for better benchmarks for exercisitegér reasoning.
In the future, it would be preferable to have more realiseadhmarks for
debugging integer reasoning and for differentiating thiéitatof solvers to
handle integers versus reals.

4. Participants

There were twelve entries in the inaugural SMT-COMP. Helwijef descrip-
tion of each of these systems is provided.

ARIO. ARIO was submitted by Hossein M. Sheini and Karem A. Sakallah
from the University of Michigan. ARIO is implemented in C+mrcicombines
an advanced Boolean SAT solver with special-purpose medulereason-
ing about arithmetic. Ackermann’s method is used to elinginminterpreted
function symbols. ARIO competed in every division except@d-_AUFLIA.
More information can be found in [31, 30] and at:

http://www.eecs.umich.edu/ ario

BarcelogicTools.BarcelogicTools was submltted by Robert Nieuwenhuis
and Albert Oliveras from the Technical University of Catdby Barcelona.
BarcelogicTools is a C implementation of SMT for unintetprefunctions
and difference logic based on the DPLL(T) framework for SMT][Barce-
logicTools uses heuristics to determine whether to use vheken’s method
or congruence closure for reasoning about uninterpretectifuns. Barcelog-
icTools competed in the following divisions: QBF, QFE.IDL, QF_RDL, and
QF_UFIDL. More information can be found in [23] and at:

http://www.Isi.upc.edu/ oliveras/bclt-main.html

CVC. CVC [34] is a legacy system developed at Stanford Unlvetts,yty
Aaron Stump, Clark Barrett, and David Dill. An updated versicapable
of parsing SMT-LIB format was submitted by Aaron Stump. C\&Cim-
plemented in C++ and implements a general framework for @oimdp first
order theories based on the Nelson-Oppen method [4]. CVE theeChaff
SAT solver for Boolean reasoning [5]. CVC competed in aliglons. More
information can be found at:

http://cl.cse.wustl.edu/CVC/

paper.tex; 11/09/2006; 12:42; p.8

SMT-COMP 2005 9

CVC Lite. CVC Lite [7] is a new implementation of CVC developed
primarily by Clark Barrett at New York University and SergBgrezin at
Stanford University. CVC Lite is implemented in C++ and iséd on the
framework for cooperating decision procedures found imlCBarrett's PhD
thesis [6]. CVC Lite has a custom SAT solver and is capablerofiycing
independently-checkable proofs for valid queries. CV@ ldompeted in all
divisions. More information can be found at:

http://verify.stanford.edu/CVCL/

HTP (Heuristic Theorem Prover). HTP was developed by Kenneth Roe.
It is based on similar systems like SVC and CVC but incorprsratew deci-
sion heuristics. HTP competed in all divisions.

MathSAT. A version of MathSAT 3 capable of parsing SMT-LIB was con-
tributed by the MathSAT team (sdwgtp://mathsat.itc.it). Math-
SAT uses the MiniSAT solver for Boolean reasoning [14]. Weipreted func-
tions are handled by either the Ackermann reduction or amgre closure.
Support for arithmetic itayeredwith faster, less general solvers run first, fol-
lowed by slower, more complete solvers. MathSAT competalidivisions
except for QEAUFLIA. More information can be found in [21] and at:

http://mathsat.itc.it/

Sammy. Sammy was submltted by Michael DeCoster, George Hagen,
Cesare Tinelli, and Hantao Zhang from the University of lo8ammy is
written in OCaml and C and is based on the DPLL(T) frameworkSMT
[17]. Sammy uses a tool derived from SATO [36] for proposiéibreasoning
and CVC Lite [7] for theory reasoning. Sammy competed in alistbns.
More information can be found at:

http://goedel.cs.uiowa.edu/Sammy/

Sateen.Sateen was submitted by Hyondeuk K|m HoonSang Jin, and
Fabio Somenzi from the University of Colorado at Bouldete$a is written
in C and combines efficient Boolean reasoning with a layemmtaach to
arithmetic. Sateen competed only in the division_{DE..

SBT. SBT (SatBox with Theories) was submitted by Hantao Zhanggida
Shen, and John Wheeler from the University of lowa. SBT idtemiin C
and is built on top of the SatBox toolbox for propositionahdsening (see
http://www.cs.uiowa.edu/"hzhang/satbox/). It also incorpo-
rates some code from Albert Oliveras (one of the authors eBtarcelogic-
Tools system). SBT competed in the following divisions: QF, QF.IDL,
QF.UFIDL, QF_LIA.

Simplics. Simplics was submitted by Bruno Dutertre and Leonardo de
Moura from the Computer Science Laboratory at SRI Inteonati. Simplics
is a recent successor to ICS [15], written mostly in OCamhsics uses a
core real-linear arithmetic solver based on an enhancegioveof the sim-
plex algorithm [27]. Simplics competed in the following @hions: QERDL,

paper.tex; 11/09/2006; 12:42; p.9

10 Barrett, de Moura, Stump

QF_LRA. More information can be found at:
http://fm.csl.sri.com/simplics/

SVC. SVC [8] is a legacy system developed at Stanford Universjty b
Clark Barrett, Jeremy Levitt, and David Dill. An updated sien capable
of parsing SMT-LIB format was submitted by Clark Barrett. G6 imple-
mented in C++ and implements a framework for combining decigro-
cedures described in Jeremy Levitt's PhD thesis [20]. SV@pa=ted in all
divisions. More information can be found at:

http://verify.stanford.edu/SVC/

Yices. Yices was submitted by Leonardo de Moura from the Computer
Science Laboratory at SRI International. Yices is impletadrin C++ and is
based on the Nelson-Oppen method for combining decisiarepres. Yices
can produce proof objects for valid queries. Yices compatedl divisions.
More information can be found at:

http://fm.csl.sri.com/yices/

5. Scripts and Execution

SMT-COMP used 14 identical machines with 2.6Ghz Pentiumoé¢gssors,
512Kb of cache and 512Mb of RAM, running GNU/Linux versior.20.
Solvers submitted in source code format were compiled USIBE version
3.2.2.

The programTreeLimitedRun , developed for the CASC competition,
was used to monitor the execution of each solver. It watdhe<PU usage
of a process and its subprocesses, and kills them if theyedxitee defined
limits for CPU time (600 seconds), wall clock time (800 seds)nor memory
usage (450Mb). Thalimit command was not used to enforce these limits
because it does not take in consideration the time and mecwmryumed
by subprocesses. The difference between CPU time and wak time was
motivated by the fact that, despite our best efforts, thehim@s generously
provided by University of Edinburgh Department of Inforieat but outside
our total control, had some other processes running on ttigbaund. 1t was
observed a difference of up to 20% between the actual CPU dimdewall
clock time reported for solving a formula. Although the picgs amount of
memory of each machine is 512Mb, the limit 450Mb was used tumize
the number of page faults.

Each solver was assigned to a different machineoAtroller program
was responsible for executing the solver on all formulas givan division.
The controller usedreeLimitedRun to monitor the execution, and the
results were stored in a lochig file and sent by email to a special account
at SRI. At SRIprocmail was configured to filter the messages containing
SMT-COMP results, and store them in a textual database. Enoeito time,

paper.tex; 11/09/2006; 12:42; p.10

SMT-COMP 2005 11

a script used the textual database to update on the fly theetiiop website
with partial results. The locdbg file had two purposes. First, it was a backup
for SMT-COMP results, just in case an email message withtseaas lost or
corrupted. Second, and more importantly, it allowed theetien of a solver
in a given division to be resumed when a machine crashed cagedentally
rebooted. This was useful as several crashes occurred.

Several solvers did not conform with the output format sipetiby the
competition. These solvers basically were displayingeextformation in the
standard output besidesit , unsat , andunknown . Therefore, a wrapper
script was used to execute each solver. This script filtdredtandard output,
and redirected the standard errovdev/null

6. Results

Figure 3 contains the number of problems in each divisioatotal number
of solved problems by sound solvers, and the maximum numisoleed
problems by a single sound solver. The results for eachidivigre summa-
rized in Figures 4, 5, 6, 7, 8, 9, and 10. The first-place tootsBarcelogic
Tools, Simplics, and Yices. Other tools placing second &r€ @nd Math-
SAT. Other tools placing third are Ario and CVC Lite. More alit#td results
are available on the SMT-COMP web site. The curves are ussbae the
behavior of the solvers in each division; they show how mampiems (in
abscissa) were solved when time (in ordinate) is increashrpng answers
and timeouts are not shown in these curves. In the tablespthmnTimehas
the accumulated time, in seconds, used by each solver. dhisio does not
include the time spent in problems where the solver prodticednknown
result. The columrUnknowncontains the number ainknownresults, and
the columnWrongthe number of wrong answers, due to unsoundness and
incompleteness produced by each solver.

7. Observations on the State of the Art

The results described in Section 6 measure mainly implestiens of SMT
solvers. Nevertheless, some general observations areilftied from these
results and system descriptions submitted by the partitspavhich should
be helpful in studying and improving SMT solvers.

Tightly integrated SAT solvers. Most participants used tHazy integra-
tion approach [5] where a SAT solver is combined with a decisiatgdure
for some theoryl (DPr). Modern SAT solving techniques must be used in
the implementation of a competitive SMT solver, but it doesappear to be
essential to incorporate a true state of the art (SOTA) SAfescsince this is

paper.tex; 11/09/2006; 12:42; p.11

12 Barrett, de Moura, Stump

Division Num. of problems Solved Max. by a single solver
QF.UF 50 40 39
QF.IDL 51 49 47
QFRDL 50 42 41
QF.UFIDL 49 46 45
QF.LIA 54 45 41
QF.LRA 50 49 49
QF_AUFLIA 52 50 49

Figure 3. Number of solved problems in each division

not the case for the best performing solvers. It seems is mertant to use
a tightly integrated SAT solver than a loosely integratedASAT solver.

Eager theory notification. In the lazy integrationapproach, a solver is
said to implement lazy theory notification when the decigimmtedure DR is
only notified after the SAT solver produces a complete bookssignment
for the input formula. In contrast, aaagernotification [5] policy would no-
tify DPr immediately of every decision made by the SAT solver. Alltbes
performing solvers used eager theory notification.

Theory propagation. It is said a solver implements theory propagation
when it detects literals of the input formula that are conseges of the
partial model that is being explored. Suppose a hypotHegticdlem which
contains the atomée = y,y = z,2 = z}, and during the search the atoms
x = y andy = z are assigned to true, then the ators= = is a consequence
of this partial assignment, and can be assigned to true loyythmopagation
(transitivity). All best performing solvers implementeonse form of theory
propagation.

Minimizing “explanations” of conflicts. Inthelazy integratiorapproach,
when a decision procedure for some thedrgletects a conflict, it must pro-
vide an “explanation”, that is, an inconsistent subset efdkserted literals
in the branch being explored. The “explanation” is used ttdka (learned)
clause that will prevent the conflict from occurring agaiheBet of all literals
asserted in the current branch is a valid but imprecise eafitan. The main
difficulty with this naive approach is that the clauses addan be highly
redundant. All best performing solvers used techniquesitinmze the size
of explanations. The main idea is to keep track of which fasge used to
derive an inconsistency.

Difference logic. For arithmetic, more efficient algorithms are known for
difference formulas. The SMT-COMP results provide empir&vidence that

paper.tex; 11/09/2006; 12:42; p.12

SMT-COMP 2005 13

general purpose linear arithmetic procedures are not ctiiapen this frag-
ment. Simplex and Fourier-Motzkin are examples of geneugbgse linear
arithmetic procedures. All the best performing solvershimdifference logic
divisions (QERDL, QF.IDL, and QFUFIDL) used specialized algorithms
and/or data-structures for this fragment.

Ackermann’s reduction. Ackermann’s reduction [1] is a well known tech-
nique used to eliminate uninterpreted function symbolss Epproach is
generally considered inefficient in practice. Surprisintgiree good perform-
ing solvers (Ario, BarcelogicTools, and MathSat) made ughis technique,
at least in some special situations.

Producing proofs and models.In recognition of the importance of ex-
porting the results of SMT solvers for the benefit of systemshsas proof
assistants or applications such as proof-carrying codel-SRMP tried to
stimulate entrants to produce suitable evidence for thelteethey report.
Unfortunately, few participants were capable of produgrmpfs and models.

8. SMT-COMP 2006

SMT-COMP 2006 will be held as a satellite event of CAV 2006 axt pf the
Federated Logic Conference (FLoC) 2006. The intentionisSidT-COMP
2006 to continue its work of encouraging adoption of the SIMB-format
and the collection of benchmarks. Several specific new daale also been
proposed:

— New theories.In his invited talk at the 3rd International Workshop on
Pragmatics of Decision Procedures in Automated ReasofbiPAR
2005), Eli Singerman of Intel called for SMT solvers to adgsort for
logics like the combination of EUF and fixed-width bitvestoSpec-
ifying this and related logics with bitvectors, and collagt suitable
benchmarks in SMT-LIB format, is an important goal for SMTRMP
2006.

— More exchange among implementorsOne minor disappointment of
the first SMT-COMP (almost lost in the very positive overagponse
to the competition) was that not enough discussions on ieghand
engineering matters among SMT solver implementors seeméake
place. To improve this, SMT-COMP 2006 participants will beiied
to give short presentations on their solvers, followed lscassion, in
a short FLoC workshop session. The intention is for this taatdito
improve on SMT-COMP 2005 by providing a formal mechanism for
exchange of ideas among SMT solver implementors.

paper.tex; 11/09/2006; 12:42; p.13

14 Barrett, de Moura, Stump

9. Acknowledgements

SMT-COMP is the result of the hard work and support of thererEMT
community, for which the authors would like to express tisaicere thanks.
Thanks are due to Kousha Etessami and Sriram Rajamani,dgeapn chairs
for CAV 2005, for helping make SMT-COMP at CAV possible. Foeir
contributions to effort to collect benchmarks for SMT-CONtRanks are also
due first especially to Albert Oliveras, who helped tramstaany benchmarks
into SMT-LIB format; and also Bruno Dutertre, Pete Monolikge Pike,
Jiae Shin, Sudarshan Srinivasan, Ofer Strichman; as wetlemsbers of the
TSAT++ team, the MathSAT team, the SAL group at SRI, the UChiDject,
and the Wisconsin Safety Analyzer project. Thanks also teNliecoster and
Michael Schidlowsky for making available an SMT-LIB pargeOCaml. A
special debt of gratitude is owed to Cesare Tinelli and &iRanise for their
work on the specification of the SMT-LIB format and the dgstiohs of the
SMT-LIB theories and logics used by the competition. Théhard wish to
thank the anonymous reviewers of this paper for helpfuloisins. Finally,
thanks go to all the people who entered solvers in SMT-COMigss hard
work implementing solvers and adding support for the SMB-fdrmat is
greatly appreciated.

References

1. W. Ackermann. Solvable cases of the decision probleBtudies in Logic and the
Foundation of Mathematic4954.

2. A. Armando, C. Castellini, E. Giunchiglia, and M. MaratéaSAT-based Decision Pro-
cedure for the Boolean Combination of Difference Constgaitn The 7th International
Conference on Theory and Applications of Satisfiabilitytifigs2004.

3. A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Aggch to Satisfiability
Procedeuresinformation and Computatiqri83(2):140-164, June 2003. Special Issue
on the 12th International Conference on Rewriting Techeéqand Applications (RTA
2001).

4. C. Barrett, D. Dill, and A. Stump. A Framework for CoopémgtDecision Procedures.
In D. McAllester, editor17th International Conference on Automated Deductfmages
79-97. Springer-Verlag, 2000.

5. C. Barrett, D. Dill, and A. Stump. Checking Satisfiabildl First-Order Formulas by
Incremental Translation to SAT. Ib4th International Conference on Computer-Aided
Verification 2002.

6. Clark Barrett.Checking Validity of Quantifier-Free Formulas in Combirmeis of First-
Order Theories PhD thesis, Stanford University, 2003.

7. Clark Barrett and Sergey Berezin. CVC Lite: A new impletagion of the cooperating
validity checker. In Rajeev Alur and Doron A. Peled, editd?sceedings of the6'"
International Conference on Computer Aided Verificatio®{C04), volume 3114 of

Lecture Notes in Computer Scienpages 515-518. Springer-Verlag, July 2004. Boston,

Massachusetts.

paper.tex; 11/09/2006; 12:42; p.14

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

SMT-COMP 2005 15

Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. \dify checking for combi-
nations of theories with equality. In Mandayam Srivas andefd Camilleri, editors,
Proceedings of thd*®® International Conference on Formal Methods In Computer-
Aided Design (FMCAD '96)volume 1166 of_ecture Notes in Computer Scienpages
187-201. Springer-Verlag, November 1996. Palo Alto, @atiia.

CVC Lite website http://verify.stanford.edu/CVCL .

D. Le Berre and L. Simon. The essentials of the SAT 2003p&tition. In Sixth
International Conference on Theory and Applications ofisSiability Testing volume
2919 ofLNCS pages 452-467. Springer-Verlag, 2003.

P. Bjesse, T. Leonard, and A. Mokkedem. Finding Bugs iAlpha Microprocessor Us-
ing Satisfiability Solvers. In G. Berry, H. Comon, and A. Féhleditors,13th Conference
on Computer-Aided Verificatioispringer-Verlag, 2001.

E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Modeé€H#ing Using Satisfiability
Solving. Formal Methods in System Desjdgi9(1), 2001.

Satyaki Das and David L. Dill. Counter-example basedipege discovery in predicate
abstraction. IfFormal Methods in Computer-Aided Desi@pringer-Verlag, November
2002.

Niklas Eén and Niklas Sorensson. An extensible SAVeso In Proceedings of the
Sixth International Conference on Theory and ApplicatiohSatisfiability Testing (SAT
2003) volume 2919 ofLecture Notes in Computer Sciengages 502-518. Springer-
Verlag, May 2003.

J. Fillidtre, S. Owre, H. Ruel3, and N. Shankar. ICSgirgteed canonizer and solver. In
G. Berry, H. Comon, and A. Finkel, editork3th International Conference on Computer-
Aided Verification2001.

C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saaed R. Stata. Extended Static
Checking for JavaSIGPLAN Notices37, 2002.

Harald Ganzinger, George Hagen, Robert NieuwenhuiserAlOliveras, and Cesare
Tinelli. DPLL(T): Fast decision procedures. Rroceedings of the 16th International
Conference on Computer Aided Verification (CAV;0&lume 3114 of_ecture Notes in
Computer Sciencgages 175-188. Springer, 2004.

S. Lahiri, R. Bryant, A. Goel, and M. Talupur. RevisitiRgsitive Equality. Irifools and
Algorithms for the Construction and Analysis of Systerokime 2988 of. NCS pages
1-15. Springer-Verlag, 2004.

S. Lerner, T. Millstein, and C. Chambers. AutomaticdMsoving the Correctness
of Compiler Optimizations. In R. Gupta, editdn ACM SIGPLAN Conference on
Programming Language Design and Implementat@003. received best paper award.
Jeremy LevittFormal Verification Techniques for Digital Systen®hD thesis, Stanford
University, 1999.

M.Bozzano, R.Bruttomesso, A.Cimatti, T.Junttila, .Rossum, S.Schulz, and
R.Sebastiani. The MathSAT 3 system. Mroceedings of the0'™ International
Conference on Automated Deductidnly 2005.

M. Méller and H. Ruel3. Solving Bit-Vector Equations Formal Methods in Computer-
Aided Designpages 3648, 1998.

Robert Nieuwenhuis and Albert Oliveras. DPLL(T) withhexstive theory propagation
and its application to difference logic. Broceedings of the 17th International Con-
ference on Computer Aided Verification (CAV’0bgcture Notes in Computer Science.
Springer, 2005.

F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Dmwment of CASC. Al
Communicationsl15(2-3):79-90, 2002.

paper.tex; 11/09/2006; 12:42; p.15

16

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Barrett, de Moura, Stump

A. Pnueli, Y. Rodeh, and O. Strichman. Range allocatiore§uivalence logic. 121st
Conference on Foundations of Software Technology and €lieat Computer Science
volume 2245 oLNCS pages 317-333. Springer-Verlag, 2001.

Silvio Ranise and Cesare Tinelli. The SMT-LIB standaetsion 1.1, 2005. Available
from the "Documents” section of http://combination.cewé.edu/smtlib.

Harald Ruefl and Natarajan Shankar. Solving linearnaeitic constraints. Technical
Report SRI-CSL-04-01, SRI International, 2004.

S. Seshia and R. Bryant. Deciding Quantifier-Free Prgsbrormulas Using Parame-
terized Solution Bounds. Ihogic in Computer SciencéEEE, 2004.

N. Shankar. Little Engines of Proof. Invited Paper at Formal Methods Europ2002.
Hossein M. Sheini and Karem A. Sakallah. A sat-basedsiecprocedure for mixed
logical/integer linear problems. In Roman Bartak and MiahMilano, editorsCPAIOR
volume 3524 oL ecture Notes in Computer Sciengages 320-335. Springer, 2005.
Hossein M. Sheini and Karem A. Sakallah. A scalable neefbosolving satisfiability
of integer linear arithmetic logic. In Fahiem Bacchus andyT@Valsh, editorsSAT,
volume 3569 oL ecture Notes in Computer Sciengages 241-256. Springer, 2005.

I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, an@idghdiri. Debugging Over-
constrained Declarative Models Using Unsatisfiable Cole4d.8th IEEE International
Conference on Automated Software Engineer2@3. received best paper award.

A. Stump, C. Barrett, D. Dill, and J. Levitt. A Decisiondeedure for an Extensional
Theory of Arrays. InL6th IEEE Symposium on Logic in Computer Sciepages 29-37.
IEEE Computer Society, 2001.

Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: Aaqerating validity checker.
In Ed Brinksma and Kim Guldstrand Larsen, editd®spceedings of theé4t" Interna-
tional Conference on Computer Aided Verification (CAV ;0@)lume 2404 ol ecture

Notes in Computer Sciencgages 500-504. Springer-Verlag, July 2002. Copenhagen,

Denmark.

M. Velev and R. Bryant. Effective Use of Boolean SatisfigbProcedures in the
Formal Verification of Superscalar and VLIW Microprocessodournal of Symbolic
Computation35(2):73-106, February 2003.

H. Zhang. SATO: An efficient propositional prover. In Wi McCune, editorPro-
ceedings of the 14th International Conference on Automadgeliction volume 1249 of
Lecture Notes in Atrtificial Intelligenc@ages 272—-275. Springer, July 1997.

paper.tex; 11/09/2006; 12:42; p.16

SMT-COMP 2005 17

4000 ‘ T T
BarcelogicTools—+—
B Yices ---x---
MathSat ---*---
3500 - CVC Lite & -
CVC --m-
& SVC --o--
Ario ---e--
3000 Sammy -~ -& - o
SBT --a--
. o HTP ——
% 2500 | ' .
é 2000 .
g 1500 - i
1000 - ¢" ; g E
500 |- ,f"“ BC'D' g
o
//Bg’d I
0 al‘aggill-eilww i |
0 10 20 30 40 50
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Wrong
BarcelogicTools 39 1758.2 31 8 11 0
Yices 37 1801.4 29 8 13 0
MathSat 33 2186.2 26 7 17 0
CVC Lite 23 3779.3 16 7 27 0
CvC 21 1108.8 16 5 29 0
SvC 14 1297.0 11 3 36 0
Ario 11 792.5 10 1 39 0
Sammy 1 0.3 1 0 49 0
SBT -22 10.7 50 0 0 8
HTP -43 567.5 0 12 38 11

Figure 4. Results for QEUF

paper.tex; 11/09/2006; 12:42; p.17

18

Barrett, de Moura, Stump

3000 T \
BarcelogicTools——
Yices ---x---
MathSat ------
* Simplics &
2500 . ; Sammy- o]
{ ! CVC e
i g CVC Lite - -
/ ¥ SVC --a-e-
s 2000 *r] ‘f,‘) HTP —=—
g 1500 - u B % X R
1000 - i
500 | ’,“‘: i
L ‘
0 10 20 30 40 50
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Wrong
BarcelogicTools 41 940.8 36 5 9 0
Yices 37 1868.0 32 5 13 0
MathSat 37 2608.0 32 5 13 0
Simplics 33 2267.0 30 3 17 0
Ario 26 2487.5 22 4 24 0
Sammy 9 1295.6 9 0 41 0
CcvC 6 115.3 6 0 44 0
CVC Lite 6 697.6 6 0 44 0
SvC 1 0.3 1 0 49 0
HTP -5 1390.4 25 3 22 5

Figure 5. Results for QERDL

paper.tex; 11/09/2006; 12:42; p.18

SMT-COMP 2005 19

3000 ‘ ‘
BarcelogicTools——
Yices ---x---
MathSat ---*---
Ario &
25008 ® ovelie o
CVC -
N
G 2000f . M
é 1500 | i X E
5 -k
° 1000 |- ; 8
500 [i Iy 4 i
0 -G':«dé;é»z% g Ao -Aiiiiig%i Ci !
0 10 20 30 40 50
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Wrong
BarcelogicTools 47 1131.2 38 9 4 0
Yices a7 1883.2 38 9 4 0
MathSat 46 1295.4 35 11 5 0
Ario 43 2513.0 34 9 8 0
Sateen 39 586.2 33 6 12 0
CVC Lite 14 665.4 12 2 37 0
CvC 13 519.9 13 0 38 0
Sammy 13 631.2 13 0 38 0
SvC 4 102.0 4 0 a7 0
HTP -43 1655.8 6 16 29 13
SBT -90 109.6 19 21 11 22

Figure 6. Results for QHDL

paper.tex; 11/09/2006; 12:42; p.19

20

Barrett, de Moura, Stump

2000 ; ;
BarcelogicTools—+—
Yices ---x---
1800 - MathSat---*-- |
Ario &
CVC -—-m--
L SBT --o- |
1600 v
. 4 CVC Lite -4 --
! Sammy ---- -
1400 |-] ! aTp o
@ i /
T 1200f ! i 4
3 ' /
(5] ! |
c ‘m ¥ i
@ 1000} PP 4 i
E . !
IDT . ’r ,”
a 800 Do / |
(@) P : !
L M
600 |- N oMk g
400 |- ’ .,f 2 * X b
.,’ / ul * /,’
200+ - / -
A & !E‘D v X o
R 3 X K
N 0 e i 550092 ‘ ‘
0 10 20 30 40 50
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Wrong

BarcelogicTools 45

Yices 36
MathSat 22
Ario 20
CvC 20
SBT 18
SvC 17
CVC Lite 10
Sammy -1
HTP -42

305.2 43 2 4 0
1989.8 34 2 13 0
1055.5 20 2 27 0

1036.3 18 2 29 0
1454.0 20 0 29 0
104.9 36 0 13 2
869.5 17 0 32 0
571.9 10 0 39 0

21.6 3 1 45 1

519.8 5 13 31 12

Figure 7. Results for QRUFIDL

paper.tex; 11/09/2006; 12:42; p.20

SMT-COMP 2005

21

1000 .
Simplics —+—
Yices ---x---
900 [MathSat ---*---
HTP -8
Ario —-m--
8o CVCCIXtCe B
IS Sammy - -4 -
700 | i
g 600 - E
é 500 A E
g 400 - A ol |
300 4 ,‘ ‘." X E
200 ,A"A ;‘: o .‘" 1
100 |- A,"‘/A . ° 5’ ,- i} * j i
0 A"fi caa aa.ﬁﬁﬂ*g‘?ii.-"!:—%*zﬁ%'***%%* . % —mﬁg‘x‘x \
0 10 20 40 50
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Wrong
Simplics 49 361.8 42 7 1 0
Yices 47 310.6 42 5 3 0
MathSat 42 208.3 41 1 8 0
HTP 35 51.9 42 2 6 1
Ario 30 955.7 27 3 20 0
CcvC 28 391.2 25 3 22 0
CVC Lite 22 278.7 22 0 28 0
Sammy 6 824.8 12 8 30 2
SVvC 0 0.0 0 0 50 0

Figure 8. Results for QELRA

paper.tex; 11/09/2006; 12:42; p.21

22

Barrett, de Moura, Stump

2500 T - T
Yices ——
MathSat ---x---
Al ---%---
CVC Lite &
CVC --m-
2000 A e
HTP - -
SBT ---a-e-
g 1500 7
g 1000 B
500 |- g 1
e P
. <.> xf/ g
0 - .1{2% e oEnAC) Deimﬁjﬁx, | | |
0 10 20 30 40 50
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Wrong
Yices 41 1873.0 28 13 13 0
MathSat 32 1887.2 23 14 17 1
Ario 30 2402.4 18 12 24 0
CVC Lite 22 585.6 15 7 32 0
CvC 13 359.2 13 0 41 0
Sammy 11 123.1 11 0 43 0
SVC 5 20.1 5 0 49 0
HTP -31 325.2 10 5 39 6
SBT =77 524.6 5 20 29 18

Figure 9. Results for QELIA

paper.tex; 11/09/2006; 12:42; p.22

SMT-COMP 2005

23

800 - T
% Yices —+—
: CVC -~
: CVC Lite ---*---
700 |- ; SVC B -
; HTP —-m--
i Sammy ---6---
600 - * B
% 500 [b
é 400 - 55' -
g 300 >(< B
200 ,“ ’ |
,“ I xj /?’:
00F P < i
(; A X S 4
0 / a ‘--}lll,ﬁggﬁﬁﬁz-&ﬁﬁﬂxx | . J.A—L—Ar—df‘f"‘*j !
0 10 30 40 50
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Wrong
Yices 49 46.8 35 14 3 0
CcvC 34 243.0 34 0 18 0
CVC Lite 34 769.3 28 6 18 0
SvC 30 84.3 30 0 22 0
HTP 21 132.0 25 1 26 1
Sammy -38 344.6 10 3 39 7

Figure 10. Results for QEAUFLIA

paper.tex; 11/09/2006; 12:42; p.23

paper.tex; 11/09/2006; 12:42; p.24

