Design and Results of the 2nd Annual
Satisfiability Modulo Theories Competition
(SMT-COMP 2006)

Clark Barrett Leonardo de Moura
Department of Computer Science Microsoft Research
New York University

Aaron Stump
Department of Computer Science and Engineering
Washington University in St. Louis

Abstract

The Satisfiability Modulo Theories Competition (SMT-COMitpse from the
SMT-LIB initiative to spur adoption of common, communitgsigned formats,
and to spark further advances in satisfiability modulo tleso(SMT). The first
SMT-COMP was held in 2005 as a satellite event of CAV 2005. SBMOMP
2006 was held August 17 - 19, 2006, as a satellite event of CQ¥62This paper
describes the rules and competition format for SMT-COMPB2fie benchmarks
used, the participants, and the results.

1 Introduction

Decision procedures for satisfiability modulo theories {Shre of continuing interest
for many verification applications (e.g., [1, 3, 5, 7, 8, 9PMT solvers are typically
used for verification as backends: a verification problemutapsoblem is translated
into an SMT formula and submitted to the SMT solver. The sothen attempts to
report satisfiability or unsatisfiability of the formula. &ladvantage SMT solvers are
usually considered to have over pure SAT solvers, which e aften used as ver-
ification backends (e.g., for bounded model checking [4]the higher level of ab-
straction at which they can operate. By implementing thesolike arithmetic, arrays,
and uninterpreted functions directly, SMT solvers haveptwnise to provide higher
performance than SAT solvers working on encodings of sucitiires to the bit level.
The additional promise of SMT over pure SAT is balanced bytasithl challenges.
Since SMT deals with first-order (most commonly quantifiere) formulas instead
of purely propositional ones, creation and widespread @olopf a common input
language is more difficult than for SAT. It is at the same tim@eimportant, since the
more expressive setting of SMT potentially allows more rdonvariation in the exact

details of the logic (e.g., sorted or unsorted, total oriphftinctions, etc.). Hence,
translations between input formats of different tools amrencomplex, and in some
cases it may not even be clear what such a translation sheul@iHis makes the issue
of input format critical. For combination with other toolkd skeptical proof assistants
(requiring a proof of every theorem validated by an extetoal), common output
formats for objects like proofs and models are also nece$sathe adoption of SMT.

The Satisfiability Modulo Theories Competition (SMT-COM#Pdse from the SMT-
LIB (“Satisfiability Modulo Theories Library”) initiativdo spur adoption of common,
community-designed SMT-LIB formats, and to spark furthdvances in SMT, espe-
cially for verification. Seéhtt p: // www. sit 1i b. or g/ for more information on
SMT-LIB. The first SMT-COMP was held in 2005 as a satellitereve the 17th Inter-
national Conference on Computer-Aided Verification (CAW) Edinburgh, Scotland.
The experience with SMT-COMP 2005 confirmed the communéyjsectations that a
public competition would indeed motivate implementors dfTSsolvers to adopt the
common SMT-LIB input format [2]. The second SMT-COMP, déised in the present
report, provides further evidence that such a competitaom stimulate improvement
in solver implementations: solvers entered in SMT-COMP&@@re significantly im-
proved over the winning implementations of SMT-COMP 2005.

SMT-COMP 2006 had two additional goals beyond the origimesoof encourag-
ing adoption of SMT-LIB input format and sparking implematitn improvements.
First, in his invited talk at the 3rd International Workshap Pragmatics of Decision
Procedures in Automated Reasoning (PDPAR '05), Eli Singeraf Intel called for
SMT solvers to add support for logics like the combinatiorEafF (“equality with
uninterpreted functions”) and fixed-width bitvectors. 8pgng this and related logics
with bitvectors, and collecting suitable benchmarks in SIMB format, was an impor-
tant goal for SMT-COMP 2006, which the SMT community sucazkth achieving.
Second, SMT-COMP 2005 did not provide a setting for exchasfgechnical and
engineering ideas among solver implementors. So SMT-COMI® thcluded a spe-
cial evening session where implementors had the oppoyttndive brief (10 minute)
presentations about their tools, and discuss implementesues.

SMT-COMP 2006 was held August 17 - 19, 2006, as a satellitetefeC AV 2006.
The competition ran while CAV 2006 was meeting, in the stflthe CADE ATP Sys-
tem Competition (CASC) for general first-order theorem pre\10]. Intermediate re-
sults were posted periodically on the SMT-COMP websitehWital results announced
in a special session on the last day of CAV. Solvers were ruam doster of computers
at SRI International. As discussed below, great effortsvmeade to make the running
of the competition as transparent and repeatable as pesSiblall scripts, solvers, and
benchmark formulas were made available on the web befomtheetition began, and
so anyone could (and some did) compute the results of the etitiop independently.
The web site for SMT-COMP 2006 st t p: / / www. snt conp. or g/ 2006/ .

The rest of this paper describes the rules and competitiongdbfor SMT-COMP
2006 (Section 2), the new benchmarks collected (Sectionh®)participants (Sec-
tion 4), the scripts and execution of the solvers (Sectigrabil the final results (Sec-
tion 6).

2 Rulesand Competition Format

This Section explains the rules and competition format fdfiTSCOMP. These draw
substantially on ideas from the design and organizationA8C[10].

2.1 Entrants

SMT solvers were submitted to SMT-COMP via the EasyChaife@mce manage-
ment system in either source code or binary format. The ssdian deadline was
August 8, as close as the organizers could allow to the catigmestart date while still
leaving enough time to ensure that all solvers interopdrederectly with the compe-
tition scripts. Submitted source code was kept private bimary executables for all
solvers were made available on the SMT-COMP website. SMMEQO006 partici-
pants were not required to attend the sponsoring conferatibeugh most did so, and
most made presentations at the SMT-COMP evening sessitrarEnto SMT-COMP
were also required to include a short (1-2 pages) systenrigésn, stating, among
other things, in whickproblem divisiongsee Section 2.4 below) the entrant should
participate.

2.2 Solver Interface

As for SMT-COMP 2005, each SMT-COMP 2006 entrant was exeldoyepresenting
a single SMT-LIB benchmark file to its standard input chanfmblkse benchmark files
were given in the concrete syntax of the SMT-LIB format, i@nd .1 [11]. This format
states thdogic of the benchmark (a background theory together with anyasyiatre-
strictions on formulas), declares the sorts of any unimétgal symbols, and then gives
the formula in a prefix syntax. The competition explicithcinded only well-sorted
formulas. SMT-COMP entrants were then expected to attemgetermine satisfia-
bility or unsatisfiability of the input formula, and repoitteer “sat ” or “unsat ” via
their standard output channel. Solvers could also reporkfhhown”, which is useful
for solvers that are known to be, for example, incompleteanessubset of the for-
mulas of a given problem division. Aborts, timeouts, othetpait, and exhaustion of
memory were all treated as if the tool had reportedknown”.

2.3 Judging and Scoring

Scoring was done using the scoring system of Figure 1. Ufdk8 MT-COMP 2005,
SMT-COMP 2006 tolerated at most three wrong answers in arigion. More than
three wrong answers in any division resulted in disqualificafrom the entire com-
petition. There were occasional wrong answers in sevevadidns, although many
fewer than in SMT-COMP 2005. There were two disqualificadiaihe ExtSat tool in
the QELIA division, with 5 wrong answers out of around 100 formylasd the Jat
tool in the QERDL division, with 59 wrong answers out of around 100 fornsul&or
comparison, the largest number of wrong answers in SMT-CQBWS was 22 out of
around 50 formulas (the SBT solver in the @BL division).

Reported | Correct? | Point/penalty
unsat yes +1
unsat no -8
sat yes +1
sat no -8
unknown n.a. 0
timeout n.a. 0

Figure 1: Points and Penalties

The organizers took responsibility for determining in auv@ whether formulas
are satisfiable or not, using existing tools. Mature soladiragreed on the competition
benchmarks, and no incorrect classifications were repbseéate or after the competi-
tion. In the event of a tie in total number of points, the solwih the lower total CPU
time on formulas for which it did not timeout was considered winner.

2.4 Problem Divisions

Definitions of the following SMT-LIB logics and their corqggnding theories were
made publicly available in advance of the competition onSNET-LIB web page. The
prefix “QF." below means the formulas in the logic are quantifier-free.

e QF_UF: uninterpreted functions

e QF RDL: real difference logic

e QF.IDL: integer difference logic

e QF_UFIDL: integer difference logic with uninterpreted furantis

e QF_LRA: linear real arithmetic

e QF_LIA: linear integer arithmetic

e QF_UFLIA: linear integer arithmetic with uninterpreted furans

e QF AUFLIA: linear integer arithmetic with uninterpreted fuians and arrays
e QF.UFBV32: 32-bit fixed-width bitvectors with uninterpreteaictions

e AUFLIA: quantified linear integer arithmetic with unintegied functions and
arrays

e AUFLIRA: quantified linear mixed integer/real arithmetidtiv uninterpreted
functions and arrays

3 Benchmarks

One of the main reasons for creating SMT-COMP was to provickengrete incentive
for collecting benchmarks in the SMT-LIB format. The cotiea of 1352 benchmarks
for the 2005 competition represented an important milesfonthe SMT-LIB initia-
tive. For the 2006 competition, 40782 new benchmarks welleated for a total of
42134 benchmarks. The benchmark collection effort for #wwed SMT-COMP built
upon the first effort in two natural ways: collecting additéd benchmarks for exist-
ing divisions and creating new divisions. An encouragirgmsivas that many of the
new benchmarks were provided in SMT-LIB format directly @xmbas in 2005, most of
the benchmarks had to be translated into SMT-LIB format lgydiganizers). This is
further evidence that SMT-COMP is successfully promotheyadoption of the SMT-
LIB standard format. After a few remarks on benchmark orgation, we describe the
new benchmarks collected in existing divisions, and themeseribe the benchmarks
collected in new divisions.

3.1 Organization of Benchmarks

In 2005, the number of benchmarks was small enough that desionganization by
division was sufficient. However, with the addition of margwnbenchmarks, we de-
termined to further organize the benchmarks in three comevays. First, benchmarks
were organized according families A benchmark family contains problems that are
similar in some significant way. Typically they come from s&me source or appli-
cation, or are all output by the same tool. The rationaleas flamily information can
be used to help ensure a sufficiently diverse set of competitenchmarks by limiting
the number of benchmarks chosen from the same family (se®88c4 below).

Second, each benchmark was assignetiffeculty: an integer between 0 and 5
inclusive. The difficulty for a particular benchmark wasigssd by running several
SMT solvers from the 2005 competition on it and using the fadian

solved

total),

wheresolved is the number of SMT solvers that could solve the problem imirfutes
andtotal is the total number of SMT solvers tried. The following salvérom the
2005 competition (whichever ones were applicable for eaitbmark) were used to
compute this attribute: Ario 1.1, Barcelogic, CVC, CVC LRe0, MathSAT 3.3.1,
Sateen, Simplics, and Yices. Two of the new divisions, J#BV32 and AUFLIRA,
were not supported by any of the 2005 solvers, so the diffiégnlthese divisions was
computed using prototype implementations available todfgmnizers. In addition,
some benchmarks in the quantifier divisions were identifiedeang unusually trivial
and were marked with difficulty-1.

Finally, each benchmark was assignedagéegory There are four possible cate-
gories:

difficulty = 5(1 —

e check.These benchmarks are hand-crafted to test whether solveped spe-
cific features of each division. In particular, there areasefor integer com-
pleteness (i.e. benchmarks that are satisfiable under ateelret not under the

integers) and big number support (i.e. benchmarks thatilkety lto fail if in-
tegers cannot be represented beyond some maximum vallreasgg! — 1).
The rationale for these checks is that the divisions as d&fim¢he SMT-LIB
standard do include these as legal benchmarks. In orderctmesge everyone
to offer truly complete solvers for each division, it seemegisonable to enforce
that every solver be capable of solving these corner cagée ddgic.

e industrial. These benchmarks come from some real application and are pro
duced by tools such as bounded model checkers, static @&ns)gxtended static
checkers, etc.

e random.These benchmarks are randomly generated.

e crafted. This category is for all other benchmarks. Usually, benatksian this
category are designed to be particularly difficult or to tesipecific feature of
the logic.

The family information is stored implicitly in the SMT-LIBickctory structure (all
benchmarks from the same family are in the same sub-disgctdhe difficulty and
category attributes are stored as special user-definéulitdts in the benchmarks them-
selves. Section 3.4 describes how this information was dseihg the benchmark
selection process.

3.2 New Benchmarks for Existing Divisions

New benchmarks were obtained in every division except theUBRivision. The
new benchmarks came from a variety of sources, primarilifigation applications.
Other benchmarks were crafted in various ways: either bylhanfrom known hard
problems. Figure 2 lists the new benchmark sets collecteedoh existing division (a
benchmark set comes from a single source and contains onereffamilies), together
with the number of benchmarks in the set and the categoryedb#imchmark set. For
comparison, the previous number of benchmarks (from 209%jso given for each
division. The sum gives the total number of benchmarks f@620Note that in the
QF_UFIDL division, one benchmark was deleted from the ucliddfenark set. This is
because it was simpler than the others—in fact it belongétetsimpler QEHDL logic.
Rather than create a benchmark set containing a single bemkhn that division, we
opted to just remove the benchmark.

3.3 New Divisions

Four new benchmark divisions were added for SMT-COMP 2006UBLIA, QF_UFBV32,
AUFLIA, and AUFLIRA. As has been our custom, the added dossi were based on
available benchmarks and the expectation that more thasadwer would support each
new division. In fact, there were some additional benchmafkered, in particular a
set in the AUFNIRA logic that includes some non-linear aritic, that we did not in-
clude because it seemed unlikely that more than one solvaidvgapport this division.
Figure 3 lists the new benchmark sets collected for thesediggions together with

the number of benchmarks in the set and the category of thehbeark set.

Division Benchmark Set Number of Benchmarks | Benchmark Category
QF_AUFLIA | check 2 | check
QF.AUFLIA | ios 30 | crafted
QF.AUFLIA | pivC 21 | industrial
QF.AUFLIA | glock2 52 | industrial
QF_AUFLIA | storecomm 2030 | crafted
QF_AUFLIA | storeinv 172 | crafted
QF.AUFLIA | swap 1368 | crafted
QF_AUFLIA | 2005 Benchmarks 54 | check, industrial
QF.AUFLIA | Total 3729
QF.IDL Averest 252 | industrial
QF.IDL cellar 14 | industrial
QF.IDL check 2 | check
QF.IDL job_shop 120 | crafted
QF.IDL planning 45 | industrial
QF.IDL glock 72 | industrial
QF.IDL gueensbhench 297 | crafted
QF.IDL 2005 Benchmarks 343 | check, industrial, random, crafte
QF.IDL Total 1145
QF_LIA Averest 19 | industrial
QF_LIA check 3 | check
QF_LIA 2005 Benchmarks 182 | check, industrial
QF._LIA Total 204
QF.LRA check 2 | check
QF.LRA clock synchro 36 | industrial
QF.LRA sc 144 | industrial
QF.LRA tta_startup 72 | industrial
QF.LRA uart 73 | industrial
QF.LRA 2005 Benchmarks 174 | industrial
QF.LRA Total 501
QF_RDL check 2 | check
QF_RDL skdmxa2 32 | industrial
QF.RDL 2005 Benchmarks 170 | industrial, crafted
QF.RDL Total 204
QF.UF 2005 Benchmarks 152 | crafted
QF.UF Total 152
QF_UFIDL check 2 | check
QF_UFIDL RDS 28 | industrial
QF_UFIDL uclid -1 | industrial
QF.UFIDL pete3 6 | industrial
QF.UFIDL UCLID-pred 79 | industrial
QF_UFIDL 2005 Benchmarks 170 | check, industrial
QF.UFIDL Total 399

| All Existing | Total | 6334 |

Figure 2: New Benchmarks in Existing Divisions

7

Division Benchmark Set | Number of Benchmarks | Benchmark Category
AUFLIA Burns 14 | industrial
AUFLIA check 1 | check
AUFLIA misc 28 | industrial, crafted
AUFLIA pivC 42 | industrial
AUFLIA RicartAgrawala 14 | industrial
AUFLIA simplify 833 | industrial
AUFLIA Total 932
AUFLIRA misc 7 | crafted
AUFLIRA nasa 26504 | industrial
AUFLIRA Total 26511
QF.UFBV32 | bencha 343 | industrial
QF.UFBV32 | crafted 22 | crafted
QF.UFBV32 | egt 7882 | industrial
QF.UFBV32 | Total 8247
QF_UFLIA check 2 | check
QF_UFLIA wisas 108 | industrial
QF._UFLIA Total 110

| All New | Total 35800 |

Figure 3: New Benchmarks in New Divisions

3.4 Selection of Competition Benchmarks

For each division, the following algorithm was used to seltenchmarks.

1. First, all benchmarks in theheckcategory are automatically included.

2. The remaining benchmarks are put into a selection pooblk®afs: for each
family, if the family contains more than 200 benchmarksnt2€0 randomly
selected benchmarks are put into the pool. Otherwise alheftienchmarks
from the family are put into the pool.

3. Slots are allocated for 100 benchmarks to be selectedlas$o 85 slots are for
industrial benchmarks; 10 are for crafted; and 5 are foroandf there are not
enough crafted or random benchmarks, then more industoisl are allocated.
If, on the other hand, there are not enough industrial beacksn then more
crafted slots are allocated (all divisions had sufficiemhbers of either industrial
or crafted benchmarks).

4. In order to fill the allocated slots, the pool of benchmariesated in step 2 is
consulted and partitioned according to category (i.e. $trilad, random, crafted).

Within each category, the benchmarks are further pargtionto four sub-categories:

easy-sat, easy-unsat, hard-sat, and hard-unsat. A bericlneasy if it has dif-
ficulty 0, 1, or 2 (benchmarks with difficulty -1 are ignoredjdahard if it has
difficulty 3, 4, or 5. A benchmark is “sat” or “unsat” based tgdtatusattribute.

An attempt is made to randomly fill the allocated slots forreaategory with

the same number of benchmarks from each sub-category {iteere are 85

industrial slots, then there should be roughly 21 in eachcaubgory). If there
are not enough in a sub-category, then its allotment is di/i@imong the other
sub-categories.

The main purpose of the algorithm above is to have a balanced¢amplete set of
benchmarks. The one built-in bias is towards industridieathan crafted or random
benchmarks. This reflects a desire by the organizers anédagngon by the SMT
community to emphasize problems that come from real agjics.

It should be noted that when applying the above algorithnetecs the competi-
tion benchmarks, we used a random seed obtained by compghérgum of “magic
numbers” provided by the contestants. This random seed eehimfo a script which
automatically ran the above algorithm. The script was ma@déable on the SMT-
COMP website prior to the submission of the magic numbershigway, we hoped
to ensure that the benchmark selection process was asdransps possible.

4 Participants

There were twelve entries in SMT-COMP 2006. This is, coianidlly, the same num-
ber as for SMT-COMP 2005, although only eight of these emdratso participated
in SMT-COMP 2005. Four tools from SMT-COMP 2005 did not rurSKT-COMP
2006 (Sammy, SBT, Simplics, and SVC), and four new tools m&@MT-COMP 2006
that did not run in SMT-COMP 2005 (ExtSat, Jat, NuSMV, and 5TRe following
gives brief descriptions of the SMT-COMP 2006 participadigwwn from their sys-
tem descriptions. For more information, including, in maages, references to papers
with detailed descriptions of novel algorithms employedtig solvers, the interested
reader is referred to the system descriptions, availabtt@SMT-COMP web site.

Ario1.2. Ario 1.2 was submitted by Hossein M. Sheini and Karem A. Sakdtom
the University of Michigan. Ario 1.2 is implemented in C++damplements a hybrid
online/offline approach to combining theory solvers withMFCSAT solver. Problem
divisions: QEUF, QERDL, QF.IDL, QF_UFIDL, QF_LRA, QF_LIA, QF_UFLIA.

Barcelogic1.1. Barcelogic 1.1 was submitted by Miquel Bofill, Robert Nieunheis,
Albert Oliveras, Enric Rodriguez-Carbonell, and Albeut#o from the Technical Uni-
versity of Catalonia. Barcelogic 1.1 is a C++ implementaid the DPLL(T) frame-
work [6]. Problem divisions: QRJF, QF.IDL, QF_RDL, and QEUFIDL, QF_AUFLIA.

CVC. CVC is alegacy system developed at Stanford University byoAg&tump,
Clark Barrett, and David Dill, and submitted to SMT-COMP 808y Aaron Stump.
This version is essentially the same as the version from SX@MP 2005. Problem
divisions: QELRA, QF.UF, QFRAUFLIA.

CVC3. CVC3 was submitted by Clark Barrett from New York Universitith de-
velopment credits also going to Yeting Ge at New York UniitgrsCesare Tinelli,
Alexander Fuchs, and George Hagan at University of lowa;taadmplementors of
CVC Lite, a predecessor system. CVC3 is implemented in Cttigbased on Clark
Barrett's framework for cooperating decision procedu®¢C3 competed in all prob-
lem divisions.

ExtSAT 1.1. ExtSat 1.1 was submitted by Paulo Matos of the Instituto 8ape
Técnico, Portgual. ExtSat is implemented in C++, and corebia boolean enumera-
tor based on MiniSAT with arithmetic solvers. Problem dimis: QFERDL, QF.IDL,
QF.LRA, QF_LIA.

HTP (Heuristic Theorem Prover). HTP was developed by Kenneth Roe. HTP im-
plements novel preprocessing algorithms before handingutas off either Yices or
Barcelogic from SMT-COMP 2005, or MinSat. Problem diviso@QFUF, QF.IDL,
QF.RDL, QFLRA, QF_LIA, QF_UFLIA.

Jat Jat was submitted by Scott Cotton from Verimag, and develbyehe submitter

under the supervision of Oded Maler. Jat is written entireljava, and employs novel
techniques for exhaustive theory propagation for diffeeclogic. Problem divisions:

QF_RDL.

MathSAT 3.4. MathSAT 3.4 was submitted by Roberto Bruttomesso, Alessand
Cimatti, Anders Franzen, Alberto Griggio, and Roberto Sé&bai from ITC-IRST and
Universita di Trento, Italy. MathSAT is written in C++, amdmbines a propositional
reasoner based on MiniSAT with theory solvers, using thejpsl Theory Combina-
tion scheme or Ackermann’s reduction. Problem divisions:\@-, QF-RDL, QF.IDL,
QF.UFIDL, QF_LRA, QF_LIA, QF_UFLIA, QF_UFBV32.

NuSMV. NuSMV was submitted by R. Bruttomesso, R. Cavada, A. Cimatti
Franzen, S. Semprini, M. Roveri, and A. Tchaltsev, from IIRST, Italy. NuSMV is
written in C, and uses a pre-processing step to reduce imphbikgms in the QRUFBV32
division to problems that can be solved using routines fram NluSMV symbolic
model checker. Problem divisions: QF-BV32.

Sateen. Sateen was submitted by Hyondeuk Kim, HoonSang Jin, anaSasenzi
from the University of Colorado at Boulder. Sateen is writte C and combines All
SAT Enumeration with a layered theory solver. Problem divis: QFEIDL.

STP. STP was submitted by Vijay Ganesh and David Dill from Stadfdniversity.
STP preprocess and then translates input formulas intdyppirepositional formulas,
which are then dispatched to MiniSAT. An abstraction-reafieat technique is used for
handling array read expressions. Problem divisions:pBV32.

10

Yices1.0. Yices was submitted by Bruno Dutertre and Leonardo de Mawora SRI
International. Yices is implemented in C++, and features\weharchitecture where a
SAT solver is integrated with a core theory solver, as welagllite solvers. Yices
competed in all problem divisions.

5 Scriptsand Execution

SMT-COMP used 19 identical machines at SRI Internationgh ®i0Ghz Pentium 4
processor 2Mb of cache and 2Gb of RAM, running GNU/Linux i@r®.6.14. Solvers
submitted in source code format were compiled using GCOamrers0.2.

In order to ensure that no system received an advantagesshvdistage due to spe-
cific presentation of the benchmarks in the SMT-LIB formahesmchmark scrambler
was used. This tool renames all predicate and function sianbeEmoves comments,
and randomly reorders the arguments of AC operators. Tlaerdgder is available for
download on the competition website.

A controller (load balancer) was used to distribute tasks between thg o@n-
puters used in the competition, and to consolidate thetsepuduced by the solvers.
Each task is a small set of benchmarks that is executed bglaéirs in the same ma-
chine. This approach had two advantages with respect torth@sed in SMT-COMP
2005, where each solver was assigned to a different machking, it minimizes un-
fairness due to potential differences among the benchmgurkiachines. Second, it is
more effective in balancing the workload. In SMT-COMP 2006%&chines executing
fast solvers remained idle for long periods of time.

The execution of each solver was monitored by a programdtatleeLi ni t edRun.
This program, developed for the CASC competition [10], watcthe CPU usage of a
process and its subprocesses, and Kills them if they exbeeatifined limits for CPU
time (1200 seconds), or memory usage (1.5Gb). dlherm t command was not used
to enforce these limits because it does not take into coratida the time and memory
consumed by subprocesses. Although the physical amourgmiary of each machine
is 2.0Gb, the limit 1.5Gb was used to minimize the number giedaults.

SMT-COMP results were stored in a textual database. From tintime, a script
used the textual database to update the competition wetitlitgartial results.

6 Results

The results for each division are summarized in the figurewiing the bibliogra-

phy. More detailed results are available on the SMT-COMPsitetht t p: / / wwaw.

snt conp. or g/ 2006/ . The curves are used to show the behavior of the solvers
in each division, they show how many problems (in abscissagwolved when time

(in ordinate) is increasing. Wrong answers and timeoutsateonsidered in these
curves. The columifimehas the accumulated time, in seconds, used by each solver.
This column does not include the time spent in instances evtier solver produced
theunknowrresult. A solver is considered to have producedithlenowrresult when

it times out, crashes, or outputs a result different freat or unsat. The column

11

Unknowncontains the number afnknowrresults, and the columWwrongthe number
of wrong answers (due to unsoundness or incompletenesijiged by each solver.

7 Acknowledgements

SMT-COMP would not have been possible without the invaleahipport, feedback,
and participation of the entire SMT community, with spec¢hanks to Cesare Tinelli
and Silvio Ranise, the leaders of the SMT-LIB initiative. eTbrganizers would also
like to thank SRI International for use of the cluster on wihiece competition was run.
Thanks also to Thomas Ball and Robert Jones, the programsabfaCAV 2006, for
their support of SMT-COMP 2006 as a satellite event. Findlig organizers wish
to acknowledge the support of the U.S. National Science &ation, under contract
CNS-0551697, for SMT-COMP 2007 and (anticipated) 2008.

References

[1] M. Barnett, B.-Y. Chang, R. Deline, B. Jacobs, and K. leeiBoogie: A Modular
Reusable Verifier for Object-Oriented Programs. In F. derBile Bonsangue,
S. Graf, and W.-P. de Roever, editdfsurth International Symposium on Formal
Methods for Components and Objects (FMCQO’05), Post-Prdices 2006.

[2] C. Barrett, L. de Moura, and A. Stump. Design and Resulthe 1st Satisfia-
bility Modulo Theories Competition (SMT-COMP 2005)ournal of Automated
Reasoning35(4):373-390, 2005.

[3] Clark Barrett, Yi Fang, Ben Goldberg, Ying Hu, Amir Pniyeind Lenore Zuck.
TVOC: A translation validator for optimizing compilers. Kousha Etessami
and Sriram K. Rajamani, editorByoceedings of thé7*" International Confer-
ence on Computer Aided Verification (CAV '08plume 3576 ol ecture Notes
in Computer Sciencepages 291-295. Springer-Verlag, July 2005. Edinburgh,
Scotland.

[4] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Modelecking Using
Satisfiability Solving.Formal Methods in System Desidi9(1), 2001.

[5] Satyaki Das and David L. Dill. Counter-example baseddjmate discovery in
predicate abstraction. In M. Aagaard and J. O’Leary, esljtéth International
Conference on Formal Methods in Computer-Aided Desigpringer-Verlag,
2002.

[6] Harald Ganzinger, George Hagen, Robert NieuwenhuiseAlOliveras, and Ce-
sare Tinelli. DPLL(T): Fast decision procedures.PAroceedings of the 16th In-
ternational Conference on Computer Aided Verification (QAY, volume 3114
of Lecture Notes in Computer Scienpages 175-188. Springer-Verlag, 2004.

12

[7] S. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techregufor Fast Predicate
Abstraction. Inl18th International Conference on Computer-Aided Verifaat
pages 424-437. Springer-Verlag, 2006.

[8] S. Lerner, T. Millstein, and C. Chambers. Automaticdoving the Correctness
of Compiler Optimizations. In R. Gupta, editém,ACM SIGPLAN Conference on
Programming Language Design and Implementat@®03. received best paper
award.

[9] S. McPeak and G. Necula. Data Structure Specificatioatocal Equality Ax-
ioms. In K. Etessami and S. Rajamani, editd/gh International Conference on
Computer-Aided Verificatigpages 476—490. Springer-Verlag, 2005.

[10] F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Blepment of CASC. Al
Communicationgl5(2-3):79-90, 2002.

[11] Silvio Ranise and Cesare Tinelli. The SMT-LIB standardrer-
sion 1.1, 2005. Available from the "Documents” section of
http://combination.cs.uiowa.edu/smtlib.

13

14000 T T T T T T T T T
Yices1.0 ——
Barcelogic 1.1 ---x---
HTP patched (hors-concours) ------
12000 - Barcelogic 1.0 (2005 wmig_erg —”E - o i
MathSAT 3.4 o -
Ario 1.2 ----e--- o
CVC3 - "
10000 | CVC —-a--- [% .
[m} :
D % X
5 ary
2 8000 o .
8
o
£
K 6000 .
2
(@]
4000 4
2000 .
On
100
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 88 6937.1 76 12 0 12 0
Barcelogic 1.1 81 9035.2 69 12 0 19 0
HTP patched (hors-concours) 80 10104.3 68 12 2 18 0
Barcelogic 1.0 (2005 winner) 80 12050.5 68 12 0 20 0
HTP 69 5444.4 57 12 2 29 0
MathSAT 3.4 69 6216.8 58 11 0 31 0
Ario 1.2 66 7208.5 54 12 0 34 0
CvC3 47 3586.8 36 11 51 2 0
CcvC 43 6805.2 32 11 14 43 0

Figure 4: Results of QRJF

14

12000

I Yices 1.IO — I
Barcelogic 1.1 ---x---
Barcelogic 1.0 (2005 winner) ---*---
MathSAT 3.4 &
10000 | HTP patched (hors-concours) --® -]
Ario 1.2 ---o--
HTP --e--
CVC3 &
EXtSAT 1.1 -—-a--
8000 F Jat .
3
g
o 6000 .
£
=
2
(@]
4000 4
2000 .
0 OTVA e L
20 40 100
Number of Solved Benchmarks
Solver Score Time Sat Unknown Timeout Wrong
Yices 1.0 99 6761.8 23 0 3 0
Barcelogic 1.1 95 8332.3 23 0 7 0
Barcelogic 1.0 (2005 winner) 70 10624.1 14 30
MathSAT 3.4 53 3451.2 4 0 49 0
HTP patched (hors-concours) 50 6321.1
Ario 1.2 46 6164 3 2 54 0
HTP 35 2489.5 3 35 23 1
CVvC3 27 800.8 1 75 0 0
ExtSAT 1.1 19 1502.2 0 2 81 0
Jat -466 28.9 4 14 23 59

Figure 5: Results of QIRDL

15

4000 T
Yices 1.0 —+—
Barcelogic 1.1 ---%--- © -
MathSAT 3.4 ---x-- o
3500 Sateen 8- i i —
Barcelogic 1.0 (2005 winner) —-m-- ! !
HTP patched (hors-concours) ---&--- A c‘> i
HTP e Pel]
3000 Arig 1.2 & - P ; .
CVC3 -a-- i i
EXtSAT 1.1 —v— b .
— S A
2@ 2500 | S .
3 P
§ i
G 2000
E
Y
2
& 1500
1000
500
0 i i—— -
20 40 60 80 100
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 97 1841.1 45 52 0 6 0
Barcelogic 1.1 96 2033.2 44 52 0 7 0
MathSAT 3.4 95 2530.9 44 51 0 8 0
Sateen 90 2629.9 42 48 0 13 0
Barcelogic 1.0 (2005 winner) 89 3716 40 49 2 12 0
HTP patched (hors-concours) 83 3770 40 43 13 7 0
HTP 80 3099.9 39 41 13 10 0
Ario 1.2 74 3202.8 29 45 9 20 0
CVvC3 70 509.9 32 38 31 2 0
ExtSAT 1.1 6 1148.2 30 0 2 68 3

Figure 6: Results of QDL

16

9000 . . . T ¥
Yices 1.0 —+— !
Barcelogic 1.1 ---x--- ;
00 Rrre -
CVC3 —-m-- ;
Barcelogic 1.0 (2005 winner) ---o--- :
7000 v
6000 5 -
] i
3 5000 -
GC) H
E 000 | .
> *
O %
3000
2000
1000
0 T
20 40 60 80 100
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 102 522.3 67 35 0 0 0
Barcelogic 1.1 102 2524 67 35 0 0 0
MathSAT 3.4 100 8905.8 65 35 0 2 0
Ario 1.2 97 991.9 62 35 2 3 0
CvC3 58 872.2 24 34 44 0 0
Barcelogic 1.0 (2005 winner) 54 506.6 59 35 2 1 5

Figure 7: Results of QRJFIDL

17

14000

Yices 1.0 — I I I
Simplics (2005 winner) ---x---
HTP - ;
12000 |- MathSAT34 o M -
CVC3 -0~ ;
EXISAT 1.1 ---e-- i
10000 | i .
o .
€ 8000 | * 8
o *
£ 6000 S .
o] i
O H ;
4000 v w ' -
: * ’,’
[ea] X
. %
2000 | J . /X,,x
W%xffs 1
60 80 100
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 101 2475.5 50 51 0 1 0
Simplics (2005 winner) 84 5852.4 38 46 0 18 0
HTP 82 13034.5 38 44 1 19 0
MathSAT 3.4 48 5290.1 29 19 0 54 0
CvC 39 2122.3 22 17 54 9 0
CvC3 29 264.9 21 8 73 0 0
ExtSAT 1.1 2 0.9 2 0 67 33 0

Figure 8: Results of QERA

18

3500 . T T T T
Yices 1.0 ——
MathSAT 3.4 ---x--- *
Yices 0.1 (2005 winner) —---- T ‘;
3000 - Ao 2 el ! ;‘ .
CVC3 --o-- i ‘ 5
EXISAT 1.1 ---e-- : ;
2500 ! i
° E
8 2000 F ' i 1
o j i
2 o P
S : |
F 1500 | ; " i -
5 P
° ‘ I
1000 [o . % .
500 ' .
0 " 1
20 100
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 92 214.4 48 44 0 13 0
MathSAT 3.4 85 2080.8 46 39 0 20 0
Yices 0.1 (2005 winner) 77 3291.1 45 40 0 19 1
Ario 1.2 53 2888.3 29 24 22 30 0
HTP 53 3220.2 44 33 7 18 3
CvC3 43 703.7 33 26 43 1 2
ExtSAT 1.1 -34 2.5 6 0 58 36 5

Figure 9: Results of QIEIA

19

12000

Yices 1.0 —— ' ' ' '
MathSAT 3.4 ——x---
Ari0 1.2 ---%---
HTP - o
10000 } CVC3 --m- .
[
8000 | B 4
3 o
°
3 5
S 6000 : .
E :
2 5
© 4000 @ *X -
al i
A K
Jea] Sl
P b
i vy
2000 | e _F FF i
100
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 102 159.8 27 75 0 0 0
MathSAT 3.4 96 4185.1 22 74 0 6 0
Ario 1.2 95 4284.7 22 73 1 6 0
HTP 71 10400.6 21 50 0 31 0
CVvC3 63 2197 18 45 39 0 0

Figure 10: Results of QEJFLIA

20

350 T

STP T T T T T T T
Yices 1.0 ---%--- A
NUSMV ------
MathSAT 3.4 &
300 CVC3 ——m-- -
Bat (hors-concours) ---&---
250
iy [o]
ad i
3 :
S 200} el
[<5)
5]
c
[0}
£ "
= 150 [
>
o
O

— - oK
10 20 30 40 50 60 70 80 90 100

Number of Solved Benchmarks

Solver Score Time Unsat Sat Unknown Timeout Wrong
STP 100 0 51 49 0 0 0
Yices 1.0 100 0 51 49 0 0 0
NuSMV 100 13.7 51 49 0 0 0
MathSAT 3.4 100 3224 51 49 0 0 0
CvC3 98 78.7 49 49 2 0 0

Bat (hors-concours) 82 228.9 50 48 0 0 2

Figure 11: Results of QUFBV[32]

21

2500

Yices 1.0 —— '
] Barcelogic 1.1 ---x--- «
Yices 0.1 (2005 winner) --->--- i
CVC3 -8 |
CVC —-=- !
2000 [
o
T 1500 [
[" %
2 |
[i /
2 1000 - ‘ ¥ -
O ! |
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 106 1263.8 50 56 0 0 0
Barcelogic 1.1 94 2308.7 48 54 0 3 1
Yices 0.1 (2005 winner) 93 692.6 45 56 0 4 1
CVvC3 60 802.9 36 24 46 0 0
CvC 36 1354.6 36 0 51 19 0

Figure 12: Results of QRUFLIA

22

300

. T T X T T T
Yices 1.0 —— |
CVC3 ---x--- |
250 i
200 | i
5 |
S :'
3 X
o 150 | 3 .
£ |
iy '
z |
o |
o |
100 | i
£
50 | / 4
X
0 + ‘Wﬁ@ﬁ&}&s{ ““““““ 1 1
20 40 60 80 100
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
Yices 1.0 96 104.7 96 0 2 3 0
CvC3 50 296.3 50 0 51 0 0

Figure 13: Results of AUFLIA

23

CVC3 T T T T T
Yices 1.0 ---x--—-
05
i
8
S 0
£
=
2
(@)
05 |
-1 1 1 1 1 1
20 40 60 80 100
Number of Solved Benchmarks
Solver Score Time Unsat Sat Unknown Timeout Wrong
CVC3 96 0 96 0 11 0 0
Yices 1.0 96 0 96 0 7 4 0

Figure 14: Results of AUFLIRA

24

