Verifying Low-Level Implementations of
High-Level Datatypes

Christopher L. Conway and Clark Barrett

New York University, Dept. of Computer Science
{cconway,barrett}@cs.nyu.edu

Abstract. For efficiency and portability, network packet processing code
is typically written in low-level languages and makes use of bit-level op-
erations to compactly represent data. Although packet data is highly
structured, low-level implementation details make it difficult to verify
that the behavior of the code is consistent with high-level data invari-
ants. We introduce a new approach to the verification problem, using a
high-level definition of packet types as part of a specification rather than
an implementation. The types are not used to check the code directly;
rather, the types introduce functions and predicates that can be used to
assert the consistency of code with programmer-defined data assertions.
We describe an encoding of these types and functions using the theories
of inductive datatypes, bit vectors, and arrays in the Cvc3 SMT solver.
We present a case study in which the method is applied to open-source
networking code and verified within the CASCADE verification platform.

1 Introduction

Packet-level networking code is critical to communications infrastructure
and vulnerable to malicious attacks. This code is typically written in low-
level languages like C or C++. Packet fields are “parsed” using pointer
arithmetic and bit-wise operators to select individual bytes and sequences
of bits within a larger untyped buffer (e.g., a char array). This approach
yields high-performance, portable code, but can lead to subtle errors.
An alternative is to write packet-processing code in special-purpose high-
level languages, e.g., binpac [17], Melange [13], Morpheus [1], or Pro-
lac [9]. These languages typically provide a facility for describing net-
work packets as a set of nested, and possibly recursive, datatypes. The
language compilers then produce low-level packet-processing code which
aims to match or exceed the performance of the equivalent hand-coded
C/C++. This requires an expensive commitment to rewriting existing
code.

We propose a new approach, one which fuses the power of higher-level
datatypes with the convenience and efficiency of legacy code. The key
idea is to use a high-level description of “packet types” as the basis
for a specification, not an implementation. Instead of using a compiler
to try to reproduce a performant implementation, we can annotate the
existing implementation to indicate the intended high-level semantics,
then verify that the implementation is consistent with those semantics.

We make use of the theories of inductive datatypes, bit vectors, and
arrays in Cvc3 to encode the relationship between the high-level and
low-level semantics. Using this encoding, it is possible to verify that the
low-level code represents, in essence, an implementation of a well-typed
high-level specification.

In this paper we will present our proposed notation for defining packet
datatypes and stating datatype invariants in C code. We describe the
translation of the datatype definition and code assertions into verifica-
tion conditions in the Cvc3 SMT solver. The encoding relies crucially on
automatically generated separation invariants, which allow Cvc3 to effi-
ciently reason about recursive data structures without producing false as-
sertion failures due to spurious aliasing relationships. Finally, we present
a case study applying our approach to real code from the BIND DNS
server. We are able to verify high-level data invariants of the code with
reasonable efficiency. To our knowledge, no other verification tool is ca-
pable of automatically proving such datatype invariants on existing C
code.

2 A Motivating Example

Figure 1(a) illustrates the definition of a simple, high-level list datatype
in a notation similar to that of languages like ML, and Haskell. The type
has two constructors: cons, which creates a list node with an associated
data array and a cdr field representing the remainder of the list, and
nil, which represents an empty list. Figure 1(b) gives the high-level
pseudo-code for a function that computes the length of a list, defined
as the number of cons values encountered via cdr “links” before a nil.
The code simply checks whether 1st is a cons value using the “tester”
function isCons. If it is, it increments the length and updates 1st using
the cdr field. If it is not, it returns the computed length.

In a high-level language, the compiler is given the freedom to implement
datatypes like List as it chooses, typically using linked heap structures
to represent individual datatype values. The programmer concentrates
on the high-level semantics of the algorithm, allowing the compiler to
encode and decode the data. By contrast, in packet processing code,
the datatype is defined in terms of an explicit data layout. The data is
“packed” into a contiguously allocated block of memory. The high-level
algorithm and the encoding and decoding of data are intertwined.

The List type in Fig. 1(c) illustrates a simple “packed” linked list im-
plementation. Like the definition in Fig. 1(a), List is a union type with
two variants. However, instead of simply declaring a set of data fields,
each variant explicitly defines its own representation. The representation
of a cons value is: a 1-bit tag field (the highest-order bit of the first
byte), a 7-bit count field (the lower-order bits of the first byte), a data
field of exactly count bytes, and another List value cdr, which follows
immediately in memory. The value of tag is constrained by the constant
bit vector value 0bl. The constraint requires the tag bit of a cons value
always to be 1. The representation of a nil value has a similar constraint:
a nil value consists of a single 8-bit tag field, which must be 0x00. The

Nat list_length(List 1st) {

type List = Nat count = 0;
cons { while(isCons(lst)) {
count: Nat, count++;
data: Int array, 1st = cdr(lst);
cdr: List }
} return count;
| nil }

(a) (b)

u_int list_length(const u_char *p) {
u_int n, count = 0;
while((n = *p++) & 0x80) {

type List = { isCons (prev(p)) }
cons { count++;
tag:1 = Obl, p += n & O0x7f;
count: 7, { toList(p) = cdr(prev(p)) }
data: u_char[count], }
cdr: List if(n !'= 0) // malformed list
T return (-1);
| nil { { isNil(p) }
tag:8 = 0x00 return count;
} ¥

(c) (d)

Fig. 1. Defining and using a simple linked list datatype.

fact that the tag bit of a cons value must be 1 while the bits of a nil
value must all be 0 ensures that we can unambiguously decode cons and
nil values. (A full grammar for “packed” datatype definitions is given
in Section 3.1.)

Figure 2 illustrates the interpretation of a sequence of bytes as a List
value. The first byte (0x82) has its high bit set; thus, it is a cons value.
The low-order bits tell us that count is 2; thus, data has two elements:
0x01 and 0x02. The cdr field is another List value, encoded starting at
the next byte. This byte (0x81) is also a cons value, since it also has its
high bit set. Its count field is 1, its data field the single element 0x03.
Its cdr is the List value at the next byte (0x00), a nil value.

Figure 1(d) gives a low-level implementation of the length function, which
operates over the implicit List value pointed to by the input p. (The
bracketed, italicized portions of the code are verification annotations,
which are described in Section 3.3.) Note that the structure of the func-
tion is very similar to the code in Fig. 1(b), but that high-level operations
have been replaced by their low-level equivalents—pointer arithmetic and
bit-masking operations are used to detect constructors and select fields.
A notable addition is the if statement that appears after the while loop.
In the high-level code, we could assume that the data was well-formed,
i.e., that every list is either a cons or a nil value. In the low-level im-
plementation, we may encounter byte sequences which are not assigned
a meaning by the datatype definition—in this case a non-zero byte in
which the high bit is not set, which satisfies the data constraints of nei-
ther cons nor nil. The function handles this erroneous case by returning
an error code.

The challenge, in essence, is to prove that the low-level code in Fig. 1(d)
is a refinement of the high-level code in Fig. 1(b). To this end, we need

<«—nil——>

<«— tag,count data dr.
cons

1:0000010 00000001 [00000010 1:0000001 00000011 00000000

cons
<— tag,count data dr.

Fig. 2. The layout of a List value.

to build a bridge between the high-level semantics of the datatype and
the low-level implementation.

3 Owur Approach

The verification process proceeds in four steps:

1. The programmer provides a datatype declaration, as in Fig. 1(c),
defining the high-level structure and layout of the data.

2. Using the datatype declaration, we generate a set of Cvc3 declara-
tions and axioms encoding the relationship between the high-level
type and its implementation.

3. The programmer adds code annotations specifying the expected be-
havior of the low-level code, in terms of functions derived from the
datatype definition.

4. We use the CASCADE verification platform to translate the code and
annotations into a set of verification conditions to be checked by
Cvc3. If all of the verification conditions are valid, then the code
satisfies the specification.

3.1 Datatype definition

Figure 3 gives the full grammar for datatype definitions. The notation for
datatype definitions is similar to that of disjoint union types in higher-
level languages like ML and Haskell. There is an important distinction:
unlike datatype implementations generated by compilers, it is up to the
user to ensure that the encoding of values is unambiguous and consistent.
The declaration should provide all of the information needed both to
encode a datatype value as a sequence of bytes and to decode a well-
formed sequence of bytes as a high-level datatype value.

A type consists of a set of constructors. Each constructor has a set of
fields. A field type is one of four kinds: a bit vector of constant inte-
ger size, a plain C scalar type, an array of C type elements, or another
datatype. (The syntax of C type declarators is that of ANSI/ISO C [2].)
Bit vectors and C types may have value constraints. Bit vector constants
are preceded by Ob (for binary constants) or 0x (for hexadecimal con-
stants). Arrays have a length: either a constant integer or the value of a
prior field—the declaration language supports a limited form of depen-
dent types.

Type ::= type Id = Cons (I Cons)*
Cons ::= Id{ Field (, Field)* }
Field ::= Id : FieldType
FieldType ::= BvType | CType | ArrType | Typeld
BvType ::= IntConst (= BuConst)?
BuvConst ::= 0b[01]+ | 0x[0-9a-£A-F]+

CType ::= CScalarType(= CConst)?
ArrType ::= CType [ArrLength]
ArrLength ::= IntConst | Id
Typeld ::= Id

Fig. 3. Grammar for datatype definitions.

datatype List = cons { count : BV7, data : (BVn,BVg) array, cdr : List }
| nal
\

undefined

toList : (BV N, BVsg) array x BV N — List m : (BVnN, BVsg) array
sizeOfList : List — N {:BVN

let © = toList(m,) in
isCons(z) <= ml[{][7] (CONSTEST)
isNil(z) <= m[{] =0 (NILTEST)
isCons(x) = count(xz) = m[¢][6:0]
A (V0 < i < count(z). data(z)[i] = m[l+ i+ 1])
A cdr(z) = toList(m, £ 4+ count(z) + 1)

(CoNSsSEL)

sizeOfLList(cons(count, _, cdr)) = 1 + count + size OfList(cdr) (ConsSIzZE)
sizeOfList(nil) = 1 (NILSIZE)
sizeOfList(undefined) = 0 (UNDEFSIZE)

Fig. 4. Datatype definition and axioms for the type List

3.2 Translation to Cvc3

It is straightforward to translate the datatype definition into an inductive
datatype in the input language of Cvc3. The translation for the List
datatype is given in Fig. 4. We use N to denote the type of natural
numbers; BYj, to denote the type of bit vectors of size k (i.e., k-tuples
of booleans); and (a, 3) array to denote the type of arrays with indices
of type a and elements of type 5. We use N to denote the (platform-
dependent) size of a pointer (i.e., the type of pointers is BVy). For an
array a, a[i] denotes the element of a at index #; similarly, for a bit vector
b, b[i] denotes the ith bit of b and b[j:¢] denotes the extraction of bits i
through j (the result is a bit vector of size j —i+1). The size of the result
of arithmetic operations on bit vectors is the size of the larger operand;
the smaller operand is implicitly zero-extended. When used in an integer
context, bit vectors are interpreted as unsigned.

The translation produces a Cvc3 datatype definition reflecting the data
layout of the declaration augmented with an explicit undefined value.
Note that the tag fields are omitted from the definition—since they are
constrained by constants, they are only needed to decode the high-level
data value.

Cvc3 automatically generates a set of datatype testers and field selectors.
The testers isCons, isNil, and isUndefined are predicates that hold for
a List value z iff x is, respectively, a cons, nil, or undefined value. The
selectors count, data, and cdr are functions that map a List value to the
value of corresponding field.

Note that the definition of List itself does not include any data con-
straints on field values. These constraints are introduced by the function
toList, which maps a pointer-indexed array of bytes m and a location ¢
to the List value represented by the sequence of bytes starting at ¢ in
m. The axioms CONSTEST and NILTEST enforce the data constraints on
the tag fields of cons and nil, respectively. The axiom CONSSEL rep-
resents the encoding of the remaining fields of cons. Note that there is
no explicit rule for the value undefined: if the data constraints given in
CONSTEST and NILTEST do not apply, then the only remaining value
that toList can return is undefined.

The function sizeOfList maps a List value to the size of its encoding in
bytes. By convention, the size of undefined is 0.

3.3 Code assertions

The functions generated by the Cvc3 translation are exposed in the as-
sertion language as functions that take a single pointer argument. In the
case of the function toList, the additional array argument, representing
the configuration of memory, is introduced in the verification condition
translation. The pointer argument of the other functions is implicitly
converted to a List value using toList. The assertion language also
provides auxiliary functions init and prev, mapping variables to their
initial values in, respectively, the current function and loop iteration.
Returning to the code in Fig. 1(d), the bracketed, italicized assertions
state the expected high-level semantics of the implementation. Specifi-
cally, they assert:

— The loop test succeeds only for cons values.

— The body of the loop sets p to the cdr of its initial value in each

loop iteration.
— If the value is well-formed, then p points to a nil value when the
function returns.

The functions representing testers rely on the data constraints of the
type, e.g., p points to a cons value iff the byte sequence pointed to by
p satisfies the data constraints of cons (i.e., the high bit of *p is set).
The functions representing testers rely on the structure of the type, e.g.,
toList (q)==cdr (p) iff p points to a cons value and g==p+count (p)+1.
Loops can be annotated with invariants: we can separately prove initial-
ization and preservation of the invariant, and that each assertion in the
body of the loop is valid when the invariant is assumed on entry.

3.4 Verification condition generation

The final verification step is to use the CASCADE verification platform
to translate the code and assertions into formulas that can be validated
by Cvc3. Verification is driven by a control file, which defines a set of
paths to check and allows annotations and assertions to be injected at
arbitrary points along a path. Each code assertion is transformed into a
verification condition, which is passed to Cvc3 and checked for validity.
For each condition, Cvc3 will return “valid” (the condition is always
true), “invalid” (the condition is not always true), or “unknown” (due
to incompleteness, Cvc3 could not prove invalidity). CASCADE returns
“valid” for a path iff Cvc3 returns “valid” for every assertion on the path.
If Cvc3 returns “invalid” or “unknown” for any assertion, CASCADE
returns “invalid”, along with a counterexample.

Note 1. Since the background axioms that define datatypes are univer-
sally quantified, deciding validity of the generated verification conditions
is undecidable in general. Cvc3 will never return “invalid” for any veri-
fication condition that it cannot prove valid; instead, it will return “un-
known” when a pre-determined instantiation limit is reached. There are
fragments of first-order logic that are decidable with instantiation-based
algorithms [6]. Encoding the datatype assertions in a decidable fragment
of first-order logic is a subject for future work.

CASCADE supports a number of encodings for C expressions and program
semantics. For datatype verification, we make use of a bit vector encod-
ing, which is parameterized by the platform-specific size of a pointer and
of a memory word.

An additional consideration is the memory model used in the verifica-
tion condition. The memory model specifies the interpretation of pointer
values and the effect of memory accesses (both reads and writes) on
the program state. A memory model may abstract away details of the
program’s concrete semantics (e.g., by discarding information about the
precise layout of structures in memory) or it may refine the concrete
semantics (e.g., by choosing a deterministic allocation strategy). We dis-
cuss the memory model in detail in the next section.

4 Memory Model

In order to accurately reflect the datatype representation, we require a
memory model that is bit-precise. At the same time, to avoid a blow-up
in verification complexity and overly conservative results, we would like
a relatively high-level model that preserves the separation invariants of
the implementation. To this end, we define a memory model based on
separation analysis [7] that we call a partitioned heap.

The flat model. First, we will define for comparison a simple model
which is self-evidently sound. A flat memory model interprets every
pointer expression as a bit vector of size N. Every allocated object in
the program is associated with a region of memory (i.e., a contiguous
block of locations) distinct from all previously allocated regions. The

state of memory is modeled by a single pointer-indexed array m. The
value stored at location ¢ is thus ml[¢].

Using the flat memory model, we can translate the first assertion in
Fig. 1(d) into the verification condition

m1 = mo[&p — mol&p] + 1] A ma = my[&n — mo[mo[&p]]] A m2[&n][7]
= isCons(toList(ma, mol&p]))

where we use &x to denote the location in memory of the variable x (i.e.,
its lvalue) and afi — €] to denote the update of array a with element e
at index ¢. Assuming &p, &n, and m[&p] are distinct, the validity of the
formula is a direct consequence of the axiom CONSTEST.

The flat model accurately represents unsafe operations like casts between
incompatible types and bit-level operations on pointers. However, it is
a very weak model—its lack of guaranteed separation between objects
makes it difficult to prove strong properties of data-manipulating pro-
grams.

Ezample 1. Consider the Hoare triple
{ tolList(q)==cdr(p) } i++ { tolList(q)==cdr(p) }

where p and q are known to not alias i. In a flat memory model, this is
interpreted as

toList(mo, mo[&q]) = edr(toList(mo, mo[&p]))
Ami = mol&i — mo[&i] + 1]
= toList(m1, m1[&q]) = cdr(toList(mi, m1[&p]))

Since toList is defined axiomatically using recursion (see Fig. 4), it is not
immediately obvious that the necessary lemma

toList(mo, mo[&p]) = toList(mi, m1[&p])

is implied (similarly for q). Even if p and q can never point to i, we
cannot rule out the possibility that the List values pointed to by p
and q depend in some way on the value of i. Now, suppose we add the
assumption

allocated(p,p+size0fList(p)),

where allocated(x,y) means that pointer x is the base of a region of
memory, disjoint from all other allocated regions, bounded by pointer
y. Even then, the proof of the assertion relies on the following theorem,
which is beyond the capability of automated theorem provers like Cvc3
to prove:

My : z <y < x + sizeOfList(toList(mo, x)) : moly] = mi[y])
= toList(mo,x) = toList(mi,)
O

What we require is a separation invariant allowing us to apply the “frame
rule” of separation logic [19, 15]:

{ toList(q)==cdr(p)*i==v } i++ { tolist(q)==cdr(p)*i==v+1 }

where * denotes separating conjunction: A*B holds iff memory can be
partitioned into two disjoint regions R and R’ where A and B hold,
respectively.

The partitioned model. The separation invariants we need can be
obtained using separation analysis [7]. The analysis can be understood
as the inverse of may-alias analysis [10, 11]: if pointers p and q can never
alias, then the objects they point to must be separated (i.e., they occupy
disjoint regions of memory).

The output of the separation analysis is a partition P = {Py,..., Py},
where each P; represents a disjoint region of memory, and a map from
pointer expressions to regions—if expression F is mapped to partition P;,
then E can only point to objects allocated in region P;. If the separation
analysis maps pointers expressions E and F’ to different partitions, then
E and E’ cannot be aliased in any well-defined execution of the program.
A P-partitioned memory model for partition P = {Py, ..., Py} interprets
every pointer expression as a pair (¢,i) € BV n X N, where ¢ is a location
and 4 is a partition index. The state of memory is modeled by a collec-
tion of pointer-indexed arrays (mi,...,mx). The location pointed to by
pointer expression (¢,1) is the array element m;[¢].

Ezample 2. The program in Fig. 1(d) can be divided into two partitions.
The first partition contains the parameter p and local variables n and
size. The second partition contains the object pointed-to by p. We rep-
resent the two partitions by two memory arrays, s and h, respectively.
Thus, the value of the variable n is represented by the array element
s[&n]; the value of the expression *p is represented by the array element
hls&p]].

A partitioned memory model solves the problem of Example 1 by isolat-
ing the List value in its own partition:

toList(ho, so[&q]) = cdr(toList(ho, so[&p])) A s1 = so[&i — so[&i] + 1]
= toList(ho, s1(&q]) = cdr(toList(ho, s1(&p]))

Given that &p, &q and &i are distinct, the formula is trivially valid. O

We say a program is memory safe if all reads and writes through pointers
occur only within allocated objects. Like pointer analysis, the soundness
of the separation analysis is conditional on memory safety. Thus, the
soundness of verification using a partitioned memory model will likewise
be conditional on memory safety.

It may seem questionable to attempt to verify a program using informa-
tion which depends for its correctness on prior verification of the same
program. In previous work, we showed that a sound combination is possi-
ble, as long as the verification procedure ensures that no memory safety
errors occur along the path under consideration [5]. It is thus essen-
tial that the verification conditions include assertions that establish the
memory safety of the statements along each path in the program.

In our experience, a partitioned memory model can make an order-of-
magnitude difference in verification time compared to a flat memory
model—indeed, properties are provable by Cvc3 using a partitioned
model that cannot be proved using a flat model (see Section 5.1).

5 Case Study: Compressed Domain Names

To demonstrate the utility of our approach, we will describe a more
complex application, taken from real code. We will show the definition
of a real-world datatype, the annotations for a function operating on that
datatype, and the results of using CASCADE to verify the function.

A definition for the datatype Dn, representing an RFC 1035 compressed
domain name [14], is given in Fig. 5. Dn is a union type with three
variants: label, indirect, and nullt. The representation of a label
value is: a 2-bit tag field (which must be zeroes), a 6-bit len field (which
must not be all zeroes), a label field of exactly len bytes, and another
Dn value rest, which follows immediately in memory. An indirect value
has a 2-bit tag (which must be Ob11) and a 14-bit offset. A nullt value
has only an 8-bit tag, which must be zero. The constraints on the tag
fields of label, indirect, and nullt allow us to distinguish between
values.

type Dn =

label {
tag:2 = 0b0O0,
len:6 != 0b000000,
name:u_char[len],
rest:Dn

}

| indirect {

tag:2 = Obll,

offset:14
Y
| nullt {
tag:8 = 0x00
Y

Fig. 5. Definition of the Dn datatype.

Consider the function ns_name_skip in Fig. 6. The low-level pointer and
bit-masking operations represent the traversal of the high-level Dn data
structure. The correctness of the implementation is properly expressed
in terms of that data structure.

In terms of the type Dn, the code in Fig. 6 is straightforward. The pointer
cp, the value pointed to by the parameter ptrptr, points to a Dn value.
The loop test (Line 12) assigns the first byte of the value to the variable n
and advances cp by one byte. If n is 0, then cp pointed to a nullt value
and the loop exits. Otherwise (Line 14), the switch statement checks
the two most significant bits of n—the tag field of a label or indirect

#define NS_CMPRSFLAGS (0xcO)

int
ns_name_skip(const u_char **ptrptr, const u_char *eom) {

- RS =S S U R

W oW W W W W W WNNNNNNNNNNRE R R 2 oe e e e e
OO A OO OO XTI RAE QNSO ©KNO O A ®N OO

{ allocated(*ptrptr, eom) }
const u_char *cp;
u_int n;

cp = *ptrptr;
{ @invariant: cp < eom —>

cp + sizeOfDn(cp) = init(cp) + sizeOfDn(init(cp)) }
while (cp < eom && (n = *cp++) != 0) {

/* Check for indirection. */

switch (n & NS_CMPRSFLGS) {

case 0: /* normal case, n == len */
{ isLabel (prev(cp)) }
cp += n;
{ rest(prev(cp)) = toDn(cp) }
continue;
case NS_CMPRSFLGS: /* indirection */
{ isIndirect (prev(cp)) }
cpt+t;
break;
default: /* illegal type */

__set_errno (EMSGSIZE);
return (-1);
}
break;
}
if (cp > eom) {
__set_errno (EMSGSIZE);
return (-1);
}
{ cp = eomV cp = init(cp) + sizeOfDn(init(cp)) }
*ptrptr = cp;
return (0);

Fig. 6. The function ns_name_skip from BIND

value. If the tag field contains zeroes (Line 15), cp is advanced past the
label field to point to the Dn value of the rest field. If the tag field
contains ones (Line 20), cp is advanced past the offset field and breaks
the loop. The default case of the switch statement returns an error
code—the tag field was malformed. At the end of the loop, if cp has not
exceeded the bound eom, the value of cp is one greater than the address
of the last byte of the Dn value that cp pointed to initially. This is the
contract of the function: given a reference to a pointer to a valid Dn value,
it advances the pointer past the Dn value or to the bound eom, whichever
comes first, and returns 0; if the Dn value is invalid, it returns -1.
Annotating the source code. The datatype definition is translated
into an inductive datatype with supporting functions and axioms, as
in Section 3.2. The translation generates testers isLabel, isIndirect, and
isNullt; selectors len, name, rest, etc.; and the encoding functions toDn
and sizeOfDn. Each of these functions is now available for use in source
code assertions, as in the bracketed, italicized portions in Fig. 6.

The annotations in Fig. 6 also make reference to some auxiliary func-
tions: init (x) represents the initial value of a variable x in the function;
prev(x) represents the previous value of a variable x in a loop (i.e., the
value at the beginning of an iteration).

On entry to the function (Line 5), we assume that the region pointed to
by *ptrptr and bounded by eom is properly allocated. To each switch
case (Lines 15 and 20), we add an assertion stating that the observed tag
value (i.e, n & NS_CMPRSFLGS) is consistent with a particular datatype
constructor (i.e., label or indirect). (Note that prev(cp) refers to the
value of cp before the loop test, which has side effects). The loop invariant
(Lines 10-11) states that cp advances through the Dn data structure
pointed to by init(cp)—in each iteration of the loop, if cp has not
exceeded the bound eom, it points to a Dn structure (perhaps the “tail”
of a larger, inductive value) that is co-terminal with the structure pointed
to by init(cp). On termination, the loop invariant implies the desired
post-condition: if no error condition has occurred, *ptrptr will point to
the byte immediately following the Dn value pointed to by init (cp)—the
pointer will have “skipped” the value. Note that we do not require an
assertion stating that cp is reachable from init (cp) via rest “pointers”
to prove the desired property—the property is provable using purely
inductive reasoning.

Using the code annotations, CASCADE can verify the function by generat-
ing a set of verification conditions representing non-looping static paths
through the function. Fig. 7 gives an example of such a verification con-
dition. It represents the path from the head of the loop through the 0
case of the switch statement (Line 15), ending with the continue state-
ment and asserting the preservation of the loop invariant. (Note that
we assume here that pointers are 8 bits. Larger pointer values are easily
handled, but the formulas are more complicated.) As in Section 4, the
verification condition uses a partitioned memory model with two memory
arrays, s and h: the values of local variables and parameters are stored
in s while the Dn value pointed to by cp is stored in h. Proposition (1)
asserts the loop invariant on entry. Propositions (2)—(5) represent the
evaluation, including effects, of the loop test. Proposition (6) represents

the matching of the switch case. Propositions (7)—(9) capture the body
of the case block. Finally, Proposition (10) (the proposition we would
like to prove, given the previous assumptions) asserts the preservation of
the loop invariant.

soltep] > softeon]
V sol&ep] + sizeOfDn(toDn(hg, so[&cp)))

= init(&cp) + sizeOfDn(toDn(ho, init(&cp))) (1)
so[&cp] < so[&eom] (2)

s1 = Sol&cp — so[&cp] + 1] (3)

sz = s1[&n — ho[so[&cp]]] (4)

s2(&n] # 0 (5)

s2[&n][7:6] =0 (6)
is_label(toDn(hg, so[&cp])) (7)

s3 = sa2[kcp — sa[&cp] + s2(&n]] (8)
rest(toDn(ho, sol&cp])) = toDn(hg, s3[&cp]) (9)

S4l&cp] > s4[keom]
Vsal&cp] + sizeOfDn(toDn(ho, sa[&cp]))
= init(&cp) + sizeOfDn(toDn(hg, init(&cp))) (10)

Fig. 7. Verification conditions for ns_name_skip.

5.1 Experiments

Table 1 shows the time taken by Cvc3 to prove the verification conditions
generated by CASCADE for ns_name_skip, using both the flat and parti-
tioned memory models. The times given are for a Intel Dual Core laptop
running at 2.2GHz with 4GB RAM. Each VC represents a non-looping,
non-erroneous path to an assertion. The two TERM VCs represent the
loop exit paths: TERM (1) is the path where the first conjunct is false
(cp >= eom; TERM (2) is the path where the first conjunct is true (cp <
eom) and the second is false (n == 0). The verification conditions marked
with * for the flat memory model timed out after two minutes—we be-
lieve that these formulas are not provable in Cvc3. All of the verification
conditions together can be validated using the partitioned memory model
in less than one second.

6 Related Work

Some early work on verification of programs operating on complex data-
types was done by Burstall [4], Laventhal [12], and Oppen and Cook [16].
Their work assumes that data layout is an implementation detail that can
be abstracted away. Our work here focuses on network packet processing
code, where the linear layout of the data structure is an essential property
of the implementation.

Table 1. Running times on ns_name_skip VCs.

Time (seconds)

Name Lines Flat Part.
INIT 5-12 0.34 0.03
CAsE 0 (1) 12-16 13.94 0.05
CASE 0 (2) 12-28 33.42 0.06
CASE 0 (3) 12-19 * 0.12
CASE 0xc0 (1) 12-14, 2021 6.14 0.04
CASE 0xc0 (2) 12-14, 20-23, 30, 34 * 0.07
TERM (1) 12, 30, 34 0.63 0.06
TERM (2) 12, 30, 34 * 0.05

More recently, O’Hearn, Reynolds, and Yang [15] have approached the
problem using separation logic [19, 8]. Given assumptions about the struc-
ture of the heap, the logic allows for powerful localized reasoning. In this
work, we use separation analysis in the style of Hubert and Marché [7]
to establish separation invariants, thus “localizing” the verification con-
ditions.

Rakamaric and Hu [18] describe a variation of Burstall’s memory mo-
del [4, 3] suitable for bit-precise verification of low-level code. However,
their approach relies on a compile-time type analysis of the program—
since we are trying to verify datatypes that are not explicitly represented
in the program code, we must rely on a more primitive model.

7 Conclusions

In this paper, we have presented a novel approach to the verification
of low-level packet processing code. Instead of rewriting code in a high-
level declarative language, we propose to apply the information derived
from a declarative specification to enable checking high-level assertions
embedded in the low-level implementation. The approach allows for the
continued use of tested, performant code, with the increased assurance
of verification. The experimental results are encouraging; we believe our
technique can scale to several hundreds or thousands of lines of code.
In future work, we intend to extend our technique to a broader class of
datatypes, including more typical pointer-linked data structures.

8 Acknowledgments

This work was supported in part by the National Science Foundation
under Grant No. 0644299. The authors would like to thank Dejan Jo-
vanovié¢ for his help debugging the Cvc3 translation and preparing the
figures for this paper.

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. M. B. Abbott and L. L. Peterson. A language-based approach to
protocol implementation. IEEE/ACM Trans. Netw., 1(1):4-19, 1993.
American National Standard for Programming Languages - C, Aug.
1989. ANSI/ISO 9899-1990.

R. Bornat. Proving pointer programs in Hoare logic. In Mathematics
of Program Construction, pages 102-126, 2000.

R. Burstall. Some techniques for proving correctness of programs
which alter data structures. In Machine Intelligence, 1972.

C. L. Conway, D. Dams, K. S. Namjoshi, and C. Barrett. Points-to
analysis, conditional soundness, and proving the absence of errors.
In Static Analysis Symposium (SAS), July 2008.

Y. Ge and L. de Moura. Complete instantiation for quantified formu-
las in Satisfiability Modulo Theories. In Computer Aided Verification
(CAV), pages 306-320, 2009.

T. Hubert and C. Marché. Separation analysis for deductive verifi-
cation. In Heap Analysis and Verification (HAV), pages 81-93, Mar.
2007.

S. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for
mutable data structures. SIGPLAN Not., 36(3):14-26, 2001.

E. Kohler, M. F. Kaashoek, and D. R. Montgomery. A readable TCP
in the Prolac protocol language. Computer Communication Review,
29(4):3-13, 1999.

W. Landi and B. G. Ryder. Pointer-induced aliasing: a problem
taxonomy. In Principles of Programming Languages (POPL), pages
93-103, Jan. 1991.

W. Landi and B. G. Ryder. A safe approximate algorithm for inter-
procedural aliasing. In Programming Language Design and Imple-
mentation (PLDI), pages 235-248, June 1992.

M. S. Laventhal. Verifying programs which operate on data struc-
tures. In Reliable Software, pages 420-426, 1975.

A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan.
Melange: creating a “functional” internet. In European Conf. on
Comp. Sys. (EuroSys), pages 101-114, 2007.

P. Mockapetris. Domain names - implementation and specification.
RFC 1035 (Standard), Nov. 1987.

P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Computer Science Logic
(CSL), pages 1-19, 2001.

D. C. Oppen and S. A. Cook. Proving assertions about programs
that manipulate data structures. In Symposium on the Theory of
Computing (STOC), pages 107-116, 1975.

R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: a yacc for
writing application protocol parsers. In Internet Measurement Conf.
(IMC), pages 289-300, 2006.

Z. Rakamaric and A. J. Hu. A scalable memory model for low-level
code. In Verification, Model Checking, and Abstract Interpretation
(VMCAI), pages 290-304, 2009.

J. C. Reynolds. Intuitionistic reasoning about shared mutable data
structure. In Millenial Perspectives in Computer Science, 2000.

