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PEak: A Single Source of Truth for Hardware Design and Verification

CALEB DONOVICK, JACKSON MELCHERT, ROSS DALY, LENNY TRUONG, PRIYANKA RAINA,

PAT HANRAHAN, and CLARK BARRETT, Stanford University, USA

Domain-specific languages for hardware can significantly enhance designer productivity, but sometimes at the cost of ease of
verification. On the other hand, ISA specification languages are too static to be used during early stage design space exploration.
We present PEak, an open-source hardware design and specification language, which aims to improve both design productivity and
verification capability. PEak does this by providing a single source of truth for functional models, formal specifications, and RTL. PEak
has been used in several academic projects, and PEak-generated RTL has been included in three fabricated hardware accelerators. In
these projects, the formal capabilities of PEak were crucial for enabling both novel design space exploration techniques and automated
compiler synthesis.
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1 INTRODUCTION

Domain-specific languages (DSLs) for hardware allow designers to build generators that are impossible to express using
traditional hardware description languages such as SystemVerilog and VHDL [3, 40]. Such generators are of increasing
importance as specialized chips become the norm in a post-Dennard-scaling world [24, 39]. DSLs can also provide
better correctness guarantees through type safety (a well-known pain point in Verilog). These factors have led to an
explosion of new DSLs for hardware design over the last decade [3, 16, 26, 31, 40].

Unfortunately, the design ofmost hardware DSLs has not sufficiently taken into account the impact on verification [30].
For example, using a Verilog simulator to debug DSL-generated designs is notoriously difficult, as information is lost
or obscured during the compilation process. A first step towards addressing this challenge is to include support for
writing properties that can be translated to SystemVerilog assertions (SVAs), and indeed several languages provide this
(e.g., Chisel [15] and Magma [41]). More ambitious efforts aim to enable source-level debugging [42], which will likely
be crucial for effective debugging of generated RTL, especially at later design stages.

On the other hand, DSL models are well-positioned to dramatically improve the early-stage verification experience.
In particular, they can be leveraged to greatly improve debugging and verification during design space exploration
(DSE). Traditionally, separate functional models play a key role during this phase, but a promising alternative supported
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Fig. 1. PEak, ast_tools, and hwtypes transform a PEak specification into a compiled hwtypes program.

by some DSLs (e.g., pyMTL [31]) is to automatically extract a high-performance executable functional model from a
DSL description. Moreover, with the right semantics and support, the user can even be provided with direct access to
an automatically-generated formal model for the design, enabling novel and early uses of formal methods during the
design exploration process. Current DSLs provide very limited support for such features.

In this paper, we introduce PEak, a Python-embedded DSL, with an accompanying set of open-source tools, including
a compiler. PEak provides a single source of truth for compilation to RTL, functional simulation, and formal modeling.
Designers who use PEak do not need to implement the same thing multiple times, and the different implementations are
guaranteed to be consistent with each other. Furthermore, these capabilities directly enable novel formal-in-the-loop
design methodologies.

PEak is partly motivated by work being done at the Stanford Agile Hardware center [4, 11, 17, 27],1 where it has
been used to generate coarse-grained reconfigurable array (CGRA) architectures2 for three generations of chips, two of
which were fabricated. Section 4 explains how the formal model generated by PEak was used to synthesize compiler
components for different candidate architectures, thereby enabling a systematic and automatic exploration of the design
space.

The rest of this paper is organized into the following sections: Section 2 describe hwtypes and ast_tools which
PEak is built on; Section 3 describes the PEak language and how it can be extended; and Section 4 evaluates PEak
as a tool for DSE, showing it can generate both high performance RTL as well as SMT models which are usable in a
formal-in-the-loop design flow. We discuss related work and conclude in Sections 5 and 6, respectively.

2 HARDWARE TYPES AND AST-TOOLS

We first introduce two libraries we developed which serve as the foundation of PEak: hwtypes and ast_tools. hwtypes3

serves as both the type system and compilation target for PEak. ast_tools4 is used for Python abstract syntax tree
(AST) analysis and rewriting, which is used both to build the PEak compiler and to extend PEak’s meta-programming
facilities. These libraries are independent of PEak, and may be of interest on their own.

The interplay between PEak, ast_tools, and hwtypes is illustrated in Figure 1. A PEak specification is the input to
the PEak compiler. The PEak specification uses the hwtypes type system for things like Bit, BitVector, and algebraic
data types. The PEak compiler uses ast_tools, first to transform the Python AST of the PEak specification, and then
again to generate the final compiled specification in the hwtypes expression language. In the following subsections, we
describe hwtypes and ast_tools in detail.
1aha.stanford.edu
2CGRAs [22, 32, 35] are a spatial architecture similar to FPGAs and are composed of processing element (PE) and memory tiles, and a configurable
routing network.
3https://github.com/leonardt/hwtypes
4https://github.com/leonardt/ast_tools
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PEak: A Single Source of Truth for Hardware Design and Verification 3

2.1 Hardware Types

The core of PEak is the Python-embedded expression language of hwtypes. hwtypes provides a uniform interface for:
functional simulation, via direct execution in Python; formal analysis, via automatic translation to formulas in the
language of satisfiability modulo theories (SMT) [6]; and RTL generation, via a compiler to Magma [41]. By unifying
these types we ensure the equivalence of the generated functional, formal, and RTL models.

hwtypes defines abstract interfaces and type constructors for a number of types and kinds. This includes a Bit

(Boolean) type, fixed-width BitVector types (signed and unsigned), arbitrary-precision floating-point types, and
algebraic data types (ADTs). We first focus on the Bit and BitVector types (we discuss the use of ADTs in Section 3.2).
Bit type provides the usual Boolean operators: and &, or |, xor ^, and not ~; equality operators: equals ==, and not
equals !=; and an ite (if-then-else) method.

The SMT-LIB standard [5] defines a large set of arithmetic and bitwise functions on bitvectors. The hwtypes

BitVector interface defines a method for each of these functions. For instance, the equivalent of the SMT-LIB term
(bvadd x y) (bitvector addition), where x and y are of sort (_ BitVec 16), or 16-bit bitvectors, is the hwtypes

expression x.bvadd(y), where x and y are of the type BitVector[16]. More generally, if f is a function over bitvectors
defined by SMT-LIB, then there is an equivalent method named f on the hwtypes BitVector type. As a convenience,
these methods are also defined by overloading Python operators when appropriate. For example: x.bvadd(y) can be
invoked with x + y. The semantics of sign-dependent operators are defined by their type. For example, x < y invokes
x.bvslt(y) (signed less than) for signed x and x.bvult(y) (unsigned less than) for unsigned x.

There are three implementations of the BitVector and Bit types. The first implementation is a pure Python
functional model over constant values. The second wraps pySMT [20] to generate SMT terms. Finally, Magma provides
a third implementation which allows for the definition of circuits. This uniform interface allows for the same hwtypes
program to be interpreted in multiple ways. The pure Python implementation is used to simulate a circuit, the SMT
implementation is used to generate a formal model, and the Magma implementation is used to generate actual RTL.

The real power of hwtypes comes from its embedding in Python which facilitates the generation of complex formulas.
For example, we can generate an adder tree over any number of inputs with the use of a recursive function as shown in
Example 2.1. This can be easily generalized to perform reduction over any function as shown in Example 2.2.

It is important to note that hwtypes is an expression language only; all statements are executed in pure Python
following typical Python semantics. This is in contrast to PEak (see Section 3, below), which breaks away from the
semantics of pure Python and reinterprets the meaning of if statements as ites using AST rewriting.

2.2 AST Tools

In order to be able to reinterpret Python code, we developed the ast_tools library, which provides a generic infras-
tructure for composing passes that analyze and transform the Python abstract syntax tree (AST). The design is the
result of our experience developing ad hoc AST rewrites for various DSLs (including PEak) and recognizing the need
for a common infrastructure to serve these languages.

2.2.1 Pass Architecture. The entry point to the ast_tools library is the apply_passes function, which takes a list of
passes to run and returns a decorator that is used to transform a function or class. The apply_passes function provides
a generic prologue and epilogue, which handles logic common to most code transformers. The prologue parses the
marked code into an AST and captures a closure of the environment. The epilogue serializes the transformed AST into
code and executes it using the captured environment. Passes use a generic interface that consumes as arguments the
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4 Donovick et al.

def tadd(*args):

n = len(args)

if n == 0:

return 0

elif n == 1:

return args [0]

else:

left = tadd(*args[:n//2])

right = tadd(*args[n//2:])

return left + right

Example 2.1: hwtypes adder tree generator.

def treduce(f, ident , *args):

n = len(args)

if n == 0:

return ident

elif n == 1:

return args [0]

else:

largs = args[:n//2]

rargs = args[n//2:]

l = treduce(f,ident ,*largs)

r = treduce(f,ident ,*rargs)

return f(l, r)

Example 2.2: hwtypes reduction tree generator.

@apply_passes ([ loop_unroll ()])

def foo():

for i in unroll ([1 ,3 ,9]):

print(i)

def foo():

print (1)

print (3)

print (9)

Example 2.3: Code with loop unrolling applied.

current AST, the current environment, and a metadata dictionary. A pass may modify any or all of these and return
them as results to be used for the next pass or for the epilogue.

In addition to the pass infrastructure, ast_tools provides several useful utilities such as the ability to generate a
free name in the environment, which allows new variables to be introduced without clobbering existing mappings. It
also includes a collection of generic transformation and visitor passes that perform common operations.

2.2.2 Macros. The macro sub-package provides a simple mechanism for performing syntactic rewrites of the Python
AST. When an explicit macro identifier is encountered, such as unroll in Example 2.3, the corresponding transformation
Manuscript submitted to ACM
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PEak: A Single Source of Truth for Hardware Design and Verification 5

is invoked (loop_unroll). PEak employs the macro pattern to allow staged expansion of the specification. For example,
if statements marked as macros will be evaluated before they are compiled, allowing the user to distinguish between
conditional logic intended to describe the generation of the specification versus conditional logic intended to be part of
the specification.

3 PEAK

The high-level aim of PEak is to provide a natural object-oriented view of hardware, in which a circuit is defined as
a Python class. PEak circuits declare sub-components in their __init__ method5 and define their behavior in their
__call__ method.6 A circuit’s inputs are the arguments to its call method and its outputs are the return values of the
method. Sub-components are included simply by calling them as functions.

The underlying semantics of PEak is a synchronous hardware model that uses an implicit clock and implicit wiring. In
a PEak program with state, a single call to the __call__method represents one clock cycle, updating any state variables
that have been declared in the __init__method. The goal of PEak is to make writing hardware easier through a natural
object-oriented view of the hardware. Therefore, PEak works best for specifying hardware that can be encapsulated into
well-defined modules with instructions, inputs, and outputs. Due to the implicit clocking and wiring in PEak, designs
with multiple clocks or combinational loops cannot be expressed.

In Example 3.1, we show a small example of PEak code. Code points of interest have been annotated with # n. We
start by explaining ALU (# 4) and RegALU (# 7); then, in Section 3.3 we discuss the remaining code points. The ALU class
performs either an add or a multiply on two data inputs (in_0, in_1) and is controlled by a single bit op. We show the
results of compiling this ALU to Verilog using the MLIR [29] backend to Magma in Example 3.2.

The RegALU class instantiates an ALU and two Registers. RegALU is controlled by a two-bit signal instr, where bit 0
is the ALU op and bit 1 is an acc flag. RegALU passes the contents of its registers to the ALU and outputs the ALU’s output.
When the acc flag is set, it stores its output in reg_0; otherwise, it stores the first input. The observant reader will
note that the registers in Example 3.1 are not called as functions. Instead, they are simply read and written as instance
attributes. We provide this syntax to allow registers’ next state to be dependent on current state (which is impossible
with the __call__ syntax).

3.1 PEak Normal Form

The ast_tools library is used to convert a PEak program to a hwtypes program. This is achieved by first performing
a typical single static assignment (SSA) transformation [38], i.e., introducing unique variables for every assignment
and replacing control flow with phi statements. Next, all return statements are replaced with assignments to fresh
identifiers. Next, the bodies of if blocks are inlined into their enclosing blocks, and phi nodes are replaced with ite calls
(a method on the primitive type Bit). Finally, we construct the return value by reconstructing the condition structure
in a nested ite. In this form, the program is a pure hwtypes program. The transformed PEak code for ALU.__call__
in Example 3.1 is shown in Example 3.3.

Special care is needed to handle attribute writes (e.g., registers) as they do not behave like other names. At a high
level, the compiler simply generates a fresh name for each written attribute which is initialized at the top of the program.

5__init__ is the standard initializer method in Python, which is similar to but not quite equivalent to a constructor in C++. A more thorough explanation
can be found in the Python reference manual [19].
6__call__ overloads the function call syntax, i.e., foo(args) ≡ foo.__call__(args).

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Donovick et al.

@family_closure(family_group) # 1

def gen(family ): # 2

BV = family.BitVector

T = BV[8]

Bit = family.Bit

Register = family.gen_register(T, 0)

@family.compile(locals(), globals ()) # 3

class ALU(Peak): # 4

def __call__(self ,

op: Bit , in_0: T, in_1: T) -> T: # 5

if op:

return in_0 + in_1

else:

return in_0 * in_1

@family.compile(locals(), globals ()) # 6

class RegALU(Peak): # 7

def __init__(self):

self.alu = ALU()

self.reg_0 = Register ()

self.reg_1 = Register ()

def __call__(self ,

instr: BV[2], in_0: T, in_1: T) -> T:

op = instr [0]

acc = instr [1]

out = self.alu(

op, self.reg_0 , self.reg_1

)

if acc:

self.reg_0 = out

else:

self.reg_0 = in_0

self.reg_1 = in_1

return out

return RegALU

Example 3.1: PEak code for ALU.

Next, it replaces all references to the attribute with references to the fresh name. Finally, it writes the generated name
back to the attribute at the end of the program.

The existence of multiple returns complicates this basic scheme, as there are multiple “ends” of the program. Hence,
at each return location, the state of each attribute (i.e., the value held in the attribute’s associated name) is stored in a
“final” name, so that the proper value may be written to the attribute at end of the program. Then, at the end of the
program the final names are multiplexed, in a similar matter to the rebuilding of return values, before being written
back. We show the transformation of the simple counter shown in Example 3.4 in Example 3.5.
Manuscript submitted to ACM
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PEak: A Single Source of Truth for Hardware Design and Verification 7

module ALU(

input op ,

input [7:0] in_0 , in_1 ,

input CLK , ASYNCRESET ,

output [7:0] O

);

wire [1:0][7:0] _GEN = {

{in_0 + in_1}, {in_0 * in_1}

};

assign O = _GEN[op];

endmodule

Example 3.2: ALU compiled to Verilog using the MLIR backend of Magma.

class ALU(Peak):

def __call__(self ,

op: Bit , in_0: T, in_1: T) -> T:

cond_0 = op

r_val_0 = in_0 + in_1

r_val_1 = in_0 * in_1

r_val_f = cond_0.ite(r_val_0 , r_val_1)

return r_val_f

Example 3.3: ALU in PEak normal form as generated by the compiler modulo a slight simplification of generated names.

@family.compile(locals(), globals ())

class Counter(Peak):

def __init__(self):

self.reg = Register ()

def __call__(self , en: Bit , rst: Bit) -> T:

if rst:

self.reg = T(0)

return T(0)

if en:

state = self.reg

if state < MAX_COUNT - 1:

next_state = state + 1

else:

next_state = T(0)

self.reg = next_state

return state

else:

return self.reg

Example 3.4: A counter with a reset and enable.

Manuscript submitted to ACM
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8 Donovick et al.

def __call__(self , en: Bit , rst: Bit) -> T:

self_reg_0 = self.reg

cond_0 = rst

self_reg_1 = T(0)

self_reg_f_0 = self_reg_1

r_val_0 = T(0)

cond_2 = en

state_0 = self_reg_0

cond_1 = state_0 < MAX_COUNT - 1

next_state_0 = state_0 + 1

next_state_1 = T(0)

next_state_2 = cond_1.ite(

next_state_0 , next_state_1

)

self_reg_2 = next_state_2

self_reg_f_1 = self_reg_2

r_val_1 = state_0

self_reg_f_2 = self_reg_0

r_val_2 = self_reg_0

self_reg_f = cond_0.ite(

self_reg_f_0 ,

cond_2.ite(self_reg_f_1 , self_reg_f_2)

)

self.reg = self_reg_f

r_val_f = cond_0.ite(

r_val_0 ,

cond_2.ite(r_val_1 , r_val_2)

)

return r_val_f

Example 3.5: A counter in PEak normal form as generated by the compiler. The names have been simplified and additional line
breaks have been inserted to increase readability.

3.2 Algebraic Data Types

PEak also supports algebraic data types (ADTs). As ADTs in PEak must be realizable in hardware, we limit them to finite
(non-recursive) types. Beyond the usual benefits of abstraction and type safety, ADTs provide a natural abstraction for
ISAs: a sum type can be used to specify categories of instructions with different layouts; and product types can used to
define the fields of each layout. Example 3.1 uses a single bit to control its operation. However, by doing so we fix the
encoding of the ISA. Instead, designers can define ISAs as ADTs as shown in Example 3.6.

Using ADTs to represent ISAs has two main benefits. First, it allows the decode logic to be modified without modifying
the functional specification (i.e., the __call__ method). For instance, to change the encoding of an ADD instruction
from op == 1 to op == 0 in the original example (3.1), we would need to update the line if op: to if ~op:. In contrast,
in Example 3.6, we just need to change the definition of AluOp. While these two edits are of similar complexity for the
toy examples shown here, the ADT-based specification is much more maintainable for more complex examples, as most
of the complexity tends to lie in the __call__ method. The second main benefit of using ADTs to describe ISAs is type
Manuscript submitted to ACM
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PEak: A Single Source of Truth for Hardware Design and Verification 9

class AluOp(Enum):

ADD = 1

MUL = 0

class RegCtrl(Enum):

ACC = 1

BYPASS = 0

class Inst(Product ):

op = AluOp

ctrl = RegCtrl

...

@family.compile(locals(), globals ())

class ALU(Peak):

def __call__(self ,

op: AluOp , in_0: T, in_1: T) -> T:

if op == AluOp.Add:

return in_0 + in_1

else:

return in_0 * in_1

@family.compile(locals(), globals ())

class RegALU(Peak):

def __init__(self):

self.alu = ALU()

self.reg_0 = Register ()

self.reg_1 = Register ()

def __call__(self ,

instr: Inst , in_0: T, in_1: T) -> T:

out = self.alu(

instr.op, self.reg_0 , self.reg_1

)

if instr.ctrl == RegCtrl.ACC:

self.reg_0 = out

else:

self.reg_0 = in_0

self.reg_1 = in_1

return out

Example 3.6: Defining an ISA as an ADT.

safety. In the original example, it would be possible for a designer to accidentally use bit 0 as the acc flag and bit 1 as
the op. In contrast, comparing a member of AluOp to a member of RegCtrl would lead to a type error.

When ADTs are compiled to hardware, they must be encoded as bitvectors. While PEak provides reasonable defaults
for the encoding (e.g., Product types encoded as the concatenation of their fields), a designer may desire a specific
bit-level encoding. PEak provides a simple interface to allow this.
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3.3 PEak Internals and Extensions

We now explain the remaining code points in Example 3.1. We highlight a few simple requirements: PEak classes must
inherit from the Peak class (# 4 and # 7), and the type annotations in the __call__ method (# 5) are not optional, as
they are needed to generate ports in a Magma context.

Code point # 2 constructs a closure around the ALU and RegALU classes. It takes a single argument, which is a family

object. The family mechanism is the means by which the different interpretations (Python, SMT, Magma) for the
same PEak code are provided. Each family object contains one set of implementations for the primitives used by the
constructed module (minimally: Bit, BitVector, ADTs, registers). Note how all types are accessed through the family
object. family.compile (# 3 and # 6) invokes the PEak compiler, passing the current symbols to the compiler with
locals(), globals(). Each family can define its own compilation flow. For example, the SMT and Magma families
rewrite __call__ code into the PEak normal form.

Finally, the family_closure decorator (# 1) takes a single parameter, which associates the decorated closure with a
specific family group, an object (typically a module) with attributes PyFamily, SMTFamily, and MagmaFamily, providing
families with the Python, SMT, and Magma interpretations, respectively. Default implementations for each family
can be obtained by using a specific family group that is included with PEak. The purpose of an explicit family group
parameter is to allow extensions beyond this default implementation. For example, an extended family group could
include a floating point type which wraps verilog IP in a Magma context, uses the hwtypes floating point type in a
Python context, and constructs an uninterpreted function in an SMT context.

3.4 Verification and Testing of PEak Circuits

Verification is a complex task, and thorough verification of a hardware design often takes more time and resources than
are required to design it in the first place. One of the goals of PEak is to simplify functional testing and democratize
formal verification by making the experience nearly equivalent to writing functional tests. Functional testing is made
easier by raising the level of abstraction compared to Verilog testbenches and by providing several useful helper
functions to easily generate test vectors. Writing a functional testbench in PEak is as straightforward as instantiating
a PEak class, calling the PEak object with some instruction and inputs, and checking that the outputs are correct.
These features make PEak testbenches much simpler and easier to write than a conventional Verilog testbench. Formal
verification is also much easier thanks to the formal interpretation feature of PEak. A functional testbench can be
converted into a formal verification check simply by using the formal interpretation and using SMT Bit and BitVector
types.

As an example of both functional and formal verification, we check whether the code in Example 3.6 always writes
its second input to reg_1, first using random testing then using formal verification. In Example 3.7, a Python instance
of the ALU is instantiated. Next, all possible instructions are exhaustively generated by iterating over all values of AluOp
and RegCtrl.7 Then, the registers are set to random initial states, and random inputs are passed to the ALU. Finally, we
assert the postcondition that reg_1 contains the value of i1.

In Example 3.8 we show the formal verification of this property which is similar to the random test. First, free SMT
variables for the initial state, inputs, and instruction are constructed. Then, we set the initial state and execute the
circuit. Finally, we use CVC4 [7] via pySMT to formally verify that reg_1 contains the value of i1 by asserting the
negation of the property.
7The inner-loop uses the field_dict attribute of the RegCtrl type which returns a dict (mapping type) of names to enum members allowing
programmatic generation of such tests.
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py_alu = gen.Py()

# iterate over all possible instructions

for alu_op in (AluOp.ADD , AluOp.MUL):

for reg_mode in RegCtrl.field_dict.values ():

# set initial state to random

py_alu.reg_0 = random_bv (8)

py_alu.reg_1 = random_bv (8)

# use random input variables

i0 = random_bv (8)

i1 = random_bv (8)

instr = Inst(alu_op , reg_mode)

out = py_alu(instr , i0, i1)

post_condition = py_alu.reg_1 == i1

assert post_condition

Example 3.7: Random testing of a PEak circuit.

initial_reg_0 = SMTBitVector [8]()

initial_reg_1 = SMTBitVector [8]()

i0 = SMTBitVector [8]()

i1 = SMTBitVector [8]()

instr = make_symbolic(Inst)

smt_alu = gen.SMT()

# set the initial state to be symbolic

smt_alu.reg_0 = initial_reg_0

smt_alu.reg_1 = initial_reg_1

# symoblically execute the circuit

out = smt_alu(instr , i0, i1)

post_condition = to_pysmt(smt_alu.reg_1 == i1)

# pysmt code

with Solver("cvc4") as s:

s.add_assertion(Not(post_condition ))

if s.solve ():

print("Counter example found")

else:

print("Verified")

Example 3.8: Verification of a PEak circuit using the CVC4 backend of pySMT.

The design of PEak makes it extremely natural to specify and verify hardware. The choice to embed PEak in Python
means that hardware designers familiar with Python can start writing PEak almost immediately. The choice to use
implicit wiring and clocking means that the designer no longer needs to worry about low-level details and raises the level
of abstraction to an appropriate level for the types of applications targeted by PEak. Enabling an object-oriented view of
hardware design makes reuse of common sub-components and smaller circuit building blocks simple. The strong support
for ADT types lends itself very well to the specifications of instructions for hardware-like processors, simplifying the
specification and thereby reducing the risk of introducing bugs. The access to the AST enables designers to extend
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PEak with powerful transformations, which enable higher design productivity. Finally, the multiple interpretations of
each PEak specification not only make designing and verifying circuits easier, but also enable powerful techniques like
rewrite rule synthesis, which we discuss in Section 4.2.

4 EVALUATION

PEak has been used in the design of three generations of CGRA-based programmable hardware accelerators: Garnet [4],
Amber [18], and Onyx [28]. Amber and Onyx were fabricated in 16 nm and 12 nm commercial CMOS technologies
respectively, and were verified in silicon.

CGRAs are a class of programmable accelerators composed of an array of tiles: processing element (PE) tiles, memory
(MEM) tiles, and input/output (IO) tiles. PE tiles perform the arithmetic computation in the application, MEM tiles
buffer data, and IO tiles send data to and from the array. These tiles communicate through a reconfigurable interconnect.
PEak was used to specify the PE tiles for all three generations of CGRAs.

A CGRA PE operates at the word level and contains arithmetic operations found in a variety of applications. A
typical PE contains an ALU with a variety of operations like add, multiply, shift, etc. It includes registers for integer
operands, bit registers for bitwise operands, and a lookup table (LUT) for bitwise operations.

In each generation of CGRA, we extended the previous PEak PE to include more complex operations. For example, in
the Garnet PE, the instruction set included only individual simple operations such as multiplication and addition. In the
Amber PE, we wanted to include complex floating point operations like division, exponentiation, multiplication, natural
log, and sine. The hardware for these operations was large and expensive, so we split each operation into smaller parts
(e.g., get mantissa, subtract exponents, float to int, etc.). Then, we implemented these smaller operations within every
PE, with the idea that when these expensive operations were required, we could use several PEs to implement one
complex operation. This kept area overhead low while extending the capability of the CGRA. PEak made experimenting
and implementing these complex operations easy, as the functional model written in Python could be used directly for
the implementation.

In the Onyx chip, we extended the PEak PE instruction set to include larger operations such as multiply-add, min-max,
and multiply-shift. These operations made accelerating applications in the image processing and machine learning
domains much more efficient and performant. Implementing and experimenting with these operations in PEak was
simple, and leveraging the formal model of each PE made verification easy and fast.

As an indication that PEak is easy to use and to learn, the PEs for Garnet, Amber, and Onyx were developed by 13
students, 8 of whom did not participate in the development of PEak. For students who were familiar with Python, the
operation of PEak PEs were understood within minutes, and improvements could be made and designs could be tested
within hours. The design productivity that PEak enabled was instrumental in the fast development of each of these
accelerators.

PEak’s unique capabilities have also enabled a number of research projects. Here, we present a summary of results
from two of these projects. First, we discuss the CGRA specialization framework APEX [33], which uses PEak to
generate high-performance RTL. Second, we describe our work on compiler rewrite rule synthesis [13], which uses
PEak’s formal model to synthesize instruction selection rewrite rules efficiently. Finally, we compare a simple ALU
specified in PEak, PyRTL, and Chisel to highlight the advantages of PEak.
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Fig. 2. Energy and runtime comparison between an FPGA, an unspecialized CGRA, an APEX-specialized CGRA, and an ASIC. Figure
courtesy of Melchert et al. [33].

4.1 APEX

APEX aims to automatically specialize a CGRA’s processing element (PE) architecture to an application or a class of
applications. First, it uses frequent subgraph mining and analysis techniques to find common computational patterns in
applications of interest. After finding frequent subgraphs, APEX merges these graphs into a new graph. This new graph
acts as a specification of a specialized PE architecture capable of accelerating the applications.

APEX considers three axes while specializing PEs: number and type of operations within the PE, intraconnect within
each PE, and number of inputs and outputs to and from the PE. Each has a direct effect on the complexity and capability
of the PE and resulting CGRA.

After performing this analysis, APEX automatically converts the graph specification of each PE into a PEak program.
At this point, APEX automatically inserts pipeline registers into the design to ensure high performance. The meta-
programming utilities in PEak, including loop unrolling and if-statement inlining, make this conversion possible.

Figure 2 shows the results of evaluating APEX on four image-processing applications: camera pipeline, harris
corner detection, unsharp, and gaussian blur. For each application, we compare an APEX-specialized PE (CGRA-IP) to
results obtained using an FPGA, an unspecialized CGRA, and an ASIC. We compare both the energy consumed and
the application runtime. The specialized CGRA-IP consumes 18% to 47% less energy than a generic CGRA with no
specialization, while providing comparable performance.

The metaprogramming capability of PEak and the ability to easily generate parameterized designs that explored the
design space were crucial enablers for this project. The APEX application analysis framework consumes application
dataflow graphs and produces a dataflow graph representation of the PE specialized to those applications. Translating
this dataflow graph, which can contain a variety of different operations, can have any number of inputs/outputs,
and can include various means of interconnection between the subcomponents, into a hardware description is not
straightforward.
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Fig. 3. Rewrite rule synthesis times for various IR instructions.

For example, the parameter space of inputs and outputs in a PE is beyond the expressive capabilities of Verilog,
which cannot parameterize the number of ports on a module. In Verilog, a new specification generator would need to
be created for every PE that requires a unique number of inputs and outputs. In PEak, such parameterization is trivial,
as the input ADT of each PE can be constructed with one line of Python code.

4.2 Rewrite Rule Synthesis

A working application compiler for each generated PE is required to perform realistic benchmarking of PEs during
design space exploration. In this context, design space exploration means the systematic exploration and evaluation of
many PE designs in order to optimize an objective such as power, performance, or area. During the instruction selection
phase of code generation, rewrite rules are used to map computations described in an intermediate representation (IR)
to concrete inputs, outputs, and instructions on the PE. Each distinct PE requires its own set of rewrite rules. Creating
these rules manually is both labor-intensive and error-prone. Furthermore, manual construction would make automatic
design space exploration impossible. In a recent work [13], we show how these rewrite rules can be efficiently and
automatically synthesized, given a formal SMT model of the IR and the target PE. In that work, we conveniently use
PEak to describe both, making it easy to extract the SMT models.

As an example, consider the rewrite rule for a 16-bit subtraction targeting the ALU described in Example 4.1. The rule
specifies that the invert_0, invert_1, and op fields of Inst should be set to InverterCtrl.ident, InverterCtrl.invert,
and AluOp.ADD respectively. Instead of manually creating this rule, it can be synthesized by solving the following SMT
query: ∃ inst . ∀𝑥,𝑦. bvsub(16, 𝑥,𝑦) = ALU (inst, 𝑥,𝑦), where bvsub is the SMT operator for bitvector subtraction and
ALU is the result of executing the PEak program with the SMT family interpretation (note that this is a simplified form
of the query and does not take into account several complications discussed in [13] such as operand ordering, arity
mismatches, and state). We show the construction of this query in Example 4.2.

Another challenge is handling instructions that use compile-time constants such as immediate fields (e.g., add imme-
diate). Using the above formula, we would need a distinct query for each possible compile-time constant. Instead, we can
modify the query by finding an instruction that works for every value of the constant, i.e., ∃ inst .∀𝑥,𝑦, 𝑐 .bvadd(16, 𝑥, 𝑐) =
ALU (inst (𝑐), 𝑥,𝑦). To solve this query, we want to treat some fields of the instruction as universally quantified and
others as existentially quantified. PEak’s ability to represent instructions as ADTs makes this possible.

Figure 3 shows the results of synthesizing rewrite rules for a set of IR instructions. The maximum time is 1.1
seconds. Synthesizing all of the rules takes less than 30 seconds, fast enough to be used in the loop during design
Manuscript submitted to ACM
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class AluOp(Enum):

ADD = 0

AND = 1

OR = 2

class InverterCtrl(Enum):

ident = 0

invert = 1

class Inst(Product ):

invert_0 = InverterCtrl

invert_1 = InverterCtrl

op = AluOp

@family_closure

def gen(family ):

BV = family.BitVector

T = BV[8]

Bit = family.Bit

@family.compile(locals(), globals ())

class ALU(Peak):

def __call__(self ,

inst: Inst , in_0: T, in_1: T) -> T:

if inst.invert_0 == InverterCtrl.invert:

in_0 = ~in_0

if inst.invert_1 == InverterCtrl.invert:

in_1 = ~in_1

cin = Bit(1)

else:

cin = Bit(0)

if inst.op == AluOp.ADD:

res , cout = add_with_carry(

in_0 , in_1 , cin

)

return res

elif inst.op == AluOp.AND:

return in_0 & in_1

else:

return in_0 | in_1

return ALU

Example 4.1: An ALU supporting 6 operations: Add, Subtract, And, Or, Nand, Nor.

space exploration, and a significant improvement over manual implementation of rules. This approach scales well to
larger, more complex processors as well. We implemented a RISC-V processor with the RV32IM instruction set. It took
3 minutes to solve for all of the 37 rewrite rules for this architecture.
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i0 = SMTBitVector [8]()

i1 = SMTBitVector [8]()

instr = make_symbolic(Inst)

smt_alu = gen.SMT()

# symbolically execute the circuit

out = smt_alu(instr , i0, i1)

# construct the synthesis query (pysmt code)

spec = to_pysmt(out == i0 - i1)

universal_vars = [to_pysmt(i0), to_pysmt(i1)]

query = ForAll(universal_vars , spec)

with Solver("cvc4") as s:

s.add_assertion(query)

if s.solve ():

val = s.get_py_value(to_pysmt(instr))

print("Rule found using instruction:")

print(disassemble(val))

else:

print("No Rule")

Example 4.2: Rewrite rule synthesis query using PEak and pySMT.

PEak’s formal interpretation was also critical to the success of this project. If this project were implemented using
another HDL, one without a formal interpretation, a separate formal representation of each design would have to be
created. Automatically generating the formal representation not only saves a significant amount of time and effort, but
it also ensures that the formal representation matches the behavior of the hardware and functional model.

4.3 Comparison with PyRTL and Chisel

In this subsection, we show an example of a simple PE specified in three different languages: PEak, PyRTL [12], and
Chisel [3]. The goal is to illustrate how hardware specified in PEak differs from these other languages, and how a
hardware designer familiar with Python would find writing a PEak specification most natural.

PyRTL is a Python-embedded hardware design language intended to provide a more Pythonic method of specifying
hardware. Rather than a high-level synthesis approach, in which a design is inferred from a high-level language, PyRTL
instead provides a set of primitives in Python for constructing the hardware. Chisel is a popular Scala-based hardware
description language which focuses on object-orientation, functional programming, and type safety.

In Example 4.3, we show the specification and functional verification code for a simple ALU written in PEak. This
ALU takes as input an instruction specified as an ADT. The instruction encodes information about how many inputs the
ALU is using and whether the ALU is performing an addition or multiplication.

Example 4.4 shows a PyRTL specification of the same ALU. While both the PyRTL and PEak languages are embedded
in Python, the PEak code uses fewer non-native Python APIs, and its structure is much more similar to a native Python
program. For example, inputs in PEak are specified as inputs to the __call__method of the ALU class, while the inputs
in the PyRTL specification are declared using pyrtl.Input. Additionally, the PEak ALU can be instantiated and called
like a normal Python class, while the PyRTL ALU must be simulated using PyRTL APIs.
Manuscript submitted to ACM



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

PEak: A Single Source of Truth for Hardware Design and Verification 17

from peak import Peak, family_closure, Const, family

from hwtypes.adt import Product, Enum

import random

family = family.PyFamily()

T = family.BitVector[8]

class AluOp(Enum):

ADD = 0

MUL = 1

class NumInputsOp(Enum):

TWO = 0

THREE = 1

class Inst(Product):

alu_op = AluOp

num_inputs = NumInputsOp

@family.compile(locals(), globals())
class AddMul(Peak):

def __call__(self, alu_op: AluOp, a: T, b: T) -> T:

if alu_op == AluOp.ADD:

return a + b

else:
return a * b

@family.compile(locals(), globals())
class ALU(Peak):

def __init__(self):

self.addmul = AddMul()

def __call__(self, inst: Inst, a: T, b: T, c: T) -> T:

if inst.num_inputs == NumInputsOp.TWO:

c_temp = 0

else:
c_temp = c

return self.addmul(inst.alu_op, a, b) + c_temp

py_alu = ALU()

for alu_op in (AluOp.ADD, AluOp.MUL):

for num_inputs in (NumInputsOp.TWO, NumInputsOp.THREE):

inst = Inst(alu_op=alu_op, num_inputs=num_inputs)

a = random.randint(0, 10)

b = random.randint(0, 10)

c = random.randint(0, 10)

out = py_alu(inst, a, b, c)

if num_inputs == NumInputsOp.TWO:

assert out == (a+b) if alu_op == AluOp.ADD else out == (a*b)

else:
assert out == (a+b+c) if alu_op == AluOp.ADD else out == (a*b+c)

Example 4.3: Left: PEak specification of a simple ALU. Right: PEak functional verification code for the simple ALU.

Example 4.5 shows a Chisel specification of the same ALU. As Chisel is embedded in Scala instead of Python, the
syntax used in this specification is very different. A typical hardware designer is more likely to know Python than Scala,
and therefore would have an easier time writing and understanding PEak than Chisel. PEak is less verbose than Chisel
and thus results in shorter, more concise code.

For this example, PEak has clear advantages over the other two languages. The PEak specification and verification is
more concise, and the support for ADT types simplifies both the process of passing the instruction to submodules and
the logic for decoding the instruction. Furthermore, the focus on maintaining a Python-like approach to constructing
hardware makes PEak very natural for hardware designers familiar with Python to learn and understand.

5 RELATEDWORK

The design of PEak draws inspiration from the classic work of Bell and Newell [8], which similarly separated the logical
description of an ISA from its semantics and bit-level representations. However, this idea seems to have been largely lost
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import random

import pyrtl

import enum

class AluOp(enum.IntEnum):

ADD = 0

MUL = 1

class NumInputsOp(enum.IntEnum):

TWO = 0

THREE = 1

def AddMul(a, b, op):

alu_out = pyrtl.WireVector(bitwidth=8, name='alu_out')

with pyrtl.conditional_assignment:

with op == AluOp.ADD:

alu_out |= a + b

with op == AluOp.MUL:

alu_out |= a * b

return alu_out

def ALU(alu_op, num_inputs, a, b, c):

c_temp = pyrtl.WireVector(bitwidth=8, name='c_temp')

with pyrtl.conditional_assignment:

with num_inputs == NumInputsOp.TWO:

c_temp |= 0

with num_inputs == NumInputsOp.THREE:

c_temp |= c

out = AddMul(a, b, alu_op) + c_temp

return out

a = pyrtl.Input(8, 'a')

b = pyrtl.Input(8, 'b')

c = pyrtl.Input(8, 'c')

alu_op = pyrtl.Input(1, 'alu_op')

num_inputs = pyrtl.Input(1, 'num_inputs')

out = pyrtl.Output(8, 'out')

out <<= ALU(alu_op, num_inputs, a, b, c)

sim_trace = pyrtl.SimulationTrace()

sim = pyrtl.Simulation(tracer=sim_trace)

cycle = 0

for alu_op in (AluOp.ADD, AluOp.MUL):

for num_inputs in (NumInputsOp.TWO, NumInputsOp.THREE):

a = random.randint(0, 10)

b = random.randint(0, 10)

c = random.randint(0, 10)

sim.step({

'a': a,

'b': b,

'c': c,

'alu_op': alu_op,

'num_inputs': num_inputs

})

out = sim_trace.trace['out'][cycle]

if num_inputs == 0:

assert out == (a+b) if alu_op == 0 else out == (a*b)

else:
assert out == (a+b+c) if alu_op == 0 else out == (a*b+c)

cycle += 1

Example 4.4: Left: PyRTL specification of a simple ALU. Right: PyRTL functional verification of the simple ALU.

over time and, to our knowledge, is not used in any modern system. PEak generalizes this idea from ISAs to arbitrary
ADTs.

There are many HDLs designed for general-purpose hardware construction, the most popular being Verilog. However,
Verilog has extremely limited meta-programming capabilities, weak type systems, and poorly defined semantics. More
modern languages with strong type systems like Magma [40] and Chisel [3] ease meta-programming by being embedded
in Python and Scala, respectively. These languages define hardware as a graph of modules which is explicitly wired
together. In contrast, PEak uses an implicit wiring model to avoid combinational loops. This is a deliberate design
decision to keep designs readable and to ensure deterministic behavior.8 PEak also provides access to a formal model, a
feature not available in other HDLs.

PEak is also inspired by Lava [9], a Haskell-based DSL which supports multiple interpretations similar to PEak. Lava
programs, like Magma and Chisel programs, describe hardware structurally. C𝜆aSH [2] is another Haskell-based DSL

8This means that certain design patterns that use combinational loops, flip-flops constructed from NAND gates for example, are not expressible in PEak.
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import chisel3._

class AddMul extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val alu_op = Input(UInt(1.W))

val out = Output(UInt(8.W))

})

when (io.alu_op === 0.U) {

io.out := io.a + io.b

} .otherwise {

io.out := io.a * io.b

}

}

class ALU extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val c = Input(UInt(8.W))

val alu_op = Input(UInt(1.W))

val num_inputs = Input(UInt(1.W))

val out = Output(UInt(8.W))

})

val alu = Module(new AddMul)

alu.io.alu_op := io.alu_op

alu.io.a := io.a

alu.io.b := io.b

val c_temp = Wire(UInt(8.W))

when (io.num_inputs === 0.U) {

c_temp := 0.U

} .otherwise {

c_temp := io.c

}

io.out := alu.io.out + c_temp

}

import chisel3.iotesters.{PeekPokeTester, Driver, ChiselFlatSpec}

class ALUTests(alu: ALU) extends PeekPokeTester(alu) {

for (alu_op <- 0 until 2) {

for (num_inputs <- 0 until 2) {

val a = rnd.nextInt(10)

val b = rnd.nextInt(10)

val c = rnd.nextInt(10)

var output = 0

if (alu_op == 0) {

output = (a+b)

} else {

output = (a*b)

}

if (num_inputs == 1) {

output += c

}

poke(alu.io.a, a)

poke(alu.io.b, b)

poke(alu.io.c, c)

poke(alu.io.alu_op, alu_op)

poke(alu.io.num_inputs, num_inputs)

step(1)

expect(alu.io.out, output)

}

}

}

class ALUTester extends ChiselFlatSpec {

behavior of "ALU"

backends foreach {backend =>

it should s"perform correct math operation on dynamic operand in $backend" in {

Driver(() => new ALU, backend)((alu) => new ALUTests(alu)) should be (true)

}

}

}

Example 4.5: Left: Chisel specification of a simple ALU. Right: Chisel functional verification of the simple ALU.

which is less structural than Lava. It allows the use of case statements and pattern matching, enabling the construction
of complex control structures which are difficult to build structurally. However, it does not have direct support for
formal analysis like PEak and Lava. Both of these languages have limited type systems. In particular, they lack the
ADT capability supported by PEak. Finally, while Haskell is appealing to DSL designers, as it enables elegant meta-
programming through the use of type class polymorphism and higher order functions, practice has shown that getting
working engineers to adopt a Haskell-based DSL is challenging.

For example, Bluespec SystemVerilog (BSV) [34], a term rewriting system (TRS) that describes circuits as a set of
guarded atomic actions (rules), originally had a Haskell-like syntax. However, to appeal to a wider audience, it has since
adopted an imperative syntax that is closer to behavioral Verilog. BSV rules describe a circuit’s behavior as state updates
and outputs predicated on current states and inputs. Abstractly, these rules are atomic and are applied sequentially, one
rule at a time. However, in practice this would lead to extremely inefficient hardware. Therefore, the BSV compiler
attempts to schedule these rules concurrently when possible. When multiple rules can update the same state element
they must be scheduled sequentially. The choice of schedule can have significant impact on the quality of the resulting
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hardware. Kôika [10] is a BSV derivative which aims to eliminate this by giving engineers direct control over the
schedule.

A related line of work is high-level synthesis [14] (HLS) which allows designers to describe the behavior of circuits
using a high-level programming language such as C, C++, SystemC, or Matlab. HLS programs describe the algorithmic
behavior of a circuit, eschewing low-level details like pipelining and resource allocation. An HLS compiler then
determines some minimal set of resources which are capable of performing the described algorithm and an associated
schedule of computation, i.e. where and when each operation in the source program takes place. While HLS is a popular
design paradigm and can provide significant engineering efficiency gains, it often produces low-performance RTL [1].

Contemporary work on ISA specification falls into two main categories: ad hoc specification of existing ISAs [21, 36]
and frameworks which are more analogous to PEak for specifying ISAs such as SAIL [23], ILA [25], and ISA-Formal [37].
These systems use declarative descriptions of the semantics of instructions as state updates predicated on the bit-
level representation of an instruction. These are powerful tools, but they cannot be used to generate RTL. While this
disconnect makes sense when verifying new RTL against an existing ISA specification, it is tedious when the ISA
itself being developed, as for each new candidate ISA, both its RTL and its specification must be written separately. In
contrast, PEak uses a procedural model in which bit-level encodings are decoupled from the behavioral specification.
Further, PEak can be used both for specification and RTL-generation.

6 CONCLUSION

PEak is built on top of hwtypes and ast_tools. hwtypes provides a Pythonic interface to functional simulation,
formal SMT models, and RTL generation via Magma. ast_tools provides infrastructure for Python AST analysis and
transformations and enables the reinterpretation of Python control flow. PEak provides designers with the means to
specify a single source of truth for hardware design, which has proven to be a useful paradigm for enabling novel
automated design methodologies which incorporate formal methods. The design decisions made when creating PEak,
including the focus on an object-oriented view of the hardware, raising of the level of abstraction through an implicit
clocking and wiring model, multiple interpretations including a functional, hardware, and formal model, strong support
for ADT types, and access to the AST, have all been instrumental in making PEak an excellent language for hardware
design. PEak is easy to learn and has features that simplify both design productivity and verification. PEak has enabled
us to develop three generations of CGRA architectures, a PE specialization framework, and a rewrite rule synthesis
technique. We hope that PEak, along with hwtypes and ast_tools, will also encourage future work in this domain.

7 ACKNOWLEDGMENTS

This work was supported by funding from SRC JUMP 2.0 PRISM Center, NSF CAREER (award number: 2238006), DARPA
DSSoC, Stanford Agile Hardware (AHA) Center, Stanford SystemX Alliance and Apple Stanford EE PhD Fellowship in
Integrated Systems.

REFERENCES
[1] Abhinav Agarwal, Man Cheuk Ng, et al. 2010. A comparative evaluation of high-level hardware synthesis using reed–solomon decoder. IEEE

Embedded Systems Letters 2, 3 (2010), 72–76.
[2] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Gerards. 2010. ClaSH: Structural descriptions of synchronous hardware

using haskell. In 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools. IEEE, 714–721.
[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel:

Constructing hardware in a Scala embedded language. In Design Automation Conference (DAC) 2012. IEEE, 1212–1221.

Manuscript submitted to ACM



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

PEak: A Single Source of Truth for Hardware Design and Verification 21

[4] Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly, Caleb Donovick, David Durst, Kayvon Fatahalian, Kathleen Feng, Pat Hanrahan,
Teguh Hofstee, Mark Horowitz, Dillon Huff, Fredrik Kjolstad, Taeyoung Kong, Qiaoyi Liu, Makai Mann, Jackson Melchert, Ankita Nayak, Aina
Niemetz, Gedeon Nyengele, Priyanka Raina, Stephen Richardson, Raj Setaluri, Jeff Setter, Kavya Sreedhar, Maxwell Strange, James Thomas,
Christopher Torng, Leonard Truong, Nestan Tsiskaridze, and Keyi Zhang. 2020. Creating an Agile Hardware Design Flow. In Design Automation
Conference (DAC).

[5] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org.
[6] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. 2021. Satisfiability Modulo Theories. In Handbook of Satisfiability, Second Edition,

Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh (Eds.). Frontiers in Artificial Intelligence and Applications, Vol. 336. IOS Press,
Chapter 33, 825–885. http://www.cs.stanford.edu/~barrett/pubs/BSST21.pdf

[7] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011.
CVC4. In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings (Lecture Notes in
Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 171–177. https://doi.org/10.1007/978-3-642-22110-1_14

[8] C. Gordon Bell and Allen Newell. 1970. The PMS and ISP Descriptive Systems for Computer Structures (AFIPS’70 (Spring)). Association for
Computing Machinery, New York, NY, USA, 351–374. https://doi.org/10.1145/1476936.1476993

[9] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: hardware design in Haskell. ACM SIGPLAN Notices 34, 1 (1998), 174–184.
[10] Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. 2020. The essence of Bluespec: a core language for rule-based hardware design. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 243–257.
[11] Alex Carsello, Kathleen Feng, Taeyoung Kong, Kalhan Koul, Qiaoyi Liu, Jackson Melchert, Gedeon Nyengele, Maxwell Strange, Keyi Zhang, Ankita

Nayak, Jeff Setter, James Thomas, Kavya Sreedhar, Po-Han Chen, Nikhil Bhagdikar, Zachary Myers, Brandon D’Agostino, Pranil Joshi, Stephen
Richardson, Rick Bahr, Christopher Torng, Mark Horowitz, and Priyanka Raina. 2022. Amber: A 367 GOPS, 538 GOPS/W 16nm SoC with a
Coarse-Grained Reconfigurable Array for Flexible Acceleration of Dense Linear Algebra. In 2022 IEEE Symposium on VLSI Technology and Circuits.

[12] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMahan, and Timothy Sherwood. 2017. A pythonic approach for
rapid hardware prototyping and instrumentation. In 2017 27th International Conference on Field Programmable Logic and Applications (FPL). 1–7.
https://doi.org/10.23919/FPL.2017.8056860

[13] Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, Nestan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat Hanrahan. 2022.
Synthesizing Instruction Selection Rewrite Rules from RTL using SMT. In Proceedings of the 22nd Conference on Formal Methods in Computer-Aided
Design (FMCAD). 139–150.

[14] Luka Daoud, Dawid Zydek, and Henry Selvaraj. 2014. A survey of high level synthesis languages, tools, and compilers for reconfigurable high
performance computing. In Advances in Systems Science: Proceedings of the International Conference on Systems Science 2013 (ICSS 2013). Springer,
483–492.

[15] Andrew Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen, Kasper Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye Andersen, Richard
Lin, and Martin Schoeberl. 2023. Verification of Chisel Hardware designs with ChiselVerify. Microprocessors and Microsystems 96 (2023), 104737.

[16] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly, Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat
Hanrahan. 2020. Type-directed scheduling of streaming accelerators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 408–422.

[17] Kathleen Feng, Alex Carsello, Taeyoung Kong, Kalhan Koul, Qiaoyi Liu, Jackson Melchert, Gedeon Nyengele, Maxwell Strange, Keyi Zhang, Ankita
Nayak, Jeff Setter, James Thomas, Kavya Sreedhar, Po-Han Chen, Nikhil Bhagdikar, Zachary Myers, Brandon D’Agostino, Pranil Joshi, Stephen
Richardson, Rick Bahr, Christopher Torng, Mark Horowitz, and Priyanka Raina. 2022. Amber: Coarse-Grained Reconfigurable Array-Based SoC for
Dense Linear Algebra Acceleration. In 2022 IEEE Hot Chips 34 Symposium (HCS).

[18] Kathleen Feng, Taeyoung Kong, Kalhan Koul, Jackson Melchert, Alex Carsello, Qiaoyi Liu, Gedeon Nyengele, Maxwell Strange, Keyi Zhang,
Ankita Nayak, Jeff Setter, James Thomas, Kavya Sreedhar, Po-Han Chen, Nikhil Bhagdikar, Zach A. Myers, Brandon D’Agostino, Pranil Joshi,
Stephen Richardson, Christopher Torng, Mark Horowitz, and Priyanka Raina. 2024. Amber: A 16-nm System-on-Chip With a Coarse-Grained
Reconfigurable Array for Flexible Acceleration of Dense Linear Algebra. IEEE Journal of Solid-State Circuits 59, 3 (2024), 947–959. https:
//doi.org/10.1109/JSSC.2023.3313116

[19] Python Software Foundation. 2023. The Python Language Reference. https://docs.python.org/3/reference/datamodel.html#basic-customization.
[20] Marco Gario and Andrea Micheli. 2015. PySMT: A solver-agnostic library for fast prototyping of SMT-based algorithms. In SMT Workshop 2015.
[21] Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh. 2014. Simulation and formal verification of x86 machine-code programs that

make system calls. In 2014 Formal Methods in Computer-Aided Design (FMCAD). 91–98.
[22] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Nadathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. 2012.

DySER: Unifying functionality and parallelism specialization for energy-efficient computing. IEEE Micro 32, 5 (2012), 38–51.
[23] Kathryn E Gray, Gabriel Kerneis, Dominic Mulligan, Christopher Pulte, Susmit Sarkar, and Peter Sewell. 2015. An integrated concurrency and

core-ISA architectural envelope definition, and test oracle, for IBM POWER multiprocessors. In Proceedings of the 48th International Symposium on
Microarchitecture. 635–646.

[24] John L Hennessy and David A Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2 (2019), 48–60.
[25] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta, and Sharad Malik. 2018. Instruction-Level Abstraction (ILA):

A Uniform Specification for System-on-Chip (SoC) Verification. ACM Trans. Des. Autom. Electron. Syst. 24, 1, Article 10 (Dec 2018), 24 pages.

Manuscript submitted to ACM

http://www.cs.stanford.edu/~barrett/pubs/BSST21.pdf
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/1476936.1476993
https://doi.org/10.23919/FPL.2017.8056860
https://doi.org/10.1109/JSSC.2023.3313116
https://doi.org/10.1109/JSSC.2023.3313116
https://docs.python.org/3/reference/datamodel.html##basic-customization


1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Donovick et al.

https://doi.org/10.1145/3282444
[26] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos

Kozyrakis, et al. 2018. Spatial: A language and compiler for application accelerators. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 296–311.

[27] Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong, Gedeon Nyengele, Keyi Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen, Yuchen Mei,
Maxwell Strange, Ross Daly, Caleb Donovick, Alex Carsello, Taeyoung Kong, Kathleen Feng, Dillon Huff, Ankita Nayak, Rajsekhar Setaluri, James
Thomas, Nikhil Bhagdikar, David Durst, Zachary Myers, Nestan Tsiskaridze, Stephen Richardson, Rick Bahr, Kayvon Fatahalian, Pat Hanrahan, Clark
Barrett, Mark Horowitz, Christopher Torng, Fredrik Kjolstad, and Priyanka Raina. 2023. AHA: An Agile Approach to the Design of Coarse-Grained
Reconfigurable Accelerators and Compilers. ACM Trans. Embed. Comput. Syst. (2023).

[28] Kalhan Koul, Maxwell Strange, Jackson Merlchert, Alex Carsello, Yuchen Mei, Olivia Hsu, Taeyoung Kong, Po-Han Chen, Huifeng Ke, Keyi Zhang,
Qiaoyi Liu, Gedeon Nyengelek, Akhilesh Balasingam, Jayashree Adivarahan, Ritvik Sharma, Zhouhua Xie, Christopher Torng, Joel Emer, Fredrik
Kjolstad, Mark Horowitz, and Priyanka Raina. 2024. Onyx: A 12nm 756 GOPS/W Coarse-Grained Reconfigurable Array for Accelerating Dense and
Sparse Applications. In IEEE Symposium on VLSI Technology & Circuits (VLSI). IEEE.

[29] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. In 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 2–14. https://doi.org/10.1109/CGO51591.2021.9370308

[30] Derek Lockhart, Stephen Twigg, Doug Hogberg, George Huang, Ravi Narayanaswami, Jeremy Coriell, Uday Dasari, Richard Ho, Doug Hogberg,
George Huang, Anand Kane, Chintan Kaur, Tao Kaur, Adriana Maggiore, Kevin Townsend, and Emre Tuncer. 2018. Experiences Building Edge TPU
with Chisel. In 2018 Chisel Community Conference (CCC).

[31] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A unified framework for vertically integrated computer architecture research.
In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 280–292.

[32] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwereins. 2003. ADRES: An architecture with tightly coupled VLIW
processor and coarse-grained reconfigurable matrix. In International Conference on Field Programmable Logic and Applications. Springer, 61–70.

[33] Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly, Ritvik Sharma, Clark Barrett, Mark A Horowitz, Pat Hanrahan, and Priyanka Raina.
2023. APEX: A Framework for Automated Processing Element Design Space Exploration using Frequent Subgraph Analysis. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3. 33–45.

[34] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high level specifications. In Proceedings. Second ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. IEEE, 69–70.

[35] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun.
2017. Plasticine: A reconfigurable architecture for parallel patterns. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 389–402.

[36] Alastair Reid. 2016. Trustworthy specifications of ARM® v8-A and v8-M system level architecture. In 2016 Formal Methods in Computer-Aided
Design (FMCAD). 161–168.

[37] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali
Zaidi. 2016. End-to-end verification of processors with ISA-Formal. In International Conference on Computer Aided Verification. Springer, 42–58.

[38] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1988. Global Value Numbers and Redundant Computations. In Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL’88). Association for Computing
Machinery, New York, NY, USA, 12–27. https://doi.org/10.1145/73560.73562

[39] Ofer Shacham, Omid Azizi, Megan Wachs, Wajahat Qadeer, Zain Asgar, Kyle Kelley, John P Stevenson, Stephen Richardson, Mark Horowitz,
Benjamin Lee, et al. 2010. Rethinking digital design: Why design must change. IEEE Micro 30, 6 (2010), 9–24.

[40] Lenny Truong and Pat Hanrahan. 2019. A golden age of hardware description languages: Applying programming language techniques to improve
design productivity. In 3rd Summit on Advances in Programming Languages (SNAPL 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[41] Lenny Truong, Steven Herbst, Rajsekhar Setaluri, Makai Mann, Ross Daly, Keyi Zhang, Caleb Donovick, Daniel Stanley, Mark Horowitz, Clark
Barrett, et al. 2020. fault: A Python Embedded Domain-Specific Language for Metaprogramming Portable Hardware Verification Components. In
International Conference on Computer Aided Verification. Springer, 403–414.

[42] Keyi Zhang, Zain Asgar, and Mark Horowitz. 2022. Bringing Source-Level Debugging Frameworks to Hardware Generators. In Proceedings of the
59th ACM/IEEE Design Automation Conference (San Francisco, California) (DAC ’22). Association for Computing Machinery, New York, NY, USA,
1171–1176. https://doi.org/10.1145/3489517.3530603

Received 1 February 2024

Manuscript submitted to ACM

https://doi.org/10.1145/3282444
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/3489517.3530603

	Abstract
	1 Introduction
	2 Hardware Types and AST-Tools
	2.1 Hardware Types
	2.2 AST Tools

	3 PEak
	3.1 PEak Normal Form
	3.2 Algebraic Data Types
	3.3 PEak Internals and Extensions
	3.4 peak:usage

	4 Evaluation
	4.1 APEX
	4.2 Rewrite Rule Synthesis
	4.3 Comparison with PyRTL and Chisel

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

