Processor Hardware Security Vulnerabilities and their
Detection by Unique Program Execution Checking

Mohammad Rahmani Fadiheh*, Dominik Stoffel*, Clark Barrett}, Subhasish Mitra'*, Wolfgang Kunz*

*Dept. of Electrical and Computer Engineering
Technische Universitit Kaiserslautern, Germany

Abstract—Recent discovery of security attacks in advanced
processors, known as Spectre and Meltdown, has resulted in high
public alertness about security of hardware. The root cause of
these attacks is information leakage across covert channels that
reveal secret data without any explicit information flow between
the secret and the attacker. Many sources believe that such covert
channels are intrinsic to highly advanced processor architectures
based on speculation and out-of-order execution, suggesting that
such security risks can be avoided by staying away from high-
end processors. This paper, however, shows that the problem is
of wider scope: we present new classes of covert channel attacks
which are possible in average-complexity processors with in-order
pipelining, as they are mainstream in applications ranging from
Internet-of-Things to Autonomous Systems.

We present a new approach as a foundation for remedy against
covert channels: while all previous attacks were found by clever
thinking of human attackers, this paper presents a formal method
called Unique Program Execution Checking which detects and
locates vulnerabilities to covert channels systematically, including
those to covert channels unknown so far.

I. INTRODUCTION

Subtle behaviors of microprocessors, at the level of their
microarchitecture, are the root cause of security breaches
demonstrated in the Spectre [1] and Meltdown [2] attacks.
A microarchitectural side effect is an alteration of the clock
cycle-accurate sequence of data in the program-visible regis-
ters of a processor during program execution, without affecting
the program execution at the level of the Instruction Set Archi-
tecture (ISA). If these subtle alterations of program execution
at the microarchitectural level can be caused by secret data,
this may open a “side channel”. An attacker may trigger and
observe these alterations to infer secret information.

In microarchitectural side channel attacks, the possible
leakage of secret information is based on some microarchitec-
tural resource which creates an information channel between
different software (SW) processes that share this resource.
Various attacking schemes have been reported which can
deduce critical information from the footprint of an encryption
software on the cache [3], [4] or DRAM interface [5].

In these scenarios, the attacker process alone is not capable
of controlling both ends of a side channel. In order to steal
secret information, it must interact with another process initi-
ated by the system, the “victim process”, which manipulates
the secret. This condition for an attack actually allows for
remedies at the SW level which are typically applied to
security-critical SW components like encryption algorithms.
They prohibit the information flow at one end of the channel
which is owned by the victim process.

This general picture was extended by the demonstration of
the Spectre [1] and Meltdown [2] attacks. They constitute a
new class of microarchitectural side channel attacks which
are based on so called “covert channels” in hardware. These
are special cases of microarchitectural side channels in which
the attacker controls both ends of the channel, the part that
triggers the side effect and the part that observes it. In this
scenario, a single user-level attacker program, without the help
of any other process, can establish a microarchitectural side
channel that can leak the secret although it is not manipulated
by any other program. Such HW covert channels not only

978-3-9819263-2-3/DATE19/©)2019 EDAA

TDept. of Electrical Engineering
Stanford University, Stanford, CA, USA Stanford University, Stanford, CA, USA

iDept. of Computer Science

can compromise the usefulness of encryption and secure
authentication schemes, but can steal data from essentially
anywhere in the system.

This paper presents new covert channels in average com-
plexity processors that can have severe implications for a
wide range of applications from Internet-of-Things (IoT) to
Autonomous Systems where simple in-order processors are
commonly used. Our results show that HW vulnerabilities
by covert channels are not only a consequence of early
architectural decisions on the features of a processor, such as
out-of-order execution or speculative execution. In fact, they
can also be introduced at a later design stage in the course of
microarchitectural optimizations, targeting speed and energy,
for example. Clearly, it cannot be expected from a designer
to anticipate all “clever thinking” of potential attackers who
attempt to create covert channels. Therefore, this paper is
dedicated to presenting a new technique which automatically
detects all microarchitectural side effects and points the de-
signer to the HW components that may be involved in the
possible creation of a covert channel.

The key contributions of this paper are as follows:

(i) This paper, for the first time, presents the experimental
evidence that new kinds of covert channel attacks are also
possible in simple in-order processors. We present the Orc
attack, which uses a so far unknown type of covert channel.

(i) We present a method for HW security analysis by
Unique Program Execution Checking (UPEC). UPEC employs
a formal analysis on the microarchitectural level (RTL). By
employing the proposed UPEC methodology the designer can
precisely assess during design time to what extent hardware
security is affected by the detailed design decisions.

(ii1) Based on UPEC, for the first time, covert channels can
be detected by a systematic and largely automated analysis
rather than only by anticipating the clever thinking of a
possible attacker. UPEC can even detect previously unknown
HW vulnerabilities, as demonstrated by the discovery of the
Orc attack in our experiments.

An extended version of the paper can be found in [6].

II. RELATED WORK

Information flow tracking (IFT) has been widely used in
the field of security for HW/SW systems. Its core idea is to
enhance the hardware and/or the software in a way that the
flow of information is explicitly visible [7], [8]. Also the CC-
hunter technique instruments a processor to uncover covert
channel communication at run time [9]. These methods incur
high overhead on the design and demand modifications at
different levels of the system, such as in the instruction set
architecture (ISA), the operating system (OS) and the HW
implementation.

Quantitative analysis of timing side channels by SVF [10]
is a design-time technique to secure a system against illegal
timing information flows. The main goal is to identify a rea-
sonable trade-off between security and performance overheads
rather than making a design provably secure.

Software verification techniques have been developed to
verify security requirements in software [11], [12], [13]. How-
ever, the security threats in HW/SW systems are not limited to

994

the software alone. Vulnerabilities can emerge from HW/SW
interaction or, like in the case of Spectre and Meltdown, from
the hardware itself. This category of security threats may only
be visible at a specific level of hardware abstraction. It poses
new challenges in modeling the information flow through
hardware as well as in defining and solving the relevant
verification tasks.

Extending information flow analysis with instruction level
abstraction (ILA) is proposed in [14] to create a HW-
dependent model of the software and formally verify security
requirements at the HW/SW interface. Vulnerabilities at the
microarchitectural HW level are, however, not covered. Other
previous work on applying formal methods to detect security
vulnerabilities in hardware is based on the idea of adopting
notions of raint analysis for software in the HW domain. This
was pioneered in [15], [16] and represents the research which
is the most closely related to our work. In those approaches
a HW security requirement, such as a specific confidentiality
requirement, is formulated in terms of a faint property [15]
along a certain path in the design. In order to formulate
the properties in CTL, certain assumptions about the attack
are required which significantly restrict the coverage of the
method. As an alternative, a miter-based equivalence checking
technique, with some resemblance to our computational model
in Sec. IV, has been used in previous approaches [16], [17].
Although this increases the generality of the proof, it still
restricts the attack to a certain path. Moreover, since some
of this work considers verification at the architectural level,
vulnerabilities based on microarchitectural side channels are
not detectable.

Taint analysis by these approaches has shown promise for
formal verification of certain problems in hardware security,
for example, for proving key secrecy in an SoC. However,
these methods demand making assumptions on what paths
are suspicious. They require some ‘“clever thinking” along
the lines of a possible attacker. As a result, non-obvious or
unprecedented side channels may be missed.

III. OrRC: A NEwW KIND OF COVERT CHANNEL ATTACK

For reasons of performance, many cache designs employ
a pipelined structure which allows the cache to receive new
requests while still processing previous ones. However, this
can create a Read-After-Write (RAW) Hazard in the cache
pipeline, if a load instruction tries to access an address for
which there is a pending write.

A RAW hazard needs to be properly handled in order to
ensure that the correct values are read. A straightforward
implementation uses a dedicated hardware unit called hazard
detection that checks for every read request whether or not
there is a pending write request to the same cache line. If
so, all read requests are removed until the pending write has
completed. The processor pipeline is stalled, repeating to send
read requests until the cache interface accepts them.

In the following, we show an example how such a cache
structure can create a security vulnerability allowing an at-
tacker to open a covert channel. Let’s assume we have a
computing system with a cache with write-back/write-allocate
policy and the RAW hazard resolution just described. In the
system, some confidential data (secret data) is stored in a
certain protected location (protected address).

For better understanding of the example, let us make some
more simplifying assumptions that, however, do not com-
promise the generality of the described attack mechanism.
We assume that the cache holds a valid copy of the secret
data (from an earlier execution of privileged code). We also
simplify by assuming that each cache line holds a single byte,
and that a cache line is selected based on the lower 8 bits

Design, Automation And Test in Europe (DATE 2019)

1: 1i x1, #protected_addr // x1 < #protected_addr
2: 1i x2, #accessible_addr // %2 4 #accessible_addr
3: addi x2, x2, #test_value // x2 < x2 + f#test_value
4: sw x3, 0(x2) // mem[x2+0] < x3
5: 1lw x4, 0(x1) // x4 4+ mem[x1+0]
6: 1w x5, 0(x4) // x5 < mem[x4+0]

Fig. 1. Example of an Orc attack (RISC-V code)

of the address of the cached location. Hence, in our example,
there are a total of 28 = 256 cache lines.

The basic mechanism for the Orc attack is the following.
Every address in the computing system’s address space is
mapped to some cache line. If we use the secret data as an
address, then the secret data also points to some cache line.
The attacker program “guesses” which cache line the secret
data points to. It sets the conditions for a RAW hazard in
the pipelined cache interface by writing to the guessed cache
line. If the guess was correct then the RAW hazard occurs,
leading to slightly longer execution time of the instruction
sequence than if the guess was not correct. Instead of guessing,
of course, the attacker program iteratively tries all 256 possible
cache locations until successful.

Fig. 1 shows the instruction sequence for one such iteration.
The shown #test_value represents the current guess of the
attacker and sets the RAW hazard conditions for the guessed
cache line. The sequence attempts an illegal memory access
in instruction #5 by trying to load the secret data from the
protected address into register x4. The processor correctly
intercepts this attempt and raises an exception. Neither is
the secret data loaded into x4 nor is instruction #6 executed
because the exception transfers control to the operating system
with the architectural state of instruction #5. However, before
control is actually transferred, instruction #6 has already
entered the pipeline and has initiated a cache transaction. The
cache transaction has no effect on the architectural state of the
processor. But the execution time of the instruction sequence
depends on the state of the cache. When probing all values
of #test_value, the case will occur where the read request
affects the same cache line as the pending write request, thus
creating a RAW hazard and a stall in the pipeline. It is this
difference in timing that can be exploited as a side channel.

Assuming the attacker knows how many clock cycles it
takes for the kernel to handle the exception and to yield the
control back to the parent process, the attacker can measure
the difference in execution time and determine whether the
lower 8 bits of the secret are equal to #test_value or not.
By repeating the sequence for up to 256 times (in the worst
case), the attacker can determine the lower 8 bits of the secret.
If the location of the secret data is byte-accessible, the attacker
can reveal the complete secret by repeating the attack for each
byte of the secret. Hardware performance counters can further
ease the attack since they make it possible to explicitly count
the number of stalls.

This new covert channel can be illustrated at the example
of the RISC-V Rocketchip [18]. The original Rocketchip
design is not vulnerable to the Orc attack. However, with
only a slight modification (17 lines of code (LoC) in an
RTL design of ~250,000 LoC) and without corrupting the
functionality, it was possible to insert the vulnerability. The
modifications actually optimized the performance of the design
by bypassing a buffer in the cache, by which an additional stall
between consecutive load instructions with data dependency
was removed. There was no need to introduce any new state
bits or to change the interface between the core and the cache.
The attack does not require the processor to start from a
specific state: any program can precede the code snippet of
Fig. 1. The only requirement is that protected_addr and
accessible_addr reside in the cache before executing the
code in Fig. 1.

995

The described vulnerability is a very subtle one, compared
to Meltdown and Spectre. It is caused by a RAW hazard not in
the processor pipeline itself but in its interface to the cache. It
is very hard for a designer to anticipate an attack scenario
based on this hazard. The timing differences between the
scenarios where the RAW hazard is effective and those where
it isn’t are small. Nevertheless, they are measurable and can
be used to open a covert channel.

This new type of covert channel discovered by UPEC gives
some important messages:

(i) Subtle design changes in standard RTL processor de-
signs, such as adding or removing a buffer, can open or close
a covert channel. Although specific to a particular design, such
vulnerabilities may inflict serious damage, once such a covert
channel becomes known in a specific product.

(i1) The Orc attack presented above is based on the interface
between the core (a simple in-order core in this case) and
the cache. This provides the insight that the orchestration of
component communication in an SoC, such as RAW hazard
handling in the core-to-cache interface, may also open or
close covert/side channels. Considering the complex details of
interface protocols and their implementation in modern SoCs,
this can further complicate verifying security of the design
against covert channel attacks.

(iii) The new insight that the existence of covert channels
does not rely on certain types of processors but on decisions
in the RTL design phase underlines the challenge in capturing
such vulnerabilities and calls for methods which can deal with
the high complexity of RTL models and do not rely on a priori
knowledge about the possible attacks.

These challenges motivate the UPEC approach proposed in
the following sections.

IV. UNIQUE PROGRAM EXECUTION CHECKING (UPEC)

Confidentiality in HW/SW systems requires that an un-
trusted user process must not be able to read protected secret
data. In case of a microarchitectural covert channel attack,
the attacker cannot read the secret data directly. Nevertheless,
confidentiality is violated because the execution timing of
the attacker process depends on the secret data, and the
timing information is measurable, e.g., through user-accessible
counters. These timing differences may stem from various
sources that need to be exhaustively evaluated when verifying
confidentiality.

In the following, we refer to the computing system to be
analyzed for security as System-on-Chip (SoC) and divide its
state variables into two sets: state variables associated with the
content of its memory (main memory and memory-mapped
periphery) and state variables associated with all other parts
of the hardware, the logic parts.

Definition 1 (Microarchitectural State Variables). The mi-
croarchitectural state variables of an SoC are the set of all
state variables (registers, buffers, flip-flops) belonging to the
logic part of the computing system’s microarchitecture. [

A subset of these microarchitectural state variables are
program-visible:

Definition 2 (Architectural State Variables). The architectural
state variables of an SoC are the subset of microarchitectural
state variables that define the state of program execution at
the ISA level (excluding the program state that is represented
in the program’s memory).

Definition 3 (Secret Data, Protected Location). A set of secret
data D is the content of memory at a protected location A,
i.e., there exists a protection mechanism such that a user-level
program cannot access A to read or write D. O

996

1

secret_data,
other_mem

!

other_mem,

Constraint:

secret_data,
other_mem,

y!

other_mem,

Fig. 2. Computational model for UPEC

The protected location may be in the main memory space, in
peripherals or in other type of storage in the non-logic part of
the computing system. In addition, there may exist temporary
copies of the secret data in the cache system.

Definition 4 (Unique Program Execution). A program exe-
cutes uniquely w.r.t. a secret D if and only if the sequence
of valuations to the set of architectural state variables is
independent of the values of D, in every clock cycle of
program execution. g

In other words, a user-level program executes uniquely
if different secrets in the protected location do not lead to
different values of the architectural states or to different time
points when these values are assigned.

Definition 5 (Confidentiality/Observability). A set of secret
data D in a protected location A is confidential if and only if
any user-level program executes uniquely w.r.t. D. Otherwise
D is observable. g

Based on this definition, confidentiality is established by
proving unique program execution at the RTL. In order to
make property checking applicable to UPEC, we present a
tailor-made computational model and formulate a specific
property to be proven on this model.

Fig. 2 shows the model that is used in our UPEC approach.
It can be derived automatically from the RTL description
of the design and only requires the user to provide the
protected memory region. In this model, SoC; and SoCsq
are two identical instances of the logic part of the SoC under
verification. Memory, and Memory,, as indicated in the figure,
hold the same set of values except for the memory location of
a defined secret data.

Based on this model, we propose the UPEC property: For a
system to be secure w.r.t. covert channel attacks, the compu-
tational model derived from the design’s RTL description has
to fulfill the following CTL property:

AG (secret_data_protected
A\ micro_soc_stater = micro_soc_states
— AG soc_statey, = soc_states) (1)

In this formulation, micro_soc_state is a vector of all microar-
chitectural state variables, as defined in Def. 1, soc_state is
some vector of state variables which includes, as a subset,
all architectural state variables as defined in Def. 2 but not
necessarily all other microarchitectural state variables. The
constraint secret_data_protected specifies that a protection
mechanism in the hardware is enabled for the secret data
memory location.

The property in Eq. 1 fails if and only if, in the system
under verification, there exists a state, soc_state, such that the
transition to the next state, soc_state’, depends on the secret

Design, Automation And Test in Europe (DATE 2019)

data. This covers all situations in which program execution is
not unique.

For reasons of computational complexity standard solutions
of CTL model checking will fail so that a method specialized
to this problem has been developed, as described in Sec. V.

Importantly, in our methodology we will consider situations
where soc_state, besides the architectural state variables of the
SoC, includes some or all microarchitectural state variables,
such as the pipeline buffers. Producing a unique sequence
for a superset of the architectural state variables represents
a sufficient but not a necessary condition for unique program
execution. This is because secret data may flow to microar-
chitectural registers which are not observable by the user
program, i.e., they do not change program execution at any
time, and, hence, no secret data is leaked.

We therefore distinguish the following kinds of counterex-
amples to the UPEC property:

Definition 6 (L-alert).

A leakage alert (L-alert) is a counterexample leading to a state
with soc_state; # soc_states where the differing state bits are
architectural state variables. (]

L-alerts indicate that secret data can affect the sequence of
architectural states. This reveals a direct propagation of secret
data into an architectural register (that would be considered a
functional design bug), or a more subtle case of changing the
timing and/or the values of the sequence without violating
the functional design correctness and without leaking the
secret directly. UPEC will detect the HW vulnerability in both
cases. While the former case can be covered also by standard
methods of functionally verifying security requirements, this
is not possible in the latter case. Here, the opportunity for a
covert channel attack may be created, as elaborated for the
Orc attack in Sec. III.

Definition 7 (P-alert). A propagation alert (P-alert) is a coun-
terexample leading to a state with soc_state; # soc_states
where the differing state bits are microarchitectural state
variables that are not architectural state variables. O

P-alerts show possible propagation paths of secret data
from the cache or memory to program-invisible, internal state
variables of the system. A P-alert, very often, is a precursor to
an L-alert, because the secret often traverses internal, program-
invisible buffers in the design before it is propagated to an
architectural state variable like a register in the register file.

The reason why soc_state in our methodology may also
include program-invisible state variables will be further elab-
orated in the following sections. In principle, our method
could be restricted to architectural state variables and L-alerts.
P-alerts, however, can be used in our proof method as early
indicators for a possible creation of a covert channel. This
contributes to mitigating the computational complexity when
proving the UPEC property.

V. UPEC ON A BOUNDED MODEL

Proving the property of Eq. 1 by classical unbounded CTL
model checking is usually infeasible for SoCs of realistic
size. Therefore, we pursue a SAT-based approach based on
“any-state proofs” in a bounded circuit model. This variant
of Bounded Model Checking (BMC) [19] is called Interval
Property Checking (IPC) [20] and is applied to the UPEC
problem in a similar way as in [21] for functional processor
verification.

For proving the absence of L-alerts by our bounded ap-
proach, in the worst case, we need to consider a time window
as large as the sequential depth, dsoc, of the logic part of the
examined SoC. However, employing a symbolic initial state

Design, Automation And Test in Europe (DATE 2019)

assume:
at t: secret_data_protected();
at t: micro_soc_state; = micro_soc_states;
at t: no_ongoing_protected_access();
during t..t + k: cache_monitor_valid_IO();

prove:
at t + k: soc_state1 = soc_states;

Fig. 3. UPEC property (Eq. 1) formulated as interval property

enables the solver to often capture hard-to-detect vulnerabil-
ities within much smaller time windows. A violation of the
UPEC property is actually guaranteed to be indicated by a
P-alert in only a single clock cycle needed to propagate secret
data into some microarchitectural state variable of the logic
part of the SoC. In practice, however, it is advisable to choose
a time window for the bounded model which is as long as the
length, dyem, of the longest memory transaction. When the
secret is in the cache, dygm is usually the number of clock
cycles for a cache read. When the secret is not in the cache,
dmem 1s the number of clock cycles the memory response
takes until the data has entered the cache system, e.g., in a
read buffer. This produces P-alerts of higher diagnostic quality
and provides a stronger basis for inductive proofs that may be
conducted subsequently, as discussed in Sec. VI.

Proving a property by IPC is usually more challenging
than by BMC due to spurious counterexamples and proof
complexity. In UPEC, we address this challenge in a structured
way by adding well-defined constraints to the proof without
restricting its generality. Since both SoC instances of our
computational model start with the same initial state, all of
the unreachable initial states and spurious behaviors have the
same manifestation in both SoC instances and therefore do not
violate the uniqueness property, except for the states related
to the memory elements holding the secret value.

Constraint 1, “no on-going protected accesses”. A priv-
ileged process can freely access protected memory regions
and copy its content to user-accessible registers. In order to
exclude such an explicit leakage scenario, the proof must
be constrained to exclude such initial states that implicitly
represent ongoing memory transactions in which protected
memory regions are accessed.

Constraint 2, “cache I/O is valid”. In order to exclude
spurious behaviors of the cache controller, we ensure the
protocol compliance and valid I/O behavior of the cache by
instrumenting the RTL verification model with a special cache
monitor.

It should be noted that these constraints do not restrict
the generality of our proof. They are, actually, invariants of
the global system. Their validity follows from the functional
correctness of the operating system (OS) and the SoC. More
details on constraints can be found in [6].

The interval property for UPEC is shown in Fig. 3. The
macro secret_data_protected() denotes that in both SoC in-
stances, a memory protection scheme is enabled in the hard-
ware for the memory region holding the secret data. The macro
no_ongoing_protected_access() implements constraint 1, and
macro cache_monitor_valid_IO() implements constraint 2.

VI. METHODOLOGY

Fig. 4 shows the general flow of UPEC-based HW security
analysis. Checking the UPEC property (Eq. 1) is at the
core of a systematic, iterative process by which the designer
identifies and qualifies possible HW vulnerabilities in the
design. The UPEC property is initialized on a bounded model
of length dypm and with a proof assumption and obligation
for the complete set of microarchitectural state variables.

997

Initialize UPEC property

Verify
UPEC property

Manually analyze
counterexample

Design
secure?

If the UPEC property can be successfully verified, then
the design is proven to be free of side effects that can be
exploited as covert channels. If the property fails it produces
a counterexample which can be either an L-alert or a P-alert.
An L-alert exposes a measurable side effect of the secret
data on the architectural state variables, rendering the design
insecure. A P-alert documents a side effect of the secret
data on microarchitectural state variables that are not directly
accessible by the attacker program. In principle, the designer
can now remove the affected microarchitectural state variables
from the proof obligation of the UPEC property (while keeping
the complete set of microarchitectural state variables in the
proof assumption), and then re-iterate the process to search for
a different counterexample. The process is bound to terminate
because, eventually, either an L-alert occurs or the design is
secure.

In practice, however, the designer will not simply eliminate
a P-alert but instead will analyze the counterexample. As
mentioned before, an L-alert may have one or several shorter
P-alerts as precursors. Since the P-alert is a shorter coun-
terexample than the corresponding L-alert it can be computed
with less computational effort, including shorter proof times.
A P-alert belonging to an L-alert documents the earliest
manifestation of a side effect and points the designer to the
source of the vulnerability that causes the side effect. If the
security compromise is already obvious from the P-alert the
designer may abort the iterative process of Fig. 4 by deeming
the P-alert as “insecure” and change the RTL in order to
remove the vulnerability. This may be as simple as adding or
removing a buffer. Note that if the designer wrongly deems a
P-alert as “secure” then the security compromise is detected by
another P-alert later, or, eventually, by an L-alert. The penalty
for making such a mistake is the increase in run times for
checking the later UPEC property instances.

If the procedure terminates without producing an L-alert
this is not a complete proof that the design is secure, unless
we increment the length of the model to dsoc. The alternative
is to take the P-alerts as starting point for proving security
by an inductive proof of the property in Eq. 1 for the special
case of an initial state derived from the considered P-alert. A
P-alert can be deemed as secure if the designer knows that the
values in the affected microarchitectural state variables will
not propagate under the conditions under which the P-alert
has occurred. In other words, in a secure P-alert, a certain
condition holds which implicitly represents the fact that the
propagation of secret data to architectural registers will be
blocked. In order to conduct the inductive proof the designer
must identify these blocking conditions for each P-alert. Based
on the UPEC computational model (Fig. 2) the inductive proof
checks whether or not the blocking condition always holds for
the system once the corresponding P-alert has been reached.

Finally, there is always the conservative choice of mak-

Design is
secure

L-alert
Design is
NOT secure

Fig. 4. UPEC Methodology

Remove
corresponding
state bits from

commitment

998

TABLE I
UPEC METHODOLOGY EXPERIMENTS

D cached D not cached

dMEM 5 34
Feasible k 9 34

of P-alerts 20 0

of RTL registers causing P-alerts 23 N/A
Proof runtime 3 hours 35 min
Proof memory consumption 4 GB 8 GB
Inductive proof runtime 5 min N/A

Manual effort 10 person days 5 person hours

ing design changes until no P-alerts occur anymore, thus,
establishing full security for the modified design w.r.t. covert
channels.

VII. EXPERIMENTS

We explored the effectiveness of UPEC by targeting dif-
ferent design variants of Rocketchip [18], an open-source
RISC-V SoC generator. The considered Rocketchip design
is a single-core SoC with in-order pipelined processors
and separate data and instruction level-1 caches. All results
were obtained using the commercial property checker One-
Spin 360 DV-Verify on an Intel Core i17-6700 CPU with 32 GB
of RAM, running at 3.4 GHz.

In order to evaluate the effectiveness of UPEC for capturing
vulnerabilities we targeted the original design of Rocketchip
and two design variants made vulnerable to (a) a Meltdown-
style attack and (b) an Orc attack, with only minimal design
modifications. Functional correctness was not affected and
the modified designs successfully passed all tests provided
by the RISC-V framework. UPEC successfully captured all
vulnerabilities. In addition, UPEC found an ISA incompliance
in the Physical Memory Protection (PMP) unit of the original
design.

For the Meltdown-style attack we modified the design such
that a cache line refill is not canceled in case of an invalid
access. While the illegal access itself is not successful but
raises an exception, the cache content is modified and can
be analyzed by an attacker. We call this a Meltdown-style
attack since the instruction sequence for carrying out the attack
is similar to the one reported by [2]. Note, however, that in
contrast to previous reports we create the covert channel based
on an in-order pipeline.

For the Orc attack, we conditionally bypassed one buffer,
as described in Sec. III, thereby creating a vulnerability that
allows an attacker to open a covert timing side channel.

In our experiments, the secret data is assumed to be in a
protected location, A, in the main memory. Protection was
implemented using the Physical Memory Protection (PMP)
scheme of the RISC-V ISA by configuring the memory region
holding the location A of the secret data as inaccessible in user
mode.

A. Experiments on the original Rocketchip design

We conducted experiments on the original design for two
cases: (1) D initially resides in the data cache and main
memory, and, (2) D initially only resides in the main memory;
cf. the columns labeled “D in cache” and “D not in cache”
in Tab. L.

For the experiment with D not in the cache, UPEC proves
that there exists no P-alert. This means that the secret data
cannot propagate to any part of the system and therefore, the
user process cannot fetch the secret data into the cache or
access it in any other way. As a result, the system is proven
to be secure for the case that D is not in the cache. Since
the property proves already in the first iteration of the UPEC

Design, Automation And Test in Europe (DATE 2019)

TABLE II
DETECTING VULNERABILITIES IN MODIFIED DESIGNS

Design variant/vulnerability Orc Meltdown-style
Window length for P-alert 2 4

Proof runtime for P-alert 1 min 1 min
Window length for L-alert 4 9

Proof runtime for L-alert 3 min 18 min

methodology that there is no P-alert, the verification can be
carried out within few minutes of CPU time and without any
manual analysis.

For the case that D is initially in the cache, we need to
apply the iterative UPEC methodology (Fig. 4) in order to
find all possible P-alerts. We also tried to capture an L-alert
by increasing the length k of the time window, until the solver
aborted because of complexity. The second row in the table
shows the maximum k that was feasible. The following rows
show the computational effort for this k.

Each P-alert means that the secret influences certain mi-
croarchitectural registers. As elaborated in Sec. VI, using stan-
dard procedures of commercially available property checking,
we can establish proofs by mathematical induction, taking the
P-alerts as the base case of the induction. In this way, we
proved security from covert channels also for the case when
the secret is in the cache. The manual effort for this lies within
a few person days and is small compared to the total efforts
for processor design. The complexity of an inductive proof
for one selected case of the P-alerts is shown in Table I as an
example.

B. Experiments on the modified Rocketchip designs

Table II shows the proof complexity for finding the vul-
nerabilities in the modified designs. For each case, the UPEC
methodology produced meaningful P-alerts and L-alerts. When
incrementing the window length in search for an L-alert, new
P-alerts occurred which were obvious indications of security
violations. None of these violations exploits any branch pre-
diction of the Rocketchip. For example, in the Meltdown-
style vulnerability, within seconds UPEC produced a P-alert
in which the non-uniqueness manifests itself in the valid bits
and tags of certain cache lines. This is a well-known starting
point for side channel attacks so that, in practice, no further
examinations would be needed. However, if the designer does
not have such knowledge the procedure may be continued
without any manual analysis until an L-alert occurs. This took
about 18 min of CPU time. For the design vulnerable to an
Orc attack the behavior was similar, as detailed in Table II.

C. Violation of memory protection in Rocketchip

UPEC also found a case of ISA incompliance in the im-
plementation of the RISC-V PMP mechanism in Rocketchip.
The PMP mechanism was not correctly implemented in Rock-
etchip. The PMP implementation allowed the modification of
a locked memory configuration in privileged mode without
requiring a reboot. This is clearly a vulnerability, and a
bug with respect to the specification which was detected by
applying UPEC. (In the current version of Rocketchip, the bug
has already been fixed.)

VIII. CONCLUSION

This paper has shown that covert channel attacks are not
limited to high-end processors but can affect a larger range
of architectures. While all previous attacks were found by
clever thinking of a human attacker, this paper presented
UPEC, an automated method to systematically detect all
vulnerabilities by covert channels, including those by covert

Design, Automation And Test in Europe (DATE 2019)

channels unknown so far. Future work will explore measures
to improve the scalability of UPEC to handle larger processors.
By automating the construction of induction proofs described
in Sec. VI, the UPEC computational model can be restricted to
only two clock cycles, thus, drastically reducing computational
complexity. In addition, a compositional approach to UPEC
will be explored.

ACKNOWLEDGMENT

We thank Mark D. Hill (U. of Wisconsin), Quinn Jacobson
(Achronix Semiconductor Corp.) and Simha Sethumadhavan
(Columbia U.) for their valuable feedback. The reported
research was partly supported by BMBF KMU-Innovativ
01IS17083C (Proforma) and by DARPA.

REFERENCES

[1] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[3] C. Percival, “Cache missing for fun and profit,” in BSDCan, 2005.
[Online]. Available: http://www.daemonology.net/papers/htt.pdf

[4] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: a high resolution, low
noise, L3 cache side-channel attack.” in USENIX Security Symposium,
vol. 1, 2014, pp. 22-25.

[5] P. Pessl, D. Gruss, C. Maurice, and S. Mangard, “Reverse engineering
intel DRAM addressing and exploitation,” ArXiv e-prints, 2015.

[6] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, “Processor
hardware security vulnerabilities and their detection by unique program
execution checking,” arXiv preprint arXiv:1812.04975, 2018.

[71 G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in ACM Sigplan
Notices, vol. 39, no. 11. ACM, 2004, pp. 85-96.

[8] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in ACM Sigplan Notices, vol. 44, no. 3. ACM, 2009, pp. 109-120.

[9] J. Chen and G. Venkataramani, “CC-Hunter: Uncovering covert timing

channels on shared processor hardware,” in Annual IEEE/ACM Intl.

Symp. on Microarchitecture. 1EEE, 2014, pp. 216-228.

J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-

channel vulnerability factor: A metric for measuring information leak-

age,” in Annual International Symposium on Computer Architecture

(ISCA). 1IEEE, 2012, pp. 106-117.

[11] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of

Computer Security, vol. 18, no. 6, pp. 1157-1210, 2010.

D. Von Oheimb and S. Mdodersheim, “ASLan++a formal security speci-

fication language for distributed spercystems,” in Intl. Symp. on Formal

Methods for Components and Objects. Springer, 2010, pp. 1-22.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to

know about dynamic taint analysis and forward symbolic execution (but

might have been afraid to ask),” in IEEE symposium on Security and

privacy (SP). 1EEE, 2010, pp. 317-331.

P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying

information flow properties of firmware using symbolic execution,” in

Design, Automation & Test in Europe Conference (DATE). 1EEE, 2016,

pp. 337-342.

P. Subramanyan and D. Arora, “Formal verification of taint-propagation

security properties in a commercial SoC design,” in Design, Automation

& Test in Europe Conference (DATE). 1EEE, 2014, p. 313.

G. Cabodi, P. Camurati, S. F. Finocchiaro, F. Savarese, and D. Ven-

draminetto, “Embedded systems secure path verification at the HW/SW

interface,” IEEE Design & Test, vol. 34, no. 5, pp. 38-46, 2017.

W. Hu, A. Ardeshiricham, and R. Kastner, “Identifying and measuring

security critical path for uncovering circuit vulnerabilities,” in Inter-

national Workshop on Microprocessor and SOC Test and Verification

(MTV). 1IEEE, 2017.

K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,

C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The

rocket chip generator,” EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking

without BDDs,” in Proceedings of the 5th International Conference on

Tools and Algorithms for Construction and Analysis of Systems, ser.

TACAS ’99. London, UK, UK: Springer-Verlag, 1999, pp. 193-207.

M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and

W. Kunz, “Unbounded protocol compliance verification using interval

property checking with invariants,” IEEE Transactions on Computer-

Aided Design, vol. 27, no. 11, pp. 20682082, November 2008.

M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel,

and W. Kunz, “Symbolic quick error detection using symbolic initial

state for pre-silicon verification,” in Design, Automation & Test in

Europe Conference (DATE). 1EEE, 2018, pp. 55-60.

[2

—

(10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

999

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

