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Abstract—Driven by the demand for highly customizable pro-
cessor cores for IoT and related applications, there is a renewed
interest in effective but low-cost techniques for verifying systems-
on-chip (SoCs). This paper revisits the problem of processor
verification and presents a radically different approach when
compared to the state of the art. The proposed approach is
highly automated and leverages recent progress in the field of
post-silicon validation by the method of Quick Error Detection
(QED) and Symbolic Quick Error Detection (SQED).

In this paper, we modify SQED by incorporating a symbolic
initial state in its BMC-based analysis and generalize the ap-
proach into the S?>QED method. As a first advantage, S?QED
can separate logic bugs from electrical bugs in QED-based post-
silicon validation. Secondly, it also makes a strong contribution
to pre-silicon verification by proving that the execution of
each instruction is independent of its context in the program.
The manual efforts for the proposed approach are orders of
magnitude smaller than for conventional property checking. Our
experimental results demonstrate the potential of S>QED using
the Aquarius open-source processor example.

Index Terms—formal verification, post-silicon validation,

Quick Error Detection, S’QED.

I. INTRODUCTION

While today’s techniques for pre-silicon verification account
for more than 50% of the total efforts in the System-on-Chip
(SoC) design cycle [1], they often are still inadequate for
detecting difficult design bugs before tape-out [1], [2], [3].
These bugs have to be found in post-silicon validation and
must be fixed or bypassed by patching or re-spinning which
drastically increases design time and costs [3].

With the increasing complexity of microarchitectures and
the growing demand for highly optimized and individually cus-
tomized processors, for example for Internet of Things (IoT)
applications, processor verification is an increasing challenge
in SoC design. In this paper, we address the renewed need for
low-cost but highly effective processor verification techniques
and propose a radically new approach for this purpose.

Processors are specified in programmer-level models, called
instruction set architecture (ISA). An ISA describes the in-
structions as independent operations of the system that exe-
cute separately from each other; however, the implemented
microarchitecture usually executes several instructions in par-
allel with the help of static and dynamic pipelining, and
related concepts. As a result of the complex interrelations
between different instructions executed in a sequence, in
modern microarchitectures it is a major challenge to prove
that the correct execution of each instruction is independent of
other instructions in the pipeline and of the previous program
history. In other words, it must be shown that the semantics
of an instruction does not depend on its context in the
program but is uniquely defined in the given implementation.
This proof, however, is not at all a trivial task. The errata
sheets published for modern processors attest to this and often
describe dozens of functional bugs related to this problem.
“Work-arounds” are proposed that must be taken into account
by the programmer or must be implemented in the compiler. In
such cases, the “work-around” usually consists in restricting
the use of an instruction to a specific context in which its
behavior is correct. One of the main contributions of this paper
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is that functional bugs of this category will be avoided by the
proposed approach.

To this date, industrial practice in processor verification
heavily relies on simulation. Most techniques are based on
code coverage, signal toggle coverage or similar notions
and fall short of exploring the state space completely. Since
many difficult bugs in microprocessors, as described above,
are related to control logic and depend on the state of the
system [4], they may escape simulation and remain undetected
until post-silicon validation.

A tremendous amount of research has been carried out in
the field of formal processor verification over the years. We
sketch only briefly some cornerstones, many of them dating
back for at least a decade. Dill and Burch used a quantifier-free
logic containing uninterpreted functions to verify a pipelined
processor [4], [5]. Their work inspired a lot of other research
abstracting from the complexity of the datapath combined
with different Boolean methods such as symbolic model
checkers [6], [7] and BDD-based decision procedures [8].
These methods usually work on abstract models of a proces-
sor. However, most of the difficult bugs appear in the RTL
description of the design [9] and can be missed easily in an
abstract model.

Numerous approaches have been proposed in the past
applying SAT-based formal verification [10] to SoCs and
processors. In a practical study by [11] it was shown that SAT-
based property checking techniques can “completely” [12],
[13] verify an RTL description against its formalized ISA
specification. While this can eliminate all functional design
bugs from the processor’s errata sheets, the manual effort for
such approaches is significant and is reported to be around
2,000 lines of code (LoC) per person month [11]. A more
automatic SAT-based approach to verify RTL descriptions of
microprocessors is proposed by [9]. While it can be carried
out with a lower amount of manual work compared to standard
property checking, it lacks the coverage obtainable by property
checking. Using Bounded Model Checking (BMC) [14] as
its proof method it is effective in finding counterexamples,
however, it is not adequate to allow for a valid conclusion
about the absence of bugs.

Motivated by the renewed interest in low-cost solutions for
highly effective processor verification, as described above, this
paper takes a fresh look at the problem, leveraging current
trends and developments in the field of post-silicon validation.
Symbolic Quick Error Detection (SQED) [15], [16] is a new
and completely different approach to tackle the verification
of SoCs. This method, which is primarily designed for bug
localization in post-silicon validation, is also useful for pre-
silicon verification. It is based on Quick Error Detection
(QED) software tests [17] and employs BMC as its proof
method. SQED tries to find the shortest possible QED tests
which expose functional design bugs in the design.

Despite its effectiveness for post-silicon bug localization and
bug hunting in pre-silicon verification, SQED does not provide
a well-defined conclusion about the functional correctness of
the design or the absence of certain classes of bugs. This is
not only an issue in pre-silicon verification but also causes
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problems in post-silicon validation. If a functional design bug,
also called “logic bug”, escapes pre-silicon verification, this
makes the bug localization for a failed QED test much harder,
since post-silicon validation needs to clearly distinguish be-
tween electrical and logic bugs to find the root cause of a
failure.

In this paper, we propose S?’QED (Symbolic initial state
Symbolic Quick Error Detection) for detecting logic bugs in
processors. It is based on extensions and modifications of
SQED and uses a symbolic initial state in its analysis to
increase the generality of its results.

These are the key characteristics of S?QED:

1) As shown in this paper for static processors, S>QED for-
mally proves the absence of all logic bugs that are detectable
by a certain class of QED tests [17]. Hence, in post-silicon
validation any failed QED test (of this class) is guaranteed to
be caused by an electrical bug, provided that the design passed
S?QED in pre-silicon verification.

2) S*QED provides a well-defined contribution to pre-
silicon processor verification. It proves that every instruction
executes in the same way, independently of its context in
the program, thus, guaranteeing a uniquely defined instruction
semantics.

3) S?QED is automated to a large extent and requires only
little “white-box” information about the design.

4) S?QED unlike other processor verification techniques
does not rely on executable specification models and does not
require a formal specification of the ISA model.

The usefulness of this method is demonstrated in this paper
by verifying the open-source Aquarius processor, a 5-stage
in-order pipeline processor based on the SH2 ISA. As will
be shown, S?QED is capable of proving correctness of the
processor with respect to QED-detectable bugs in a reasonable
time. It also detects bugs which are not detectable by SQED.
The amount of manual work for this method is found to be
much lower than for state-of-the-art property checking.

The rest of the paper is organized as follows. Sec. II briefly
reviews QED and SQED. A first approach of generalizing
SQED by any-state proofs is discussed in Sec. III. Sec. IV
provides a detailed explanation of the S?’QED method. Exper-
imental results are reported in Sec. V, followed by concluding
remarks in Sec. VL.

II. BACKGROUND
A. Quick Error Detection

Quick Error Detection (QED) relies on a set of software
transformations which transform an existing program into
QED tests by inserting various check instructions to reduce
the error detection latency of bugs. Error Detection using
Duplicated Instructions for Validation (EDDI-V) is one of
these software transformations which targets bugs inside the
processor. In this paper, we focus on EDDI-V tests.

EDDI-V partitions the register file into two sets, called
original registers and duplicated registers, with a unique
correspondence mapping between the two sets. In the same
way, the memory space of the program is duplicated and a
mapping between corresponding software variables is set up.
At the beginning of the program, each pair of corresponding
registers (memory locations) must be initialized with the same
data. EDDI-V transforms an existing software program into a
QED test by duplicating sequences of instructions such that
the original sequence only works on one half of the register
file (memory space) and the duplicate sequence works on
the other half. At the end of each sequence, any mismatch
between the computation results by the original and the
duplicated sequence indicate an error and a bug in the design.
This is checked by a short sequence of check instructions
that compare values and branch to an error handler upon a
mismatch.

1: MOV RO, #1 // bug activation - step 1

2: MOV RO, #2 // bug activation - step 2

3: MOV R1l, #3 // bug occurs: wrong decoding as NOP
4: MOV R16, #1 // (bug not activated for R16)

5: MOV R16, #2 // (bug not activated for R16)

6: MOV R17, #3 // this executes correctly

7: CMP RO, Rl6 // RO=R16, consistent register pair
8: BNE ged_error // branch not taken

9: CMP R1, R17 // R1#R17, inconsistent registers
0: //

i

BNE ged_error branch taken, bug detected

Fig. 1. Example of an EDDI-V test seqeunce

Fig. 1 shows an example of such a QED test sequence.
Registers Rig... R31 are the duplicate versions of registers
Ryp... Ry5. Let us assume that there is a bug in the pipeline
that is activated when there are two instructions in the IF
and ID stages, respectively, which write two different values
to register RO. Assume that, as an effect of the bug, the
next instruction is wrongly decoded as a NOP. The shown
instruction sequence is able to detect the bug, as described
in the comments behind the individual instructions. In a bug-
free processor, after the duplicate sequence , all corresponding
register pairs (and memory locations) must have the same
contents. We speak of a QED-consistent register state.

In the following, we restrict our description to the register
file. (Modeling of the memory space in EDDI-V tests is
analogous.) As a preparation for the following discussion,
let us define a register correspondence between a set of
original registers, O, and a set of duplicate registers, D. The
register mapping is a bijective function m : O — D. For
example, on a processor with NV registers, we may define O =
{R07 Ry, . RN/Q—I}’ D = {RN/Qa RN/2+17 ceey RN*l}
and m(R;) = R;;n/2. A QED-consistent register state is
characterized by the named logic expression:

ged_consistent_registers := /\ (r =m(r)) (1)
re0

Definition 1. (QED-EDDI-V-detectable) Consider an instruc-
tion sequence of arbitrary but finite length which executes on
the original register set O starting from some initial state that
is QED-consistent, as defined in Eq. 1. Consider a duplication
of this instruction sequence which executes on the duplicated
register set D correspondingly, as defined by m. The dupli-
cated sequence is executed in an arbitrary interleaving with
the original sequence. A logic bug is called QED-EDDI-V-
detectable if and only if there exists a pair of such instruction
sequences such that the resulting processor state violates QED
consistence, as defined in Eq. 1, after the last register-write in
any of the two sequences has been completed. |

In the following, for reasons of simplicity, we will speak of
QED and “QED-discoverable” bugs when we actually refer to
QED EDDI-V tests and bugs that can be detected by QED
EDDI-V tests, respectively.

B. Symbolic Quick Error Detection (SQED)

SQED [15], [16] combines the QED software test with
Bounded Model Checking (BMC) to find instruction se-
quences exposing a bug in the design. The final goal of this
approach is to find a QED-compatible trace to the error of
minimal length using BMC. A QED-compatible trace is a
QED test beginning at a QED-consistent register state.

In order to use BMC, we need a model of the system (i.e.,
RTL code of the hardware), a property to be proven and an
initial state from which the unrolled model starts. For SQED,
the solver needs to be controlled such that it only considers
QED-transformed instruction sequences. This is achieved by
instrumenting the hardware description of the processor with
a special module called QED module, which is not added
to the manufactured IC but only used for verification. It is
inserted between the fetch and the decode unit and it works
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TABLE I
EXAMPLE OF A BUG WITH A LONG ACTIVATION SEQUENCE

Bug activation
scenario

14 registers in the general purpose register file
have a particular value, e.g., -1, and there are
two consecutive writes to the same register in
two consecutive clock cycles.

Bug efffect The second write is dropped.

assume:
at t: ged_ready;

prove:
at t: ged_consistent_registers();

Fig. 2. SQED property (Eq. 2) formulated as interval property

as follows: It buffers instructions (and, at the same time, feeds
them to the decode unit) until the first branch instruction is
encountered. Here it switches to “duplication mode”. It replays
the instructions from its buffer, thereby translating all register
accesses (and memory accesses) to the duplicated registers
(and memory locations). At the end of the duplicated sequence,
the QED module asserts a flag (ged_ready) indicating that
the results of both sequences are observable and ready for
comparison in the register set. With the help of the QED
module, only QED-compatible bug traces are considered. The
property to be checked by the BMC solver is:

ged_ready — qed_consistent_registers 2)

where ged_ready is the flag asserted by the QED module at
the end of the sequence.

BMC starts from a specific state and tries to reach a state
violating the property within a finite time window (kgpmc clock
cycles). In SQED, the initial state for BMC needs to be a
QED-consistent register state as mentioned above. One way
of obtaining a reachable QED-consistent state is by simulating
a QED test and extracting the register and memory values
immediately after the check instructions.

Although SQED is capable of detecting some difficult bugs
which cannot be detected by conventional methods [15], [16],
SQED cannot prove the absence of any class of bugs such as
EDDI-V-detectable logic bugs, and there are certain bugs that
can escape. This is due to the fact that the solver tries to find a
bug trace starting from a specific starting state within a finite
time window (kgmc clock cycles). For practical designs, it is
not feasible to consider a time window that is large enough to
cover the sequential depth of the design.

Tab. I describes an example of a bug which is not detectable
by SQED. A long sequence of instructions (and a large time
window for the solver) is required to load the corresponding
values into the register file and to activate the bug; however,
it is usually not feasible for the solver in SQED to explore all
possible programs involving such long instruction sequences.

It is worthwhile to explore how the problem can be over-
come by using a variant of BMC called Interval Property
Checking (IPC) [12]. Like in conventional BMC, IPC unrolls
the sequential circuitry for a finite number of clock cycles (as
given by the property) and checks the validity of the property
using SAT. In contrast to standard BMC, however, the starting
state of the unrolling is left as free input (“any-state proof™).

In some cases, however, spurious counterexamples can oc-
cur and the proofs need to be strengthened by invariants [12].
Commercial verification tools usually provide proof engines
to generate such invariants automatically.

III. TPC-BASED EXTENSIONS TO SQED

Fig. 2 shows the SQED property of Eq. 2 written as
an interval property in pseudo-code. The assumption of the

assume:

at t: ged_ready;

at t: Sflushed_pipeline();

at t: ged_consistent_registers();
prove:

during [t+1, t+k]:  if ged_ready

then ged_consistent_registers();

Fig. 3. Preliminary SQED property avoiding spurious counterexamples

property refers to the output signal ged_ready of the QED
module. The macro ged_consistent_registers() in the proof
commitment instantiates the logic expression of Eq. 1.

The only assumption being made about the starting state is
that the flag ged_ready is asserted. An IPC proof beginning
at an arbitrary, possibly unreachable, starting state will most
often fail because the starting state includes an arbitrary set of
value assignments to the registers of the processor.

The SQED property needs to be reformulated such that
it represents more internal reachability information of the
pipeline. The new formulation is shown in Fig. 3. Informally,
it states: “If the CPU is in a QED-consistent state and the
qed_ready flag is asserted, then, when the flag ged_ready be-
comes asserted again, a new QED-consistent state is reached.”

Due to the fact that the initial state of the proof is left as
a free input, the solver may consider an initial state in which
there are some partially executed instructions in the pipeline.
These pending instructions may write some new values into
some registers which do not comply with QED consistency
and generate a false counterexample in the end. To handle
this issue, one solution is to assume a flushed pipeline in the
starting state of the operation, as shown in Fig. 3.

In order to make a meaningful contribution to post-silicon
validation tests, the SQED property of Fig. 3 should be proven
for any possible starting state and for values of k large enough
to cover QED tests of realistic size. However, increasing &
drastically increases the complexity and run time of the proof.
As will be reported in Sec. V, for verifying the core part of
Aquarius it is not possible to obtain a proof result from the
solver for £ > 12 in less than 45 hours. Therefore, instead
of taking this straightforward approach of incorporating a
symbolic initial state into SQED, in the next section we
propose a new method (S?’QED) which tackles this problem
and aims at proving the SQED property of Fig. 2 with only a
small number of unrollings that is manageable by the solver.

IV. SYMBOLIC QUICK ERROR DETECTION WITH
SYMBOLIC INITIAL STATE (S?QED)

A. Bug Activation and Detection

Logic bugs in a processor can be modeled in two steps:
(1) a particular instruction sequence that activates the bug
and (2) a particular instruction sequence that makes the bug
observable in a program-visible state bit. In this bug model,
the bug activation criterion can be described by the set of states
that are reached by the design under verification at the end of
the bug activation sequence.

In a minimal QED bug trace, there is (at least) one failing
instruction in the sequence which propagates the error effect
into program-visible registers; the instructions before the (first)
affected instruction either contribute to the activation of the
bug or they can be omitted from the trace. By this definition,
the length of the error trace depends on how many instructions
are needed to activate the bug. However, in SQED, if the
solver is allowed to consider every possible initial state, it
will be able to start from a state that implicitly represents the
system after a bug activation sequence.

Hence, the error trace for every possible QED-discoverable
bug can be as short as one instruction provided that there is
no restriction on the initial state of the proof.
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assume:
at tg: cpu2_fetched_instr()
= QED_duplicate( cpul_fetched_instr() );
at tws — 11 ged_consistent_registers();
prove:
at tws: ged_consistent_registers();

Fig. 4. Basic S>QED property

B. S?QED Verification model

The verification model we present in this paper is based on
the idea that the original and EDDI-V-transformed sequence
can be executed in parallel on two independent instances of
the CPU. QED consistency in this case refers to a mapping
between the registers of the two CPU instances. There can be
an arbitrary mapping between the register names. For example,
if O = {R},...,RY} is the set of original registers (in
instance 1) and D = {R3,...,R%} the duplicate register
set (in instance 2), and all registers behave in the same way,
one way of defining the correspondence function could be:
m(R}) = R%_,. Note that in S?’QED also special registers
like the PC and the status registers can be mapped between
the two instances; however, usually every such special register
in CPU1 must be mapped to the same register in CPU 2.
S?QED can be enabled to also check the control flow if we
extend the check expression QED_consistent_registers() by
also comparing the values of the PC in the two instances after
a branch instruction.

In order to simplify the presentation of the basic idea,
let us for now consider a processor with a static (in-order)
pipeline. For example, let us consider a classical 5-stage RISC
pipeline with IF, ID, EX, MEM and WB stages. Fig. 4 shows
the property that needs to be proven in order to show the
absence of any QED-detectable bug. The property assumes
that both CPU instances fetch the same opcode at time point
tip; the instruction fetched in CPU?2 is the QED-duplicated
version of the instruction fetched in CPU 1, with the same
opcode but with different operands according to the register
mapping m. In each CPU instance, this “instruction under
verification” (IUV) passes through the pipeline and eventually
writes its results to the register file in the write-back stage at
time point twg.

The S?QED property of Fig. 4 makes no restrictions on
the initial state other than that CPU2 executes a QED copy
of the instruction in CPU 1, and that the previous instruction
sequence produces a QED-consistent register file.

As an example, let us see how S?QED detects the bug in
Fig. 1. When checking the S?QED property of Fig. 4 on the
buggy pipeline the SAT solver produces one out of many
valid counterexamples. One possible error trace could, for
example, contain the first three instructions from this example
as “original sequence” on CPU 1, and their duplicated versions
on CPU 2. At time point ¢z, the CPU 1 fetches the “instruction
under verification”, MOV R1, #3 from line 3 in Fig. 1,
and CPU 2 fetches the “duplicate” instruction MOV R17, #3
from line 6 (assuming the same register mapping as in the
QED example). In the counterexample, the initial state at #p
also contains the instructions from lines 1 and 2 in the EX and
ID stages of CPU 1, and the instructions from lines 4 and 5 in
the EX and ID stages of CPU 2. The error trace shows that at
the later time point {wg—1, the instruction from line 2 writes-
back into the register file of CPU 1, and the instruction from
line 5 writes-back into the register file of CPU 2. At this time
point, both register files are still in QED consistency with each
other, as required by the assumption of the property. However,
the bug has been activated in the pipeline of CPU 1 (but not in
CPU 2), and the IUV from line 3 writes-back a corrupted value

Inst; NOP NOP
(N L] N
CPU, s, CPU; e S CPU, s,
Insty Insty Insty,
1 N L
S CPU; sy’ CPUz |gy """ o’ CPU; 5

Fig. 5. S?QED Verification model

into the register file at twg, while the duplicate instruction
writes the correct values into its register file.

Theorem 1. The S?’QED property of Fig. 4 fails for all QED-
EDDI-V-detectable logic bugs (cf. Def. 1), for a given register
mapping m.

Proof. Assume there is a QED-EDDI-V-detectable bug in the
processor design. Then, there exists an instruction sequence 1
which starts from some QED-consistent initial state and pro-
duces a wrong result in the processor registers or memory
locations, and there also exists another instruction sequence 2
with the same opcodes which produces a different result (e.g.,
a correct result). If we compare the register sets after each
instruction of sequence 1 with the corresponding register sets
of sequence 2 according to the mapping function m, as a
result of Def. 1, we can identify one instruction (the TUV
from above) for which the registers/memory locations are still
QED-consistent before the execution of this instruction, but
not QED-consistent after the execution. This is the instruction
that propagates the error effect into the program-visible regis-
ters/memory locations. We call it the “observing instruction”
in the following.

The property of Fig. 4 fails for a processor design containing
the considered bug, because a counterexample exists that vio-
lates the property. This counterexample fetches the observing
instruction at ¢z in CPU 1 and its non-observing duplicate in
CPU 2. There are no constraints on the initial state of the IPC
property other than that the instruction sequence preceding
the observing instruction does not create QED-inconsistent
register sets in CPU1 and CPU2 and that CPU2 executes
the same instruction as CPU 1, however based on different
operands as given by m. The SAT solver implicitly enumerates
in CPU 1 all possible instructions of the ISA, under all possible
operand configurations and addressing modes. If a QED-
EDDI-V-discoverable bug exists, every instruction observing
the error effect of the activated bug causes the property to
fail. O

Note that in S2QED, actually only the instruction under
verification (IUV) needs to be duplicated. There is no reason
to also duplicate the opcodes of the preceding instructions.
This observation allows for a modification of the property that
reduces the proof complexity but does not impair the generality
of the proof result: One of the two CPU instances may be
restricted to start from an initial state that represents a pipeline
with a predetermined instruction sequence, for example, a
sequence of NOPs (flushed pipeline). Also, the instructions
that follow the IUV may be constrained to be NOP instructions
in that core.

Fig. 5 shows the S’QED computational model. We unroll
the two instances of the processor for a number of time frames.
CPU 1 is constrained to start from a flushed-pipeline state Sier
and also fetches only NOPs in the time frames for ¢ > 1.
CPU 2 is unconstrained with respect to its initial state and all
succeeding instructions. In this computational model, the SAT
solver compares the scenario 1 where the IUV executes in a
flushed-pipeline context with all possible scenarios 2 where the
IUV executes in an arbitrary context including the ones where
bugs are activated and propagated. (Should the bug occur in
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the flushed-pipeline context of CPU 1 then any other context
produces a different (correct) result in CPU2 and the bug is
detected, also.) Constraining CPU 1 by fixing many inputs to
constants, as shown, significantly reduces proof times.

If a design passes the S?QED property then this means that
there is no QED-EDDI-V-detectable logic bug (cf. Def. 1) in
the design, for QED tests of arbitrary length. This is a strong
statement that is very useful in post-silicon validation: It allows
to conclude that any failed QED test in post-silicon validation
is due to an electrical or other bug, not a logical design bug.

Furthermore, we can also make useful statements in pre-
silicon verification, as already mentioned earlier. Proving the
S2QED property allows us to conclude for every instruction
in the ISA that its execution is independent of the state of the
processor when the instruction is loaded.

C. Handling Out-Of-Order Write-Back

So far in our discussion, to keep things simple, we as-
sumed a strictly static pipeline. In practice, however, processor
pipelines are more complex. Even in static pipelines, the time
points of write-back are not fixed and may even happen out-
of-order (as is the case for the processor in our experiments,
Aquarius). Therefore, instead of assuming a QED-consistent
register file at the clock cycle preceding the completion of
the IUV (as in Fig. 4), we have to make an assumption
that is a bit more complex. We call it the “QED-consistent
pipeline” assumption. Let 7' be the content of a register r
at time point t; wl be the write enable signal for register r
at time point ¢, i% be the data input to register r at time
point ¢, and ¢, be the time point of the last register write
of the instruction sequence preceding the IUV. O and D are
the original and duplicate register sets, respectively, and m is
the correspondence mapping between them, as defined earlier.
With respect to the verification model shown in Fig. 5, O is
the register file of CPU2 and D is the register file of CPU 1.

ged_consistent_pipeline(ty) =

twbo
/\ ((Tto = [m(r)]to) Vv \/ wi) (3a)
reO t=to
twbo Lwbo
WAWA (wi = (it = [m(r)]°)v \/ wf) (3b)
t=to reO u=t+1

The above logic expression derives, for a practical pipeline,
the conditions representing a QED-consistent register file as
a result of the instructions preceding the IUV. The basic idea
is that individual pairs of corresponding registers are QED-
consistent either if the last values written into them are equal
or, if nothing has been written, they have been equal at the
beginning of the considered time window. The upper part
(Eq. 3a) states, for every register of the original set, that the
content of the register at time point ¢y is the same as in the
duplicate set or else there is some pending instruction in the
pipeline enabling a write into this register at some later point.
The lower part (Eq. 3b) specifies that if there is a write enabled
to a register at some time point ¢ then the written value matches
the corresponding value in CPU 1, or there is another write
enabled to this register at some time point later than t.

Fig. 6 shows the S?QED property to be proven. t.; is
the write-back time point of the IUV. Compared to the
SQED property of Fig. 3 with flushed-pipeline assumption,
more white-box information about the microarchitecture of the
processor is required to formulate the QED-consistent pipeline
state. This white-box information is, however, fairly simple to
obtain. It requires identifying the set of all write-enable signals
for data flowing into the general-purpose register file and
the other program-visible registers from within the processor
pipeline. Also, the time points t,,; and t,,0 of write-back for

assume:
at ti: cpu?2_fetched_instr()
= QED_duplicate( cpul _fetched_instr() );

during [tw+1, twil: cpul_fetched_instr()= NOP;

at ti: qed_consistent_pipeline (1ir);
prove:
at typ1: qed_consistent_registers();
Fig. 6. S?QED property
TABLE II
BUG DETECTION RESULTS
2
Activation ~ froperty - SQED - STQED
sequence 1], [12] [16] (proposed)
Bugs de- short yes yes yes
tectable? long yes no yes
Amount of effort 3 person NA 10 person
months hours
Run time (bugs inserted) < 1min < 1min < 1 min
Counterexample length 1 3 1
(# of instructions)
Run time (bug-free) 25 min Timed out 264 min

the IUV and the instruction preceding the UV, respectively,
need to be determined. This can be done based on few pipeline
control signals, e.g., those controlling stalling. Timepoint
definitions don’t need to be constant and can be formulated
specific to each register. This allows us to accomodate for
out-of-order write-backs.

V. EXPERIMENTAL RESULTS

The effectiveness of S?’QED is shown by verifying func-
tional correctness w.r.t. QED-discoverable bugs of Aquarius,
a 32-bit open-source static-pipeline processor with out-of-
order completion which is based on the SuperH2 instruction
set architecture (ISA) [18]. 18 different logic bug scenarios
from [16], [17] and also the bug described in Tab. I were
injected into the RTL code of Aquarius. These bug scenarios
have occurred in various commercial processors and SoCs and
are known to be difficult to detect and localize [16], [17]. For
IPC property checking, we used the commercial tool Onespin
360 DV-Verify on an Intel Xeon E5-2660 with 32 GB of RAM,
running at 2.20 GHz.

For a comparison with the original SQED approach, we
instrumented the fetch unit of the Aquarius processor with a
QED module, as described in [16]. (Note that in contrast to
SQED the S?QED method does not require any instrumen-
tation or modification of the RTL code.) We inserted into
Aquarius the logic bugs from [16], [17] that were previously
detected on different hardware platforms using the original
SQED technique [16]. We detected all of these bugs using
S2QED, with less than one minute of computation time each.

Tab. II summarizes the results. In this table, each column
represents a different verification method applied to Aquarius.
Aquarius was formally verified by state-of-the-art formal prop-
erty checking using the industrial methodology of [11], [12].
This is represented in the first column. The second column
corresponds to SQED which uses BMC as its proof method.
In Tab. II, “Amount of Effort” refers to the manual work done
by the verification engineer to develop the verification setup
and the property. “Run time” refers to the computation spent
to detect a bug or to prove its absence. In case of a bug,
the length of a counterexample is also stated. Obviously, it is
usually more complex for the solvers to prove the correctness
of a property than to disprove it and find a counterexample.

Tab. III is dedicated to the run times and memory require-
ments of SQED and S?>QED. In the first row, we show that
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TABLE III
COMPARING SQED (FOR REALISTIC QED TEST LENGTHS)
WITH S2QED (FOR ARBITRARY TEST LENGTH)

Property k  Run time Memory
SQED property with symbolic initial 12 >45h 2566 MB
state (Fig. 3)

SQED with specific initial state [16] 10 4:49 1325 MB
SQED with specific initial state [16] 12 1:46:33 1482 MB
SQED with specific initial state [16] 14 42:14:51 1878 MB
S2QED 7 4:24:18 3809 MB

the straightforward approach of integrating a symbolic initial
state, as in Fig. 3, is not tractable. Then, we compare our
implementation of SQED with S?QED. For a comparison
between SQED and S?QED it should be noted that the S2QED
computational model represents the duplicated instruction se-
quence in parallel (cf. Fig. 5) while conventional SQED, as
a result of its QED module, represents the same sequences
sequentially one after the other. Therefore, in terms of the
model size, k = 7 unrollings in S2QED correspond to k = 14
unrollings in SQED. For S?QED a time window of k& = 7 clock
cycles was chosen because this is sufficient to formally prove
the absence of QED-discoverable bugs, since every instruction
can finish execution in this time interval. A larger window is
not needed and would not strengthen the proof in any way. In
SQED, however, the strength of the method depends on the
length of the time window. We therefore examine SQED with
a different number of unrollings.

Based on the above two tables the following observations
can be made:

Observation 1: S*QED can detect all bugs in reasonable
time that are discoverable by the original SQED method. It can
also discover bugs with long error detection latencies, e.g., the
bug described in Tab. I, which needs an activation sequence
of 14 instructions, with a bug trace of only one instruction.
Given that the original SQED cannot detect this class of bugs,
this feature significantly improves the verification power of
S?QED. Since the length of the bug trace strongly affects the
complexity of the proof, being able to find difficult bugs with
very short bug traces makes the method more scalable for
larger designs.

Observation 2: As described in previous sections, S?QED
makes a valuable contribution to pre-silicon verification by
proving that each instruction behaves independently of its
context in the program. Bugs escaping this check will occur
equally in every context and therefore, as also noted in [9],
can be expected to be easily detected even by simulation-
based methods. Since no golden model of the ISA needs to be
specified, S2QED can obtain this important verification result
with substantially less manual effort compared to classical
processor verification by property checking (10 person hours
as opposed to 3 person months).

Observation 3: S?QED requires no modification in the RTL
code of the design and it has no restriction on the instructions
that it can consider, unlike the original SQED which is not able
to consider certain instructions that use operands other than
general purpose registers, €.g., status registers. The verification
setup can be reused for patched or customized versions of the
processor core as long as the program-visible registers in the
design are not changed.

VI. CONCLUSION

The paper presented S?QED, a formal method to find all
QED-discoverable logic bugs inside processor cores during
pre-silicon verification. This is a major improvement over the
previous SQED method. As opposed to SQED, S?QED also

makes a well-defined contribution to pre-silicon verification:
it proves that the result of every instruction execution is
independent of its context in the program. The method requires
considerably less manual effort compared to previous methods
of property checking.

With our notion of a QED-consistent pipeline, as formulated
in Eq. 3 of Sec. IV-C, the proposed approach proved useful for
processors with out-of-order write-back. However, our current
approach will face its limits for fully dynamic processors
with out-of-order execution and reorder buffers, due to their
large sequential depth. Improving tractablity for such cases,
therefore, is subject to our future work.
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