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Abstract

Translation Validation is a technique for ensuring that thetarget code produced by a trans-
lator is a correct translation of the source code. Rather than verifying the translator it-
self, translation validation validates the correctness ofeach translation, generating a formal
proof that it is indeed a correct. Recently, translation validation has been applied to prove
the correctness of compilation in general, and optimizations in particular.

Tvoc, a tool for the Translation Validation of Optimizing Compilers developed by the
authors and their colleagues, successfully handles many optimizations employed by Intel’s
ORC compiler. Tvoc, however, is somewhat limited when dealing with loop reordering
transformations. First, in the theory upon which it is based, separate proof rules are needed
for different categories of loop reordering transformations. Second,Tvoc has difficulties
dealing withcombinationsof optimizations that are performed on the same block of code.
Finally, Tvoc relies on information, provided by the compiler, indicating which optimiza-
tions have been performed (in the case of the current ORC, this instrumentation is fortu-
nately part of the compiler).

This paper addresses all the issues above. It presents a uniform proof rule that encom-
passes all reordering transformations performed by the Intel ORC compiler, describes a
methodology for translation validation in the presence of combinations of optimizations,
and presents heuristics for determining which optimizations occurred (rather than relying
on the compiler for this information).
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1 Introduction

Translation Validation (TV) is a technique for ensuring that the target code emitted
by a translator - such as a compiler - is a correct translationof the source code.
Because of the (well-documented) difficulties of verifyingan entire compiler, i.e.
ensuring that it generates the correct target code for everypossible valid source
program, translation validation can be used to validate each run of the compiler,
comparing the actual source and target codes.

There has been considerable work in this area, by these authors and others, to
develop TV techniques for optimizing compilers that utilize structure preserving
transformations, i.e. optimizations which do not greatly change the structure of the
program (e.g. dead code elimination, loop-invariant code motion, copy propaga-
tion) [ASU88,Muc97,WL91] as well asstructure modifyingtransformations, such
as loop reordering transformations (e.g. interchange, tiling), that do significantly
change the structure of the program [AK02,Muc97,Wol95]. Inprevious publica-
tions, the authors and their students have described a prototype tool,Tvoc, that was
developed for performing translation validation on the Intel Open Research Com-
piler (ORC) which performs a large number of transformations of both categories
[ZPFG03,ZPF+03].

AlthoughTvoc is able to perform TV in the presence of a number of different
structure preserving and structure modifying optimizations, it has suffered from the
following drawbacks:� Tvoc does not use a single unified proof rule for validating loop reordering trans-

formations, but rather relies on several proof rules of different forms depending
on the particular optimization being applied. Specifically, Tvoc uses different
proof rules for interchange, tiling, and skewing than it does for fusion and dis-
tribution. From a scientific (and engineering) perspective, a single proof-rule to
handle all loop reordering transformations would be more satisfying.� Tvoc has difficulty handlingcombinationsof structure preserving and structure
modifying optimizations. This is a serious drawback since often one transforma-
tion is performed on the code solely to enable a subsequent transformation.� Tvoc uses information produced by the compiler that indicates which loop opti-
mizations have been performed. Fortunately, ORC does produce a file containing
such information after every compilation, and thus no additional instrumentation
of the compiler is required. Although this information is never relied upon by
Tvoc to support a proof that the compilation is correct, it is usedby Tvoc to
suggest the proof method to use on a particular section of code.

In this paper we describe our approaches to solving the aboveproblems, which
are currently being implemented. Briefly stated, the solutions are as follows:� We have generalized the proof rule used for interchange, tiling, and skewing so

that it now works for fusion and distribution as well. As a side benefit, the proof
rule now captures additional loop transformations such as peeling and software
pipelining.
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of the source codeS, such that no intermediate versions of the code (e.g. after
individual transformations) are available,Tvoc will synthesize a series of inter-
mediate versions of the code, based on what transformationsit believes were
performed. That is, it will generate synthetic intermediate versionsI1, I2, : : : In,
which might possibly not have been created by the compiler atall. Tvoc will
then validate that the translation fromS to I1, the translation fromIj to Ij+1 for
eachj, and the translation fromIn to T are correct.� In order to avoid havingTvoc rely on information produced by the compiler to
determine which optimizations were actually performed, wehave developed a
set of heuristics that are used to generate this informationgiven only the source
and target code. Heuristics were previously used in this wayby Necula [Nec00]
for the TV of structure preserving transformations in gcc. In this paper, we
describe the heuristics we use for the TV of structure modifying transformations,
specifically loop reordering transformations.

The paper is organized as follows. Section 2 provides the necessary background
for understanding our TV work in the validation of individual structure modifying
transformations. Section 3 describes how the proof rule that we have used for loop
optimizations such as interchange and tiling can be generalized to include a wider
variety of loop transformations including fusion, alignment, peeling, and unrolling.
Section 4 describes the kinds of combinations of optimizations that ORC performs,
and our techniques for validating such combinations using the creation of synthetic
intermediate versions of the code. Section 5 presents the heuristics that we have
developed in order to determine, in the absence of any suggestions by the compiler,
which optimizations have been performed. Finally, Section6 concludes.

2 Background

This section is a summary of our previous work on Tvoc. We refer the reader to
[ZPFG03,ZPF+03] for more details and examples.

2.1 Transition Systems

In order to discuss the formal semantics of programs, we introducetransition sys-
tems, TS’s, a variant of thetransition systemsof [PSS98b]. ATransition SystemS = hV;O;�; �i is a state machine consisting of: a setV of state variables; a
setO � V of observable variables; an initial condition� characterizing the ini-
tial states of the system; and atransition relation�, relating a state to its possible
successors. The variables are typed, and astateof a TS is a type-consistent inter-
pretation of the variables. For a states and a variablex 2 V , we denote bys[x℄
the value thats assigns tox. The transition relation refers to both unprimed and
primed versions of the variables, where the primed versionsrefer to the values of
the variables in the successor states, while unprimed versions of variables refer to
their value in the pre-transition state. Thus, e.g., the transition relation may include
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“y0 = y + 1” to denote that the value of the variabley in the successor state is
greater by one than its value in the old (pre-transition) state. We assume that each
transition system has a variable� that describes the program location counter.

While it is possible to assign a transition relation to each statement separately,
we prefer to use ageneralizedtransition relation, describing the effect of executing
several statements along a path of a program. Consider the following basic block:

B0:
n <- 500
y <- 0
w <- 1
IF !(n >= w) GOTO B2

B1:

There are two disjuncts in the transition relation associated with this block. The
first describes theB0 to B1 path, which is� = B0 ^ n0 = 500 ^ y0 = 0 ^ w0 =1 ^ n0 � w0 ^ �0 = B1, and the second describes theB0 to B2 path, which is� = B0 ^ n0 = 500 ^ y0 = 0 ^ w0 = 1 ^ n0 < w0 ^ �0 = B2. The transition
relation is then the disjunction of all such generalized transition relations.

The observable variables are the variables we care about, where we treat each
I/O device as a variable, and each I/O operation, including external procedure calls,
removes/appends elements to the corresponding variable. If desired, we can also
include among the observable variables the history of external procedure calls for a
selected set of procedures. When comparing two systems, we will require that the
observable variables in the two systems match.

A computation of aTS is a maximal (possibly infinite) sequence of states� : s0; s1; : : : ; starting with a state that satisfies the initial condition such that every
two consecutive states are related by the transition relation.

A transition systemT is calleddeterministicif the observable part of the initial
condition uniquely determines the rest of the computation.We restrict our attention
to deterministic transition systems and the programs whichgenerate such systems.
Thus, to simplify the presentation, we do not consider here programs whose be-
havior may depend on additional inputs which the program reads throughout the
computation. It is straightforward to extend the theory andmethods to such inter-
mediate input-driven programs.

Let PS = hVS ;OS ;�S ; �Si andPT = hVT ;OT ;�T ; �T i be twoTS’s, to which
we refer as thesourceandtargetTS’s, respectively. Two such systems are called
comparableif there exists a one-to-one correspondence between the observables ofPS and those ofPT . To simplify the notation, we denote byX 2 OS andx 2 OT
the corresponding observables in the two systems. A source states is defined to be
compatiblewith the target statet, if s andt agree on their observable parts. That is,s[X℄ = t[x℄ for everyx 2 OT . We say thatPT is acorrect translation(refinement)
of PS if they are comparable and, for every�T : t0; t1; : : : a computation ofPT and
every�S : s0; s1; : : : a computation ofPS such thats0 is compatible witht0, then�T
is terminating (finite) iff�S is and, in the case of termination, their final states are
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compatible. Note that the refinement is an equivalence relation. We usePT � SS
to denote thatPT is a correct translation ofPS .

We distinguish betweenstructure preservingoptimizations, that admit a clear
mapping of control and data values in the target program to corresponding control
and data values in the source program, andstructure modifyingoptimizations that
admit no such clear mapping. Most high-level optimizationsare structure preserv-
ing, while most loop optimizations are structure modifying(notable examples are
skewing, unrolling, and peeling, that can actually be handled by both our structure
modifying and structure preserving proof approaches.)

2.2 Translation Validation of Structure Preserving Optimizations

LetPS = hVS ;OS ;�S ; �Si andPT = hVT ;OT ;�T ; �T i be comparableTS’s, wherePS is thesourceandPT is thetarget. In order to establish thatPT is a correct trans-
lation ofPS for the cases that the structure ofPT does not radically differ from the
structure ofPS , we use a proof rule,Val, which is inspired by the computational
induction approach ([Flo67]), originally introduced for proving properties of a sin-
gle program. RuleVal (see [ZPFG03], and a variant in [ZPF+03] which produces
simpler verification conditions) provides a proof methodology by which one can
prove that one programrefinesanother. This is achieved by establishing acontrol
mappingfrom target to source locations, adata abstractionmapping from source
variables to (possibly guarded) expressions over the target variables, and proving
that these abstractions are maintained along basic execution paths of the target pro-
gram.

In Val, eachTS is assumed to have acut-point set, i.e., a set of blocks that
includes all initial and terminal blocks, as well as at leastone block from each of
the cycles in the programs’ control flow graph. Asimple pathis a path connecting
two cut-points, and containing no other cut-point as an intermediate node. For each
simple path, we can (automatically) construct the transition relation of the path.
Typically, such a transition relation contains the condition which enables this path
to be traversed and the data transformation effected by the path.

Rule Val constructs a set of verification conditions, one for each simple tar-
get path, whose aggregate consists of an inductive proof of the correctness of the
translation between source and target. Roughly speaking, each verification condi-
tion states that, if the target program can execute a simple path, starting with some
conditions correlating the source and target programs, then at the end of the execu-
tion of the simple path, the conditions correlating the source and target programs
still hold. The conditions consist of the control mapping, the data mapping, and,
possibly, some invariant assertion holding at the target code.

Somewhat related to our approach is the work oncomparison checkingwhere
executions of unoptimized and optimized versions of code are compared on par-
ticular inputs [JGS98,JGS99,JGS02]. Comparison checkingdepends on finding
data and control mappings between a source and a target on particular inputs, and
mismatches are reported to detect optimization errors. Comparison checking has
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mainly been used for structure preserving optimizations.

2.3 Translation Validation of Reordering Transformations

Structure modifying transformations are those that admit no natural mapping be-
tween the states of the source and target programs at each cutpoint. In particular,
A reordering transformation is a structure modifying transformation that merely
changes the order of execution of the code, without adding ordeleting any execu-
tions of any statement [AK02]. It preserves a dependence if it preserves the relative
execution order of the source and target of that dependence,and thus preserves
the meaning of the program. Reordering transformations cover many of the loop
transformations, including fusion, distribution, interchange, tiling, unrolling, and
reordering of statements within a loop body.

Consider the generic loop in Fig. 1.

for i1 = L1; H1 do: : :
for im = Lm; Hm doB(i1; : : : ; im)

Fig. 1. A General Loop

Schematically, we can describe such a loop as “for i 2 I by �I do B(i)” wherei = (i1; : : : ; im) is the list of nested loop indices, andI is the set of the values
assumed byi through the different iterations of the loop. The setI can be charac-
terized by a set of linear inequalities. For example, for theloop of Fig. 1,I = f(i1; : : : ; im) j L1 � i1 � H1 ^ � � � ^ Lm � im � Hmg:

The relation�I is the ordering by which the various points ofI are traversed.
For example, for the loop of Fig. 1, this ordering is the lexicographic order onI.

In general, a loop transformation has the form:

for i 2 I by �I do B(i) =) for j 2 J by �J do B(F (j)) (1)

In such a transformation, we may possibly change the domain of the loop indices
from I to J , the names of loop indices fromi to j, and possibly introduce an
additional linear transformation in the loop’s body, changing it from the sourceB(i) to the targetB(F (j)).

In [ZPF+03] we propose the RulePermute in Fig. 2. For details, soundness,
and examples, see [ZPF+03].

In order to apply rulePermute to a given case, it is necessary to identifyF
(andF�1) and validate Premises R1–R3 of RulePermute. Premises R1 and R2
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R1: 8i 2 I : 9j 2 J : i = F (j)
R2: 8j1 6= j2 2 J : F (j1) 6= F (j2)
R3: 8i1; i2 2 I : i1�Ii2 ^ F�1(i2)�JF�1(i1) =)B(i1); B(i2) � B(i2); B(i1)

for i 2 I by �I do B(i) � for j 2 J by �J do B(F (j))
Fig. 2. Permutation RulePermute for Reordering Transformations

establish thatF is a bijection, and premise R3 establishes that no dependences are
violated by the transformation. The identification ofF can be provided to us by the
compiler, once it determines which of the relevant loop optimizations it chooses
to apply. In Intel’s ORC compiler, a.l (dot ell) file contains a description of the
loop optimizations applied in the run of the optimizer.Tvoc gleans this informa-
tion, verifies that indeed the optimized code follows the indicated optimization,
and constructs the validation conditions. These conditions are then passed to the
theorem proverCVC Lite [SBD02] which checks them automatically.

Rule Permute, as presented here, only deals with transformations which re-
order the execution of the entire loop’s body. Some optimizations, such as software
pipelining and fusion/distribution, seem to fall outside the scope of this proof rule.
The next section shows how RulePermute can be used to handle such optimiza-
tions as well.

3 Generalization of Rule Permute

RulePermute, as formulated in the last section, only covers transformations from
a single loop to a single loop and requires that there be a bijection between the
iterations in one loop and the iterations in the other.

Consider a more generalloop structure, consisting of several “simple” loops,
possibly each over a different index domain, where each iteration consists of sev-
eral “sub-bodies”. Such a loop structure may be transformedinto another loop
structure. For example, in a typical loop fusion transformation, there are two sim-
ple loops (usually over the same index domain), that are transformed into a single
simple loop, with each iteration consisting of two sub-bodies, one from each of the
original iterations. Other transformations, such as peeling and software pipelin-
ing, can also be viewed as such loop structure transformations (we outline some
examples below.)

Our thesis is that, after some pre-processing, we can view these types of trans-
formations as instantiations of the reordering transformation studied in Subsec-
tion 2.3, and use RulePermute to validate them.
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3.1 From Loop Structures into Simple Loops

Formally, aloop structureconsists of:

(i) a setI1; : : : ; In of index domains;

(ii) for everyk = 1; : : : ; n, a total ordering�Ik overIk’s elements;

(iii) for every k = 1; : : : ; n, a numbermk and a sequence ofmk bodiesfBk̀gmk`=1
The code for such a loop structure is shown in Fig. 3.

for i 2 I1 by �I1 do B11(i); : : : ; B1m1(i)
for i 2 I2 by �I2 do B21(i); : : : ; B2m2(i): : :
for i 2 Ik by �Ik do Bk1(i); : : : ; Bkmk(i)
Fig. 3. An Execution of a Loop Structure

Obviously, any loop of of the form of Fig. 1 in Subsection 2.3 corresponds to
a single line in Fig. 3. Consider a typical loop fusion example, where the input is
given by a loop structure withk = 2, I1 = I2, andm1 = m2 = 1. The fused loop
is then a loop structure, withJ = I1, m = 2, B1(j) = B1, andB2(j) = B1.

We can also refer to a loop structure as a simple loop of the form

for ii 2 II by �II do B(ii)
by defining:II = k[̀=1f`g � I` � f1; : : : ; m`g B(`1; i1; t1) = B`1t1 (i)
and letting(`1; i1; t1)�II (`2; i2; t2) when(`1 < `2) _ (`1 = `2 ^ i1�I`1 i2) _ ((`1; i1) = (`2; i2) ^ (t1 < t2))

Thus, loop structures (as described in Fig. 3) can be converted into simple loops,
and RulePermute can be applied on transformations applied to them.

3.2 Some Frequent Transformations between Loop Structures

We describe some of the most commonly used loop transformations from the point
of view of loop structures, and show the iteration domain, ordering, and bijectionF (andF�1) for each. See [ZPFG03] for a similar analysis of transformations from
simple loops into simple loops.
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Loop Fusion
The source and target for generic loop fusion is described inFig. 4, parts (a) and
(b) respectively. For the source domain, we takeII = f1; : : : ; kg � f1; : : : ; Ng �f1g, with �II defined by the usual lexicographical ordering. Similarly, for the
target domain, we takeJJ = f1g � f1; : : : ; Ng � f1; : : : ; kg with �JJ defined
by the usual lexicographical ordering. The functionF : JJ ! II is defined
by F (1; i; `) = (`; i; 1), andF�1(`; i; 1) = (1; i; `). Note that in order to verify
Premise R3 of RulePermute, it suffices to show that for all(1; i1; `1); (1; i2; `2) 2JJ , if i1 > i2 and`1 < `2, thenB`1(i1); B`2(i2) � B`2(i2); B`1(i1)
for i1=1,N

B1(i1)...
for ik=1,N

Bk(ik)
(a) Loop-1

for j=1,N
B1(j)...
Bk(j)
(b) Loop-2

for i=1,N
B(i)

(c) Loop-3

for j=1,N by k
B(j)
B(j+1)...
B(j+k-1)

(d) Unrolled

for i1=1,N1
B1(i1)...

for ik=1,Nk
Bk(ik)

(e) Loop-4

for j0=1,p
B1(j0)

for j1=p+1,N1
B1(j1)

for j2=1,N2
B2(j2)...

for jk�1=1,Nk�1
Bk�1(jk�1)

for jk=1,q
Bk(jk)

for jk+1=q+1,Nk
Bk(jk+1)

(f) Peeled

for i1=L1,H1
B1(i1)...

for ik=Lk,Hk
Bk(ik)

(g) Unaligned

for i1=L1,H1
B1(i1)...

for ir=1,Hr-Lr+1
Br(ir)...

for ik=Lk,Kk
Bk(ik)

(h) Aligned

Fig. 4. Loop Transformations

Loop Distribution
Loop distribution is the inverse of loop fusion. Thus, we cantake part (b) of Fig. 4
for “Before Distribution”, and part (a) of Fig. 4 for “After Distribution.” The iter-
ation domain and the ordering are just like the fusion case with the roles reversed,
and so areF andF�1. The verification condition remains the same.

Loop Unrolling
Generic loop unrolling is described in Fig. 4 parts (c) and (d), where we assumek dividesN . Here, the source domain isII = f1g � f1; : : : ; Ng � f1g, the
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target domain isJJ = f1g � f1; k + 1; : : : ; N � k + 1g � f1; : : : ; kg, and both�II and�JJ are the usual lexicographical ordering. We then defineF (1; j; t) =(1; j + t� 1; 1), andF�1(1; i; 1) = (1; b ik
k + 1; i� b ik
k). Note that Premise R3
of RulePermute is then trivially true.

Loop Peeling
For generic loop peeling, consider the source and target in Fig. 4 parts (e) and (f)
respectively. Here we take:II = k[̀=1f`g � f1; : : : ; N`g � f1gJJ = k+1[̀=0f`g � fL(`); : : : ;H(`)g � f1gF�1(`; i; 1) =8>>><>>>: (0; i; 1) ` = 1 ^ i � p(k + 1; i; 1) ` = k ^ i > q(`; i; 1) otherwise

whereL(1) = p + 1; L(k + 1) = q + 1; and for all other̀ ; L(`) = 1; andH(0) = p; H(k) = q; H(k + 1) = Nk; and for every other̀; H(`) = N`.
Both�II and�JJ are the usual lexicographical ordering, and, again, Premise

R3 of RulePermute is trivially true.

Loop Alignment
For generic loop alignment, consider the source and target in Fig. 4 parts (g) and
(h) respectively. Here we take:II = k[̀=1f`g � fL`; : : : ; H`g � f1gJJ = k[̀=1f`g � ff`(L`); : : : ; f`(H`)g � f1gF (`; i; 1)= (`; f�1` (i); 1)F�1(`; i; 1)= (`; f`(i); 1)
wherefr(i) = i � Lr + 1, f�1r (i) = i + Lr � 1, and for everỳ 6= r, f`(i) =f�1` (i) = i.

Both�II and�JJ are the usual lexicographical ordering, and, again, Premise
R3 of RulePermute is trivially true.

4 Combinations

As mentioned above, a real compiler may applyseveraloptimizations to transform
a source programS into a target programT . In such cases, we first obtain (or
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guess) the sequence of individual transformations, and then synthesize a series of
intermediate versions of the code,S = I0; I1; : : : ; In = T based on these trans-
formations. We then must validate the transformation fromIj to Ij+1 for everyj = 0; : : : ; n � 1, and validate thatIn is indeedT . In this section, we illustrate
this approach by assuming the sequence of transformations is given by the com-
piler. In the next section, we discuss heuristics for what todo if the sequence of
transformations is not given.

for i=0 to 99 do
a[i+1] := x + 5

for i=0 to 99 do
a[i+1] := a[i+1] + a[i+2]

(a) SourceS = I0
a[1] := x + 5;
for i=1 to 99 do

a[i+1] := x + 5
a[i] := a[i] + a[i+1]

a[100] := a[100] + a[101]

(b) TargetT = I3
Fig. 5. Input and Output

Consider the source and target program in Fig. 5 (this is an actual transforma-
tion performed by the ORC compiler). The source contains twoconsecutive loops
overI = [0::99℄ with the usual< ordering. Suppose now that the sequence of op-
timizations applied is alignment followed by peeling followed by fusion as shown
in Fig. 6: I1 aligns the second loop;I2 peels the first iteration of the first loop and
the last iteration of the second loop; andI3 = T fuses the loops.

for i=0 to 99 do
a[i+1] := x + 5

for i=1 to 100 do
a[i] := a[i] + a[i+1]

(a) I1 (Alignment)

a[1] := x + 5;
for i=1 to 99 do

a[i+1] := x + 5
for i=1 to 99 do

a[i] := a[i] + a[i+1]
a[100] := a[100] + a[101]

(b) I2 (Peeling)

a[1] := x + 5;
for i=1 to 99 do

a[i+1] := x + 5
a[i] := a[i] + a[i+1]

a[100] := a[100] + a[101];

(c) I3 (Fusion)

Fig. 6. Stages of Optimizations

To show the correctness of each of the stages, we use RulePermute, applied to
the loop structures, as described in Section 3. For example,the last (and hardest)
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stage of fusion, amounts to showing thatn1 > n2 =) a[n1 + 1℄ := x+ 5; a[n2℄ := a[n2℄ + a[n2 + 1℄ �a[n2℄ := a[n2℄ + a[n2 + 1℄; a[n1 + 1℄ := x+ 5;
which can be easily established.

Typically, the compiler performs one or more loop optimizations in order to
enable further global (structure preserving) optimizations. For example, the last
stageI3 in Fig. 6 can be further optimized by performing scalar replacement, loop-
invariant code motion, and copy propagation to obtain the code shown in Fig. 7.

y := x + 5;
a[1] := y;
for i=1 to 99 do

a[i+1] := y
a[i] := a[i] + y

a[100] := a[100] + a[101];

Fig. 7. After Structure Preserving Optimizations

This can be handled by adding one additional verification stage using the Rule
Val (for structure preserving optimizations) as discussed in Section 2. Thus, the
overall approach consists of three steps. First, a candidate sequence ofn loop trans-
formations is fixed. Second, intermediate representationsI1 throughIn are synthe-
sized and the correctness of each transformation is verifiedusing RulePermute.
Finally, the equivalence ofIn and the targetT is validated using RuleVal.

5 Heuristics

In this section, we describe techniques that we use to try to determine, in the ab-
sence of information provided by the compiler, the sequenceof loop optimizations
that might have been performed on the source code in order to produce target code.

Because we are still in the early stages of devising heuristics to infer the trans-
formations that occurred, we make the following simplifying (but not unreasonable)
assumptions:� We know themappingfrom each loop structure in the source to each loop struc-

ture in the target – that is, for each loop structure in the source code, we know
which loop structure in the target resulted from it. This is generally fairly easy to
determine from contextual information (e.g., procedure referred to, conditional
branch, variables referenced, etc.).� We have some knowledge about theorder in which compilers perform some
transformations to enable others, since most transformations follow commonly
known sequences of transformations.

12



Goldberg, Zu
k, and Barrett
5.1 General Approach

Our general approach, combining heuristics with the synthesis of intermediate ver-
sions of the code, is to apply the algorithm below to each loopstructure in the
source and the corresponding loop structure in the target.
Input: Source loop structureS and target loop structureT .
Output: “Valid” or “fail”.
Algorithm� I := S� While !(I � T ) do� Opt := NextOpt(I; T ); NextOpt takes as input an intermediate loop structure

and a target loop structure, and returns a possible next optimization that can be
performed to bring the intermediate code closer to the target code, or? if none
exists; obviously, this is the part that contains the heuristics.� If Opt = ?, return with “failure”.� I 0 := Opt(I), creating a new intermediate form resulting from the guessed
optimization.� Use RulePermute or RuleVal to establishI 0 � I. If validation fails, exit with
“failure”.

end while� exit with “Valid”

One issue, of course, is termination of the above loop. Sincewe are generating
intermediate versions of the code which may not actually have been generated by
the compiler, it is conceivable that this process may be non-terminating (consider,
for example, repeatedly applying loop fusion followed by loop distribution – which
are essentially inverse functions). However, in practice,this will not happen. We
exploit our knowledge of the sequence of optimizations thatcompilers typically
perform to limit the possible optimizations that we are guessing the compiler might
have performed at each step. Thus, for example, if distribution has already been
performed on a certain part of the loop structure,NextOpt could be prevented
from subsequently choosing fusion as a guessed optimization on that same part
of the loop structure. Finally, since compilers typically perform a short sequence of
optimizations on any single loop, we place a bound on the number of intermediate
versions that we are willing to create and the number of iterations of the loop.

Although we have considered using backtracking to try multiple sequences of
guessed optimizations to reach the actual optimized version of a loop structure gen-
erated by the compiler, our first set of experiments will be performed without using
backtracking. We expect that the forms of the unoptimized and actual optimized
versions of the loop will provide a sufficiently good guide toour creation of inter-
mediate versions that backtracking won’t be necessary.
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5.2 Criteria for Selecting the Next Optimization

The criteria upon which our selection of the next optimization is based are the
following:

(i) Has the number of loops changed

(ii) Has the nesting depth of a loop changed?

(iii) Has the body size of a loop changed (i.e. have more statements been added to
the body of a loop)?

(iv) Have the bounds of a loop iteration changed?

(v) Has the use of a loop index variable changed in the body of ause (e.g. has “i”
been replaced by “i+1” in array subscripts)?

(vi) Has a non-unit step been introduced in a loop (e.g. “for i= 1 to N step k”)?

These criteria are useful because different loop optimizations exhibit different com-
binations of the criteria. Our first attempt at a heuristic orders the tests in the order
specified above, but we expect to refine this ordering throughexperimentation.

The loop optimizations that our tool is expected to recognize, along with the
changes they produce, are as follows.� Peeling adds a new loop and changes the loop bounds of both thenew loop and

the original loop.� Alignment causes a change in the loop bounds and a constant tobe added to each
occurrence of the loop index variable in the body of the loop.� Unrolling causes an increase in the size of a loop body and a non-unit step to
appear in the iteration.� Tiling results in an increase in the nesting depth of a loop, anon-unit step in the
(new) outer loops, and a change in the loop bounds of the inneriterations.� Interchange causes the order of the loop index variables in array subscripts to be
changed, and possibly causes a change in the loop bounds.� Fusion causes a decrease in the number of loops and an increase in the body size
of a loop.� Distribution causes an increase in the number of loops and andecrease in the
body size of a loop.

In the next section, we provide more details, motivated by our example from Sec-
tion 4.

5.3 TheNextOpt Heuristic

One of the benefits of our generalized representation of a loop structure, described
in Section 3, is that the representation of the source and target loops in this frame-
work lends itself to providing clues to the transformationsthat occurred. Rather
than give a complete definition ofNextOpt for all possible transformations (which
we are still working on), we motivate our work here by describing howNextOpt
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would behave on the example in Fig. 5.

The source code in Fig. 5 can be represented as the generalized loop structure

for ii 2 II by �II do B(ii);
where II = (f1g � f0 : : : 99g � f1g) [ (f2g � f0 : : : 99g � f1g):
The target code in Fig. 5 can be represented by

for jj 2 JJ by �JJ do B(jj);
whereJJ = (f1g � f0g � f1g) [ (f2g � f1 : : : 99g � f2g) [ (f3g � f99g � f1g):
Note that we recognize a single occurrence of a loop body as a collapsed loop of
one iteration – in particular, we recognize the first line of the target code as an
instance of the body of the first loop of the source withi = 0, and the last line of
the target code as an instance of the body of the second loop ofthe source withi = 99. This representation, along with a cursory examination of the source and
target loop bodies, makes the following easy to see:

(i) In II, the last element of each triplet is 1, but inJJ there are triplets whose
last element is 2. This indicates that the number of blocks has increased inside
a simple loop within the target loop structure, something that occurs when
either fusion or unrolling occurs.

(ii) Since the range of middle elements in neitherII norJJ contains a “step”
(.e.gf1; k + 1; 2k + 1; :::g), it is unlikely that unrolling has occurred. This
can also be seen by noticing that the bodies of the simple loopin the target
that has increased in size (i.e. in the number of blocks within the loop) are
not copies of each other with different array indices. Thus,it is unlikely that
unrolling produced this set of blocks.

(iii) The range of first elements ofII is f1; 2g, while the range of first elements ofJJ is f1; 2; 3g. This situation, indicating an increase in the number of simple
loops in the target loop structure over the source loop structure, can only occur
with peeling or distribution.

(iv) Since distribution would cause a reduction in the rangeof third elements ofJJ as compared toII – and that has not happened in this case – it is unlikely
that distribution has occurred.

(v) The range of the middle elements (i.e. the range of valuesof the loop index
variables) inJJ is f0::100g while the range of the middle elements ofII
is f0::99g. An increase in the upper bound for the loop index variables,or a
decrease in the lower bound, indicates that alignment may have occurred (it
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could also indicate skewing, but the relationship betweenII andJJ when
skewing occurs is substantially different than what we see here).

Once these observations are made, we are left with a set of optimizations –
namely fusion, peeling, and alignment – that are candidatesfor being considered
as the first optimization performed on the way from the sourceto the target.

Because alignment and peeling are considered enabling transformations for fu-
sion, and not vice-versa, it makes sense forNextOptto choose either alignment
or peeling as the optimization to use in the construction of the next intermediate
version of the code (this is an instance of where our knowledge of compilers is
exploited in the heuristic). Although the Intel ORC compiler actually performed
alignment followed by peeling on this example, a heuristic choice of peeling be-
fore alignment in the validation process will work.

By choosing peeling, we will construct the next intermediate version of the
code,I 0, to be:

a[1] := x + 5
for i=1 to 99 do

a[i+1] := x + 5
for i=0 to 98 do

a[i+1] := a[i+2] + 11
a[100] := a[101] + 11

Thus,II 0, the iteration space forI 0, is defined byII 0 = f(1; 0; 1)g[(f2g�f1 : : : 99g�f1g)[(f3g�f0 : : : 98g�f1g)[f(4; 99; 1)g
Now, comparingII 0 with JJ , it becomes clear that alignment is required on the
second loop inII 0.
5.4 Implementation Status

We are in the process of adding these heuristics to theTvoc tool, and thus do not
have experimental results yet to indicate how effective ourheuristics are. Once the
implementation has reached the point where it will work on a variety of loop trans-
formations, we will use the implementation to evaluate our heuristics and to tune
our strategy, particularly with respect to the order in which the criteria described
above are applied.

6 Conclusion

This paper describes three improvements to our translationvalidation approach for
optimizing compilers. First, we presented a generalized rule for accommodating a
wider class of loop transformations. Next, we showed how combinations of opti-
mizations can be handled by synthesizing intermediate versions of the code and val-
idating each optimization individually. Finally, we described preliminary heuristics
for guessing the sequence of optimizations, given only the source and target code.
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We are currently integrating all of these improvements intoour Tvoc tool. As

we do so, we plan to improve our heuristics and continue usingreal examples to
increase the power and scope of translation validation techniques.

Acknowledgement. As always, we would like to thank Amir Pnueli for many
helpful discussions. Ying Hu has supplied us with examples of ORC’s optimiza-
tions that were beyond the capabilities of previous versions of Tvoc.
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