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Abstract

Translation Validation is a technique for ensuring thattdrget code produced by a trans-
lator is a correct translation of the source code. Rather thaifying the translator it-
self, translation validation validates the correctnessamh translation, generating a formal
proof that it is indeed a correct. Recently, translatioridagion has been applied to prove
the correctness of compilation in general, and optimizetion particular.

Tvoc, a tool for the Translation Validation of Optimizing Cormgi$ developed by the
authors and their colleagues, successfully handles mayiaptions employed by Intel's
ORC compiler. Tvoc, however, is somewhat limited when dealing with loop rearde
transformations. First, in the theory upon which it is basegharate proof rules are needed
for different categories of loop reordering transformasio SecondTvoc has difficulties
dealing withcombinationsof optimizations that are performed on the same block of code
Finally, Tvoc relies on information, provided by the compiler, indicgtiwhich optimiza-
tions have been performed (in the case of the current OREjrtbirumentation is fortu-
nately part of the compiler).

This paper addresses all the issues above. It presentscaimmfoof rule that encom-
passes all reordering transformations performed by thed DRC compiler, describes a
methodology for translation validation in the presence @hbinations of optimizations,
and presents heuristics for determining which optimizetioccurred (rather than relying
on the compiler for this information).
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1 Introduction

Translation Validation (TV) is a technique for ensuringtttiee target code emitted
by a translator - such as a compiler - is a correct translaifaine source code.
Because of the (well-documented) difficulties of verifyiaug entire compiler, i.e.
ensuring that it generates the correct target code for gvesgible valid source
program, translation validation can be used to validaté ean of the compiler,
comparing the actual source and target codes.

There has been considerable work in this area, by theserauthd others, to
develop TV techniques for optimizing compilers that uglstructure preserving
transformations, i.e. optimizations which do not greatigiege the structure of the
program (e.g. dead code elimination, loop-invariant coddion, copy propaga-
tion) [ASU88.Muc9W,WL9L] as well astructure modifyingransformations, such
as loop reordering transformations (e.g. interchangegil that do significantly
change the structure of the program [AKO0Z.Muc97.Wbl95].ptavious publica-
tions, the authors and their students have described atypettool, Tvoc, that was
developed for performing translation validation on theellf®pen Research Com-
piler (ORC) which performs a large number of transformagiohboth categories
[ZPEG03,ZPEQ3].

AlthoughTvoc is able to perform TV in the presence of a number of different
structure preserving and structure modifying optimizagiot has suffered from the
following drawbacks:

» Tvoc does not use a single unified proof rule for validating loapdering trans-
formations, but rather relies on several proof rules ofedéht forms depending
on the particular optimization being applied. Specificallyoc uses different
proof rules for interchange, tiling, and skewing than it sié@r fusion and dis-
tribution. From a scientific (and engineering) perspegtasingle proof-rule to
handle all loop reordering transformations would be motesfgéang.

» Tvoc has difficulty handlingcombinationf structure preserving and structure
modifying optimizations. This is a serious drawback siniteroone transforma-
tion is performed on the code solely to enable a subsequaargfarmation.

» Tvoc uses information produced by the compiler that indicatekvioop opti-
mizations have been performed. Fortunately, ORC does peodftile containing
such information after every compilation, and thus no addé&l instrumentation
of the compiler is required. Although this information isveerelied upon by
Tvoc to support a proof that the compilation is correct, it is ubgdlvoc to
suggest the proof method to use on a particular section a&.cod

In this paper we describe our approaches to solving the giradems, which
are currently being implemented. Briefly stated, the sohdiare as follows:

» We have generalized the proof rule used for interchangegtiind skewing so
that it now works for fusion and distribution as well. As aesigenefit, the proof
rule now captures additional loop transformations suchesdimg and software

pipelining.
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» When presented with the target caflehat reflects a series of transformations
of the source codé, such that no intermediate versions of the code (e.g. after
individual transformations) are availablByoc will synthesize a series of inter-
mediate versions of the code, based on what transformaitidredieves were
performed. That is, it will generate synthetic intermeeliagrsiond, I, ... I,,
which might possibly not have been created by the compiladlatT voc will
then validate that the translation fra$hto /;, the translation froni; to /;, for
eachy, and the translation from, to 7" are correct.

« In order to avoid having@ voc rely on information produced by the compiler to
determine which optimizations were actually performed,hage developed a
set of heuristics that are used to generate this informajfien only the source
and target code. Heuristics were previously used in thishyayecula [Nec00]
for the TV of structure preserving transformations in gca this paper, we
describe the heuristics we use for the TV of structure madifyransformations,
specifically loop reordering transformations.

The paper is organized as follows. Secfibn 2 provides thessacy background
for understanding our TV work in the validation of individsructure modifying
transformations. Sectid 3 describes how the proof rulewieshave used for loop
optimizations such as interchange and tiling can be garmedato include a wider
variety of loop transformations including fusion, alignmhepeeling, and unrolling.
Sectiorl# describes the kinds of combinations of optimiretthat ORC performs,
and our techniques for validating such combinations ugiegteation of synthetic
intermediate versions of the code. Secfidn 5 presents tieskies that we have
developed in order to determine, in the absence of any stiggeby the compiler,
which optimizations have been performed. Finally, Sed@oncludes.

2 Background

This section is a summary of our previous work on Tvoc. Werrdfe reader to
[ZPEGO03,ZPE 03] for more details and examples.

2.1 Transition Systems

In order to discuss the formal semantics of programs, wedluizetransition sys-
tems TS’s, a variant of thdransition systemsf [PSS98b]. ATransition System
S = (V,0,0,p) is a state machine consisting of: a $étof state variablesa
setO C V of observable variablesaninitial condition © characterizing the ini-
tial states of the system; andransition relationp, relating a state to its possible
successors. The variables are typed, asthteof a TS is a type-consistent inter-
pretation of the variables. For a statand a variable: € V', we denote by|x]
the value that assigns tor. The transition relation refers to both unprimed and
primed versions of the variables, where the primed versiefes to the values of
the variables in the successor states, while unprimedoressif variables refer to
their value in the pre-transition state. Thus, e.g., thesiteon relation may include
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“y' = y + 1” to denote that the value of the variahjein the successor state is
greater by one than its value in the old (pre-transitionfesti/e assume that each
transition system has a variabtehat describes the program location counter.
While it is possible to assign a transition relation to eaelesnent separately,
we prefer to use generalizedransition relation, describing the effect of executing
several statements along a path of a program. Consider ltbeifog basic block:

BO:

n <- 500

y <- 0

w<- 1

IF !'(n >=w) GOTO B2
B1.:

There are two disjuncts in the transition relation assediatith this block. The
first describes th80 to B1 path, whichist =B0 A n' =500 A ¢y =0 A w' =
1 A n>w A 7 = B1, and the second describes B@ to B2 path, which is
T=B0O An=500A4y=0Aw=1An<uw A x" =B2 Thetransition
relation is then the disjunction of all such generalizedgion relations.

The observable variables are the variables we care aboatewte treat each
I/O device as a variable, and each 1/O operation, includktgreal procedure calls,
removes/appends elements to the corresponding varidotiesired, we can also
include among the observable variables the history of patgrocedure calls for a
selected set of procedures. When comparing two systemsijlivequire that the
observable variables in the two systems match.

A computation of aTS is a maximal (possibly infinite) sequence of states
o: S, S1,... ,Starting with a state that satisfies the initial conditioarsthat every
two consecutive states are related by the transition oglati

A transition systeny is calleddeterministidf the observable part of the initial
condition uniquely determines the rest of the computatide restrict our attention
to deterministic transition systems and the programs whéterate such systems.
Thus, to simplify the presentation, we do not consider heogams whose be-
havior may depend on additional inputs which the programdsebroughout the
computation. It is straightforward to extend the theory amethods to such inter-
mediate input-driven programs.

Let P, = (V,,0,,0,,p,) andP, = (V,,0,,0,,p,) be twoTS’s, to which
we refer as thesourceandtarget TS's, respectively. Two such systems are called
comparablef there exists a one-to-one correspondence between tleewaises of
P, and those of’,. To simplify the notation, we denote by € O, andz € O,
the corresponding observables in the two systems. A sotatesgs defined to be
compatiblewith the target statg if s andt agree on their observable parts. That is,
s[X| = t[z] for everyz € O,. We say thatP, is acorrect translation(refinemenit
of P, if they are comparable and, for every : ¢, ¢;, ... a computation of°, and
everyo., : s, s1, ... acomputation of’, such that, is compatible witht,, theno,.
is terminating (finite) iffo, is and, in the case of termination, their final states are
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compatible. Note that the refinement is an equivalenceioelate useP, ~ S,
to denote thar’, is a correct translation aP,.

We distinguish betweestructure preservingptimizations, that admit a clear
mapping of control and data values in the target program mieesponding control
and data values in the source program, simdcture modifyingptimizations that
admit no such clear mapping. Most high-level optimizatiaresstructure preserv-
ing, while most loop optimizations are structure modify{ingtable examples are
skewing, unrolling, and peeling, that can actually be haddily both our structure
modifying and structure preserving proof approaches.)

2.2 Translation Validation of Structure Preserving Optzations

LetP, = (V,,0,,0,,p,)andP, = (V,,0,,0,, p,) be comparabl&S’s, where
P, is thesourceandP,, is thetarget In order to establish thdt, is a correct trans-
lation of P, for the cases that the structure/®f does not radically differ from the
structure ofP,, we use a proof ruleyal, which is inspired by the computational
induction approachl([Flo67]), originally introduced faioping properties of a sin-
gle program. Rul&/al (see [ZPEGO3], and a variant in_ [ZP83] which produces
simpler verification conditions) provides a proof methadpl by which one can
prove that one programefinesanother. This is achieved by establishingaatrol
mappingfrom target to source locations,data abstractiormapping from source
variables to (possibly guarded) expressions over the ttaggeables, and proving
that these abstractions are maintained along basic egaqatihs of the target pro-
gram.

In Val, eachTS is assumed to have @t-pointset, i.e., a set of blocks that
includes all initial and terminal blocks, as well as at lears¢ block from each of
the cycles in the programs’ control flow graph.sfnple paths a path connecting
two cut-points, and containing no other cut-point as arrméegliate node. For each
simple path, we can (automatically) construct the tramsitelation of the path.
Typically, such a transition relation contains the comlitivhich enables this path
to be traversed and the data transformation effected bydtie p

Rule Val constructs a set of verification conditions, one for eachptntar-
get path, whose aggregate consists of an inductive prodfeo€orrectness of the
translation between source and target. Roughly speakauip, eerification condi-
tion states that, if the target program can execute a singile ptarting with some
conditions correlating the source and target programs, dhthe end of the execu-
tion of the simple path, the conditions correlating the seuand target programs
still hold. The conditions consist of the control mappinge data mapping, and,
possibly, some invariant assertion holding at the targeéco

Somewhat related to our approach is the workcomparison checkingrhere
executions of unoptimized and optimized versions of cogecampared on par-
ticular inputs [JGS28,JGSW9,JGS02]. Comparison checitepends on finding
data and control mappings between a source and a target ticufarinputs, and
mismatches are reported to detect optimization errors. gaoison checking has
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mainly been used for structure preserving optimizations.

2.3 Translation Validation of Reordering Transformations

Structure modifying transformations are those that admibatural mapping be-
tween the states of the source and target programs at egubirgutin particular,
A reordering transformation is a structure modifying tfansation that merely
changes the order of execution of the code, without addirdgtating any execu-
tions of any statement|AK02]. It preserves a dependent@itserves the relative
execution order of the source and target of that dependemzkthus preserves
the meaning of the program. Reordering transformationgrcmany of the loop
transformations, including fusion, distribution, inteange, tiling, unrolling, and
reordering of statements within a loop body.
Consider the generic loop in Fig. 1.

for 1 = Ll,Hl do

for i,, = L,,, H,, do
By, ..y im)

Fig. 1. A General Loop

Schematically, we can describe such aloopfas ¢ € Z by <, do B(¢)” where
t = (iy,...,4,) is the list of nested loop indices, addis the set of the values
assumed by through the different iterations of the loop. The $atan be charac-
terized by a set of linear inequalities. For example, forltiop of Fig.[d,

The relation<_, is the ordering by which the various pointsDfre traversed.
For example, for the loop of Fi@l 1, this ordering is the lexjraphic order of.
In general, a loop transformation has the form:

for i € Zby <, doB(i) = forj € J by <, doB(F(5)) 1)

In such a transformation, we may possibly change the donfdaimedoop indices
from Z to J, the names of loop indices fromto j, and possibly introduce an
additional linear transformation in the loop’s body, chiaggit from the source
B(¢) to the targeB(£'(7)).

In [ZPE03] we propose the Rultermute in Fig.[d. For details, soundness,
and examples, see [ZPB3].

In order to apply rulePermute to a given case, it is necessary to identify
(and F~1) and validate Premises R1-R3 of Rilermute. Premises R1 and R2
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RLVieZ :35€J: i=F(j)
R2Vj, #3,€ J: F(j,) # F(J32)
R3. Vi, iy € T : b=y i AF (i) <, F i (6) =

B(21); B(22) ~ B(%2);B(%1)

fori € Thy <, doB(¢) ~ forjec Jby<, doB(F(j))

Fig. 2. Permutation RulPer mute for Reordering Transformations

establish that is a bijection, and premise R3 establishes that no depepdeme
violated by the transformation. The identificationfotan be provided to us by the
compiler, once it determines which of the relevant loop ropations it chooses
to apply. In Intel's ORC compiler, al (dot ell) file contains a description of the
loop optimizations applied in the run of the optimiz&ivoc gleans this informa-
tion, verifies that indeed the optimized code follows theigated optimization,
and constructs the validation conditions. These conditeme then passed to the
theorem prove€VC Lite [SBDO0Z] which checks them automatically.

Rule Permute, as presented here, only deals with transformations whaeh r
order the execution of the entire loop’s body. Some optitions, such as software
pipelining and fusion/distribution, seem to fall outsitie scope of this proof rule.
The next section shows how RuRermute can be used to handle such optimiza-
tions as well.

3 Generalization of Rule Permute

Rule Permute, as formulated in the last section, only covers transfoionatfrom
a single loop to a single loop and requires that there be atluje between the
iterations in one loop and the iterations in the other.

Consider a more generkdop structure consisting of several “simple” loops,
possibly each over a different index domain, where eachtiter consists of sev-
eral “sub-bodies”. Such a loop structure may be transformea another loop
structure. For example, in a typical loop fusion transfaiorg there are two sim-
ple loops (usually over the same index domain), that arestoamed into a single
simple loop, with each iteration consisting of two sub-l@sdione from each of the
original iterations. Other transformations, such as pgefind software pipelin-
ing, can also be viewed as such loop structure transformawe outline some
examples below.)

Our thesis is that, after some pre-processing, we can viegettypes of trans-
formations as instantiations of the reordering transfaionastudied in Subsec-
tion[Z.3, and use RulBermute to validate them.
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3.1 From Loop Structures into Simple Loops

Formally, aloop structureconsists of:
() asetZ,,...,Z, ofindex domains;
(i) foreveryk =1,...,n, atotal ordering<z, overZ,’s elements;
(iii) foreveryk =1,...,n, a numbern; and a sequence af,, bodies{B} }**,
The code for such a loop structure is shown in Eig. 3.

for ¢ € Z; by <7, doB}(2);...;B. (7)

) Pmy

for i € 7, by <z, doB%(4);...; B2, (¢)

) Prmns

for ¢ € 7, by <z, doB%(3);...;B% ()

) Emy,

Fig. 3. An Execution of a Loop Structure

Obviously, any loop of of the form of Fidll 1 in Subsectionl2d@responds to
a single line in Fig[13. Consider a typical loop fusion exapvhere the input is
given by a loop structure with = 2, 7, = Z,, andm; = m, = 1. The fused loop
is then a loop structure, with’ = Z,, m = 2, B,(3) = B, andBy(j) = B™.

We can also refer to a loop structure as a simple loop of tha for

for ¢t € I7 by <, do B(%%)

by defining:
k
IT = {0} x T x {1,...,m¢}  B(ly,i1,11) = By (4)
=1

and |etting(€1, ’il, tl)_<II (62, ig, tg) when
(61 < 62) V (61 = 62 N i1_<I[1i2) V ((61,7:1) = (éz,’iz) N (tl < tg))

Thus, loop structures (as described in Elg. 3) can be catvarto simple loops,
and RulePer mute can be applied on transformations applied to them.

3.2 Some Frequent Transformations between Loop Structures

We describe some of the most commonly used loop transfoomeatrom the point
of view of loop structures, and show the iteration domaingeoing, and bijection
F (andF ') for each. Seé [ZPFG0D3] for a similar analysis of transfdioms from
simple loops into simple loops.
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L oop Fusion

The source and target for generic loop fusion is describdegr4, parts (a) and
(b) respectively. For the source domain, we tédlle= {1,..., k} x {1,..., N} x
{1}, with <__ defined by the usual lexicographical ordering. Similarty; the
target domain, we takg 7 = {1} x {1,...,N} x {1,..., k} with < defined
by the usual lexicographical ordering. The functibh 7J — ZZ is defined
by F(1,i,¢) = (¢,i,1), and F~!(¢,4,1) = (1,4,¢). Note that in order to verify
Premise R3 of Rul®ermute, it suffices to show that for alll, i1, 1), (1, s, ¢s) €
JT, if 11 > 19 andél < 62, then

By, (il); Be, (12) ~ By, (i2);B€1 (Zl)

for j=1,Nby k

for i:=1,N for i=
; j=1,N - B(])
for i k:;L, N [ ; B( i -
Br(i &) (Btf)(l_Jo)op—Z (c) Loop-3 B +k-1)
(a) Loop-1 (d) Unrolled
for jo=1,p
Bi(] o)
for | 1(:p+)l, N;
Bi( ] -
_ for | ;:_1,1 Ny _ For IBl(_:‘l) H
for i,;=1,N, Ba(j 2) for ii=Ly, H 1
: Bi(i1) : : Bi(i1) for i,=1, H-L,+1
fOf i k(:]-y)Nk for jr_1=1, Ny, i:OI' i k(:ij He - B.(i,
Be(i & Br1(] 1 Be(i & for i.=L. K
= ) k=L, Ke
@ toop-a  Tor el (9) Unaligned Bi(i 1)
for jry1=0+1, N; (h) Aligned
Be(J k+1)
(f) Peeled

Fig. 4. Loop Transformations

L oop Distribution

Loop distribution is the inverse of loop fusion. Thus, we take part (b) of Fig.4
for “Before Distribution”, and part (a) of Fidl 4 for “After Btribution.” The iter-
ation domain and the ordering are just like the fusion caske thie roles reversed,
and so aré” andF~!. The verification condition remains the same.

Loop Unrolling
Generic loop unrolling is described in Flg. 4 parts (c) angd ychere we assume
k divides N. Here, the source domain & = {1} x {1,...,N} x {1}, the
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target domainis7 7 = {1} x {1,k+1,...,N —k+ 1} x {1,...,k}, and both
<., and=<_  are the usual lexicographical ordering. We then defiltg, j, t) =
(1,j+t—1,1),andF~(1,7,1) = (1, | £]k + 1,i — | £] k). Note that Premise R3
of Rule Permute is then trivially true.

L oop Peeling
For generic loop peeling, consider the source and targeigirdarts (e) and (f)
respectively. Here we take:

k
IT = J{t} x {1,...,Ng} x {1}
(=1

k+1

JT = J{e < {L(0),... . H(O)} x {1}
£=0

(0,4,1) l=1ANi<p
FHi,1)=X (k+1,4,1) =k Ai>q
(¢,1,1) otherwise
whereL(1) = p+1; L(k+1) = ¢+ 1; and for all other/, L(¢) = 1; and
H(0) =p; H(k) =q; H(k+ 1) = Ny; and for every othef, H({) = N,.
Both <,, and<_, , are the usual lexicographical ordering, and, again, Pemis
R3 of RulePermute is trivially true.

L oop Alignment

For generic loop alignment, consider the source and tang€ig.[4 parts (g) and
(h) respectively. Here we take:

IZ = {6} x {Ls, ..., He} x {1}

JT =\ x {fe(Le), -, foHp)} x {1}

=1
F(ﬁ, iv 1) = (67 fé_l(i)v 1)
Fﬁl“: i, 1) = (¢, fe(i),1)
wheref,(i) =i — L, + 1, f,*(i) = i + L, — 1, and for everyl # r, fi(i) =
f[l(i) = 1.
Both <, and<, , are the usual lexicographical ordering, and, again, Pemis
R3 of RulePermute is trivially true.

4 Combinations

As mentioned above, a real compiler may apg#yeraloptimizations to transform
a source prograny into a target prograni’. In such cases, we first obtain (or
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guess) the sequence of individual transformations, and $iethesize a series of
intermediate versions of the cod&,= Iy, I;,...,1, = 1T based on these trans-
formations. We then must validate the transformation frfnto 7;,, for every

j =0,...,n— 1, and validate thaf,, is indeedT. In this section, we illustrate
this approach by assuming the sequence of transformasogisen by the com-

piler. In the next section, we discuss heuristics for whadddf the sequence of
transformations is not given.

for i=0 to 99 do a[l] := x + 5;
a[i+l] := x + 5 for i=1to 99 do
for i=0 to 99 do al[i+l] :=x + 5
a[i+1] := a[i+1] + a[i +2] ali] ':a[i] + a[i +1]
[100] := a[100] + a[101]
(a) Sources = I (b) Targetl’ = I3

Fig. 5. Input and Output

Consider the source and target program in Hig. 5 (this is arabtransforma-
tion performed by the ORC compiler). The source containsdermsecutive loops
overZ = [0..99] with the usuak ordering. Suppose now that the sequence of op-
timizations applied is alignment followed by peeling folled by fusion as shown
in Fig.[8: I, aligns the second lood; peels the first iteration of the first loop and
the last iteration of the second loop; ahd= 1" fuses the loops.

. 1] : = + 5;
for 131[_i0+t1]0 92 30+ 5 ?Er] i:_1xto 99 d
for i=1to 100 do _ for ?[:I1+tl]o 93 )éo+ >
a[i] :=a[i] + a[i+1] [i] "= al[i] + a[i+1]
a[ 100] a[ 100] + a[ 101]
(@) I, (Alignment) (b) I, (Peeling)
a[1] := x + 5;
for i=11to 99 do
a[i+l] :=x + 5
ali] '=a[I] + a[i +1]
a[ 100] := a[100] + a[101];

(c) I3 (Fusion)

Fig. 6. Stages of Optimizations

To show the correctness of each of the stages, we useHeuteute, applied to
the loop structures, as described in Seclibn 3. For exartipdast (and hardest)
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stage of fusion, amounts to showing that

ny>ny = an;+1]:=x+5; any| :=a[ny] +any +1] ~

alno| := afny| +afn, + 1J; an; + 1] :=x + 5;

which can be easily established.

Typically, the compiler performs one or more loop optimiaas in order to
enable further global (structure preserving) optimizagio For example, the last
stagels in Fig.[d can be further optimized by performing scalar reptaent, loop-
invariant code motion, and copy propagation to obtain trleechown in Figll7.

ai]

f or i) 99

a[ 100] : = a? 1%[0]] ++a>[/ 101];

Fig. 7. After Structure Preserving Optimizations

This can be handled by adding one additional verificatiogestesing the Rule
Val (for structure preserving optimizations) as discussedectiSn[2. Thus, the
overall approach consists of three steps. First, a caredsdafuence of loop trans-
formations is fixed. Second, intermediate representafiptitgoughl, are synthe-
sized and the correctness of each transformation is veruaty RulePer mute.
Finally, the equivalence af, and the target’ is validated using Rul¥al.

5 Heuristics

In this section, we describe techniques that we use to treterthine, in the ab-
sence of information provided by the compiler, the sequefdgop optimizations
that might have been performed on the source code in ordeotlupe target code.

Because we are still in the early stages of devising hecsisti infer the trans-
formations that occurred, we make the following simplifyifput not unreasonable)
assumptions:

» We know themappingfrom each loop structure in the source to each loop struc-
ture in the target — that is, for each loop structure in thes®eode, we know
which loop structure in the target resulted from it. Thisemgrally fairly easy to
determine from contextual information (e.g., proceduferred to, conditional
branch, variables referenced, etc.).

* We have some knowledge about theer in which compilers perform some
transformations to enable others, since most transfoomsfiollow commonly
known sequences of transformations.

12
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5.1 General Approach

Our general approach, combining heuristics with the sysithef intermediate ver-
sions of the code, is to apply the algorithm below to each Istpcture in the
source and the corresponding loop structure in the target.
Input Source loop structurg and target loop structurg.
Output “Valid” or “fail”.
Algorithm
e [ =85
» While!(/ ~ T') do
- Opt := NextOpt(1,T); NextOpt takes as input an intermediate loop structure
and a target loop structure, and returns a possible nexh@atiion that can be
performed to bring the intermediate code closer to the tagde, orl if none
exists; obviously, this is the part that contains the héigss
- If Opt = L, return with “failure”.
- I' := Opt(I), creating a new intermediate form resulting from the guegsse
optimization.
- Use RulePermute or RuleVal to establish’ ~ 1. If validation fails, exit with
“failure”.
end while

* exit with “Valid”

One issue, of course, is termination of the above loop. Siecare generating
intermediate versions of the code which may not actuallyelaen generated by
the compiler, it is conceivable that this process may beteominating (consider,
for example, repeatedly applying loop fusion followed bygpaistribution — which
are essentially inverse functions). However, in practibis will not happen. We
exploit our knowledge of the sequence of optimizations ttwanhpilers typically
perform to limit the possible optimizations that we are girggthe compiler might
have performed at each step. Thus, for example, if distdhiias already been
performed on a certain part of the loop structuhetOpt could be prevented
from subsequently choosing fusion as a guessed optimizatiothat same part
of the loop structure. Finally, since compilers typicalbrform a short sequence of
optimizations on any single loop, we place a bound on the rummbintermediate
versions that we are willing to create and the number oftitema of the loop.

Although we have considered using backtracking to try mldtsequences of
guessed optimizations to reach the actual optimized werdia loop structure gen-
erated by the compiler, our first set of experiments will bégrened without using
backtracking. We expect that the forms of the unoptimized actual optimized
versions of the loop will provide a sufficiently good guidecar creation of inter-
mediate versions that backtracking won't be necessary.
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5.2 Criteria for Selecting the Next Optimization

The criteria upon which our selection of the next optimiaatis based are the
following:

(i) Has the number of loops changed
(i) Has the nesting depth of a loop changed?

(iif) Has the body size of a loop changed (i.e. have more states been added to
the body of a loop)?

(iv) Have the bounds of a loop iteration changed?

(v) Has the use of a loop index variable changed in the bodyuskge.g. has “i”
been replaced by “i+1” in array subscripts)?

(vi) Has a non-unit step been introduced in a loop (e.g. “fodito N step k”)?

These criteria are useful because different loop optinumatexhibit different com-
binations of the criteria. Our first attempt at a heuristidess the tests in the order
specified above, but we expect to refine this ordering threxgierimentation.

The loop optimizations that our tool is expected to recoghaong with the
changes they produce, are as follows.

» Peeling adds a new loop and changes the loop bounds of botteth&op and
the original loop.

» Alignment causes a change in the loop bounds and a constaatitded to each
occurrence of the loop index variable in the body of the loop.

» Unrolling causes an increase in the size of a loop body anchaund step to
appear in the iteration.

« Tiling results in an increase in the nesting depth of a loam:unit step in the
(new) outer loops, and a change in the loop bounds of the iterations.

» Interchange causes the order of the loop index variablesay aubscripts to be
changed, and possibly causes a change in the loop bounds.

» Fusion causes a decrease in the number of loops and an manghe body size
of a loop.

« Distribution causes an increase in the number of loops andearease in the
body size of a loop.

In the next section, we provide more details, motivated hyexample from Sec-
tion[.

5.3 TheNextOpt Heuristic

One of the benefits of our generalized representation of @dtroicture, described
in SectiorB, is that the representation of the source ageéttéoops in this frame-

work lends itself to providing clues to the transformatiahat occurred. Rather
than give a complete definition &f extOpt for all possible transformations (which
we are still working on), we motivate our work here by desagbhow NextOpt
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would behave on the example in Hg. 5.
The source code in Fifjl 5 can be represented as the gendraligestructure

for i¢ € 77 by <, doB(21),

where

TT = ({1} x {0...99} x {1}) U ({2} x {0...99} x {1}).

The target code in Fi§l] 5 can be represented by
for jj € JJ by <,, doB(33),

where

JT = {1} x {0} x {1}) U ({2} x {1...99} x {2}) U ({3} x {99} x {1}).

Note that we recognize a single occurrence of a loop body a#lapsed loop of

one iteration — in particular, we recognize the first line loé target code as an
instance of the body of the first loop of the source witk 0, and the last line of

the target code as an instance of the body of the second lothe cfource with

i = 99. This representation, along with a cursory examinatiorhefgsource and

target loop bodies, makes the following easy to see:

() In ZZ, the last element of each triplet is 1, butjn7 there are triplets whose
last element is 2. This indicates that the number of blocksraeased inside
a simple loop within the target loop structure, somethirgf thccurs when
either fusion or unrolling occurs.

(i) Since the range of middle elements in neitllgr nor 7.7 contains a “step”
(.e.g{l,k + 1,2k + 1,...}), it is unlikely that unrolling has occurred. This
can also be seen by noticing that the bodies of the simpleilodpe target
that has increased in size (i.e. in the number of blocks withé loop) are
not copies of each other with different array indices. Thius, unlikely that
unrolling produced this set of blocks.

(iii) The range of first elements @7 is {1, 2}, while the range of first elements of
JJis{1,2,3}. This situation, indicating an increase in the number oféém
loops in the target loop structure over the source loop &traccan only occur
with peeling or distribution.

(iv) Since distribution would cause a reduction in the rangéhird elements of
J J as compared t6Z — and that has not happened in this case — it is unlikely
that distribution has occurred.

(v) The range of the middle elements (i.e. the range of vatdie¢lse loop index
variables) in7 7 is {0..100} while the range of the middle elementsZf
is {0..99}. An increase in the upper bound for the loop index varialies,
decrease in the lower bound, indicates that alignment mag becurred (it
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could also indicate skewing, but the relationship betw&&rand 7.7 when
skewing occurs is substantially different than what we sseh

Once these observations are made, we are left with a set whiaptions —
namely fusion, peeling, and alignment — that are candidatelseing considered
as the first optimization performed on the way from the sotwdbe target.

Because alignment and peeling are considered enablirgforamations for fu-
sion, and not vice-versa, it makes senseNextOptto choose either alignment
or peeling as the optimization to use in the constructiorhefriext intermediate
version of the code (this is an instance of where our knowdealgcompilers is
exploited in the heuristic). Although the Intel ORC compisetually performed
alignment followed by peeling on this example, a heuriskioice of peeling be-
fore alignment in the validation process will work.

By choosing peeling, we will construct the next intermeegligérsion of the
code,/’, to be:

a[l] :=x + 5
for i=11to 99 do

a[i+l] :=x + 5
for 1=0 to 98 do

a[i+1] := a[i+2] + 11
a[ 100] := a[101] + 11

Thus,ZZ', the iteration space far, is defined by
I7' = {(1,0, 1) }U({2} x{1...99} x {1HU({3} x{0...98} x {1})U{(4,99,1)}

Now, comparingZZ’ with 77, it becomes clear that alignment is required on the
second loop iXZ'.

5.4 Implementation Status

We are in the process of adding these heuristics td'thee tool, and thus do not
have experimental results yet to indicate how effectivelmuristics are. Once the
implementation has reached the point where it will work oaaety of loop trans-
formations, we will use the implementation to evaluate ceuristics and to tune
our strategy, particularly with respect to the order in vihike criteria described
above are applied.

6 Conclusion

This paper describes three improvements to our translatibbdation approach for
optimizing compilers. First, we presented a generalizéel far accommodating a
wider class of loop transformations. Next, we showed howlmoations of opti-

mizations can be handled by synthesizing intermediateores®f the code and val-
idating each optimization individually. Finally, we deted preliminary heuristics
for guessing the sequence of optimizations, given only thuece and target code.
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We are currently integrating all of these improvements ouoTvoc tool. As
we do so, we plan to improve our heuristics and continue ussabexamples to
increase the power and scope of translation validatiomigdies.

Acknowledgement. As always, we would like to thank Amir Pnueli for many
helpful discussions. Ying Hu has supplied us with exampfe®RC’s optimiza-
tions that were beyond the capabilities of previous vessmfiT voc.
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