COCYV 2005 Preliminary Version

Validating More Loop Optimizations

Ying Hu Clark Barrett Benjamin Goldberg Amir Pnuelil

Department of Computer Science
New York University
New York, USA

Abstract

Translation validation is a technique for ensuring that a translator, such as a com-
piler, produces correct results. Because complete verification of the translator itself
is often infeasible, translation validation advocates coupling the verification task
with the translation task, so that each run of the translator produces verification
conditions which, if valid, prove the correctness of the translation.

In previous work, the translation validation approach was used to give a frame-
work for proving the correctness of a variety of compiler optimizations, with a recent
focus on loop transformations. However, some of these ideas were preliminary and
had not been implemented. Additionally, there were examples of common loop
transformations which could not be handled by our previous approaches.

This paper addresses these issues. We introduce a new rule REpuck for loop
reduction transformations, and we generalize our previous rule VALIDATE so that it
can handle more transformations involving loops. We then describe how all of this

(including some previous theoretical work) is implemented in our compiler validation
tool TVOC.

Key words: Translation validation, formal methods, loop
optimizations

1 Introduction

Compiler correctness is essential to having correct programs. For critical ap-
plications, it is not enough to have a proof of correctness for the source code.
There must also be an assurance that the compiler produces a correct transla-
tion of the source code into target machine code. Verifying the correctness of
modern optimizing compilers is a challenging task because of their size, their
complexity, and their evolution over time.

! Email: {yinghu,barrett,goldberg,amir}@cs.nyu.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Hu, BARRETT, GOLDBERG, AND PNUELI

Translation Validation (TV) [12] is a technique for ensuring that the target
code emitted by a translator, such as a compiler, is a correct translation of
the source code. Because of the difficulty of verifying an entire compiler, i.e.
ensuring that it generates the correct target code for every acceptable source
program, translation validation is used to validate each run of the compiler,
comparing the actual source and target code.

In previous work [14,15], the proof rule Pervute was introduced to validate
loop reordering transformations and the proof rule Varipare was introduced
to validate so-called structure preserving transformations. However, we have
since found these rules to be insufficient for certain kinds of transformations
performed by optimizing compilers. For example, a loop which repeatedly
increments a variable can be replaced by a single multiplication operation.
For this kind of transformation, we introduce a new proof rule Rebuce. In
addition, we found that in some structure preserving cases involving nested
loops, rule VaLmbate is unsuccessful. However, by generalizing the rule slightly
(obtaining a rule we call GEN-VALIDATE), we can handle these cases as well.

TVOC is a tool being implemented at NYU which implements translation
validation for the Intel Open Research Compiler (ORC) [7]. TVOC imple-
ments rules PERMUTE, GEN-VALIDATE, and Repuck and checks the generated
verification conditions using the automatic theorem prover CVC Lite [1]. The
latest version of TVOC also includes a concrete implementation of ideas sug-
gested in [4] for validating reordering loop optimizations. In particular, TVOC
now uses a uniform proof rule for all reordering loop optimizations, a heuris-
tic for determining which loop optimizations occurred (rather than relying on
the compiler for this information), and a methodology for combinations of
optimizations.

This paper is organized as follows: Section 2 reviews transition systems
which provide the necessary theoretical foundation for translation validation of
optimizing compilers. Section 3 discusses related work on compiler verification
in general and our previous work on translation validation of compilers in
particular, including the rules VavLibate and PErMUTE. Section 4 introduces
the new proof rule Rebpuce. Section 5 proposes the proof rule Gen-VaripaTe, a
generalization of VavLmare. Finally, Section 6 describes how all of these proof
rules are implemented in the latest version of TVOC.

2 Background

In order to discuss the formal semantics of programs, we briefly review tran-
sition systems, TS’s, a variant of the transition systems of [12]. A Transition
System S = (V, 0,0, p) is a state machine consisting of: a set V' of state vari-
ables; a set O C V of observable variables; an initial condition ©, which is a
formula over V' characterizing the initial states of the system; and a transition
relation p, a formula over both unprimed and primed versions of the variables,
where the primed versions refer to the values of the variables in the successor

2

Hu, BARRETT, GOLDBERG, AND PNUELI

states, while unprimed versions of variables refer to their value in the pre-
transition state. Thus, e.g., the transition relation may include “y' = y 4+ 17
to denote that the value of the variable y in the successor state is greater by
one than its value in the old (pre-transition) state. The variables are typed,
and a state of a TS is a type-consistent interpretation of the variables. For a
state s and a variable z € V', we denote by s[z]| the value that s assigns to .
We assume that each transition system has a variable pc that describes the
program location counter.

While it is possible to assign a transition relation to each statement sepa-
rately, we prefer to use a generalized transition relation, describing the effect of
executing several statements along a path of a program from one basic block
to another. Consider the following piece of code:

Lo:

n := 500;

y =0

if (n < w) goto Ly;
Lli
Lo:

There are two disjuncts in the transition relation whose starting locations
are Lo. The first describes the Ly to L; path, which is pc = Ly A n' =
500 A ¢y =0 A n' >w A pc’ =L, and the second describes the Ly to Ly
path, which ispc =Ly A n' =500 A v =0 A n' <w A pc’ =Ly The
complete transition relation is formed by taking the disjunction of all such
generalized transition relations.

The observable variables are the variables we care about, where we treat
I/O devices as variables, and each I/O operation, including external proce-
dure calls, removes elements from or appends elements to the corresponding
variable. If desired, we can also include among the observable variables the
history of external procedure calls for a selected set of procedures. When
comparing two systems, we will require that the observable variables in the
two systems match, i.e. are related by a one-to-one correspondence relation.

A computation of a TS is a maximal (possibly infinite) sequence of states
o Sp,S1,... ,starting with a state that satisfies the initial condition such that
every two consecutive states are related by the transition relation.

A transition system 7T is called deterministic if the observable part of the
initial condition uniquely determines the rest of the computation. We restrict
our attention to deterministic transition systems and the programs which gen-
erate such systems. Thus, to simplify the presentation, we do not consider here
programs whose behavior may depend on additional inputs which the program
reads throughout the computation. It is straightforward to extend the theory
and methods to such intermediate input-driven programs.

3

Hu, BARRETT, GOLDBERG, AND PNUELI

Let P, = (V,,0,,0,,p,) and P, = (V,,0,,0,,p,) be two TS’s, to
which we refer as the source and target TS’s, respectively. Two such systems
are called comparable if there exists a one-to-one correspondence between the
observables of P, and those of P,. To simplify the notation, we denote by
X € O, and z € O, the corresponding observables in the two systems. A
source state s is defined to be compatible with the target state ¢, if s and ¢
agree on their observable parts (that is, s|X| = t[z] for every x € O,). We
say that P, is a correct translation (refinement) of P, if they are comparable
and, for every o, : t,t;,... a computation of P, and every o, : sg,51,... a
computation of P, such that s, is compatible with ¢;, then o, is terminating
(finite) iff o is and, in the case of termination, their final states are compatible.
It is not hard to see that this notion of refinement is an equivalence relation.
We will use P, ~ P, to denote that P, is a correct translation of P,.

We distinguish structure preserving optimizations, that admit a clear map-
ping of control and data values in the target program to corresponding control
and data values in the source program, from structure modifying optimizations
that admit no such clear mapping. Most high-level optimizations are structure

preserving, while most loop optimizations are structure modifying. 2

3 Previous and Related Work

3.1 Related Work

Traditional compiler verification tries to prove compiler correctness using stan-
dard program verification techniques. However, in practice this is often in-
feasible due to the complexity and evolution of compiler implementations.
Recently, a number of creative techniques for verifying compilers have been
introduced [5,6,8,9,10,11,12,13].

In [9,11], a certifying compiler provides the proof for type safety and mem-
ory safety properties of the target program, while our approach proves the
semantic equivalence of the source and target program.

[10] verifies the preservation of semantics for each compilation and thus
has the same goal as our work. Instead of using an automatic theorem prover,
a set of algebraic rules are used to check the equivalence of logic formulas.
The cases with branch splitting and loop optimizations are not handled there.

A credible compiler [13] produces an inductive proof along with each com-
pilation, similar to our approach but with different algorithms and rules. How-
ever, the method proposed there assumes full instrumentation of the compiler,
which is not assumed here or in [10].

In [5], the notion of correct translation and the method of program checking
appear similar to ours. However, instead of transition systems, abstract state

2 Some transformations such as skewing, unrolling, and peeling, can actually be handled
by both our structure modifying and structure preserving proof approaches.

4

Hu, BARRETT, GOLDBERG, AND PNUELI

machines (ASMs) have been used there to model the operational semantics of
programs, and their work does not deal with optimizations.

Comparison checking [6] is a technique that automatically checks the se-
mantic equivalence of executions of source and target programs at run-time.
Though it has the advantage of being precise, it cannot validate a program
translation for all possible program inputs, and it increases the run-time of
the program.

In [8], compiler optimizations are automatically proved correct using the
automatic theorem prover Simplify [2]. Optimizations are proved once for
all possible inputs so that the result is a verified compiler. However, the
compiler writers have to use a domain-specific language called Cobalt and
provide complicated rewrite rules with triggering guards. This approach also
assumes that the compiler is written with verification in mind and that the
transformations which have been verified are correctly implemented. We do
not make these assumptions.

Our approach, translation validation [12], is similar to many of these ap-
proaches in that it focuses on verifying a single run of the compiler, rather
than verifying the compiler itself. However, our work has the advantage that
its abstract computational model and refinement concepts are very general.
Also, it can be used to verify existing compilers due to its independence from
the compiler. Finally, though it does require extra effort at compile time, it
does not increase the run-time of programs.

3.2 Previous Work

3.2.1 Rule VALIDATE for structure preserving optimizations

Let P, = (V,,0,,0,,p,) and P, = (V,,0,,0,,p,) be comparable TS’s,
where P, is the source and P, is the target. In order to establish that P,
is a correct translation of P, for the cases that the structure of P, does not
radically differ from the structure of P, we use a proof rule, Varipate, which
is inspired by the computational induction approach ([3]), originally intro-
duced for proving properties of a single program. Rule Varipate (see [14], and
a variant in [15] which produces simpler verification conditions) provides a
proof methodology by which one can prove that one program refines another.
This is achieved by establishing a control mapping from target to source loca-
tions, a data abstraction mapping from source variables to (possibly guarded)
expressions over the target variables, and proving that these abstractions are
maintained along basic execution paths of the target program.

In VaLipate, each TS is assumed to have a cut-point set, a subset of the
program locations (i.e. possible values of pc) that includes all initial and
terminal locations, as well as at least one location from each of the cycles in
the program’s control flow graph. A simple path is a path connecting two cut-
points, and containing no other cut-point as an intermediate node. For each
simple path, we can (automatically) construct the transition relation of the
path. Such a transition relation contains the condition (if any) which enables

5

Hu, BARRETT, GOLDBERG, AND PNUELI

this path to be traversed and the data transformation effected by the path.

Rule VaLipaTe constructs a set of verification conditions, one for each simple
target path, whose aggregate consists of an inductive proof of the correctness of
the translation between source and target. Roughly speaking, each verification
condition states that, if the target program can execute a simple path, starting
with some conditions correlating the source and target programs, then at the
end of the execution of the simple path, the conditions correlating the source
and target programs still hold. The conditions consist of the control mapping,
the data mapping, and, possibly, some invariant assertion holding at the target
code. Rule VALIDATE is discussed in more detail in Section 5.

3.2.2 Translation Validation of Reordering Loop Transformation

We described in [14] and [4] our approach to performing translation validation
of loop reordering transformations, such as loop interchange, fusion, distribu-
tion, and tiling. This previous work, in which the proof rule PerMuTE was de-
scribed, relies on recognizing which loop optimizations have been performed.
In this paper, in section Section 6.1, we describe the simple heuristic algo-
rithm that we have implemented in TVOC to recognize which optimizations
have been performed.

4 Rule Reduce

for i1 =1 to N do

voi= a1 — T =z + N;

Fig. 1. An example for loop reduction.

Rule PermuTE can handle any loop reordering transformation, but there are
other kinds of loop transformations that cannot be handled by either Vavipate
or PermuTE. Fig. 1 shows an example (an actual transformation performed by
ORC) in which a loop is removed and replaced with a single statement. We
call this loop reduction and propose a new proof rule, Rebuce, to deal with
such cases. Rule Rebuck is shown in Fig. 2, where the symbol ~ means that
two pieces of code are equivalent.

RI. B(1) ~ B'(1)
R2.Vi>0: B'(i); B(i+ 1) ~ B'(i + 1)

fori=1to N do B(i) ~ B'(N)

Fig. 2. Rule Repuck for loop reduction.

6

Hu, BARRETT, GOLDBERG, AND PNUELI

Loop reduction is based on finding a closed-form expression for the result of
executing the loop. Such transformations can often be verified using induction.
Rule Repuce is based on an inductive argument that executing B(7) from 1 to
N is equivalent to executing some closed-form block B'(N). The first premise
is the base case. It requires that B(1) be equivalent to B'(1). The second
premise is the inductive case, which requires that B'(i) be able to “absorb”
B(i+ 1) to become B'(i + 1). For the code in Fig. 1, B(i) is := 2 + 1 and
B'(i) is := x +1i. The two premises can easily be established for this simple
case.

Rule ReEpuck can also be used to show that a loop which does nothing can
be removed. Fig. 3 shows a transformation which removes a loop with no loop
body. In this case, B(i) = B'(i) = Skip.

for i=1to N do
Skip;

Fig. 3. Reduction for an empty loop.

— Skip;

5 A Generalization of Rule Validate

Section 3 briefly described the proof rule Varibate. Rule VALIDATE can validate
many transformations in which the source and the target have the same loop
structure. However, there are still some cases in which, even though the loop
structure is the same, rule Varipare is unsuccessful. Fig. 4 gives an example
of such a transformation performed by ORC.

cp; :
if (1 < N) then {
CP; : 1
fori=1to N do if (1 < M) then {
CP, : for ;. =1to N do
for j =1 to M do Cpy -
CP; : ! — for j =1 to M do
B(Z,]), Cps -
CPy, : B(i,7);
}
¥
cp, :

Fig. 4. An example for which rule VaLipare fails.

The transformation adds two “short-cut” branch conditions before the
main loops. In this example, CPy,CPy, CP3 and CP, are the source cut-points,
and cp,, cp,, cp; and cp, are the target cut-points. The control mapping maps
each of the target cut-points in order to the corresponding source cut-point.

7

Hu, BARRETT, GOLDBERG, AND PNUELI

The label 1; labels a target location that is not in the cut-point set. Now, con-
sider a simple target path from cp, to cp,. This path goes from cp, through
1, and then to cp, directly without ever entering the loops. This target path
is enabled under the condition N > 1 A M < 1. Its corresponding source path
goes from CP; inside the loop to CPy, stays at CPy for NV cycles, and then exits
to CP4 without entering the inner loop. Since this source path crosses CPy N
times on its way from CP; to CPy, it is not a simple path. This is a problem for
rule Vavmare: the simple path from cp, to cp, has no corresponding simple
path in the source! As a result, the verification condition corresponding to
the simple path from cp, to cp, fails.

The reason that rule Varipate fails for the transformation of Fig. 4 is that
it assumes each simple path in the target corresponds to one or more simple
paths in the source. However, this transformation transforms a non-simple
path in the source into a simple path in the target. We can solve this problem
by relaxing the requirement on the set of cut-points used by rule VaLaTE.

The modified proof rule, GEN-VALIDATE, is presented in Fig. 5, and a proof
of its correctness is given in the appendix. It is essentially the same proof
rule as that given in [15] except that a new item 0 has been added which
explicitly allows the set of cut-points to be chosen more freely. The cut-point
sets must include the initial and terminal points of programs as before, but
they do not necessarily contain a point for each loop. Instead, we require
that the transition relation for every simple path be “computable”. Here,
“computable” means that the path is finite and its transition relation can be
calculated by data flow analysis or derived by proof rules. It is easy to see
that loop-free paths are guaranteed to be computable. But it is also the case
that whenever the number of iterations of a loop are known, the transition
relation for the loop can be computed by unrolling the loop.

To solve the example of Fig. 4, we can eliminate cut-points CP, and cp, as
shown in Fig. 6. There are now several new simple paths that did not exist
before. Most of these are loop-free and are thus easily computable. However,
there is now a new source path from CP; to CP4. This path is only possible if
the inner loop is never executed (otherwise CP3 would be reached). But this
means that the loop body is effectively empty, and as discussed earlier (see
Fig. 3), a loop with an empty body is equivalent to doing nothing. Note that
such a path in the target is not feasible since it would require both 1 < M
and 1 > M to be true. Thus, all of these paths are computable and the re-
quirements for rule Gen-Varmare are met. With this new set of cut-points,
the validation succeeds because there is a corresponding simple source path
for the target path from cp, to cp,.

6 New Implementation Features

TVOC is a translation validation tool being developed at NYU. It accepts as
8

Hu, BARRETT, GOLDBERG, AND PNUELI

0. Establish source and target cut-point sets CP, and CP,,, which include
all initial and terminal program locations. For any simple path between
two cut-points ¢ and j, its transition relation p;; must be computable.

1. Establish a control abstraction x: CP,. — CP such that 7 is an initial
(terminal) location of 7" iff k() is an initial (terminal) location S.

2. For each cut-point ¢ in CP ., form an invariant ¢; that may refer only
to target variables.

3. Establish a data abstraction
a:(PC=k(pc) A (pr—=>Vi=e)) A - A (pn— Vi =c¢y)

which asserts that the source and target are at corresponding cut-
points and which assigns to some non-control source variables V; € Vg
an expression e; over the target variables, conditional on the (target)
boolean expression p;. It is required that for every initial target cut-
point i, ©, A O, — a A ;. It is also required that every observable
source variable V' € Oy has a unique corresponding observable target
variable v € O,., and that for every terminal target cut-point ¢, pc =
t A o implies that V = v for all V € O.

4. For each pair of cut-points 4,7 € CP, such that there is a simple path
from 7 to 7, we form the verification condition

T S
Cl] Pi AR AA pz] A (\/ pﬂ') - o A ()0;7
mEPaths(k(i))

where Paths(rk(i)) is the set of all simple source paths starting at x(7)
and pfr is the transition relation for the simple source path .

5. Establish the validity of all the generated verification conditions.

Fig. 5. The generalized rule GEN-VALIDATE

input a source program S and target program 1'. These are provided in the
WHIRL intermediate representation, a format used by Intel’s Open Research
Compiler (ORC) [7] among others. The output of TVOC is either “VALID”
or “INVALID”, depending on whether the target is a correct translation of
the source. In [4], a number of ideas were introduced which had not yet been
fully developed or implemented in TVOC. We have since modified TVOC to
implement these features as well as those described in this paper.

Fig. 7 shows the old architecture of TVOC. Three limitations of this ar-
chitecture were addressed in [4]: first, we depended on an auxiliary file (the
“1” file) generated by the compiler to tell us which loop transformations had

9

Hu, BARRETT, GOLDBERG, AND PNUELI

cp;
if (1 < N) then {

CPy: if (1 < M) then {
for i=1to N do for i =1 to N do
for j=1to M do for j =1 to M do
CP3 . - cp; :
B.J) B(i, j);
CP4 : }
}
cp, :
Fig. 6. Example with modified cut-points.
Source program
\
Compiler
Source IR S A file Target IRT
\ /
I RS * ~ Valid
TVOC Phase 1 -~ Phase?2
] [— |nvalid
yes/no ’Verification Conditions‘ yes/no
CVC Lite

Fig. 7. The old architecture of TVOC.

been performed; second, loop transformations had to be verified in one step,
even if the transformations were more naturally modeled as the composition
of several simple transformations; and third, there were several different proof
rules (and corresponding code) for verifying the loop transformations. In this
section, we discuss the new architecture of TVOC (shown in Fig. 8) and show
how we implemented the solutions to these problems. We also discuss the
implementation of the GEn-VaLiDATE rule described in this paper.

6.1 An Algorithm for Inferring Loop Optimizations

Because it is nontrivial to figure out what kind of optimizations the compiler
performs, the old version of TVOC used information produced by the compiler
to figure out which loop optimizations had occurred. However, not all com-
pilers provide such information, and the information provided by ORC was

10

Hu, BARRETT, GOLDBERG, AND PNUELI

Source program

|

Compiler

O\

SourcelR S Target IRT

/. — N

Phase 1 S Phase 2 —Vadlid
TVOC | | g = =8y -S, =9 "l validate(S | T)
/ [/

yesno / / Verification Conditions / / yesno
CVC Lite

—=|nvalid

Fig. 8. The new architecture of TVOC.

1. For each nested loop of depth m in the source, check the cor-
responding target code for a nested loop of depth n. Note that
we can match up loops in the source and target because WHIRL
includes annotations indicating which line number in the source
corresponds to a given target line.

2. If m > n, check whether the target contains code which came from
the body of the source loop. If not, try loop reduction. Otherwise,
try loop fusion.

3. If m = n, check to see if any indices are out of order. If so, loop
interchange has occurred.

4. If m < n, assume loop tiling has occurred.

Fig. 9. The algorithm for analyzing loop transformations.

sometimes incomplete. In order to make TVOC more generally applicable, we
developed an algorithm to infer which loop transformations were performed
by looking only at the source and target code. The algorithm is capable of
inferring loop reduction, loop fusion, loop interchange, and loop tiling and is
shown in Fig. 9.

11

Hu, BARRETT, GOLDBERG, AND PNUELI

6.2 A Unified Validation Module for Reordering Optimizations

In previous versions, TVOC used different proof rules for interchange and
tiling than it does for fusion, and it had different modules for different loop
transformations. This was not ideal from a software engineering perspective.
In the current version, TVOC uses the generalized approach described in [4] for
all reordering loop transformations. Thus, there is only one general module for
checking reordering transformations which accepts the loop index domain and
permutation function as parameters and generates the appropriate verification
conditions.

6.3 A Methodology for Combinations of Optimizations

The old version of TVOC had difficulty handling combinations of loop trans-
formations. This was a serious drawback since often multiple transformations
are performed by the compiler. In the new version, after a loop transforma-
tion is inferred and validated, TVOC synthesizes a new intermediate version
of the code obtained by applying that transformation. It repeats this process
for each detected transformation. In this way, a sequence Sy, Sy, ...S, of in-
termediate versions of the code is generated by TVOC, and the final version
S, is output by phase one and provided as input to phase two which uses the
validate rule to check it against the target code.

for i =1 to 100 do

C for i =1 to 100 do for j =1 to 100 do
fora‘gi;)l_foo_mo 4o for j =1 to 100 do _, fori=1to 100 do
for j — 1,100 do “():0 “() 0;

Fig. 10. A combination of loop transformations.

As an example, consider the code in Fig. 10. ORC first fuses the two
inner loops and then performs loop interchange in order to improve cache
performance (when the input code is written in Fortran in which arrays are
stored in column major order). In phase 1, after comparing the source and
target loops, TVOC detects that loop fusion and interchange happened. It
first checks if fusion is valid. When the result is positive, it performs fusion
and generates a new intermediate version of the code. Next it checks whether
interchange is valid (which it is), generates a new intermediate version, and
sends the result to phase two.

6.4 Implementation of Rule Gen-Validate

Recall that rule Gen-Vavibare requires checking a verification condition for
each simple path between cut-points in the target. Furthermore, the verifi-
cation condition for the target path from 7 to j includes a disjunction of all

12

Hu, BARRETT, GOLDBERG, AND PNUELI

possible simple source paths starting from x(z). In the actual implementation
of rule GEN-VALIDATE, it is not practical to test all the paths starting from cut-
point x(i) in the source. It is much easier to restrict the source paths to those
from k(i) to x(j). With some additional work, we can restrict our attention
to only these paths.

The following theorem shows how to recast the verification condition in
terms of only those source paths from k(i) to x(j). Let Cond. be the con-
ditions under which a simple source path 7 is enabled (this corresponds to a
conjunction of the branch conditions along the path).

Theorem 6.1 Consider the following verification conditions:

T S
wi Noa N py A (\/ pr) — a A g (1)
mePaths(k(i))

©i N a A pz;- - \/ Cond.) (2)
wePaths(k(i),x(5))

T S
e hanpg AC N) o A @)
7€ Paths(k(i),k(5))

We claim that equation (1) holds iff (2) and (3) hold.

Proof. In one direction, suppose (1) holds, (3) also holds because the left-
hand side of (3) is stronger than the left-hand side of (1) while the right-
hand sides of the two implications are the same. Now, to show that (2) also
holds, suppose we have ¢; A a A pz; By definition of p and «, it follows
that PC = k(). Since ¢ is not a target terminal cut-point, (i) is not a
source terminal cut-point. Now, at every non-terminal source cut-point, some
transition must be taken, so it follows that (\/, cpums(s p.) holds. By (1),
we then have o' A ¢}. But from pz;- Ao/, PC" = k(j) follows. We thus have
(V rePaths(s(iy (7)) p.), which means (2) holds since Cond.. is implied by p..
In the other direction, suppose that (2) and (3) hold and that we have
i N A Py A (Vaepansiutiy) Pr)- BY (2), we have (Ve pus(e(iyniiy) C0nels),
so some path 7 from (i) to k(j) is enabled. But because the transition system
is deterministic, only one path can be enabled at a given point, which means
that at (i), the only simple path enabled is from k(i) to x(j). Therefore
(V e Paths (i) (7)) p.) holds. By (3), we have o/ A ¢, and thus (1) holds. O

Using this theorem, we were able to implement part 4 of rule GEn-VaLiDATE
by checking the conditions of the source simple paths between k(i) and x(j)
without looking for all the source simple paths starting from r(7).

13

Hu, BARRETT, GOLDBERG, AND PNUELI

7 Appendix: Soundness of Gen-Validate

Let P, = (V,,0,,0,p,) and P, = (V,,0,,0,,p,) be two TS’s, where P, is
the source and P, is the target. Assume all the parts in rule GEN-VALIDATE are
established. We need to prove that P, is a correct translation of P, which
means they are comparable and, for every o, : %9,%;,... a computation of P,
and every o : 59, 51, ... a computation of P, such that sy is compatible with
to, 0, is terminating (finite) iff o is and, in the case of termination, their final
states are compatible.

From part 3 of rule GEN-VALIDATE, we know that the two systems are com-
parable. We will prove the rest in two directions.

Suppose we have a terminating target computation o,. We know that the
initial state ¢ty and terminal state ¢,, of the computation must be at some target
cut-points cpy and c¢p,,, according to part 0 of rule GEx-VaLipaTe. According to
part 1 of GEN-VALIDATE, the corresponding source cut-points C'Fy and C'P, are
initial and terminal source cut-points respectively, and for any other cut-point
cp; in the target computation path, the corresponding source cut-point C'P; is
k(cp;). Now, by part 3, a A ¢ holds at the initial states ¢, and s,. From part

4, for any cut-point ¢ and its next cut-point j in the target path,

T S
Cij: ei Na A py A \/ pe) = AP
mePaths(k(i))

Here, since the source cut-point (i) is not the terminal cut-point, there is
. . S .

always a source path enabled at (i), which means \/_ _p i n()) Pr 15 always

true. This condition guarantees that for the target simple path between 1

and j (it has computable transition relation pij» and its corresponding source

simple path also has a computable transition relation pfr), if a A\ ¢ holds at
cut-points ¢p; and x(cp;), then it also holds at ¢p; and x(cp;). By induction,
it follows that a A ¢ holds at the terminal cut-points, which have the states
s, and t,. But by 3, this implies that s, and ¢,, are compatible.

For the other direction, suppose we have a terminating source compu-
tation o,. Now, suppose the corresponding target computation o, is non-
terminating. This infinite target path will include an infinite number of target
cut-points, since it is required that the transition relation for the path between
two directly connected cut-points be computable and only a finite path can
have a computable transition relation. By the argument above, a target com-
putation with an infinite number of cut-points will have a corresponding source
computation o, with an infinite number of source cut-points. This would re-
quire there to be two different source computations o, and o, starting from
the same initial source state sy, which violates the assumption that the source
program is deterministic. Therefore, the corresponding target computation
0, must be terminating. And according to the previous argument, their final
states must be compatible.

14

Hu, BARRETT, GOLDBERG, AND PNUELI
References

[1] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In Proceedings of the 16th International Conference on
Computer Aided Verification (CAV), July 2004. To appear.

[2] D. Detlefs, G. Nelson, and J. Saxe. Simplify: a theorem prover for program
checking. Technical Report HPL-2003-148, Systems Research Center, HP
Laboratories, Palo Alto, CA, July 2003.

[3] R. Floyd. Assigning meanings to programs. In Symposia in Applied
Mathematics, volume 19:19-32, 1967.

[4] B. Goldberg, L. Zuck, and C. Barrett. Into the loops: Practical issues
in translation validation for optimizing compilers. In Third International
Workshop on Compiler Optimization meets Compiler Verificaiton (COCYV),
Apr. 2004.

[5] G. Goos and W. Zimmermann. Verification of compilers. Lect. Notes in Comp.
Sci., 1710:201-230, 1999.

[6] C. Jaramillo, R. Gupta, and M. Soffa. Debugging and testing optimizers
through comparison checking. Lect. Notes in Comp. Sci., 65(2), 2002.

[7] R.-C. Ju, S. Chan, and C. Wu. Open research compiler (orc) for the itanium
processor family. In Micro 34, 2001.

[8] S. Lerner, T. Millstein, and C. Chambers. Automatically proving the
correctness of compiler optimizations. In Proceedings of the ACM SIGPLAN
03 Conference on Programming Language Design and Implementation, 2003.

[9] G. Necula. Proof-carrying code. In POPL’97, pages 106-119, 1997.

[10] G. Necula. Translation validation of an optimizing compiler. In Proceedings
of the ACM SIGPLAN Conference on Principles of Programming Languages
Design and Implementation (PLDI) 2000, pages 83-95, 2000.

[11] G. Necula and P. Lee. The design and implementation of a certifying compilers.
In Proceedings of the ACM SIGPLAN Conference on Principles of Programming
Languages Design and Implementation (PLDI) 1998, pages 333-344, 1998.

[12] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS’98,
pages 151-166, 1998.

[13] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings
of the Run-Time Result Verification Workshop, 1999.

[14] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. A translation validator
for optimizing compilers. Journal of Universal Computer Science, 2003.
Preliminary version in ENTCS, 65(2), 2002.

[15] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu. Translation
and run-time validation of loop transformations. Journal of Formal Methods in
System Design, 2004. To appear, preliminary version in ENTCS, 70(4), 2002.

15

	Introduction
	Background
	Previous and Related Work
	Related Work
	Previous Work

	Rule Reduce
	A Generalization of Rule Validate
	New Implementation Features
	An Algorithm for Inferring Loop Optimizations
	A Unified Validation Module for Reordering Optimizations
	A Methodology for Combinations of Optimizations
	Implementation of Rule Gen-Validate

	Appendix: Soundness of Gen-Validate
	References

