
COCV 2005 Preliminary Version
Validating More Loop OptimizationsYing Hu Clark Barrett Benjamin Goldberg Amir Pnueli 1Department of Computer S
ien
eNew York UniversityNew York, USAAbstra
tTranslation validation is a te
hnique for ensuring that a translator, su
h as a
om-piler, produ
es
orre
t results. Be
ause
omplete veri�
ation of the translator itselfis often infeasible, translation validation advo
ates
oupling the veri�
ation taskwith the translation task, so that ea
h run of the translator produ
es veri�
ation
onditions whi
h, if valid, prove the
orre
tness of the translation.In previous work, the translation validation approa
h was used to give a frame-work for proving the
orre
tness of a variety of
ompiler optimizations, with a re
entfo
us on loop transformations. However, some of these ideas were preliminary andhad not been implemented. Additionally, there were examples of
ommon looptransformations whi
h
ould not be handled by our previous approa
hes.This paper addresses these issues. We introdu
e a new rule Redu
e for loopredu
tion transformations, and we generalize our previous rule Validate so that it
an handle more transformations involving loops. We then des
ribe how all of this(in
luding some previous theoreti
al work) is implemented in our
ompiler validationtool TVOC.Key words: Translation validation, formal methods, loopoptimizations1 Introdu
tionCompiler
orre
tness is essential to having
orre
t programs. For
riti
al ap-pli
ations, it is not enough to have a proof of
orre
tness for the sour
e
ode.There must also be an assuran
e that the
ompiler produ
es a
orre
t transla-tion of the sour
e
ode into target ma
hine
ode. Verifying the
orre
tness ofmodern optimizing
ompilers is a
hallenging task be
ause of their size, their
omplexity, and their evolution over time.1 Email: fyinghu,barrett,goldberg,amirg�
s.nyu.eduThis is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

Hu, Barrett, Goldberg, and PnueliTranslation Validation (TV) [12℄ is a te
hnique for ensuring that the target
ode emitted by a translator, su
h as a
ompiler, is a
orre
t translation ofthe sour
e
ode. Be
ause of the diÆ
ulty of verifying an entire
ompiler, i.e.ensuring that it generates the
orre
t target
ode for every a

eptable sour
eprogram, translation validation is used to validate ea
h run of the
ompiler,
omparing the a
tual sour
e and target
ode.In previous work [14,15℄, the proof rule Permute was introdu
ed to validateloop reordering transformations and the proof rule Validate was introdu
edto validate so-
alled stru
ture preserving transformations. However, we havesin
e found these rules to be insuÆ
ient for
ertain kinds of transformationsperformed by optimizing
ompilers. For example, a loop whi
h repeatedlyin
rements a variable
an be repla
ed by a single multipli
ation operation.For this kind of transformation, we introdu
e a new proof rule Redu
e. Inaddition, we found that in some stru
ture preserving
ases involving nestedloops, rule Validate is unsu

essful. However, by generalizing the rule slightly(obtaining a rule we
all Gen-Validate), we
an handle these
ases as well.TVOC is a tool being implemented at NYU whi
h implements translationvalidation for the Intel Open Resear
h Compiler (ORC) [7℄. TVOC imple-ments rules Permute, Gen-Validate, and Redu
e and
he
ks the generatedveri�
ation
onditions using the automati
 theorem prover CVC Lite [1℄. Thelatest version of TVOC also in
ludes a
on
rete implementation of ideas sug-gested in [4℄ for validating reordering loop optimizations. In parti
ular, TVOCnow uses a uniform proof rule for all reordering loop optimizations, a heuris-ti
 for determining whi
h loop optimizations o

urred (rather than relying onthe
ompiler for this information), and a methodology for
ombinations ofoptimizations.This paper is organized as follows: Se
tion 2 reviews transition systemswhi
h provide the ne
essary theoreti
al foundation for translation validation ofoptimizing
ompilers. Se
tion 3 dis
usses related work on
ompiler veri�
ationin general and our previous work on translation validation of
ompilers inparti
ular, in
luding the rules Validate and Permute. Se
tion 4 introdu
esthe new proof rule Redu
e. Se
tion 5 proposes the proof rule Gen-Validate, ageneralization of Validate. Finally, Se
tion 6 des
ribes how all of these proofrules are implemented in the latest version of TVOC.2 Ba
kgroundIn order to dis
uss the formal semanti
s of programs, we brie
y review tran-sition systems, TS's, a variant of the transition systems of [12℄. A TransitionSystem S = hV;O;�; �i is a state ma
hine
onsisting of: a set V of state vari-ables; a set O � V of observable variables; an initial
ondition �, whi
h is aformula over V
hara
terizing the initial states of the system; and a transitionrelation �, a formula over both unprimed and primed versions of the variables,where the primed versions refer to the values of the variables in the su

essor2

Hu, Barrett, Goldberg, and Pnuelistates, while unprimed versions of variables refer to their value in the pre-transition state. Thus, e.g., the transition relation may in
lude \y0 = y + 1"to denote that the value of the variable y in the su

essor state is greater byone than its value in the old (pre-transition) state. The variables are typed,and a state of a TS is a type-
onsistent interpretation of the variables. For astate s and a variable x 2 V , we denote by s[x℄ the value that s assigns to x.We assume that ea
h transition system has a variable p
 that des
ribes theprogram lo
ation
ounter.While it is possible to assign a transition relation to ea
h statement sepa-rately, we prefer to use a generalized transition relation, des
ribing the e�e
t ofexe
uting several statements along a path of a program from one basi
 blo
kto another. Consider the following pie
e of
ode:L0: n := 500;y := 0;if (n < w) goto L2;L1: ...L2: ...There are two disjun
ts in the transition relation whose starting lo
ationsare L0. The �rst des
ribes the L0 to L1 path, whi
h is p
 = L0 ^ n0 =500 ^ y0 = 0 ^ n0 � w0 ^ p
0 = L1, and the se
ond des
ribes the L0 to L2path, whi
h is p
 = L0 ^ n0 = 500 ^ y0 = 0 ^ n0 < w0 ^ p
0 = L2. The
omplete transition relation is formed by taking the disjun
tion of all su
hgeneralized transition relations.The observable variables are the variables we
are about, where we treatI/O devi
es as variables, and ea
h I/O operation, in
luding external pro
e-dure
alls, removes elements from or appends elements to the
orrespondingvariable. If desired, we
an also in
lude among the observable variables thehistory of external pro
edure
alls for a sele
ted set of pro
edures. When
omparing two systems, we will require that the observable variables in thetwo systems mat
h, i.e. are related by a one-to-one
orresponden
e relation.A
omputation of a TS is a maximal (possibly in�nite) sequen
e of states� : s0; s1; : : : ; starting with a state that satis�es the initial
ondition su
h thatevery two
onse
utive states are related by the transition relation.A transition system T is
alled deterministi
 if the observable part of theinitial
ondition uniquely determines the rest of the
omputation. We restri
tour attention to deterministi
 transition systems and the programs whi
h gen-erate su
h systems. Thus, to simplify the presentation, we do not
onsider hereprograms whose behavior may depend on additional inputs whi
h the programreads throughout the
omputation. It is straightforward to extend the theoryand methods to su
h intermediate input-driven programs.3

Hu, Barrett, Goldberg, and PnueliLet PS = hVS ;OS ;�S ; �Si and PT = hVT ;OT ;�T ; �T i be two TS's, towhi
h we refer as the sour
e and target TS's, respe
tively. Two su
h systemsare
alled
omparable if there exists a one-to-one
orresponden
e between theobservables of PS and those of PT . To simplify the notation, we denote byX 2 OS and x 2 OT the
orresponding observables in the two systems. Asour
e state s is de�ned to be
ompatible with the target state t, if s and tagree on their observable parts (that is, s[X℄ = t[x℄ for every x 2 OT). Wesay that PT is a
orre
t translation (re�nement) of PS if they are
omparableand, for every �T : t0; t1; : : : a
omputation of PT and every �S : s0; s1; : : : a
omputation of PS su
h that s0 is
ompatible with t0, then �T is terminating(�nite) i� �S is and, in the
ase of termination, their �nal states are
ompatible.It is not hard to see that this notion of re�nement is an equivalen
e relation.We will use PT � PS to denote that PT is a
orre
t translation of PS .We distinguish stru
ture preserving optimizations, that admit a
lear map-ping of
ontrol and data values in the target program to
orresponding
ontroland data values in the sour
e program, from stru
ture modifying optimizationsthat admit no su
h
lear mapping. Most high-level optimizations are stru
turepreserving, while most loop optimizations are stru
ture modifying. 23 Previous and Related Work3.1 Related WorkTraditional
ompiler veri�
ation tries to prove
ompiler
orre
tness using stan-dard program veri�
ation te
hniques. However, in pra
ti
e this is often in-feasible due to the
omplexity and evolution of
ompiler implementations.Re
ently, a number of
reative te
hniques for verifying
ompilers have beenintrodu
ed [5,6,8,9,10,11,12,13℄.In [9,11℄, a
ertifying
ompiler provides the proof for type safety and mem-ory safety properties of the target program, while our approa
h proves thesemanti
 equivalen
e of the sour
e and target program.[10℄ veri�es the preservation of semanti
s for ea
h
ompilation and thushas the same goal as our work. Instead of using an automati
 theorem prover,a set of algebrai
 rules are used to
he
k the equivalen
e of logi
 formulas.The
ases with bran
h splitting and loop optimizations are not handled there.A
redible
ompiler [13℄ produ
es an indu
tive proof along with ea
h
om-pilation, similar to our approa
h but with di�erent algorithms and rules. How-ever, the method proposed there assumes full instrumentation of the
ompiler,whi
h is not assumed here or in [10℄.In [5℄, the notion of
orre
t translation and the method of program
he
kingappear similar to ours. However, instead of transition systems, abstra
t state2 Some transformations su
h as skewing, unrolling, and peeling,
an a
tually be handledby both our stru
ture modifying and stru
ture preserving proof approa
hes.4

Hu, Barrett, Goldberg, and Pnuelima
hines (ASMs) have been used there to model the operational semanti
s ofprograms, and their work does not deal with optimizations.Comparison
he
king [6℄ is a te
hnique that automati
ally
he
ks the se-manti
 equivalen
e of exe
utions of sour
e and target programs at run-time.Though it has the advantage of being pre
ise, it
annot validate a programtranslation for all possible program inputs, and it in
reases the run-time ofthe program.In [8℄,
ompiler optimizations are automati
ally proved
orre
t using theautomati
 theorem prover Simplify [2℄. Optimizations are proved on
e forall possible inputs so that the result is a veri�ed
ompiler. However, the
ompiler writers have to use a domain-spe
i�
 language
alled Cobalt andprovide
ompli
ated rewrite rules with triggering guards. This approa
h alsoassumes that the
ompiler is written with veri�
ation in mind and that thetransformations whi
h have been veri�ed are
orre
tly implemented. We donot make these assumptions.Our approa
h, translation validation [12℄, is similar to many of these ap-proa
hes in that it fo
uses on verifying a single run of the
ompiler, ratherthan verifying the
ompiler itself. However, our work has the advantage thatits abstra
t
omputational model and re�nement
on
epts are very general.Also, it
an be used to verify existing
ompilers due to its independen
e fromthe
ompiler. Finally, though it does require extra e�ort at
ompile time, itdoes not in
rease the run-time of programs.3.2 Previous Work3.2.1 Rule Validate for stru
ture preserving optimizationsLet PS = hVS ;OS ;�S ; �Si and PT = hVT ;OT ;�T ; �T i be
omparable TS's,where PS is the sour
e and PT is the target. In order to establish that PTis a
orre
t translation of PS for the
ases that the stru
ture of PT does notradi
ally di�er from the stru
ture of PS , we use a proof rule, Validate, whi
his inspired by the
omputational indu
tion approa
h ([3℄), originally intro-du
ed for proving properties of a single program. Rule Validate (see [14℄, anda variant in [15℄ whi
h produ
es simpler veri�
ation
onditions) provides aproof methodology by whi
h one
an prove that one program re�nes another.This is a
hieved by establishing a
ontrol mapping from target to sour
e lo
a-tions, a data abstra
tion mapping from sour
e variables to (possibly guarded)expressions over the target variables, and proving that these abstra
tions aremaintained along basi
 exe
ution paths of the target program.In Validate, ea
h TS is assumed to have a
ut-point set, a subset of theprogram lo
ations (i.e. possible values of p
) that in
ludes all initial andterminal lo
ations, as well as at least one lo
ation from ea
h of the
y
les inthe program's
ontrol
ow graph. A simple path is a path
onne
ting two
ut-points, and
ontaining no other
ut-point as an intermediate node. For ea
hsimple path, we
an (automati
ally)
onstru
t the transition relation of thepath. Su
h a transition relation
ontains the
ondition (if any) whi
h enables5

Hu, Barrett, Goldberg, and Pnuelithis path to be traversed and the data transformation e�e
ted by the path.Rule Validate
onstru
ts a set of veri�
ation
onditions, one for ea
h simpletarget path, whose aggregate
onsists of an indu
tive proof of the
orre
tness ofthe translation between sour
e and target. Roughly speaking, ea
h veri�
ation
ondition states that, if the target program
an exe
ute a simple path, startingwith some
onditions
orrelating the sour
e and target programs, then at theend of the exe
ution of the simple path, the
onditions
orrelating the sour
eand target programs still hold. The
onditions
onsist of the
ontrol mapping,the data mapping, and, possibly, some invariant assertion holding at the target
ode. Rule Validate is dis
ussed in more detail in Se
tion 5.3.2.2 Translation Validation of Reordering Loop TransformationWe des
ribed in [14℄ and [4℄ our approa
h to performing translation validationof loop reordering transformations, su
h as loop inter
hange, fusion, distribu-tion, and tiling. This previous work, in whi
h the proof rule Permute was de-s
ribed, relies on re
ognizing whi
h loop optimizations have been performed.In this paper, in se
tion Se
tion 6.1, we des
ribe the simple heuristi
 algo-rithm that we have implemented in TVOC to re
ognize whi
h optimizationshave been performed.4 Rule Redu
efor i = 1 to N dox := x+ 1; =) x := x +N ;Fig. 1. An example for loop redu
tion.Rule Permute
an handle any loop reordering transformation, but there areother kinds of loop transformations that
annot be handled by either Validateor Permute. Fig. 1 shows an example (an a
tual transformation performed byORC) in whi
h a loop is removed and repla
ed with a single statement. We
all this loop redu
tion and propose a new proof rule, Redu
e, to deal withsu
h
ases. Rule Redu
e is shown in Fig. 2, where the symbol � means thattwo pie
es of
ode are equivalent.R1: B(1) � B0(1)R2: 8i > 0 : B0(i);B(i+ 1) � B0(i+ 1)
for i = 1 to N do B(i) � B0(N)Fig. 2. Rule Redu
e for loop redu
tion.6

Hu, Barrett, Goldberg, and PnueliLoop redu
tion is based on �nding a
losed-form expression for the result ofexe
uting the loop. Su
h transformations
an often be veri�ed using indu
tion.Rule Redu
e is based on an indu
tive argument that exe
uting B(i) from 1 toN is equivalent to exe
uting some
losed-form blo
k B0(N). The �rst premiseis the base
ase. It requires that B(1) be equivalent to B0(1). The se
ondpremise is the indu
tive
ase, whi
h requires that B0(i) be able to \absorb"B(i + 1) to be
ome B0(i + 1). For the
ode in Fig. 1, B(i) is x := x + 1 andB0(i) is x := x+ i. The two premises
an easily be established for this simple
ase.Rule Redu
e
an also be used to show that a loop whi
h does nothing
anbe removed. Fig. 3 shows a transformation whi
h removes a loop with no loopbody. In this
ase, B(i) = B0(i) = Skip.for i = 1 to N doSkip; =) Skip;Fig. 3. Redu
tion for an empty loop.5 A Generalization of Rule ValidateSe
tion 3 brie
y des
ribed the proof rule Validate. Rule Validate
an validatemany transformations in whi
h the sour
e and the target have the same loopstru
ture. However, there are still some
ases in whi
h, even though the loopstru
ture is the same, rule Validate is unsu

essful. Fig. 4 gives an exampleof su
h a transformation performed by ORC.CP1 :for i = 1 to N doCP2 : for j = 1 to M doCP3 : B(i; j);CP4 : =)

p1 :if (1 � N) then fl1 : if (1 � M) then ffor i = 1 to N do
p2 : for j = 1 to M do
p3 : B(i; j);gg
p4 :Fig. 4. An example for whi
h rule Validate fails.The transformation adds two \short-
ut" bran
h
onditions before themain loops. In this example, CP1; CP2; CP3 and CP4 are the sour
e
ut-points,and
p1;
p2;
p3 and
p4 are the target
ut-points. The
ontrol mapping mapsea
h of the target
ut-points in order to the
orresponding sour
e
ut-point.7

Hu, Barrett, Goldberg, and PnueliThe label l1 labels a target lo
ation that is not in the
ut-point set. Now,
on-sider a simple target path from
p1 to
p4. This path goes from
p1 throughl1 and then to
p4 dire
tly without ever entering the loops. This target pathis enabled under the
ondition N � 1 ^ M < 1. Its
orresponding sour
e pathgoes from CP1 inside the loop to CP2, stays at CP2 for N
y
les, and then exitsto CP4 without entering the inner loop. Sin
e this sour
e path
rosses CP2 Ntimes on its way from CP1 to CP4, it is not a simple path. This is a problem forrule Validate: the simple path from
p1 to
p4 has no
orresponding simplepath in the sour
e! As a result, the veri�
ation
ondition
orresponding tothe simple path from
p1 to
p4 fails.The reason that rule Validate fails for the transformation of Fig. 4 is thatit assumes ea
h simple path in the target
orresponds to one or more simplepaths in the sour
e. However, this transformation transforms a non-simplepath in the sour
e into a simple path in the target. We
an solve this problemby relaxing the requirement on the set of
ut-points used by rule Validate.The modi�ed proof rule, Gen-Validate, is presented in Fig. 5, and a proofof its
orre
tness is given in the appendix. It is essentially the same proofrule as that given in [15℄ ex
ept that a new item 0 has been added whi
hexpli
itly allows the set of
ut-points to be
hosen more freely. The
ut-pointsets must in
lude the initial and terminal points of programs as before, butthey do not ne
essarily
ontain a point for ea
h loop. Instead, we requirethat the transition relation for every simple path be \
omputable". Here,\
omputable" means that the path is �nite and its transition relation
an be
al
ulated by data
ow analysis or derived by proof rules. It is easy to seethat loop-free paths are guaranteed to be
omputable. But it is also the
asethat whenever the number of iterations of a loop are known, the transitionrelation for the loop
an be
omputed by unrolling the loop.To solve the example of Fig. 4, we
an eliminate
ut-points CP2 and
p2 asshown in Fig. 6. There are now several new simple paths that did not existbefore. Most of these are loop-free and are thus easily
omputable. However,there is now a new sour
e path from CP1 to CP4. This path is only possible ifthe inner loop is never exe
uted (otherwise CP3 would be rea
hed). But thismeans that the loop body is e�e
tively empty, and as dis
ussed earlier (seeFig. 3), a loop with an empty body is equivalent to doing nothing. Note thatsu
h a path in the target is not feasible sin
e it would require both 1 � Mand 1 > M to be true. Thus, all of these paths are
omputable and the re-quirements for rule Gen-Validate are met. With this new set of
ut-points,the validation su

eeds be
ause there is a
orresponding simple sour
e pathfor the target path from
p1 to
p4.6 New Implementation FeaturesTVOC is a translation validation tool being developed at NYU. It a

epts as8

Hu, Barrett, Goldberg, and Pnueli0. Establish sour
e and target
ut-point sets CPS and CPT , whi
h in
ludeall initial and terminal program lo
ations. For any simple path betweentwo
ut-points i and j, its transition relation �ij must be
omputable.1. Establish a
ontrol abstra
tion � : CPT ! CPS su
h that i is an initial(terminal) lo
ation of T i� �(i) is an initial (terminal) lo
ation S.2. For ea
h
ut-point i in CPT , form an invariant 'i that may refer onlyto target variables.3. Establish a data abstra
tion� : (PC = �(p
) ^ (p1 ! V1 = e1) ^ � � � ^ (pn ! Vn = en)whi
h asserts that the sour
e and target are at
orresponding
ut-points and whi
h assigns to some non-
ontrol sour
e variables Vi 2 VSan expression ei over the target variables,
onditional on the (target)boolean expression pi. It is required that for every initial target
ut-point i, �S ^ �T ! � ^ 'i. It is also required that every observablesour
e variable V 2 OS has a unique
orresponding observable targetvariable v 2 OT , and that for every terminal target
ut-point t, p
 =t ^ � implies that V = v for all V 2 OS .4. For ea
h pair of
ut-points i; j 2 CPT su
h that there is a simple pathfrom i to j, we form the veri�
ation
onditionCij : 'i ^ � ^ �Tij ^ (_�2Paths(�(i)) �S�) ! �0 ^ '0j ;where Paths(�(i)) is the set of all simple sour
e paths starting at �(i)and �S� is the transition relation for the simple sour
e path �.5. Establish the validity of all the generated veri�
ation
onditions.Fig. 5. The generalized rule Gen-Validateinput a sour
e program S and target program T . These are provided in theWHIRL intermediate representation, a format used by Intel's Open Resear
hCompiler (ORC) [7℄ among others. The output of TVOC is either \VALID"or \INVALID", depending on whether the target is a
orre
t translation ofthe sour
e. In [4℄, a number of ideas were introdu
ed whi
h had not yet beenfully developed or implemented in TVOC. We have sin
e modi�ed TVOC toimplement these features as well as those des
ribed in this paper.Fig. 7 shows the old ar
hite
ture of TVOC. Three limitations of this ar-
hite
ture were addressed in [4℄: �rst, we depended on an auxiliary �le (the\.l" �le) generated by the
ompiler to tell us whi
h loop transformations had9

Hu, Barrett, Goldberg, and PnueliCP1 :for i = 1 to N dofor j = 1 to M doCP3 : B(i; j);CP4 : =)

p1 :if (1 � N) then fif (1 �M) then ffor i = 1 to N dofor j = 1 to M do
p3 : B(i; j);gg
p4 :Fig. 6. Example with modi�ed
ut-points.

Valid

Invalid

yes/no

Compiler

Source IR S .l file Target IR T

TVOC

yes/no Verification Conditions

CVC Lite

Source program

Phase 1 Phase 2IR S’

Fig. 7. The old ar
hite
ture of TVOC.been performed; se
ond, loop transformations had to be veri�ed in one step,even if the transformations were more naturally modeled as the
ompositionof several simple transformations; and third, there were several di�erent proofrules (and
orresponding
ode) for verifying the loop transformations. In thisse
tion, we dis
uss the new ar
hite
ture of TVOC (shown in Fig. 8) and showhow we implemented the solutions to these problems. We also dis
uss theimplementation of the Gen-Validate rule des
ribed in this paper.6.1 An Algorithm for Inferring Loop OptimizationsBe
ause it is nontrivial to �gure out what kind of optimizations the
ompilerperforms, the old version of TVOC used information produ
ed by the
ompilerto �gure out whi
h loop optimizations had o

urred. However, not all
om-pilers provide su
h information, and the information provided by ORC was10

Hu, Barrett, Goldberg, and Pnueli
Source program

Compiler

Target IR TSource IR S

yes/no

CVC Lite

TVOC
S’ Phase 2

Validate(S’,T)

Valid

Invalid

Verification Conditions yes/no

Phase 1S = S1 S2 Sn = S 0
Fig. 8. The new ar
hite
ture of TVOC.

1. For ea
h nested loop of depth m in the sour
e,
he
k the
or-responding target
ode for a nested loop of depth n. Note thatwe
an mat
h up loops in the sour
e and target be
ause WHIRLin
ludes annotations indi
ating whi
h line number in the sour
e
orresponds to a given target line.2. If m > n,
he
k whether the target
ontains
ode whi
h
ame fromthe body of the sour
e loop. If not, try loop redu
tion. Otherwise,try loop fusion.3. If m = n,
he
k to see if any indi
es are out of order. If so, loopinter
hange has o

urred.4. If m < n, assume loop tiling has o

urred.Fig. 9. The algorithm for analyzing loop transformations.sometimes in
omplete. In order to make TVOC more generally appli
able, wedeveloped an algorithm to infer whi
h loop transformations were performedby looking only at the sour
e and target
ode. The algorithm is
apable ofinferring loop redu
tion, loop fusion, loop inter
hange, and loop tiling and isshown in Fig. 9. 11

Hu, Barrett, Goldberg, and Pnueli6.2 A Uni�ed Validation Module for Reordering OptimizationsIn previous versions, TVOC used di�erent proof rules for inter
hange andtiling than it does for fusion, and it had di�erent modules for di�erent looptransformations. This was not ideal from a software engineering perspe
tive.In the
urrent version, TVOC uses the generalized approa
h des
ribed in [4℄ forall reordering loop transformations. Thus, there is only one general module for
he
king reordering transformations whi
h a

epts the loop index domain andpermutation fun
tion as parameters and generates the appropriate veri�
ation
onditions.6.3 A Methodology for Combinations of OptimizationsThe old version of TVOC had diÆ
ulty handling
ombinations of loop trans-formations. This was a serious drawba
k sin
e often multiple transformationsare performed by the
ompiler. In the new version, after a loop transforma-tion is inferred and validated, TVOC synthesizes a new intermediate versionof the
ode obtained by applying that transformation. It repeats this pro
essfor ea
h dete
ted transformation. In this way, a sequen
e S1; S2; :::Sn of in-termediate versions of the
ode is generated by TVOC, and the �nal versionSn is output by phase one and provided as input to phase two whi
h uses thevalidate rule to
he
k it against the target
ode.for i = 1 to 100 dofor j = 1 to 100 doa(i; j) := 0;for j = 1; 100 dob(i; j) := 1; =)for i = 1 to 100 dofor j = 1 to 100 doa(i; j) := 0;;b(i; j) := 1; =)for j = 1 to 100 dofor i = 1 to 100 doa(i; j) := 0;b(i; j) := 1;Fig. 10. A
ombination of loop transformations.As an example,
onsider the
ode in Fig. 10. ORC �rst fuses the twoinner loops and then performs loop inter
hange in order to improve
a
heperforman
e (when the input
ode is written in Fortran in whi
h arrays arestored in
olumn major order). In phase 1, after
omparing the sour
e andtarget loops, TVOC dete
ts that loop fusion and inter
hange happened. It�rst
he
ks if fusion is valid. When the result is positive, it performs fusionand generates a new intermediate version of the
ode. Next it
he
ks whetherinter
hange is valid (whi
h it is), generates a new intermediate version, andsends the result to phase two.6.4 Implementation of Rule Gen-ValidateRe
all that rule Gen-Validate requires
he
king a veri�
ation
ondition forea
h simple path between
ut-points in the target. Furthermore, the veri�-
ation
ondition for the target path from i to j in
ludes a disjun
tion of all12

Hu, Barrett, Goldberg, and Pnuelipossible simple sour
e paths starting from �(i). In the a
tual implementationof rule Gen-Validate, it is not pra
ti
al to test all the paths starting from
ut-point �(i) in the sour
e. It is mu
h easier to restri
t the sour
e paths to thosefrom �(i) to �(j). With some additional work, we
an restri
t our attentionto only these paths.The following theorem shows how to re
ast the veri�
ation
ondition interms of only those sour
e paths from �(i) to �(j). Let CondS� be the
on-ditions under whi
h a simple sour
e path � is enabled (this
orresponds to a
onjun
tion of the bran
h
onditions along the path).Theorem 6.1 Consider the following veri�
ation
onditions:'i ^ � ^ �Tij ^ (_�2Paths(�(i)) �S�) ! �0 ^ '0j; (1)
'i ^ � ^ �Tij ! (_�2Paths(�(i);�(j))CondS�) (2)
'i ^ � ^ �Tij ^ (_�2Paths(�(i);�(j)) �S�) ! �0 ^ '0j; (3)We
laim that equation (1) holds i� (2) and (3) hold.Proof. In one dire
tion, suppose (1) holds, (3) also holds be
ause the left-hand side of (3) is stronger than the left-hand side of (1) while the right-hand sides of the two impli
ations are the same. Now, to show that (2) alsoholds, suppose we have 'i ^ � ^ �Tij. By de�nition of � and �, it followsthat PC = �(i). Sin
e i is not a target terminal
ut-point, �(i) is not asour
e terminal
ut-point. Now, at every non-terminal sour
e
ut-point, sometransition must be taken, so it follows that (W�2Paths(�(i)) �S�) holds. By (1),we then have �0 ^ '0j. But from �Tij ^ �0, PC0 = �(j) follows. We thus have(W�2Paths(�(i);�(j)) �S�), whi
h means (2) holds sin
e CondS� is implied by �S�.In the other dire
tion, suppose that (2) and (3) hold and that we have'i ^ � ^ �Tij ^ (W�2Paths(�(i)) �S�). By (2), we have (W�2Paths(�(i);�(j)) CondS�),so some path � from �(i) to �(j) is enabled. But be
ause the transition systemis deterministi
, only one path
an be enabled at a given point, whi
h meansthat at �(i), the only simple path enabled is from �(i) to �(j). Therefore(W�2Paths(�(i);�(j)) �S�) holds. By (3), we have �0 ^ '0j, and thus (1) holds. 2Using this theorem, we were able to implement part 4 of rule Gen-Validateby
he
king the
onditions of the sour
e simple paths between �(i) and �(j)without looking for all the sour
e simple paths starting from �(i).13

Hu, Barrett, Goldberg, and Pnueli7 Appendix: Soundness of Gen-ValidateLet PS = hVS ;OS ;�S ; �Si and PT = hVT ;OT ;�T ; �T i be two TS's, where PS isthe sour
e and PT is the target. Assume all the parts in rule Gen-Validate areestablished. We need to prove that PT is a
orre
t translation of PS , whi
hmeans they are
omparable and, for every �T : t0; t1; : : : a
omputation of PTand every �S : s0; s1; : : : a
omputation of PS su
h that s0 is
ompatible witht0, �T is terminating (�nite) i� �S is and, in the
ase of termination, their �nalstates are
ompatible.From part 3 of rule Gen-Validate, we know that the two systems are
om-parable. We will prove the rest in two dire
tions.Suppose we have a terminating target
omputation �T . We know that theinitial state t0 and terminal state tn of the
omputation must be at some target
ut-points
p0 and
pn, a

ording to part 0 of rule Gen-Validate. A

ording topart 1 of Gen-Validate, the
orresponding sour
e
ut-points CP0 and CPn areinitial and terminal sour
e
ut-points respe
tively, and for any other
ut-point
pi in the target
omputation path, the
orresponding sour
e
ut-point CPi is�(
pi). Now, by part 3, � ^ � holds at the initial states t0 and s0. From part4, for any
ut-point i and its next
ut-point j in the target path,Cij : 'i ^ � ^ �Tij ^ (_�2Paths(�(i)) �S�) ! �0 ^ '0j:Here, sin
e the sour
e
ut-point �(i) is not the terminal
ut-point, there isalways a sour
e path enabled at �(i), whi
h means W�2Paths(�(i)) �S� is alwaystrue. This
ondition guarantees that for the target simple path between iand j (it has
omputable transition relation �Tij, and its
orresponding sour
esimple path also has a
omputable transition relation �S�), if � ^ � holds at
ut-points
pi and �(
pi), then it also holds at
pj and �(
pj). By indu
tion,it follows that � ^ � holds at the terminal
ut-points, whi
h have the statessn and tn. But by 3, this implies that sn and tn are
ompatible.For the other dire
tion, suppose we have a terminating sour
e
ompu-tation �S . Now, suppose the
orresponding target
omputation �T is non-terminating. This in�nite target path will in
lude an in�nite number of target
ut-points, sin
e it is required that the transition relation for the path betweentwo dire
tly
onne
ted
ut-points be
omputable and only a �nite path
anhave a
omputable transition relation. By the argument above, a target
om-putation with an in�nite number of
ut-points will have a
orresponding sour
e
omputation �0S with an in�nite number of sour
e
ut-points. This would re-quire there to be two di�erent sour
e
omputations �S and �0S starting fromthe same initial sour
e state s0, whi
h violates the assumption that the sour
eprogram is deterministi
. Therefore, the
orresponding target
omputation�T must be terminating. And a

ording to the previous argument, their �nalstates must be
ompatible. 14

Hu, Barrett, Goldberg, and PnueliReferen
es[1℄ C. Barrett and S. Berezin. CVC Lite: A new implementation of the
ooperatingvalidity
he
ker. In Pro
eedings of the 16th International Conferen
e onComputer Aided Veri�
ation (CAV), July 2004. To appear.[2℄ D. Detlefs, G. Nelson, and J. Saxe. Simplify: a theorem prover for program
he
king. Te
hni
al Report HPL-2003-148, Systems Resear
h Center, HPLaboratories, Palo Alto, CA, July 2003.[3℄ R. Floyd. Assigning meanings to programs. In Symposia in AppliedMathemati
s, volume 19:19{32, 1967.[4℄ B. Goldberg, L. Zu
k, and C. Barrett. Into the loops: Pra
ti
al issuesin translation validation for optimizing
ompilers. In Third InternationalWorkshop on Compiler Optimization meets Compiler Veri�
aiton (COCV),Apr. 2004.[5℄ G. Goos and W. Zimmermann. Veri�
ation of
ompilers. Le
t. Notes in Comp.S
i., 1710:201{230, 1999.[6℄ C. Jaramillo, R. Gupta, and M. So�a. Debugging and testing optimizersthrough
omparison
he
king. Le
t. Notes in Comp. S
i., 65(2), 2002.[7℄ R.-C. Ju, S. Chan, and C. Wu. Open resear
h
ompiler (or
) for the itaniumpro
essor family. In Mi
ro 34, 2001.[8℄ S. Lerner, T. Millstein, and C. Chambers. Automati
ally proving the
orre
tness of
ompiler optimizations. In Pro
eedings of the ACM SIGPLAN'03 Conferen
e on Programming Language Design and Implementation, 2003.[9℄ G. Ne
ula. Proof-
arrying
ode. In POPL'97, pages 106{119, 1997.[10℄ G. Ne
ula. Translation validation of an optimizing
ompiler. In Pro
eedingsof the ACM SIGPLAN Conferen
e on Prin
iples of Programming LanguagesDesign and Implementation (PLDI) 2000, pages 83{95, 2000.[11℄ G. Ne
ula and P. Lee. The design and implementation of a
ertifying
ompilers.In Pro
eedings of the ACM SIGPLAN Conferen
e on Prin
iples of ProgrammingLanguages Design and Implementation (PLDI) 1998, pages 333{344, 1998.[12℄ A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS'98,pages 151{166, 1998.[13℄ M. Rinard and D. Marinov. Credible
ompilation with pointers. In Pro
eedingsof the Run-Time Result Veri�
ation Workshop, 1999.[14℄ L. Zu
k, A. Pnueli, Y. Fang, and B. Goldberg. A translation validatorfor optimizing
ompilers. Journal of Universal Computer S
ien
e, 2003.Preliminary version in ENTCS, 65(2), 2002.[15℄ L. Zu
k, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu. Translationand run-time validation of loop transformations. Journal of Formal Methods inSystem Design, 2004. To appear, preliminary version in ENTCS, 70(4), 2002.15

	Introduction
	Background
	Previous and Related Work
	Related Work
	Previous Work

	Rule Reduce
	A Generalization of Rule Validate
	New Implementation Features
	An Algorithm for Inferring Loop Optimizations
	A Unified Validation Module for Reordering Optimizations
	A Methodology for Combinations of Optimizations
	Implementation of Rule Gen-Validate

	Appendix: Soundness of Gen-Validate
	References

