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tTranslation validation is a te
hnique for ensuring that a translator, su
h as a 
om-piler, produ
es 
orre
t results. Be
ause 
omplete veri�
ation of the translator itselfis often infeasible, translation validation advo
ates 
oupling the veri�
ation taskwith the translation task, so that ea
h run of the translator produ
es veri�
ation
onditions whi
h, if valid, prove the 
orre
tness of the translation.In previous work, the translation validation approa
h was used to give a frame-work for proving the 
orre
tness of a variety of 
ompiler optimizations, with a re
entfo
us on loop transformations. However, some of these ideas were preliminary andhad not been implemented. Additionally, there were examples of 
ommon looptransformations whi
h 
ould not be handled by our previous approa
hes.This paper addresses these issues. We introdu
e a new rule Redu
e for loopredu
tion transformations, and we generalize our previous rule Validate so that it
an handle more transformations involving loops. We then des
ribe how all of this(in
luding some previous theoreti
al work) is implemented in our 
ompiler validationtool TVOC.Key words: Translation validation, formal methods, loopoptimizations1 Introdu
tionCompiler 
orre
tness is essential to having 
orre
t programs. For 
riti
al ap-pli
ations, it is not enough to have a proof of 
orre
tness for the sour
e 
ode.There must also be an assuran
e that the 
ompiler produ
es a 
orre
t transla-tion of the sour
e 
ode into target ma
hine 
ode. Verifying the 
orre
tness ofmodern optimizing 
ompilers is a 
hallenging task be
ause of their size, their
omplexity, and their evolution over time.1 Email: fyinghu,barrett,goldberg,amirg�
s.nyu.eduThis is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s



Hu, Barrett, Goldberg, and PnueliTranslation Validation (TV) [12℄ is a te
hnique for ensuring that the target
ode emitted by a translator, su
h as a 
ompiler, is a 
orre
t translation ofthe sour
e 
ode. Be
ause of the diÆ
ulty of verifying an entire 
ompiler, i.e.ensuring that it generates the 
orre
t target 
ode for every a

eptable sour
eprogram, translation validation is used to validate ea
h run of the 
ompiler,
omparing the a
tual sour
e and target 
ode.In previous work [14,15℄, the proof rule Permute was introdu
ed to validateloop reordering transformations and the proof rule Validate was introdu
edto validate so-
alled stru
ture preserving transformations. However, we havesin
e found these rules to be insuÆ
ient for 
ertain kinds of transformationsperformed by optimizing 
ompilers. For example, a loop whi
h repeatedlyin
rements a variable 
an be repla
ed by a single multipli
ation operation.For this kind of transformation, we introdu
e a new proof rule Redu
e. Inaddition, we found that in some stru
ture preserving 
ases involving nestedloops, rule Validate is unsu

essful. However, by generalizing the rule slightly(obtaining a rule we 
all Gen-Validate), we 
an handle these 
ases as well.TVOC is a tool being implemented at NYU whi
h implements translationvalidation for the Intel Open Resear
h Compiler (ORC) [7℄. TVOC imple-ments rules Permute, Gen-Validate, and Redu
e and 
he
ks the generatedveri�
ation 
onditions using the automati
 theorem prover CVC Lite [1℄. Thelatest version of TVOC also in
ludes a 
on
rete implementation of ideas sug-gested in [4℄ for validating reordering loop optimizations. In parti
ular, TVOCnow uses a uniform proof rule for all reordering loop optimizations, a heuris-ti
 for determining whi
h loop optimizations o

urred (rather than relying onthe 
ompiler for this information), and a methodology for 
ombinations ofoptimizations.This paper is organized as follows: Se
tion 2 reviews transition systemswhi
h provide the ne
essary theoreti
al foundation for translation validation ofoptimizing 
ompilers. Se
tion 3 dis
usses related work on 
ompiler veri�
ationin general and our previous work on translation validation of 
ompilers inparti
ular, in
luding the rules Validate and Permute. Se
tion 4 introdu
esthe new proof rule Redu
e. Se
tion 5 proposes the proof rule Gen-Validate, ageneralization of Validate. Finally, Se
tion 6 des
ribes how all of these proofrules are implemented in the latest version of TVOC.2 Ba
kgroundIn order to dis
uss the formal semanti
s of programs, we brie
y review tran-sition systems, TS's, a variant of the transition systems of [12℄. A TransitionSystem S = hV;O;�; �i is a state ma
hine 
onsisting of: a set V of state vari-ables; a set O � V of observable variables; an initial 
ondition �, whi
h is aformula over V 
hara
terizing the initial states of the system; and a transitionrelation �, a formula over both unprimed and primed versions of the variables,where the primed versions refer to the values of the variables in the su

essor2



Hu, Barrett, Goldberg, and Pnuelistates, while unprimed versions of variables refer to their value in the pre-transition state. Thus, e.g., the transition relation may in
lude \y0 = y + 1"to denote that the value of the variable y in the su

essor state is greater byone than its value in the old (pre-transition) state. The variables are typed,and a state of a TS is a type-
onsistent interpretation of the variables. For astate s and a variable x 2 V , we denote by s[x℄ the value that s assigns to x.We assume that ea
h transition system has a variable p
 that des
ribes theprogram lo
ation 
ounter.While it is possible to assign a transition relation to ea
h statement sepa-rately, we prefer to use a generalized transition relation, des
ribing the e�e
t ofexe
uting several statements along a path of a program from one basi
 blo
kto another. Consider the following pie
e of 
ode:L0: n := 500;y := 0;if (n < w) goto L2;L1: ...L2: ...There are two disjun
ts in the transition relation whose starting lo
ationsare L0. The �rst des
ribes the L0 to L1 path, whi
h is p
 = L0 ^ n0 =500 ^ y0 = 0 ^ n0 � w0 ^ p
0 = L1, and the se
ond des
ribes the L0 to L2path, whi
h is p
 = L0 ^ n0 = 500 ^ y0 = 0 ^ n0 < w0 ^ p
0 = L2. The
omplete transition relation is formed by taking the disjun
tion of all su
hgeneralized transition relations.The observable variables are the variables we 
are about, where we treatI/O devi
es as variables, and ea
h I/O operation, in
luding external pro
e-dure 
alls, removes elements from or appends elements to the 
orrespondingvariable. If desired, we 
an also in
lude among the observable variables thehistory of external pro
edure 
alls for a sele
ted set of pro
edures. When
omparing two systems, we will require that the observable variables in thetwo systems mat
h, i.e. are related by a one-to-one 
orresponden
e relation.A 
omputation of a TS is a maximal (possibly in�nite) sequen
e of states� : s0; s1; : : : ; starting with a state that satis�es the initial 
ondition su
h thatevery two 
onse
utive states are related by the transition relation.A transition system T is 
alled deterministi
 if the observable part of theinitial 
ondition uniquely determines the rest of the 
omputation. We restri
tour attention to deterministi
 transition systems and the programs whi
h gen-erate su
h systems. Thus, to simplify the presentation, we do not 
onsider hereprograms whose behavior may depend on additional inputs whi
h the programreads throughout the 
omputation. It is straightforward to extend the theoryand methods to su
h intermediate input-driven programs.3



Hu, Barrett, Goldberg, and PnueliLet PS = hVS ;OS ;�S ; �Si and PT = hVT ;OT ;�T ; �T i be two TS's, towhi
h we refer as the sour
e and target TS's, respe
tively. Two su
h systemsare 
alled 
omparable if there exists a one-to-one 
orresponden
e between theobservables of PS and those of PT . To simplify the notation, we denote byX 2 OS and x 2 OT the 
orresponding observables in the two systems. Asour
e state s is de�ned to be 
ompatible with the target state t, if s and tagree on their observable parts (that is, s[X℄ = t[x℄ for every x 2 OT ). Wesay that PT is a 
orre
t translation (re�nement) of PS if they are 
omparableand, for every �T : t0; t1; : : : a 
omputation of PT and every �S : s0; s1; : : : a
omputation of PS su
h that s0 is 
ompatible with t0, then �T is terminating(�nite) i� �S is and, in the 
ase of termination, their �nal states are 
ompatible.It is not hard to see that this notion of re�nement is an equivalen
e relation.We will use PT � PS to denote that PT is a 
orre
t translation of PS .We distinguish stru
ture preserving optimizations, that admit a 
lear map-ping of 
ontrol and data values in the target program to 
orresponding 
ontroland data values in the sour
e program, from stru
ture modifying optimizationsthat admit no su
h 
lear mapping. Most high-level optimizations are stru
turepreserving, while most loop optimizations are stru
ture modifying. 23 Previous and Related Work3.1 Related WorkTraditional 
ompiler veri�
ation tries to prove 
ompiler 
orre
tness using stan-dard program veri�
ation te
hniques. However, in pra
ti
e this is often in-feasible due to the 
omplexity and evolution of 
ompiler implementations.Re
ently, a number of 
reative te
hniques for verifying 
ompilers have beenintrodu
ed [5,6,8,9,10,11,12,13℄.In [9,11℄, a 
ertifying 
ompiler provides the proof for type safety and mem-ory safety properties of the target program, while our approa
h proves thesemanti
 equivalen
e of the sour
e and target program.[10℄ veri�es the preservation of semanti
s for ea
h 
ompilation and thushas the same goal as our work. Instead of using an automati
 theorem prover,a set of algebrai
 rules are used to 
he
k the equivalen
e of logi
 formulas.The 
ases with bran
h splitting and loop optimizations are not handled there.A 
redible 
ompiler [13℄ produ
es an indu
tive proof along with ea
h 
om-pilation, similar to our approa
h but with di�erent algorithms and rules. How-ever, the method proposed there assumes full instrumentation of the 
ompiler,whi
h is not assumed here or in [10℄.In [5℄, the notion of 
orre
t translation and the method of program 
he
kingappear similar to ours. However, instead of transition systems, abstra
t state2 Some transformations su
h as skewing, unrolling, and peeling, 
an a
tually be handledby both our stru
ture modifying and stru
ture preserving proof approa
hes.4



Hu, Barrett, Goldberg, and Pnuelima
hines (ASMs) have been used there to model the operational semanti
s ofprograms, and their work does not deal with optimizations.Comparison 
he
king [6℄ is a te
hnique that automati
ally 
he
ks the se-manti
 equivalen
e of exe
utions of sour
e and target programs at run-time.Though it has the advantage of being pre
ise, it 
annot validate a programtranslation for all possible program inputs, and it in
reases the run-time ofthe program.In [8℄, 
ompiler optimizations are automati
ally proved 
orre
t using theautomati
 theorem prover Simplify [2℄. Optimizations are proved on
e forall possible inputs so that the result is a veri�ed 
ompiler. However, the
ompiler writers have to use a domain-spe
i�
 language 
alled Cobalt andprovide 
ompli
ated rewrite rules with triggering guards. This approa
h alsoassumes that the 
ompiler is written with veri�
ation in mind and that thetransformations whi
h have been veri�ed are 
orre
tly implemented. We donot make these assumptions.Our approa
h, translation validation [12℄, is similar to many of these ap-proa
hes in that it fo
uses on verifying a single run of the 
ompiler, ratherthan verifying the 
ompiler itself. However, our work has the advantage thatits abstra
t 
omputational model and re�nement 
on
epts are very general.Also, it 
an be used to verify existing 
ompilers due to its independen
e fromthe 
ompiler. Finally, though it does require extra e�ort at 
ompile time, itdoes not in
rease the run-time of programs.3.2 Previous Work3.2.1 Rule Validate for stru
ture preserving optimizationsLet PS = hVS ;OS ;�S ; �Si and PT = hVT ;OT ;�T ; �T i be 
omparable TS's,where PS is the sour
e and PT is the target. In order to establish that PTis a 
orre
t translation of PS for the 
ases that the stru
ture of PT does notradi
ally di�er from the stru
ture of PS , we use a proof rule, Validate, whi
his inspired by the 
omputational indu
tion approa
h ([3℄), originally intro-du
ed for proving properties of a single program. Rule Validate (see [14℄, anda variant in [15℄ whi
h produ
es simpler veri�
ation 
onditions) provides aproof methodology by whi
h one 
an prove that one program re�nes another.This is a
hieved by establishing a 
ontrol mapping from target to sour
e lo
a-tions, a data abstra
tion mapping from sour
e variables to (possibly guarded)expressions over the target variables, and proving that these abstra
tions aremaintained along basi
 exe
ution paths of the target program.In Validate, ea
h TS is assumed to have a 
ut-point set, a subset of theprogram lo
ations (i.e. possible values of p
) that in
ludes all initial andterminal lo
ations, as well as at least one lo
ation from ea
h of the 
y
les inthe program's 
ontrol 
ow graph. A simple path is a path 
onne
ting two 
ut-points, and 
ontaining no other 
ut-point as an intermediate node. For ea
hsimple path, we 
an (automati
ally) 
onstru
t the transition relation of thepath. Su
h a transition relation 
ontains the 
ondition (if any) whi
h enables5



Hu, Barrett, Goldberg, and Pnuelithis path to be traversed and the data transformation e�e
ted by the path.Rule Validate 
onstru
ts a set of veri�
ation 
onditions, one for ea
h simpletarget path, whose aggregate 
onsists of an indu
tive proof of the 
orre
tness ofthe translation between sour
e and target. Roughly speaking, ea
h veri�
ation
ondition states that, if the target program 
an exe
ute a simple path, startingwith some 
onditions 
orrelating the sour
e and target programs, then at theend of the exe
ution of the simple path, the 
onditions 
orrelating the sour
eand target programs still hold. The 
onditions 
onsist of the 
ontrol mapping,the data mapping, and, possibly, some invariant assertion holding at the target
ode. Rule Validate is dis
ussed in more detail in Se
tion 5.3.2.2 Translation Validation of Reordering Loop TransformationWe des
ribed in [14℄ and [4℄ our approa
h to performing translation validationof loop reordering transformations, su
h as loop inter
hange, fusion, distribu-tion, and tiling. This previous work, in whi
h the proof rule Permute was de-s
ribed, relies on re
ognizing whi
h loop optimizations have been performed.In this paper, in se
tion Se
tion 6.1, we des
ribe the simple heuristi
 algo-rithm that we have implemented in TVOC to re
ognize whi
h optimizationshave been performed.4 Rule Redu
efor i = 1 to N dox := x+ 1; =) x := x +N ;Fig. 1. An example for loop redu
tion.Rule Permute 
an handle any loop reordering transformation, but there areother kinds of loop transformations that 
annot be handled by either Validateor Permute. Fig. 1 shows an example (an a
tual transformation performed byORC) in whi
h a loop is removed and repla
ed with a single statement. We
all this loop redu
tion and propose a new proof rule, Redu
e, to deal withsu
h 
ases. Rule Redu
e is shown in Fig. 2, where the symbol � means thattwo pie
es of 
ode are equivalent.R1: B(1) � B0(1)R2: 8i > 0 : B0(i);B(i+ 1) � B0(i+ 1)
for i = 1 to N do B(i) � B0(N)Fig. 2. Rule Redu
e for loop redu
tion.6



Hu, Barrett, Goldberg, and PnueliLoop redu
tion is based on �nding a 
losed-form expression for the result ofexe
uting the loop. Su
h transformations 
an often be veri�ed using indu
tion.Rule Redu
e is based on an indu
tive argument that exe
uting B(i) from 1 toN is equivalent to exe
uting some 
losed-form blo
k B0(N). The �rst premiseis the base 
ase. It requires that B(1) be equivalent to B0(1). The se
ondpremise is the indu
tive 
ase, whi
h requires that B0(i) be able to \absorb"B(i + 1) to be
ome B0(i + 1). For the 
ode in Fig. 1, B(i) is x := x + 1 andB0(i) is x := x+ i. The two premises 
an easily be established for this simple
ase.Rule Redu
e 
an also be used to show that a loop whi
h does nothing 
anbe removed. Fig. 3 shows a transformation whi
h removes a loop with no loopbody. In this 
ase, B(i) = B0(i) = Skip.for i = 1 to N doSkip; =) Skip;Fig. 3. Redu
tion for an empty loop.5 A Generalization of Rule ValidateSe
tion 3 brie
y des
ribed the proof rule Validate. Rule Validate 
an validatemany transformations in whi
h the sour
e and the target have the same loopstru
ture. However, there are still some 
ases in whi
h, even though the loopstru
ture is the same, rule Validate is unsu

essful. Fig. 4 gives an exampleof su
h a transformation performed by ORC.CP1 :for i = 1 to N doCP2 : for j = 1 to M doCP3 : B(i; j);CP4 : =)

p1 :if (1 � N) then fl1 : if (1 � M) then ffor i = 1 to N do
p2 : for j = 1 to M do
p3 : B(i; j);gg
p4 :Fig. 4. An example for whi
h rule Validate fails.The transformation adds two \short-
ut" bran
h 
onditions before themain loops. In this example, CP1; CP2; CP3 and CP4 are the sour
e 
ut-points,and 
p1; 
p2; 
p3 and 
p4 are the target 
ut-points. The 
ontrol mapping mapsea
h of the target 
ut-points in order to the 
orresponding sour
e 
ut-point.7



Hu, Barrett, Goldberg, and PnueliThe label l1 labels a target lo
ation that is not in the 
ut-point set. Now, 
on-sider a simple target path from 
p1 to 
p4. This path goes from 
p1 throughl1 and then to 
p4 dire
tly without ever entering the loops. This target pathis enabled under the 
ondition N � 1 ^ M < 1. Its 
orresponding sour
e pathgoes from CP1 inside the loop to CP2, stays at CP2 for N 
y
les, and then exitsto CP4 without entering the inner loop. Sin
e this sour
e path 
rosses CP2 Ntimes on its way from CP1 to CP4, it is not a simple path. This is a problem forrule Validate: the simple path from 
p1 to 
p4 has no 
orresponding simplepath in the sour
e! As a result, the veri�
ation 
ondition 
orresponding tothe simple path from 
p1 to 
p4 fails.The reason that rule Validate fails for the transformation of Fig. 4 is thatit assumes ea
h simple path in the target 
orresponds to one or more simplepaths in the sour
e. However, this transformation transforms a non-simplepath in the sour
e into a simple path in the target. We 
an solve this problemby relaxing the requirement on the set of 
ut-points used by rule Validate.The modi�ed proof rule, Gen-Validate, is presented in Fig. 5, and a proofof its 
orre
tness is given in the appendix. It is essentially the same proofrule as that given in [15℄ ex
ept that a new item 0 has been added whi
hexpli
itly allows the set of 
ut-points to be 
hosen more freely. The 
ut-pointsets must in
lude the initial and terminal points of programs as before, butthey do not ne
essarily 
ontain a point for ea
h loop. Instead, we requirethat the transition relation for every simple path be \
omputable". Here,\
omputable" means that the path is �nite and its transition relation 
an be
al
ulated by data 
ow analysis or derived by proof rules. It is easy to seethat loop-free paths are guaranteed to be 
omputable. But it is also the 
asethat whenever the number of iterations of a loop are known, the transitionrelation for the loop 
an be 
omputed by unrolling the loop.To solve the example of Fig. 4, we 
an eliminate 
ut-points CP2 and 
p2 asshown in Fig. 6. There are now several new simple paths that did not existbefore. Most of these are loop-free and are thus easily 
omputable. However,there is now a new sour
e path from CP1 to CP4. This path is only possible ifthe inner loop is never exe
uted (otherwise CP3 would be rea
hed). But thismeans that the loop body is e�e
tively empty, and as dis
ussed earlier (seeFig. 3), a loop with an empty body is equivalent to doing nothing. Note thatsu
h a path in the target is not feasible sin
e it would require both 1 � Mand 1 > M to be true. Thus, all of these paths are 
omputable and the re-quirements for rule Gen-Validate are met. With this new set of 
ut-points,the validation su

eeds be
ause there is a 
orresponding simple sour
e pathfor the target path from 
p1 to 
p4.6 New Implementation FeaturesTVOC is a translation validation tool being developed at NYU. It a

epts as8



Hu, Barrett, Goldberg, and Pnueli0. Establish sour
e and target 
ut-point sets CPS and CPT , whi
h in
ludeall initial and terminal program lo
ations. For any simple path betweentwo 
ut-points i and j, its transition relation �ij must be 
omputable.1. Establish a 
ontrol abstra
tion � : CPT ! CPS su
h that i is an initial(terminal) lo
ation of T i� �(i) is an initial (terminal) lo
ation S.2. For ea
h 
ut-point i in CPT , form an invariant 'i that may refer onlyto target variables.3. Establish a data abstra
tion� : (PC = �(p
) ^ (p1 ! V1 = e1) ^ � � � ^ (pn ! Vn = en)whi
h asserts that the sour
e and target are at 
orresponding 
ut-points and whi
h assigns to some non-
ontrol sour
e variables Vi 2 VSan expression ei over the target variables, 
onditional on the (target)boolean expression pi. It is required that for every initial target 
ut-point i, �S ^ �T ! � ^ 'i. It is also required that every observablesour
e variable V 2 OS has a unique 
orresponding observable targetvariable v 2 OT , and that for every terminal target 
ut-point t, p
 =t ^ � implies that V = v for all V 2 OS .4. For ea
h pair of 
ut-points i; j 2 CPT su
h that there is a simple pathfrom i to j, we form the veri�
ation 
onditionCij : 'i ^ � ^ �Tij ^ ( _�2Paths(�(i)) �S�) ! �0 ^ '0j ;where Paths(�(i)) is the set of all simple sour
e paths starting at �(i)and �S� is the transition relation for the simple sour
e path �.5. Establish the validity of all the generated veri�
ation 
onditions.Fig. 5. The generalized rule Gen-Validateinput a sour
e program S and target program T . These are provided in theWHIRL intermediate representation, a format used by Intel's Open Resear
hCompiler (ORC) [7℄ among others. The output of TVOC is either \VALID"or \INVALID", depending on whether the target is a 
orre
t translation ofthe sour
e. In [4℄, a number of ideas were introdu
ed whi
h had not yet beenfully developed or implemented in TVOC. We have sin
e modi�ed TVOC toimplement these features as well as those des
ribed in this paper.Fig. 7 shows the old ar
hite
ture of TVOC. Three limitations of this ar-
hite
ture were addressed in [4℄: �rst, we depended on an auxiliary �le (the\.l" �le) generated by the 
ompiler to tell us whi
h loop transformations had9



Hu, Barrett, Goldberg, and PnueliCP1 :for i = 1 to N dofor j = 1 to M doCP3 : B(i; j);CP4 : =)

p1 :if (1 � N) then fif (1 �M) then ffor i = 1 to N dofor j = 1 to M do
p3 : B(i; j);gg
p4 :Fig. 6. Example with modi�ed 
ut-points.

Valid

Invalid

yes/no

Compiler

Source IR S .l file Target IR T

TVOC

yes/no Verification Conditions

CVC    Lite

Source program

Phase 1 Phase 2IR S’

Fig. 7. The old ar
hite
ture of TVOC.been performed; se
ond, loop transformations had to be veri�ed in one step,even if the transformations were more naturally modeled as the 
ompositionof several simple transformations; and third, there were several di�erent proofrules (and 
orresponding 
ode) for verifying the loop transformations. In thisse
tion, we dis
uss the new ar
hite
ture of TVOC (shown in Fig. 8) and showhow we implemented the solutions to these problems. We also dis
uss theimplementation of the Gen-Validate rule des
ribed in this paper.6.1 An Algorithm for Inferring Loop OptimizationsBe
ause it is nontrivial to �gure out what kind of optimizations the 
ompilerperforms, the old version of TVOC used information produ
ed by the 
ompilerto �gure out whi
h loop optimizations had o

urred. However, not all 
om-pilers provide su
h information, and the information provided by ORC was10
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Source program

Compiler

Target IR TSource IR S

yes/no

CVC     Lite

TVOC
S’ Phase 2

Validate(S’,T)

Valid

Invalid

Verification     Conditions yes/no

Phase 1S = S1 S2 Sn = S 0
Fig. 8. The new ar
hite
ture of TVOC.

1. For ea
h nested loop of depth m in the sour
e, 
he
k the 
or-responding target 
ode for a nested loop of depth n. Note thatwe 
an mat
h up loops in the sour
e and target be
ause WHIRLin
ludes annotations indi
ating whi
h line number in the sour
e
orresponds to a given target line.2. If m > n, 
he
k whether the target 
ontains 
ode whi
h 
ame fromthe body of the sour
e loop. If not, try loop redu
tion. Otherwise,try loop fusion.3. If m = n, 
he
k to see if any indi
es are out of order. If so, loopinter
hange has o

urred.4. If m < n, assume loop tiling has o

urred.Fig. 9. The algorithm for analyzing loop transformations.sometimes in
omplete. In order to make TVOC more generally appli
able, wedeveloped an algorithm to infer whi
h loop transformations were performedby looking only at the sour
e and target 
ode. The algorithm is 
apable ofinferring loop redu
tion, loop fusion, loop inter
hange, and loop tiling and isshown in Fig. 9. 11



Hu, Barrett, Goldberg, and Pnueli6.2 A Uni�ed Validation Module for Reordering OptimizationsIn previous versions, TVOC used di�erent proof rules for inter
hange andtiling than it does for fusion, and it had di�erent modules for di�erent looptransformations. This was not ideal from a software engineering perspe
tive.In the 
urrent version, TVOC uses the generalized approa
h des
ribed in [4℄ forall reordering loop transformations. Thus, there is only one general module for
he
king reordering transformations whi
h a

epts the loop index domain andpermutation fun
tion as parameters and generates the appropriate veri�
ation
onditions.6.3 A Methodology for Combinations of OptimizationsThe old version of TVOC had diÆ
ulty handling 
ombinations of loop trans-formations. This was a serious drawba
k sin
e often multiple transformationsare performed by the 
ompiler. In the new version, after a loop transforma-tion is inferred and validated, TVOC synthesizes a new intermediate versionof the 
ode obtained by applying that transformation. It repeats this pro
essfor ea
h dete
ted transformation. In this way, a sequen
e S1; S2; :::Sn of in-termediate versions of the 
ode is generated by TVOC, and the �nal versionSn is output by phase one and provided as input to phase two whi
h uses thevalidate rule to 
he
k it against the target 
ode.for i = 1 to 100 dofor j = 1 to 100 doa(i; j) := 0;for j = 1; 100 dob(i; j) := 1; =)for i = 1 to 100 dofor j = 1 to 100 doa(i; j) := 0;;b(i; j) := 1; =)for j = 1 to 100 dofor i = 1 to 100 doa(i; j) := 0;b(i; j) := 1;Fig. 10. A 
ombination of loop transformations.As an example, 
onsider the 
ode in Fig. 10. ORC �rst fuses the twoinner loops and then performs loop inter
hange in order to improve 
a
heperforman
e (when the input 
ode is written in Fortran in whi
h arrays arestored in 
olumn major order). In phase 1, after 
omparing the sour
e andtarget loops, TVOC dete
ts that loop fusion and inter
hange happened. It�rst 
he
ks if fusion is valid. When the result is positive, it performs fusionand generates a new intermediate version of the 
ode. Next it 
he
ks whetherinter
hange is valid (whi
h it is), generates a new intermediate version, andsends the result to phase two.6.4 Implementation of Rule Gen-ValidateRe
all that rule Gen-Validate requires 
he
king a veri�
ation 
ondition forea
h simple path between 
ut-points in the target. Furthermore, the veri�-
ation 
ondition for the target path from i to j in
ludes a disjun
tion of all12



Hu, Barrett, Goldberg, and Pnuelipossible simple sour
e paths starting from �(i). In the a
tual implementationof rule Gen-Validate, it is not pra
ti
al to test all the paths starting from 
ut-point �(i) in the sour
e. It is mu
h easier to restri
t the sour
e paths to thosefrom �(i) to �(j). With some additional work, we 
an restri
t our attentionto only these paths.The following theorem shows how to re
ast the veri�
ation 
ondition interms of only those sour
e paths from �(i) to �(j). Let CondS� be the 
on-ditions under whi
h a simple sour
e path � is enabled (this 
orresponds to a
onjun
tion of the bran
h 
onditions along the path).Theorem 6.1 Consider the following veri�
ation 
onditions:'i ^ � ^ �Tij ^ ( _�2Paths(�(i)) �S�) ! �0 ^ '0j; (1)
'i ^ � ^ �Tij ! ( _�2Paths(�(i);�(j))CondS�) (2)
'i ^ � ^ �Tij ^ ( _�2Paths(�(i);�(j)) �S�) ! �0 ^ '0j; (3)We 
laim that equation (1) holds i� (2) and (3) hold.Proof. In one dire
tion, suppose (1) holds, (3) also holds be
ause the left-hand side of (3) is stronger than the left-hand side of (1) while the right-hand sides of the two impli
ations are the same. Now, to show that (2) alsoholds, suppose we have 'i ^ � ^ �Tij. By de�nition of � and �, it followsthat PC = �(i). Sin
e i is not a target terminal 
ut-point, �(i) is not asour
e terminal 
ut-point. Now, at every non-terminal sour
e 
ut-point, sometransition must be taken, so it follows that (W�2Paths(�(i)) �S�) holds. By (1),we then have �0 ^ '0j. But from �Tij ^ �0, PC0 = �(j) follows. We thus have(W�2Paths(�(i);�(j)) �S�), whi
h means (2) holds sin
e CondS� is implied by �S�.In the other dire
tion, suppose that (2) and (3) hold and that we have'i ^ � ^ �Tij ^ (W�2Paths(�(i)) �S�). By (2), we have (W�2Paths(�(i);�(j)) CondS�),so some path � from �(i) to �(j) is enabled. But be
ause the transition systemis deterministi
, only one path 
an be enabled at a given point, whi
h meansthat at �(i), the only simple path enabled is from �(i) to �(j). Therefore(W�2Paths(�(i);�(j)) �S�) holds. By (3), we have �0 ^ '0j, and thus (1) holds. 2Using this theorem, we were able to implement part 4 of rule Gen-Validateby 
he
king the 
onditions of the sour
e simple paths between �(i) and �(j)without looking for all the sour
e simple paths starting from �(i).13



Hu, Barrett, Goldberg, and Pnueli7 Appendix: Soundness of Gen-ValidateLet PS = hVS ;OS ;�S ; �Si and PT = hVT ;OT ;�T ; �T i be two TS's, where PS isthe sour
e and PT is the target. Assume all the parts in rule Gen-Validate areestablished. We need to prove that PT is a 
orre
t translation of PS , whi
hmeans they are 
omparable and, for every �T : t0; t1; : : : a 
omputation of PTand every �S : s0; s1; : : : a 
omputation of PS su
h that s0 is 
ompatible witht0, �T is terminating (�nite) i� �S is and, in the 
ase of termination, their �nalstates are 
ompatible.From part 3 of rule Gen-Validate, we know that the two systems are 
om-parable. We will prove the rest in two dire
tions.Suppose we have a terminating target 
omputation �T . We know that theinitial state t0 and terminal state tn of the 
omputation must be at some target
ut-points 
p0 and 
pn, a

ording to part 0 of rule Gen-Validate. A

ording topart 1 of Gen-Validate, the 
orresponding sour
e 
ut-points CP0 and CPn areinitial and terminal sour
e 
ut-points respe
tively, and for any other 
ut-point
pi in the target 
omputation path, the 
orresponding sour
e 
ut-point CPi is�(
pi). Now, by part 3, � ^ � holds at the initial states t0 and s0. From part4, for any 
ut-point i and its next 
ut-point j in the target path,Cij : 'i ^ � ^ �Tij ^ ( _�2Paths(�(i)) �S�) ! �0 ^ '0j:Here, sin
e the sour
e 
ut-point �(i) is not the terminal 
ut-point, there isalways a sour
e path enabled at �(i), whi
h means W�2Paths(�(i)) �S� is alwaystrue. This 
ondition guarantees that for the target simple path between iand j (it has 
omputable transition relation �Tij, and its 
orresponding sour
esimple path also has a 
omputable transition relation �S�), if � ^ � holds at
ut-points 
pi and �(
pi), then it also holds at 
pj and �(
pj). By indu
tion,it follows that � ^ � holds at the terminal 
ut-points, whi
h have the statessn and tn. But by 3, this implies that sn and tn are 
ompatible.For the other dire
tion, suppose we have a terminating sour
e 
ompu-tation �S . Now, suppose the 
orresponding target 
omputation �T is non-terminating. This in�nite target path will in
lude an in�nite number of target
ut-points, sin
e it is required that the transition relation for the path betweentwo dire
tly 
onne
ted 
ut-points be 
omputable and only a �nite path 
anhave a 
omputable transition relation. By the argument above, a target 
om-putation with an in�nite number of 
ut-points will have a 
orresponding sour
e
omputation �0S with an in�nite number of sour
e 
ut-points. This would re-quire there to be two di�erent sour
e 
omputations �S and �0S starting fromthe same initial sour
e state s0, whi
h violates the assumption that the sour
eprogram is deterministi
. Therefore, the 
orresponding target 
omputation�T must be terminating. And a

ording to the previous argument, their �nalstates must be 
ompatible. 14
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