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Abstract. One of the main shortcomings of the traditional methods for
combining theories is the complexity of guessing the arrangement of the
variables shared by the individual theories. This paper presents a refor-
mulation of the Nelson-Oppen method that takes into account explicit
equality propagation and can ignore pairs of shared variables that the
theories do not care about. We show the correctness of the new approach
and present care functions for the theory of uninterpreted functions and
the theory of arrays. The effectiveness of the new method is illustrated
by experimental results demonstrating a dramatic performance improve-
ment on benchmarks combining arrays and bit-vectors.

1 Introduction

The seminal paper of Nelson and Oppen [15] introduced a general framework
for combining quantifier-free first-order theories in a modular fashion. Using the
Nelson-Oppen framework, decision procedures for two individual theories can be
used as black boxes to create a decision procedure for the combined theory. Al-
though the Nelson-Oppen combination method as originally formulated requires
stably-infinite theories, it can be extended to handle non-stably-infinite theories
using an approach based on polite theories [12, 13, 18].

The core idea driving the method (and ensuring its correctness) is the ex-
change of equalities and disequalities over the interface variables between the
theories involved in the combination. Interface variables are the problem vari-
ables that are shared by both theories (or an extended set of variables in the
polite combination framework), and both theories must agree on an arrangement
over these variables. Most modern satisfiability modulo theories (SMT) solvers
perform the search for such an arrangement by first using aggresive theory prop-
agation to determine as much of the arrangement as possible and then relying
on an efficient SAT solver to guess the rest of the arrangement, backtracking
and learning lemmas as necessary [1, 3, 6].

In some cases, if the theories that are being combined have additional proper-
ties, such as convexity and/or complete and efficient equality propagation, there
are more efficient ways of obtaining a suitable arrangement. But, in general,
since the number of shared variables can be substantial, guessing an arrange-
ment over the shared variables can have an exponential impact on the running
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time [16]. Trying to minimize the burden of non-deterministic guessing is thus
of the utmost importance for a practical and efficient combination mechanism.
For example, a recent model-based theory combination approach [7], in which
the solver keeps a model for each theory, takes the optimistic stance of eagerly
propagating all equalities that hold in the model (whether or not they are truly
implied), obtaining impressive performance improvements.

In this paper we tackle the problem of minimizing the amount of non-
deterministic guessing by equipping the theories with an equality propagator and
a care function. The role of the theory-specific equality propagator is, given a
context, to propagate entailed equalities and disequalities over the interface vari-
ables. The care function, on the other hand, provides information about which
variable pairs among the interface variables are important for maintaining the
satisfiability of a given formula. With the information provided by these two
functions we can, in many cases, drastically reduce the search space for find-
ing a suitable arrangement. We present a reformulation of the Nelson-Oppen
method that uses these two functions to decide a combination of two theories.
The method can easily be adapted to the combination method for polite the-
ories, where reducing the number of shared variables is even more important
(the polite theory combination method requires extending the set of interface
variables significantly).

2 Preliminaries

We start with a brief overview of the syntax and semantics of many-sorted first-
order logic. For a more detailed exposition, we refer the reader to [11, 21].

A signature Σ is a triple (S, F, P ) where S is a set of sorts, F is a set of func-
tion symbols, and P is a set of predicate symbols. For a signature Σ = (S, F, P ),
we write ΣS for the set S of sorts, ΣF for the set F of function symbols, and
ΣP for the set P of predicates. Each predicate and function symbol is associated
with an arity, a tuple constructed from the sorts in S. Functions whose arity is
a single sort are called constants. We write Σ1 ∪Σ2 = (S1 ∪S2, F1 ∪F2, P1 ∪P2)
for the union1 of signatures Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2). Addition-
ally, we write Σ1 ⊆ Σ2 if S1 ⊆ S2, F1 ⊆ F2, P1 ⊆ P2, and the symbols of Σ1

have the same arity as those in Σ2. We assume the standard notions of a Σ-
term, Σ-literal, and Σ-formula. In the following, we assume that all formulas are
quantifier-free, if not explicitly stated otherwise. A literal is called flat if it is of
the form x = y, x 6= y, x = f(y1, . . . , yn), p(y1, . . . , yn), or ¬p(y1, . . . , yn), where
x, y, y1, . . . , yn are variables, f is a function symbol, and p is a predicate symbol.
If φ is a term or a formula, we will denote by varsσ(φ) the set of variables of sort
σ that occur (free) in φ. We overload this function in the usual way, varsS(φ)
denoting variables in φ of the sorts in S, and vars(φ) denoting all variables in φ.
We also sometimes refer to a set Φ of formulas as if it were a single formula, in

1 In this paper, we always assume that function and predicate symbols from different
theories do not overlap, so that the union operation is well-defined. On the other
hand, two different theories are allowed to have non-disjoint sets of sorts.



which case the intended meaning is the conjunction
∧
Φ of the formulas in the

set.
Let Σ be a signature, and let X be a set of variables whose sorts are in ΣS.

A Σ-interpretation A over X is a map that interprets each sort σ ∈ ΣS as a
non-empty domain Aσ, each variable x ∈ X of sort σ as an element xA ∈ Aσ,
each function symbol f ∈ ΣF of arity σ1 × · · · × σn × τ as a function fA :
Aσ1
× · · · ×Aσn

→ Aτ , and each predicate symbol p ∈ ΣP of arity σ1 × · · · × σn
as a subset pA of Aσ1 × · · · × Aσn . A Σ-structure is a Σ-interpretation over
an empty set of variables. As usual, the interpretations of terms and formulas
in an interpretation A are defined inductively over their structure. For a term
t, we denote with tA the evaluation of t under the interpretation A. Likewise,
for a formula φ, we denote with φA the truth-value (true or false) of φ under
interpretation A. A Σ-formula φ is satisfiable iff it evaluates to true in some Σ-
interpretation over (at least) vars(φ). Let A be an Ω-interpretation over some set
V of variables. For a signature Σ ⊆ Ω, and a set of variables U ⊆ V , we denote
with AΣ,U the interpretation obtained from A by restricting it to interpret only
the symbols in Σ and the variables in U .

We will use the definition of theories as classes of structures, rather than sets
of sentences. We define a theory formally as follows (see e.g. [20] and Definition
2 in [18]).

Definition 1 (Theory). Given a set of Σ-sentences Ax a Σ-theory TAx is a
pair (Σ,A) where Σ is a signature and A is the class of Σ-structures that satisfy
Ax.

Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation A such
that AΣ,∅ ∈ A. A Σ-formula φ is T -satisfiable iff it is satisfiable in some T -
interpretation A. This is denoted as A �T φ, or just A � φ if the theory is clear
from the context.

As theories in our formalism are represented by classes of structures, a com-
bination of two theories is represented by those structures that can interpret
both theories (Definition 3 in [18]).

Definition 2 (Combination). Let T1 = (Σ1,A1) and T2 = (Σ2,A2) be two
theories. The combination of T1 and T2 is the theory T1 ⊕ T2 = (Σ,A) where
Σ = Σ1 ∪Σ2 and A = {Σ-structures A | AΣ1,∅ ∈ A1 and AΣ2,∅ ∈ A2}.

The set of Σ-structures resulting from the combination of two theories is
indeed a theory in the sense of Definition 1. If Ax1 is the set of sentences
defining theory T1, and Ax2 is the set of sentences defining theory T2, then A
is the set of Σ-structures that satisfy the set Ax = Ax1 ∪Ax2 (see Proposition
4 in [18]).

Given decision procedures for the satisfiability of formulas in theories T1 and
T2, we are interested in constructing a decision procedure for satisfiability in
T1 ⊕ T2 using these procedures as black boxes. The Nelson-Oppen combination
method [15, 20, 21] gives a general mechanism for doing this. Given a formula φ
over the combined signature Σ1∪Σ2, the first step is to purify φ by constructing



an equisatisfiable set of formulas φ1 ∪ φ2 such that each φi consists of only Σi-
formulas. This can easily be done by finding a pure (i.e. Σi- for some i) subterm t,
replacing it with a new variable v, adding the equation v = t, and then repeating
this process until all formulas are pure. The next step is to force the decision
procedures for the individual theories to agree on whether variables appearing
in both φ1 and φ2 (called shared or interface variables) are equal. This is done
by introducing an arrangement over the shared variables [18, 20].

Here we will use a more general definition of an arrangement that allows us to
restrict the pairs of variables that we are interested in. We do so by introducing
the notion of a care graph. Given a set of variables V , we will call any graph
G = 〈V,E〉 a care graph, where E ⊆ V × V is the set of care graph edges. If an
edge (x, y) ∈ E is present in the care graph, it means that we are interested in
the relationship between the variables x and y.

Definition 3 (Arrangement). Given a care graph G = 〈V,E〉 where sorts of
variables in V range over a set of sorts S, with Vσ = varsσ(V ), we call δG an
arrangement over G if there exists a family of equivalence relations

E = { Eσ ⊆ Vσ × Vσ | σ ∈ S } ,

such that the equivalence relations restricted to E induce δG, i.e. δG =
⋃
σ∈S δσ ,

where each δσ is an individual arrangement of Vσ (restricted to E):

δσ = { x = y | (x, y) ∈ Eσ ∩ E } ∪ { x 6= y | (x, y) ∈ Eσ ∩ E } ,

where Eσ denotes the complement of Eσ (i.e. Vσ × Vσ \ Eσ). If the care graph
G is a complete graph over V , we will denote the arrangement simply as δV .

The Nelson-Oppen combination theorem states that φ is satisfiable in T1 ⊕
T2 iff there exists an arrangement δV of the shared variables V = vars(φ1) ∩
vars(φ2) such that φi ∪ δV is satisfiable in Ti. However, as mentioned earlier,
some restrictions on the theories are necessary in order for the method to be
complete. Sufficient conditions for completeness are: the two signatures have
no function or predicate symbols in common; and the two theories are stably-
infinite over (at least) the set of common sorts ΣS

1 ∩ΣS
2 . Stable-infiniteness was

originally introduced in a single-sorted setting [16]. In the many-sorted setting
stable-infiniteness is defined with respect to a subset of the signature sorts (see
Definition 6 from [21]).

3 New Combination Method

In this section we present a new method for combining two signature-disjoint
theories. The method is based on Nelson-Oppen, but it makes equality prop-
agation explicit and also includes a care function for each theory, enabling a
more efficient mechanism for determining equalities and dis-equalities among
the shared variables. Another notable difference from the original method is



that we depart from viewing the combination problem as symmetric. Instead,
as in the method for combining polite theories [12, 13, 18], one of the theories is
designated to take the lead in selecting which variable pairs are going to be part
of the final arrangement.

We first define the equality propagator and the care function, and then pro-
ceed to presenting and proving the combination method.

Definition 4 (Equality Propagator). For a Σ-theory T we call a function
P=
T J·K an equality propagator for T if, for every set V of variables, it maps

every set φ of flat Σ-literals into a set of equalities and dis-equalities between
variables:

P=
T JV K(φ) = {x1 = y1, . . . , xm = ym} ∪ {z1 6= w1, . . . , zn 6= wn} ,

where vars(P=
T JV K(φ)) ⊆ V and

1. for each equality xi = yi ∈ P=
T JV K(φ) it holds that φ �T xi = yi;

2. for each dis-equality zi 6= wi ∈ P=
T JV K(φ) it holds that φ �T zi 6= wi;

3. P=
T JV K is monotone, i.e. φ ⊆ ψ =⇒ P=

T JV K(φ) ⊆ P=
T JV K(ψ); and

4. P=
T JV K contains at least those equalities and dis-equalities, over variables in

V , that appear in φ.

An equality propagator, given a set of theory literals, returns a set of entailed
equalities and dis-equalities between the variables in V . It does not need to be
complete (i.e. it does not need to return all entailed equalities and dis-equalities),
but the more complete it is, the more helpful it is in reducing the arrangement
search space.

When combining two theories, the combined theory can provide more equal-
ity propagation than just the union of the individual propagators. The following
construction defines an equality propagator that reuses the individual propaga-
tors in order to obtain a propagator for the combined theory. This is achieved
by allowing the propagators to incrementally exchange literals until a fix-point
is reached.

Definition 5 (Combined Propagator). Let T1 and T2 be two theories over
the signatures Σ1 and Σ2, equipped with equality propagators P=

T1
J·K and P=

T2
J·K,

respectively. Let T = T1 ⊕ T2 and Σ = Σ1 ∪Σ2. Let V be a set of variables and
φ a set of flat Σ-literals partitioned into a set φ1 of Σ1-literals and a set φ2 of
Σ2-literals. We define the combined propagator P=

T J·K for the theory T as

P=
T JV K(φ) = (P=

T1
⊕P=

T2
)JV K(φ) = ψ∗1 ∪ ψ∗2 ,

where 〈ψ∗1 , ψ∗2〉 is the least fix-point of the following operator F

F〈ψ1, ψ2〉 =
〈
P=
T1

JV K(φ1 ∪ ψ2),P=
T2

JV K(φ2 ∪ ψ1)
〉
.

The fix-point exists as the propagators are monotone and the set V is fi-
nite. Moreover, the value of the fix-point is easily computable by iteration from
〈∅, ∅〉. Also, it’s clear from the definition that the combined propagator is at
least as strong as the individual propagators, i.e. P=

T1
JV K(φ1) ⊆ P=

T JV K(φ1) ⊆
P=
T JV K(φ), P=

T2
JV K(φ2) ⊆ P=

T JV K(φ2) ⊆ P=
T JV K(φ).



Definition 6 (Care Function). For a Σ-theory T we call a function CJ·K a
care function for T with respect to a T -equality propagator P=

T J·K when for every
set V of variables and every set φ of flat Σ-literals

1. CJV K maps φ to a care graph G = 〈V,E〉;
2. if x = y or x 6= y are in P=

T JV K(φ) then (x, y) 6∈ E;
3. if G = 〈V, ∅〉 and φ is T -satisfiable then, for any arrangement δV such that

P=
T JV K(φ) ⊆ δV , it holds that φ ∪ δV is also T -satisfiable.

For any Σ-theory T and a set of variables V , the trivial care function C0J·K
is the one that maps a set of variables to a complete graph over the pairs of
variables that are not yet decided. i.e.

C0JV K(φ) = 〈V, {(x, y) ∈ V × V | x = y, x 6= y 6∈ P=
T JV K(φ)}〉 .

Notice that C0J·K trivially satisfies the conditions of Definition 6 with respect to
any equality propagator. To see this, the only case to consider is when the care
graph returned has no edges and φ is satisfiable. But in this case, if P=

T JV K(φ) ⊆
δV , then we must have P=

T JV K(φ) = δV , and so clearly φ ∪ δV is satisfiable.

3.1 Combination Method

Let Ti be a Σi-theory, for i = 1, 2 and let S = ΣS
1∩ΣS

2 . Further, assume that each
Ti is stably-infinite with respect to Si, decidable, and equipped with a theory
propagator P=

Ti
J·K. Additionally, let T2 be equipped with a care function CT2

J·K
operating with respect to P=

T2
J·K. We are interested in deciding the combination

theory T = T1 ⊕ T2 over the signature Σ = Σ1 ∪ Σ2. We denote the combined
theory propagator with P=

T J·K.The combination method takes as input a set φ
of Σ-literals and consists of the following steps:

Purify: The output of the purification phase is two new sets of literals, φ1 and
φ2 such that φ1 ∪ φ2 is equisatisfiable (in T ) with φ and each literal in φi is
a flat Σi-literal, for i = 1, 2.

Arrange: Let V = vars(φ1) ∩ vars(φ2) be the set of all variables shared by φ1
and φ2. Let the care graph G2 be a fix-point of the following operator

G〈G〉 = G ∪ CT2
JV K(φ2 ∪P=

T JV K(φ1 ∪ φ2 ∪ δG)) , (1)

where we choose the arrangement δG non-deterministically.
Check: Check the following formulas for satisfiability in T1 and T2 respectively

φ1 ∪P=
T JV K(φ1 ∪ φ2 ∪ δG2

) , φ2 ∪P=
T JV K(φ1 ∪ φ2 ∪ δG2

) .

If both are satisfiable, output satisfiable, otherwise output unsatisfiable.

Notice that above, since the graph is finite, and the the operator G is increasing,
the fix-point always exists. Moreover, it is in our interest to choose the minimal
such fix-point, which we can obtain by doing a fix-point iteration starting from



G0 = 〈V, ∅〉. Another important fact is that for any fix-point G, with respect
to the δG we have chosen, of the operator G above, we must have that the
care function from (1) returns an empty graph. This follows from the fact that
the propagator must return all the equalities and dis-equalities from δG, by
definition, and the care function then must ignore them, also by definition.

Example 1. Consider the case of combining two theories T1 and T2 equipped with
trivial care functions and propagators P=

Ti
JV K that simply return those input

literals that are either equalities or dis-equalities over variables in V . Assume
that φ1 and φ2 are the output of the purification phase, and let V be the set
of variables shared by φ1 and φ2. Since CT2J·K is a trivial care function, we will
choose a arrangement δG2 over the set V of shared variables that completes
the set of equalities and dis-equalities over V . Since equality propagators simply
keep the input equalities and dis-equalities over V , and all other relationships
between variables in V are determined by δG2

, the combined propagator will
return a complete arrangement δV and we will then check φ1∪δV and φ2∪δV for
satisfiability. This shows that our method can effectively simulate the standard
Nelson-Oppen combination method. We now show the correctness of the method.

Theorem 1. Let Ti be a Σi-theory, stably-infinite with respect to the set of sorts
Si, and equipped with equality propagators P=

Ti
J·K, for i = 1, 2. Additionally,

let T2 be equipped with a care function CTi
J·K operating with respect to P=

T2
J·K.

Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2 and let φ be a set of flat Σ-literals, which
can be partitioned into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals, with
V = vars(φ1) ∩ vars(φ2). If ΣS

1 ∩ΣS
2 = S1 ∩ S2, then following are equivalent

1. φ is T -satisfiable;

2. there exists some care-graph G2, and a corresponding arrangement δG2
, that

are fix-point solutions of (1), such that the following sets are T1- and T2-
satisfiable respectively

φ1 ∪P=
T JV K(φ1 ∪ φ2 ∪ δG2) , φ2 ∪P=

T JV K(φ1 ∪ φ2 ∪ δG2) .

Moreover, T is stably-infinite with respect to S1 ∪ S2.

Proof. (1) ⇒ (2) : Suppose φ = φ1 ∪ φ2 is T -satisfiable in a T -interpretation
A. Let δV be the full arrangement over V satisfied by A. Since δV trivially is
a fix-point of (1), A satsifies δV , and the propagator only adds formulas that
are entailed, it is clear that A satisfies both sets of formulas, which proves one
direction.

(2)⇐ (1) : Assume that there is a T1-interpretationA1 and a T2-interpretation
A2 (and assume wlog that both interpret all the variables in V ) such that
A1 �T1

φ1 ∪ P=
T JV K(φ1 ∪ φ2 ∪ δG2

) and A2 �T2
φ2 ∪ P=

T JV K(φ1 ∪ φ2 ∪ δG2
).

Let δV be the arrangement over the complete graph on V satisfied by A1, so

δG2
⊆ P=

T2
JV K(φ2 ∪ δG2

) ⊆ P=
T JV K(φ1 ∪ φ2 ∪ δG2

) ⊆ δV .



Because G2 is a fix-point, we know that CT2
JV K(φ2 ∪P=

T JV K(φ1 ∪ φ2 ∪ δG)) =
〈V, ∅〉. We then know, by property 3 of the care function, that there is a T2-
interpretation B2 such that B2 �T2 φ2 ∪ δV . Since δV is a complete arrangement
over all the shared variables and we also have that A1 �T1 φ1 ∪ δV , we can now
appeal to the correctness of the standard Nelson-Oppen combination method
to obtain a T -interpretation C that satisfies φ1 ∪ φ2 = φ. The proof that the
combined theory is stably-infinite can be found in [12]. ut

3.2 Extension to Polite Combination

The method described in Section 3 relies on the correctness argument for the
standard Nelson-Oppen method, meaning that the theories involved should be
stably-infinite for completeness. A more general combination method based on
the notion of polite theories (and not requiring that both theories be stably-
infinite) was introduced in [18] and clarified in [12, 13]. Here, we assume famil-
iarity with the concepts appearing in those papers, and show how they can be
integrated into the combination method of this paper.

Assume that the theory T2 is polite with respect to the set of sorts S2 such
that Σ1∩Σ2 ⊆ S2, and is equipped with a witness function witness2. We modify
the combination method of Section 3.1 as follows:

1. In the Arrange and Check phases, instead of using φ2, we use the formula
produced by the witness function, i.e. φ′2 = witness2(φ2).

2. We define V = varsS(φ′2) instead of V = vars(φ1) ∩ vars(φ2).

Theorem 2. Let Ti be a Σi-theory polite with respect to the set of sorts Si, and
equipped with equality propagators P=

Ti
J·K, for i = 1, 2. Additionally, let T2 be

equipped with a care function CT2
J·K operating with respect to P=

T2
J·K. Let Σ =

Σ1∪Σ2, T = T1⊕T2 and let φ be a set of flat Σ-literals, which can be partitioned
into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals. Let φ′2 = witnessT2(φ2)
and V = varsS(φ′2). If S ⊆ S1 ∩ S2, then following are equivalent

1. φ is T -satisfiable;
2. there exists a care-graph G2 and arrangement δG2

, fix-point solutions of (1),
such that the following sets are T1- and T2-satisfiable respectively

φ1 ∪P=
T JV K(φ1 ∪ φ′2 ∪ δG2

) , φ′2 ∪P=
T JV K(φ1 ∪ φ′2 ∪ δG2

) .

Moreover, T is polite with respect to S1 ∪ (S2 \Σ1). 2

4 Theory of Uninterpreted Functions

The theory of uninterpreted functions over a signature Σeuf is the theory Teuf =
(Σeuf,A), where A is simply the class of all Σeuf-structures. Conjunctions of

2 The remaining proofs are relegated to the technical report [14] due to space con-
straints.



literals in this theory can be decided in polynomial time by congruence closure
algorithms (e.g. [19]). We make use of insights from these algorithms in defining
both the equality propagator and the care function. For simplicity, we assume
Σeuf contains no predicate symbols, but the extension to the case with predicate
symbols is straightforward.

Equality Propagator. Let φ be a set of flat literals, let V be a set of variables,
and let ∼c be the smallest congruence relation3 over terms in φ containing
{(x, t) | x = t ∈ φ}. We define a dis-equality relation 6=c as the smallest re-
lation satisfying

x ∼c x′ ∧ y ∼c y′ ∧ x′ 6= y′ ∈ φ =⇒ x 6=c y .

Now, we define the equality propagator as

P=
eufJV K(φ) = {x = y | x, y ∈ V, x ∼c y} ∪ {x 6= y | x, y ∈ V, x 6=c y}.

It is easy to see that P=
eufJ·K is indeed an equality propagator. Moreover, it

can easily be implemented as part of a decision procedure based on congruence
closure.

Example 2. Given the set φ = { x = z, y = f(a), z 6= f(a) }, the equality
propagator would return P=

eufJ{ x, y }K(φ) = { x = x, y = y, x 6= y, y 6= x }.

Care Function. The definition of the care function is based on the fact that
during congruence closure, we only care about equalities between pairs of vari-
ables that occur as arguments in the same position of the same function symbol.
Again, let V be a set of variables and let φ be a set of flat literals, such that φ
only contains function symbols from F = {f1, f2, . . . , fn}.

For a set of formulas φ, let E (φ) denote the smallest equivalence relation over
the terms occurring in φ containing {(x, t) | x = t ∈ φ}. For an equivalence rela-
tion E, let E∗ denote the congruence closure of E (i.e. the smallest congruence
relation containing E). In order to make our care-function more precise, we will
first approximate the implications that possible equalities over variables in V
could trigger. We do so by taking all possible equalities over V , i.e. let δ=V be the
full arrangement over the shared variables where all variables of the same sort are
equal. Now, to see what these equalities could imply, we let E=

φ = E (φ ∪ δ=V )
∗
.

For each function symbol f ∈ F of arity σ1 × σ2 × · · · × σk 7→ σ, let Ef be a
set containing pairs of variables that could trigger an application of congruence
because of two terms that are applications of f . More precisely, let Ef ⊆ V × V
be a maximal set of pairs (x, y) ∈ V × V , that are not already decided by the
propagator (x �c y and ¬x 6=c y), such that for each (x, y) ∈ Ef we have:

1. there are xi and yi such that x ∼c xi and y ∼c yi;
3 In this context, a congruence relation is an equivalence relation that also satisfies

the congruence property: if f(x1, . . . , xn) and f(y1, . . . , yn) are terms in φ, and if for
each 1 ≤ i ≤ n, xi ∼c yi, then f(x1, . . . , xn) ∼c f(y1, . . . , yn).



2. there are terms f(x1, . . . , xi, . . . , xk) �c f(y1, . . . , yi, . . . , yk) in φ;
3. for 1 ≤ j ≤ k, variables xj and yj could become equal, (xj , yj) ∈ E=

φ ;
4. for 1 ≤ j ≤ k, variables xj and yj are not known to be disequal, ¬(xj 6=c yj).

Now, we let E =
⋃
f∈F Ef , and define the care function mapping φ to the care

graph G as CeufJV K(φ) = G = 〈V,E〉.

Example 3. Consider the following sets of literals

φ1 = {f(x1) 6= f(y1), y1 = x2} ,

φ2 = {z1 = f(x1), z2 = f(y1), g(z1, x2) 6= g(z2, y2)} ,

φ3 = {y1 = f(x1), y2 = f(x2), z1 = g(x1), z2 = g(x2), h(y1) 6= h(z1)} .

and corresponding sets of shared variables V1 = {x1, x2}, V2 = {x1, x2, y1, y2},
V3 = {x1, x2, y2, z2}. The care function above would return the care graphs
G1 = 〈V, {(x1, x2)}〉, G2 = 〈V, {(x1, y1), (x2, y2)}〉, and G2 = 〈V, {(x1, x2)}〉.

Note that the the care function for φ3 does not return the pair (y2, z2), which
is important in case x1 and x2 become equal. This is remedied in the procedure
itself, by computing the fix-point, which, in case we choose x1 = x2, will add the
pair (y2, z2) to the care graph in the second step.

Theorem 3. Let Teuf be the theory of uninterpreted functions with equality over
the signature Σeuf. CeufJ·K is a care function for Teuf with respect to the equality
propagator P=

eufJ·K.

5 Theory of Arrays

The extensional theory of arrays Tarr operates over the signature Σarr that
contains the sorts {array, index, elem} and function symbols

read : array × index 7→ elem , write : array × index× elem 7→ array ,

where read represents reading from an array at a given index, and write represents
writing a given value to an array at an index. The semantics of the theory are
given by the three axioms:

1. ∀ a:array. ∀ i:index. ∀ v:elem. read(write(a, i, v), i) = v,
2. ∀ a:array. ∀ i, j:index. ∀ v:elem. i 6= j → read(write(a, i, v), j) = read(a, j),
3. ∀ a, b:array. (∀ i:index. read(a, i) = read(b, i))→ a = b.

The flat literals of the theory are of the form x = read(a, i), a = write(b, i, x),
i = j, i 6= j, x = y, x 6= y, a = b, a 6= b, where here and below we use the
convention that x, y, v are variables of sort elem, i, j are variables of sort index,
a, b, and c are variables of sort array, and w, z are variables of any sort. For a
set φ of flat Tarr-literals, we also define α(φ) to be the subset of φ that does not
contain literals of the form a = write(b, i, v).



Decision Procedure. Before presenting the equality propagator and care function,
it will be helpful to present a simple rule-based decision procedure for Tarr based
on [9].4 Given a set Γ of flat Tarr-literals, we define ≈Γa as E (α(Γ ))

∗
and the

corresponding disequality relation 6=Γ
a as the smallest relation satisfying:

w ≈Γa w′ ∧ z ≈Γa z′ ∧ w 6= z ∈ Γ =⇒ w′ 6=Γ
a z
′ .

Additionally, let Γ [l1, . . . , ln] denote that literals li, 1 ≤ i ≤ n appear in Γ , and
for every pair (a, b) of variables in varsarray(Γ ), let ka,b be a distinguished fresh
variable of sort index. Let Darr be the following set of inference rules.

RIntro1
Γ [a = write(b, i, v)]
Γ, v = read(a, i)

if v 6≈Γa read(a, i)

RIntro2
Γ [a = write(b, i, v), x = read(c, j)]

Γ, i = j Γ, read(a, j) = read(b, j)
if

a ≈Γa c or b ≈Γa c,
i 6≈Γa j,
read(a, j) 6≈Γa read(b, j)

ArrDiseq
Γ [a 6= b]

Γ, read(a, ka,b) 6= read(b, ka,b)
if ¬(read(a, ka,b) 6=Γ

a read(b, ka,b))

Note that non-flat literals appear in the conclusions of rules RIntro2 and ArrDiseq.
We use this as a shorthand for the flattened version of these literals. For example,
read(a, j) = read(b, j) is shorthand for x = read(a, j) ∧ y = read(b, j) ∧ x = y,
where x and y are fresh variables (there are other possible flattenings, especially
if one or more of the terms appears already in Γ , but any of them will do). We
say that a set Γ of literals is Darr-saturated if no rules from Darr can be applied.

Theorem 4. The inference rules of Darr are sound and terminating.

Theorem 5. Let Γ be a Darr-saturated set of flat Tarr-literals. Then Γ is Tarr-
satisfiable iff α(Γ ) is Teuf-satisfiable.

Equality Propagator. Let φ be a set of flat literals and V a set of variables.
Consider the following modified versions of RIntro2 that are enabled only if one
of the branches can be ruled out as unsatisfiable:

RIntro2a
Γ [a = write(b, i, v), x = read(c, j)]

Γ, i = j
if

a ≈Γa c or b ≈Γa c,
i 6≈Γa j,
read(a, j) 6=Γ

a read(b, j)

RIntro2b
Γ [a = write(b, i, v), x = read(c, j)]

Γ, read(a, j) = read(b, j)
if

a ≈Γa c or b ≈Γa c,
i 6=Γ

a j,
read(a, j) 6≈Γa read(b, j)

Let D′arr be obtained from Darr by replacing RIntro2 with the above rules. Since
these rules mimic RIntro2 when they are enabled, but are enabled less often, it is
clear that D′arr remains sound and terminating. Let Γ ′ be the result of applying

4 The main difference is that in our procedure, we exclude literals containing write
from the Teuf-satisfiability check as they are not needed and this allows us to have a
simpler care function.



D′arr until no more apply (we say that Γ ′ is D′arr-saturated). We define the
equality propagator as:

P=
arrJV K(φ) = {w = z | w, z ∈ V,w ≈Γ

′

a z} ∪ {w 6= z | w, z ∈ V,w 6=Γ ′

a z}.

It is easy to see that P=
arrJ·K satisfies the requirements for a propagator. Though

not necessary for the care function we present here, a more powerful propagator
can be obtained by additionally performing congruence closure over write terms.

Care Function. Let φ be a set of flat literals and V a set of variables. First, since
a simple propagator cannot compute all equalities between array variables, we
will ensure that the relationships between all pairs of array variables in V have
been determined. To do so we define the set Eφa of pairs of array variables in V
that are not yet known equal or dis-equal

Eφa = {(a, b) ∈ V × V | a 6≈φa b ∧ ¬(a 66=φ
a b)} .

Next, since the inference rules can introduce new read terms, we compute the
smallest set Rφ with possible such terms, i.e

– if x = read(a, i) ∈ φ or a = write(b, i, v) ∈ φ, then read(a, i) ∈ Rφ,
– if a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, i 6≈φa j, and a ≈φa c ∨ b ≈φa c, then

both read(a, j) ∈ Rφ and read(b, j) ∈ Rφ,
– if a 6= b ∈ φ, then both read(a, ka,b) ∈ Rφ and read(b, ka,b) ∈ Rφ .

Crucial in the introduction of the above read terms, is the set of index variables
whose equality could affect the application of the RIntro2 rule. We capture these
variables by defining the set Eφi as the set of all pairs (i, j) such that:

– i 6≈φa j and ¬(i 6=φ
a j)

– ∃ a, b, c, v. a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, and a ≈φa c ∨ b ≈φa c.

Finally, we claim that with the variables in Eφa and Eφi decided, we can
essentially use the same care function as for Teuf, treating read as uninterpreted.
We therefore define the third set Eφr to be the set of all pairs (i, j) ∈ V × V of
undecided indices, i 6≈φa j and ¬(i 6=φ

a j), such that there are a, b, i′, j′ with a ≈φa
b, i ≈φa i′, j ≈φa j′, read(a, i′) ∈ Rφ, read(b, j′) ∈ Rφ, read(a, i′) 6≈φa read(b, j′).

With the definitions above, we can define the care graph as CarrJV K(φ) =
G = 〈V,E〉, where the set of edges is defined as

E =


Eφa if Eφa 6= ∅,
Eφi if Eφi 6= ∅, and

Eφr otherwise.

Note that as defined, Eφi may include pairs of index variables, one or more of

which are not in V . Unfortunately, the care function fails if Eφi is not a subset of
V × V . We can ensure that it is either by expanding the set V until it includes
all variables in Eφi or doing additional case-splitting up front on pairs in Eφi ,

adding formulas to φ, until Eφi ⊆ V × V .



Theorem 6. Let Tarr be the theory of arrays. CarrJ·K is a care function for Tarr
with respect to the equality propagator P=

arrJ·K for all sets φ of literals and V of

variables such that Eφi ⊆ V × V .

Example 4. Consider the following constraints involving arrays and bit-vectors
of size m, where ×m denotes unsigned bit-vector multiplication:

n∧
k=1

(read(ak, ik) = read(ak+1, ik+1) ∧ ik = xk ×m xk+1) . (2)

Assume that only the index variables are shared, i.e. V = {i1, . . . , in+1}. In this

case, both Eφa and Eφi will be empty and the only read terms in Rφ will be those
appearing in the formula. Since none of these are reading from equivalent arrays,
the empty care graph is a fix-point for our care function, and we do not need to
guess an arrangement.

Note that in the case when V contains array variables, the care graph requires
us to split on all pairs of these variables (i.e. the care function is trivial over these
variables). Fortunately, in practice it appears that index and element variables
are typically shared, and only rarely are array variables shared.

6 Experimental Evaluation

We implemented the new method in the Cvc3 solver [2], and in the discussion be-
low, we denote the new implementation as Cvc3+C. We focused our attention on
the combination of the theory of arrays and the theory of fixed-size bit-vectors
(QF AUFBV). This seemed like a good place to start because there are many
benchmarks which generate a non-trivial number of shared variables, and addi-
tional splits on shared bit-vector variables can be quite expensive. This allowed
us to truly examine the merits of the new combination method. In order to eval-
uate our method against the current state-of-the-art, we compared to Boolector
[4], Yices [10], Cvc3, and MathSAT [5], the top solvers in the QF AUFBV category
from the 2009 SMT-COMP competition (in order). Additionally, we included the
Z3 solver [8] so as to compare to the model-based theory combination method [7].
All tests were conducted on a dedicated Intel Pentium E2220 2.4 GHz processor
with 4GB of memory. Individual runs were limited to 15 minutes.

We crafted a set of new benchmarks based on Example 4 from Section 5, tak-
ing n = 10, . . . , 100, with increments of 10, and m = 32, . . . , 128, with increments
of 32. We also included a selection of problems from the QF AUFBV division of
the SMT-LIB library. Since most of the benchmarks in the library come from
model-checking of software and use a flat memory model, they mostly operate
over a single array representing the heap. Our method is essentially equivalent to
the standard Nelson-Oppen approach for such benchmarks, so we selected only
the benchmarks that involved constraints over at least two arrays. We anticipate
that such problems will become increasingly important as static-analysis tools
become more precise and are able to infer separation of the heap (in the style



Table 1. Experimental results.

Boolector Yices MathSAT Z3 Cvc3 Cvc3+C
crafted (40) 2100.13 40 6253.32 34 468.73 30 112.88 40 388.29 9 14.22 40
matrix (11) 1208.16 10 683.84 6 474.89 4 927.12 11 831.29 11 45.08 11
unconstr (10) 3.00 10 0 706.02 3 54.60 2 185.00 5 340.27 8
copy (19) 11.76 19 1.39 19 1103.13 19 4.79 19 432.72 17 44.75 19
sort (6) 691.06 6 557.23 4 82.21 4 248.94 3 44.89 6 44.87 6
delete (29) 3407.68 18 1170.93 10 2626.20 14 1504.46 10 1766.91 17 1302.32 17
member (24) 2807.78 24 185.54 24 217.35 24 112.23 24 355.41 24 320.80 24

10229.57 127 8852.25 97 5678.53 98 2965.02 109 4004.51 89 2112.31 125

of Burstall, e.g. [17]). All the benchmarks and the Cvc3 binaries used in the
experiments are available from the authors’ website.5

The combined results of our experiments are presented in Table 1, with
columns reporting the total time (in seconds) that a solver used on the problem
instances it solved (not including time spent on problem instances it was un-
able to solve), and the number of solved instances. Compared to Cvc3, the new
implementation Cvc3+C performs uniformly better. On the first four classes of
problems, Cvc3+C greatly outperforms Cvc3. On the last three classes of prob-
lems, the difference is less significant. After examining the benchmarks, we con-
cluded that the multitude of arrays in these examples is artificial – the many
array variables are just used for temporary storage of sequential updates on the
same starting array – so there is not a great capacity for improvement using the
care function that we described. A scatter-plot comparison of Cvc3 vs Cvc3+C
is shown in Figure 1(a). Because the only difference between the two implemen-
tations is the inclusion of the method described in this paper, this graph best
illustrates the performance impact this optimization can have.

When compared to the other solvers, we find that whereas Cvc3 is not par-
ticularly competitive, Cvc3+C is very competitive and in fact, for several sets
of benchmarks, performs better than all of the others. This again emphasizes
the strength of our results and suggests that combination methods can be of
great importance for performance and scalability of modern solvers. Overall, on
this set of benchmarks, Boolector solves the most (solving 2 more than Cvc3+C).
However, Cvc3+C is significantly faster on the benchmarks it solves. Figure 1(b)
shows a scatter-plot comparison of Cvc3+C against Boolector.

7 Conclusion

We presented a reformulation of the classic Nelson-Oppen method for combin-
ing theories. The most notable novel feature of the new method is the ability
to leverage the structure of the individual problems in order to reduce the com-
plexity of finding a common arrangement over the interface variables. We do
this by defining theory-specific care functions that determine the variable pairs

5 http://cs.nyu.edu/∼dejan/sharing-is-caring/



(a) (b)

Fig. 1. Comparison of Cvc3, Cvc3+C and Boolector. Both axes use a logarithmic scale
and each point represents the time needed to solve an individual problem.

that are relevant in a specific problem. We proved the method correct, and pre-
sented care functions for the theories of uninterpreted functions and arrays. We
draw intuition for the care functions and correctness proofs directly from the
decision procedures for specific theories, leaving room for new care functions
backed by better decision algorithms. Another benefit of the presented method
is that it is orthogonal to the previous research on combinations of theories. For
example, it would be easy to combine our method with a model-based combi-
nation approach–instead of propagating all equalities between shared variables
implied by the model, one could restrict propagation to only the equalities that
correspond to edges in the care graph, gaining advantages from both methods.

We also presented an experimental evaluation of the method, comparing the
new method to a standard Nelson-Oppen implementation and several state-of-
the art solvers. Compared to the other solvers on a selected set of benchmarks,
the new method performs competitively, and shows a robust performance in-
crease over the standard Nelson-Oppen implementation.

References

1. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand
in SAT Modulo Theories. In Logic for Programming, Artificial Intelligence, and
Reasoning, volume 4246 of LNCS, pages 512–526. Springer, 2006.

2. C. Barrett and C. Tinelli. CVC3. In Computer Aided Verification, volume 4590 of
LNCS, pages 298–302. Springer-Verlag, 2007.

3. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P. van Rossumd,
and R. Sebastiani. Efficient theory combination via Boolean search. Information
and Computation, 204(10):1493–1525, 2006.



4. R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors
and arrays. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 5505 of LNCS, pages 174–177. Springer, 2009.

5. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The
MathSAT 4 SMT solver. In Computer Aided Verification, volume 5123 of LNCS,
pages 299–303. Springer, 2008.

6. R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, and R. Sebastiani. Delayed
theory combination vs. Nelson-Oppen for satisfiability modulo theories: A com-
parative analysis. Annals of Mathematics and Artificial Intelligence, 55(1):63–99,
2009.

7. L. de Moura and N. Bjørner. Model-based Theory Combination. In 5th Interna-
tional Workshop on Satisfiability Modulo Theories, volume 198 of Electronic Notes
in Theoretical Computer Science, pages 37–49. Elsevier, 2008.

8. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 4963 of LNCS, page 337.
Springer, 2008.

9. L. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In
Formal Methods in Computer-Aided Design, 2009, pages 45–52. IEEE, November
2009.

10. B. Dutertre and L. de Moura. The YICES SMT Solver. Tool paper at http://yices.
csl. sri. com/tool-paper. pdf, 2006.

11. H. B. Enderton. A mathematical introduction to logic. Academic press New York,
1972.
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17. Z. Rakamarić and A. J. Hu. A Scalable Memory Model for Low-Level Code.
In Verification, Model Checking, and Abstract Interpretation, LNCS, page 304.
Springer-Verlag, 2009.

18. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining Data Structures with Non-
stably Infinite Theories Using Many-Sorted Logic. In Frontiers of Combining Sys-
tems, volume 3717 of LNCS, pages 48–64. Springer, 2005.

19. R. E. Shostak. An algorithm for reasoning about equality. In 5th international joint
conference on Artificial intelligence, pages 526–527. Morgan Kaufmann Publishers
Inc., 1977.

20. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In Frontiers of Combining Systems, Applied Logic, pages
103–120. Kluwer Academic Publishers, Mar. 1996.

21. C. Tinelli and C. Zarba. Combining decision procedures for sorted theories. In
Logic in Artificial Intelligence, volume 3229 of LNAI, pages 641–653. Springer,
2004.


