
Form Methods Syst Des
DOI 10.1007/s10703-012-0159-z

Being careful about theory combination

Dejan Jovanović · Clark Barrett

© Springer Science+Business Media, LLC 2012

Abstract One of the main shortcomings of traditional methods for combining theories is
the complexity of guessing the arrangement of variables shared by the individual theories.
This paper presents a reformulation of the Nelson-Oppen method that takes into account
explicit equality propagation and can ignore pairs of shared variables that the theories do
not care about. We show the correctness of the new approach and present care functions
for the theory of uninterpreted functions and the theory of arrays. The effectiveness of the
new method is illustrated by experimental results demonstrating a dramatic performance
improvement on benchmarks combining arrays and bit-vectors.

Keywords Theory combination · Nelson-Oppen · Satisfiability modulo theories

1 Introduction

The seminal paper of Nelson and Oppen [15] introduced a general framework for com-
bining quantifier-free first-order theories in a modular fashion. Using the Nelson-Oppen
framework, decision procedures for two individual theories can be used as black boxes to
create a decision procedure for the combined theory. Although the Nelson-Oppen combina-
tion method as originally formulated requires stably-infinite theories, it can be extended to
handle non-stably-infinite theories using an approach based on polite theories [12, 13, 18].

The core idea driving the method (and ensuring its correctness) is the exchange of equal-
ities and disequalities over the interface variables between the theories involved in the com-
bination. Interface variables are the problem variables that are shared by both theories (or
an extended set of variables in the polite combination framework), and both theories must
agree on an arrangement over these variables. Most modern satisfiability modulo theories
(SMT) solvers perform the search for such an arrangement by first using aggressive theory
propagation to determine as much of the arrangement as possible and then relying on an

D. Jovanović · C. Barrett (�)
New York University, New York, USA
e-mail: barrett@cs.nyu.edu

mailto:barrett@cs.nyu.edu

Form Methods Syst Des

efficient SAT solver to guess the rest of the arrangement, backtracking and learning lemmas
as necessary [1, 3, 6].

In some cases, if the theories that are being combined have additional properties, such as
convexity and/or complete and efficient equality propagation, there are more efficient ways
of obtaining a suitable arrangement. But, in general, since the number of shared variables
can be substantial, guessing an arrangement over the shared variables can have an exponen-
tial impact1 on the running time [16]. Trying to minimize the burden of non-deterministic
guessing is thus of the utmost importance for a practical and efficient combination mech-
anism. For example, a recent model-based theory combination approach [7], in which the
solver keeps a model for each theory, takes the optimistic stance of eagerly propagating all
equalities that hold in the model (whether or not they are truly implied), obtaining impres-
sive performance improvements.

In this paper we tackle the problem of minimizing the amount of non-deterministic guess-
ing by equipping the theories with an equality propagator and a care function. The role of
the theory-specific equality propagator is, given a context, to propagate entailed equalities
and disequalities over the interface variables. The care function, on the other hand, pro-
vides information about which variable pairs among the interface variables are important
for maintaining the satisfiability of a given formula. With the information provided by these
two functions we can, in many cases, drastically reduce the search space for finding a suit-
able arrangement. We present a reformulation of the Nelson-Oppen method that uses these
two functions to decide a combination of two theories. The method can easily be adapted to
the combination method for polite theories, where reducing the number of shared variables
is even more important (as the polite theory combination method requires extending the set
of interface variables significantly).

This paper is based on [14] but has been significantly revised and expanded. In particu-
lar, it includes proofs of all theorems, provides additional explanations, simplifies definitions
and notation, and adds several illustrative examples. The paper is organized as follows. In
Sect. 2 we introduce background and notation. We then present the new combination method
and prove its correctness in Sect. 3. The care functions for the theories of uninterpreted func-
tions and arrays are presented in Sect. 4 and Sect. 5 respectively. We present experimental
results in Sect. 6, and conclude in Sect. 7.

2 Preliminaries

We start with a brief overview of the syntax and semantics of many-sorted first-order logic.
For a more detailed exposition, we refer the reader to [11, 21].

A signature Σ is a triple (S,F,P) where S is a set of sorts, F is a set of function symbols,
and P is a set of predicate symbols. For a signature Σ = (S,F,P), we write ΣS for the set
S of sorts, ΣF for the set F of function symbols, and ΣP for the set P of predicates. Each
predicate and function symbol is associated with an arity, a tuple constructed from the sorts
in S. Functions whose arity is a single sort are called constants. We assume that each set of
predicates P includes the equality predicates =σ , for each sort σ ∈ S, where we omit the
subscript σ when obvious from the context. We write Σ1 ∪Σ2 = (S1 ∪S2,F1 ∪F2,P1 ∪P2)

for the union of signatures Σ1 = (S1,F1,P1) and Σ2 = (S2,F2,P2) (with arities as in Σ1

and Σ2). In this paper, we always assume that, except for equality, function and predicate

1If the two theories can decided in time O(T1(n)) and O(T2(n)), the combination can be decided in O(2n2 ×
(T1(n) + T2(n))).

Form Methods Syst Des

symbols from different theories do not overlap, so that the arities in the union are well-
defined. On the other hand, two different theories are allowed to have non-disjoint sets of
sorts. Additionally, we write Σ1 ⊆ Σ2 if S1 ⊆ S2, F1 ⊆ F2, P1 ⊆ P2, and the symbols of
Σ1 have the same arity as those in Σ2. We assume the standard notions of a Σ -term, Σ -
literal, and Σ -formula. In the following, we assume that all formulas are quantifier-free,
if not explicitly stated otherwise. A literal is called flat if it is of the form x = y, x �= y,
x = f (y1, . . . , yn), p(y1, . . . , yn), or ¬p(y1, . . . , yn), where x, y, y1, . . . , yn are variables, f

is a function symbol, and p is a predicate symbol. If φ is a term or a formula, we will denote
by varsσ (φ) the set of variables of sort σ that occur (free) in φ. We overload this function in
the usual way, varsS(φ) denoting variables in φ of the sorts in S, and vars(φ) denoting all
variables in φ. We also sometimes refer to a set Φ of formulas as if it were a single formula,
in which case the intended meaning is the conjunction

∧
Φ of the formulas in the set.

Let Σ be a signature, and let X be a set of variables whose sorts are in ΣS. A Σ -
interpretation A over X is a map that interprets each sort σ ∈ ΣS as a non-empty domain
Aσ ,2 each variable x ∈ X of sort σ as an element xA ∈ Aσ , each function symbol f ∈ ΣF of
arity σ1 ×· · ·×σn × τ as a function f A : Aσ1 ×· · ·×Aσn → Aτ , and each predicate symbol
p ∈ ΣP of arity σ1 × · · · × σn as a subset pA of Aσ1 × · · · × Aσn . The equality predicate =σ

is always interpreted as equality in the domain Aσ .
A Σ -structure is a Σ -interpretation over an empty set of variables. As usual, the inter-

pretations of terms and formulas in an interpretation A are defined inductively over their
structure. For a term t , we denote with t A the evaluation of t under the interpretation A.
Likewise, for a formula φ, we denote with φA the truth-value (true or false) of φ under in-
terpretation A. A Σ -formula φ is satisfiable iff it evaluates to true in some Σ -interpretation
over (at least) vars(φ). Let A be an Ω-interpretation over some set V of variables. For a
signature Σ ⊆ Ω , and a set of variables U ⊆ V , we denote with AΣ,U the interpretation
obtained from A by restricting it to interpret only the symbols in Σ and the variables in U .

We will use the definition of theories as classes of structures, rather than sets of sentences.
We define a theory formally as follows (see e.g. [20] and Definition 2 in [18]).

Definition 1 (Theory) Given a set of Σ -sentences Ax a Σ -theory TAx is a pair (Σ,A) where
Σ is a signature and A is the class of Σ -structures that satisfy Ax.

Given a theory T = (Σ,A), a T -interpretation is a Σ -interpretation A such that AΣ,∅ ∈
A. A Σ -formula φ is T -satisfiable iff it is satisfiable in some T -interpretation A. This is
denoted as A �T φ, or just A � φ if the theory is clear from the context.

As theories in our formalism are represented by classes of structures, a combination of
two theories is represented by those structures that can interpret both theories (Definition 3
in [18]).

Definition 2 (Combination) Let T1 = (Σ1,A1) and T2 = (Σ2,A2) be two theories. The
combination of T1 and T2 is the theory T1 ⊕ T2 = (Σ,A) where Σ = Σ1 ∪ Σ2 and A = {Σ -
structures A|AΣ1,∅ ∈ A1 and AΣ2,∅ ∈ A2}.

The set of Σ -structures resulting from the combination of two theories is indeed a theory
in the sense of Definition 1. If Ax1 is the set of sentences defining theory T1, and Ax2 is

2In the rest of the paper we will use the calligraphic letters A, B, . . . to denote interpretations, and the
corresponding subscripted Roman letters Aσ , Bσ , . . . to denote the domains of the interpretations.

Form Methods Syst Des

the set of sentences defining theory T2, then A is the set of Σ -structures that satisfy the set
Ax = Ax1 ∪ Ax2 (see Proposition 4 in [18]).

Given decision procedures for the satisfiability of formulas in theories T1 and T2, we are
interested in constructing a decision procedure for satisfiability in T1 ⊕ T2 using these pro-
cedures as black boxes. The Nelson-Oppen combination method [15, 20, 21] gives a general
mechanism for doing this. Given a formula φ over the combined signature Σ1 ∪ Σ2, the
first step is to purify φ by constructing an equisatisfiable set of formulas φ1 ∪ φ2 such that
each φi consists of only Σi -formulas. This can easily be done by finding a pure (i.e. Σi -
for some i) subterm t , replacing it with a new variable v, adding the equation v = t , and
then repeating this process until all formulas are pure. The next step is to force the decision
procedures for the individual theories to agree on whether variables appearing in both φ1

and φ2 (called shared or interface variables) are equal. This is done by introducing an ar-
rangement over the shared variables [18, 20]. Here we will use a more general definition of
an arrangement that allows us to restrict the pairs of variables that we are interested in. We
do so by introducing the notion of a care graph.

Definition 3 (Care graph) Given a set V of variables, a graph G = 〈V,E〉 is a care graph
over V if E ⊆ V × V and edges exist only between variables of the same sort. A care graph
is trivial if it contains all possible edges.

Intuitively, if an edge (x, y) ∈ E is present in a care graph, it means that we are interested
in the relationship between the variables x and y.

Definition 4 (Arrangement) Given a set V of variables, an arrangement of V is simply the
set of equalities and dis-equalities that hold in some interpretation over V . Any (well-sorted)
partition of V corresponds to an arrangement in the obvious way (the arrangement includes
the set of equalities between variables in the same partitions and the set of well-sorted dis-
equalities between variables in different partitions).

Given a care graph G = 〈V,E〉, we call δG an arrangement over G if δG is the restriction
of some arrangement (as defined above) to the edges in G. More precisely, δG is an arrange-
ment over G if there exists an arrangement δ of V such that x = y ∈ δG iff x = y ∈ δ and
(x, y) ∈ E, and x �= y ∈ δG iff x �= y ∈ δ and (x, y) ∈ E. Note that unless G is trivial, an
arrangement over G is not an arrangement.

The Nelson-Oppen combination theorem states that under quite general conditions, φ

is satisfiable in T1 ⊕ T2 iff there exists an arrangement δV of the shared variables V =
vars(φ1)∩vars(φ2) such that φi ∪δV is satisfiable in Ti . Sufficient conditions for the theorem
to hold are:

– φ is quantifier-free,
– the signatures of T1 and T2 have no function or predicate symbols in common, and
– T1 and T2 are stably-infinite over (at least) the set of common sorts ΣS

1 ∩ ΣS

2 .

Stable-infiniteness was originally introduced in a single-sorted setting [16]. In the many-
sorted setting stable-infiniteness is defined with respect to a subset of the signature sorts
(Definition 6 from [21]).

Definition 5 (Stable-infiniteness) Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let
T be a Σ -theory. We say that T is stably-infinite with respect to S if for every T -satisfiable
quantifier-free Σ -formula φ, there exists a T -interpretation A satisfying φ, such that Aσ is
infinite for each sort σ ∈ S.

Form Methods Syst Des

Example 1 We will illustrate the Nelson-Oppen method by means of an example. Suppose
we would like to check the following formula φ for satisfiability:

∧

1≤i<j≤3

f (xi, x4) �= f (xj , x4)

︸ ︷︷ ︸
φeuf

∧
∧

1≤i≤4

(0 ≤ xi ∧ xi ≤ 1)

︸ ︷︷ ︸
φlia

.

Assume that the variables x1, . . . , x4 are of integer sort and f is an uninterpreted function
symbol. The formula φ belongs to the language that combines the theory of linear integer
arithmetic (Tlia) and the theory of uninterpreted functions (Teuf).

In order to apply the Nelson-Oppen method, we first partition the formula φ into φeuf
(belonging to Teuf) and φlia (belonging to Tlia). Note that both of these formulas are sat-
isfiable in their corresponding theories, but to check satisfiability in the combined theory, in
accordance with Nelson-Oppen, we must find an arrangement δ of the set of shared variables
V = {x1, x2, x3, x4} such that both φeuf ∪ δ is satisfiable in Teuf and φlia ∪ δ is satisfiable
in Tlia.

To check this, we must search through the 15 different ways (this is the Bell number B4)
of arranging the variables, and check each one.

δ1
V = {x1 = x2, x1 = x3, x1 = x4, x2 = x3, x2 = x4, x3 = x4},

δ2
V = {x1 �= x2, x1 �= x3, x1 �= x4, x2 = x3, x2 = x4, x3 = x4},
...

δ15
V = {x1 �= x2, x1 �= x3, x1 �= x4, x2 �= x3, x2 �= x4, x3 �= x4}.

It turns out that none of these arrangements work for both theories, and we may thus con-
clude that the original formula φ is unsatisfiable. To see that φ is unsatisfiable, it is enough
to notice that φeuf requires the three variables x1, x2, x3 (but not x4) to be different, but this
is impossible since φlia requires these variables to take on values from a set of only two
integers.

The important insight for the purpose of this paper is that the variable x4 is not part of
the reasoning that leads to inconsistency and thus, intuitively, it should be sufficient to check
only arrangements over V ′ = {x1, x2, x3}. The number of different arrangements over V ′ is
much smaller (the Bell number B3 = 5), and thus the complexity of the search would be
significantly reduced.

Note that even if the arrangements are explored incrementally, with each theory solver
propagating entailed equalities (as is typically done in efficient implementations), effort will
still be wasted if any case-split involving x4 is done. Without any additional information to
guide the search, there is no guarantee that this wasted effort can be avoided.

3 New combination method

In this section we present a new method for combining two signature-disjoint theories. The
method is based on Nelson-Oppen, but it makes equality propagation explicit and also in-
cludes a care function for each theory, enabling a more efficient mechanism for determining
equalities and dis-equalities among the shared variables. Another notable difference from
the original method is that we depart from viewing the combination problem as symmetric.

Form Methods Syst Des

Instead, as in the method for combining polite theories [12, 13, 18], one of the theories is
designated to take the lead in selecting which variable pairs are going to be part of the final
arrangement.

To simplify the presentation (as well as the formal proofs), we present the method in its
non-deterministic flavor, following the approach of [20]. We will first define the equality
propagator and the care function, and then proceed to presenting and proving correctness of
the combination method.

Definition 6 (Equality propagator) For a Σ -theory T we call a function PT [[·]] an equality
propagator for T if, for every set V of variables, it maps every set φ of flat Σ -literals into a
set of equalities and dis-equalities between variables:

PT [[V]](φ) = {x1 = y1, . . . , xm = ym} ∪ {z1 �= w1, . . . , zn �= wn},
where vars(PT [[V]](φ)) ⊆ V and

1. for each equality xi = yi ∈ PT [[V]](φ) it holds that φ �T xi = yi ;
2. for each dis-equality zi �= wi ∈ PT [[V]](φ) it holds that φ �T zi �= wi ;
3. PT [[V]] is monotone, i.e., φ ⊆ ψ =⇒ PT [[V]](φ) ⊆ PT [[V]](ψ); and
4. PT [[V]] contains at least those equalities and dis-equalities, over variables in V , that

appear in φ.

An equality propagator, given a set of theory literals, returns a set of entailed equalities
and dis-equalities between the variables in V . It does not need to be complete (i.e. it does
not need to return all entailed equalities and dis-equalities), but the more complete it is, the
more helpful it is in reducing the arrangement search space (note also that for a complete
propagator, properties 3 and 4 are consequences of properties 1 and 2).

When combining two theories, the combined theory can provide more equality propa-
gation than just the union of the individual propagators. The following construction defines
an equality propagator that reuses the individual propagators in order to obtain a propaga-
tor for the combined theory. This is achieved by allowing the propagators to incrementally
exchange literals until a fix-point is reached.

Definition 7 (Combined propagator) Let T1 and T2 be two theories over the signatures Σ1

and Σ2, equipped with equality propagators PT1 [[·]] and PT2 [[·]], respectively. Let T = T1 ⊕
T2 and Σ = Σ1 ∪ Σ2. Let V be a set of variables and φ a set of flat Σ -literals partitioned
into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals. We define the combined propagator
PT [[·]] for the theory T as

PT [[V]](φ) = (PT1 ⊕ PT2)[[V]](φ) = ψ∗
1 ∪ ψ∗

2 ,

where 〈ψ∗
1 ,ψ∗

2 〉 is the least fix-point of the following operator F

F 〈ψ1,ψ2〉 = 〈
PT1 [[V]](φ1 ∪ ψ2),PT2 [[V]](φ2 ∪ ψ1)

〉
.

The fix-point exists as the propagators are monotone and the set V is finite. Moreover,
the value of the fix-point is easily computable by iteration from 〈∅,∅〉. Also, it is clear
from the definition that the combined propagator is at least as strong as the individual prop-
agators, i.e., PT1 [[V]](φ1) ⊆ PT [[V]](φ1) ⊆ PT [[V]](φ), PT2 [[V]](φ2) ⊆ PT [[V]](φ2) ⊆
PT [[V]](φ).

Form Methods Syst Des

Definition 8 (Care function) For a Σ -theory T we call a function C[[·]] a care function for
T with respect to a T -equality propagator PT [[·]] when for every set V of variables and
every set φ of flat Σ -literals

1. C[[V]] maps φ to a care graph G = 〈V,E〉;
2. if x = y or x �= y are in PT [[V]](φ) then (x, y) �∈ E;
3. if G = 〈V,∅〉 and φ is T -satisfiable then, for any arrangement δV such that PT [[V]](φ) ⊆

δV , it holds that φ ∪ δV is also T -satisfiable.

The main feature of a care function is that when it returns an empty graph, this guarantees
that φ can be satisfied regardless of the relationships between the remaining variables. In
other cases, notice that the definition does not specify (beyond requirement 2) anything about
what the care graph should contain. This is because no additional conditions are required for
correctness. However, to be effective, a care function should return a care graph which (to
the extent that is efficiently possible) contains only edges corresponding to pairs of variables
which, if set equal or dis-equal, could affect the satisfiability of the formula φ.

Example 2 For any Σ -theory T and a set of variables V , the trivial care function C0[[·]] is
the one that maps a set of variables to a maximal care graph, i.e.,

C0[[V]](φ) = 〈V,E0〉, where (x, y) ∈ E0 iff

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ V,y ∈ V,

x and y have the same sort,
x = y �∈ PT [[V]](φ), and
x �= y �∈ PT [[V]](φ).

Notice that C0[[·]] trivially satisfies the conditions of Definition 8 with respect to any equal-
ity propagator. To see this, the only case to consider is when the care graph returned has
no edges and φ is satisfiable. But in this case, if PT [[V]](φ) ⊆ δV , then we must have
PT [[V]](φ) = δV , and so clearly φ ∪ δV is satisfiable.

3.1 Combination method

Let Ti be a Σi -theory, for i = 1,2 and let S = ΣS

1 ∩ ΣS

2 . Further, assume that each Ti

is stably-infinite with respect to Si , decidable, and equipped with an equality propagator
PTi

[[·]]. Additionally, let T2 be equipped with a care function CT2 [[·]] operating with re-
spect to PT2 [[·]]. We are interested in deciding the combination theory T = T1 ⊕ T2 over
the signature Σ = Σ1 ∪ Σ2. We denote the combined theory propagator with PT [[·]]. The
combination method takes as input a set φ of Σ -literals and consists of the following steps:

Purify: The output of the purification phase is two new sets of literals, φ1 and φ2 such that
φ1 ∪φ2 is equisatisfiable (in T) with φ and each literal in φi is a flat Σi -literal, for i = 1,2.
This step is identical to the first step in the standard Nelson-Oppen combination method.

Arrange: Let V = vars(φ1) ∩ vars(φ2) be the set of all variables shared by φ1 and φ2, and
let δV be an arrangement (chosen non-deterministically) of V . Let the care graph G2 be a
fix-point of the following operator:

G〈G〉 = G ∪ CT2 [[V]](φ2 ∪ PT [[V]](φ1 ∪ φ2 ∪ δG)
)
, (1)

where δG is the arrangement over G obtained by restricting δV to the edges in G.

Form Methods Syst Des

Check: Check the following formulas for satisfiability in T1 and T2 respectively

φ1 ∪ PT [[V]](φ1 ∪ φ2 ∪ δG2), φ2 ∪ PT [[V]](φ1 ∪ φ2 ∪ δG2).

If both are satisfiable, output satisfiable, otherwise output unsatisfiable.

Notice that above, since the graph is finite, and the operator G is increasing, a fix-point
always exists. Moreover, it is in our interest to choose a minimal such fix-point, which
we can obtain by doing a fix-point iteration starting from G0 = 〈V,∅〉 (G preserves the
property of being a care graph). Another important observation is that for any fix-point G2

(with respect to the chosen value of δV) of the operator G above, we must have that the care
function application in (1) returns an empty graph. This follows from the fact that G2 is a fix-
point and the observation that the propagator must return all the equalities and dis-equalities
from δG, by definition, and the care function then must ignore them, also by definition.

Example 3 Consider the case of combining two theories T1 and T2 equipped with trivial
care functions and propagators PTi

[[V]] that simply return those input literals that are either
equalities or dis-equalities over variables in V . Assume that φ1 and φ2 are the outputs of
the purification phase, and let V be the set of variables shared by φ1 and φ2. Let δV be
the arrangement of V chosen in the Arrange phase, and let G2 be the fix-point graph. Since
CT2 [[·]] is a trivial care function, the arrangement δG2 over G2 must be equivalent to δV . Then,
since the equality propagators simply keep the input equalities and dis-equalities over V , and
all relationships between variables in V are determined by δG2 , the combined propagator
will simply return δV and we will thus check φ1 ∪ δV and φ2 ∪ δV for satisfiability in the
Check phase. This shows that our method can effectively simulate the standard Nelson-
Oppen combination method. We now show the correctness of the method.

Theorem 1 Let Ti be a Σi -theory, stably-infinite with respect to the set of sorts Si , and
equipped with equality propagator PTi

[[·]], for i = 1,2. Additionally, let T2 be equipped with
a care function CT2 [[·]] operating with respect to PT2 [[·]]. Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2

and let φ be a set of flat Σ -literals, which can be partitioned into a set φ1 of Σ1-literals
and a set φ2 of Σ2-literals, with V = vars(φ1) ∩ vars(φ2). If ΣS

1 ∩ ΣS

2 = S1 ∩ S2, then the
following are equivalent:

1. φ is T -satisfiable;
2. there exists a care graph G2 and an arrangement δG2 over G2 such that G2 is a fix-point

solution of (1), and such that the following sets are T1- and T2-satisfiable respectively:

φ1 ∪ PT [[V]](φ1 ∪ φ2 ∪ δG2), φ2 ∪ PT [[V]](φ1 ∪ φ2 ∪ δG2).

Moreover, T is stably-infinite with respect to S1 ∪ S2.

Proof (1) ⇒ (2): Suppose φ = φ1 ∪ φ2 is T -satisfiable in a T -interpretation A. Let δV be
the arrangement of V satisfied by A, and let G2 be the trivial care graph over V . It is easy to
see that G2 is a fix-point solution of (1) (with respect to arrangement δV), and that δG2 = δV .
Then, because A satisfies φ1, φ2, and δV , and the propagator only adds formulas that are
entailed, it is clear that A satisfies both sets of formulas, which proves one direction.

(2) ⇐ (1): Assume that there is a T1-interpretation A1 and a T2-interpretation A2 (and
assume wlog that both interpret all the variables in V) such that A1 �T1 φ1 ∪ PT [[V]](φ1 ∪

Form Methods Syst Des

φ2 ∪ δG2) and A2 �T2 φ2 ∪ PT [[V]](φ1 ∪ φ2 ∪ δG2). Let δV be the arrangement of V satisfied
by A1, so

δG2 ⊆ PT2 [[V]](φ2 ∪ δG2) ⊆ PT [[V]](φ1 ∪ φ2 ∪ δG2) ⊆ δV .

Because G2 is a fix-point, we know that CT2 [[V]](φ2 ∪ PT [[V]](φ1 ∪ φ2 ∪ δG2)) = 〈V,∅〉.
We then know, by property 3 of the care function, that there is a T2-interpretation B2 such
that B2 �T2 φ2 ∪ δV . Since δV is an arrangement of the shared variables and we also have
that A1 �T1 φ1 ∪ δV , we can now appeal to the correctness of the standard Nelson-Oppen
combination method to obtain a T -interpretation C that satisfies φ1 ∪φ2 = φ. The proof that
the combined theory is stably-infinite can be found in [12]. �

3.2 Extension to polite combination

The method described in Sect. 3 relies on the correctness argument for the standard Nelson-
Oppen method, meaning that the theories involved should be stably-infinite. A more general
combination method based on the notion of polite theories (and not requiring that both
theories be stably-infinite) was introduced in [18] and clarified in [12, 13]. A theory can
be combined with any other theory if it is polite with respect to the set of shared sorts.
The notion of politeness depends on two other important properties: smoothness and finite
witnessability.

Definition 9 (Smoothness) Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be
a Σ -theory. We say that T is smooth with respect to S if:

– for every T -satisfiable quantifier-free Σ -formula φ,
– for every T -interpretation A satisfying φ,
– for all choices of cardinal numbers κσ , such that κσ ≥ |Aσ | for all σ ∈ S,

there exists a T -interpretation B satisfying φ such that |Bσ | = κσ , for all σ ∈ S.

Being able to combine two interpretations from different theories mainly depends on
the ability to bring the domains of the shared sorts to the same size. This is where stable-
infiniteness helps in the Nelson-Oppen framework: it ensures that the domains of the shared
sorts can have the same infinite cardinalities. Smoothness gives us more flexibility in resizing
structures upwards. On the other hand, finite-witnessability allows more flexibility in finding
“minimal” structures.

Definition 10 (Finite witnessability) Let Σ be a signature, let S ⊆ ΣS be a set of sorts,
and let T be a Σ -theory. We say that T is finitely witnessable with respect to S if there
exists a computable function, witness, which, for every quantifier-free Σ -formula φ, returns
a quantifier-free Σ -formula ψ = witness(φ) such that

– φ and (∃−→w)ψ are T -equivalent, where −→w = vars(ψ) \ vars(φ) are fresh variables;
– if ψ ∧δV is T -satisfiable, for an arrangement δV , where V is a set of variables of sorts in S,

then there exists a T -interpretation A satisfying ψ ∧δV such that Aσ = [varsσ (ψ ∧δV)]A ,
for all σ ∈ S,

where the notation [U]A indicates the set {vA|v ∈ U}.

Form Methods Syst Des

Definition 11 (Politeness) Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T

be a Σ -theory. We say that T is polite with respect to S if it is both smooth and finitely
witnessable with respect to S.

The other prerequisites for the polite combination method are the same as for the standard
combination method, i.e. we keep all the assumptions on the theories T1 and T2 with the
exception of the stable-infiniteness. Instead, we assume that the theory T2 is polite with
respect to a set of sorts S2 with ΣS

1 ∩ ΣS

2 ⊆ S2, and is equipped with a witness function
witness2. We can now modify the combination method of Sect. 3.1 as follows:

1. In the Arrange and Check phases, instead of using φ2, we use the formula produced by
the witness function, i.e. φ′

2 = witness2(φ2).
2. We define V = varsS(φ

′
2) instead of V = vars(φ1) ∩ vars(φ2).

Theorem 2 Let Ti be a Σi -theory polite with respect to the set of sorts Si , and equipped
with equality propagator PTi

[[·]], for i = 1,2. Additionally, let T2 be equipped with a care
function CT2 [[·]] operating with respect to PT2 [[·]]. Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2 and let φ

be a set of flat Σ -literals, which can be partitioned into a set φ1 of Σ1-literals and a set φ2

of Σ2-literals. Let φ′
2 = witnessT2(φ2) and V = varsS(φ

′
2). If ΣS

1 ∩ ΣS

2 ⊆ S2, then following
are equivalent

1. φ is T -satisfiable;
2. there exists a care-graph G2 and arrangement δG2 , fix-point solutions of (1), such that

the following sets are T1- and T2-satisfiable respectively

φ1 ∪ PT [[V]](φ1 ∪ φ′
2 ∪ δG2

)
, φ′

2 ∪ PT [[V]](φ1 ∪ φ′
2 ∪ δG2

)
.

Moreover, T is polite with respect to S1 ∪ (S2 \ ΣS

1).

Proof The proof is identical to the one given in Theorem 1 for the case of stably-infinite
theories, except that in the last step, instead of relying on the correctness of the standard
Nelson-Oppen method, we rely on the correctness of the method for combination of polite
theories as described in [12, 13, 18]. �

4 Theory of uninterpreted functions

The theory of uninterpreted functions, over a signature Σeuf, is the theory Teuf = (Σeuf,A),
where A is simply the class of all Σeuf-structures. Conjunctions of literals in this theory can
be decided for satisfiability in polynomial time by congruence closure algorithms (e.g. [19]).
We make use of insights from these algorithms in defining both the equality propagator and
the care function. For simplicity, we assume Σeuf contains no predicate symbols, but the
extension to the case with predicate symbols is straightforward.

4.1 Equality propagator

Let φ be a set of flat literals and V a set of variables. We write E (φ) to denote the smallest
equivalence relation over the terms occurring in φ containing {(x, t) | x = t ∈ φ}. We also

Form Methods Syst Des

write Ec(φ) for the smallest congruence relation3 over terms in φ containing the same base
set {(x, t) | x = t ∈ φ}. We define a dis-equality (modulo congruence) relation Nc(φ) as the
smallest relation satisfying

(
x, x ′) ∈ Ec(φ) and

(
y, y ′) ∈ Ec(φ) and x ′ �= y ′ ∈ φ =⇒ (x, y) ∈ Nc(φ).

Now, we define the equality propagator as

Peuf[[V]](φ) = {
x = y|x, y ∈ V, (x, y) ∈ Ec(φ)

}

∪ {
x �= y|x, y ∈ V, (x, y) ∈ Nc(φ)

}
.

It is easy to see that Peuf[[·]] is indeed an equality propagator. Moreover, it can easily be
implemented as part of a decision procedure based on congruence closure.

Example 4 Given the set of flat literals φ = {x = z, y = f (a), z �= f (a)}, the equality prop-
agator would return

Peuf[[x, y]](φ) = {x = x, y = y, x �= y, y �= x}.
In practice, of course, an implementation of such a propagator does not need to bother with
the propagation of trivial equalities, such as x = x, or symmetric versions of the same (dis-)-
equality.

4.2 Care function

We will define the care function based on the observation that, during construction of the
congruence closure, we only care about equalities between pairs of variables that occur
as arguments of the same function symbol, in the same position. Again, let V be a set of
variables and let φ be a set of flat literals. Assume also that φ only contains function symbols
from F = {f1, f2, . . . , fn} ⊆ ΣF

euf.
For each function symbol f ∈ F of arity σ1 × σ2 × · · · × σk �→ σ , let Ef be a set con-

taining pairs of variables from V that could trigger an application of congruence. More
precisely, (x, y) ∈ Ef iff:

1. x ∈ V and y ∈ V ,
2. (x, y) �∈ Ec(φ) and (x, y) �∈ Nc(φ),
3. there exist terms t1 = f (x1, . . . , xi, . . . , xk) and t2 = f (y1, . . . , yi, . . . , yk) in φ such that:

(a) for some 1 ≤ i ≤ k, (x, xi) ∈ Ec(φ) and (y, yi) ∈ Ec(φ);
(b) (t1, t2) �∈ Ec(φ);
(c) for 1 ≤ j ≤ k, (xj , yj) �∈ Nc(φ).

Now, we let E = ⋃
f ∈F Ef , and define the care function as Ceuf[[V]](φ) = 〈V,E〉.

Example 5 Consider the following sets of literals

φ1 = {
f (x1) �= f (y1), y1 = x2

}
,

3In this context, a congruence relation is an equivalence relation that also satisfies the congruence prop-
erty: if f (x1, . . . , xn) and f (y1, . . . , yn) are terms in φ, and if for each 1 ≤ i ≤ n, (xi , yi) ∈ Ec(φ), then
(f (x1, . . . , xn), f (y1, . . . , yn)) ∈ Ec(φ).

Form Methods Syst Des

φ2 = {
z1 = f (x1), z2 = f (y1), g(z1, x2) �= g(z2, y2)

}
,

φ3 = {
y1 = f (x1), y2 = f (x2), z1 = g(x1), z2 = g(x2), h(y1) �= h(z1)

}

and corresponding sets of shared variables

V1 = {x1, x2}, V2 = {x1, x2, y1, y2}, V3 = {x1, x2, y2, z2}.

Each of the individual formulas φ1, φ2, and φ3 are satisfiable in Teuf. Let us examine
each of them in turn, where for the sake of brevity, during the computation, we only report
the non-reflexive, non-symmetric versions of the propagated equalities and relations, and
skip the clearly irrelevant ones.

The congruence relations corresponding to the formula φ1 are the following

Ec(φ1) = {
(x2, y1)

}
, Nc(φ1) = {(

f (x1), f (y1)
)}

.

Note that, since y1 is not a shared variable (y1 �∈ V1), the Teuf propagator will return
Peuf[[V1]](φ1) = ∅. Nevertheless, the variable y1 does occur as an argument of f and since
x2 is a shared variable with (y1, x2) ∈ Ec(φ1), we do consider x2 important as it is an alias
for y1. We now have two terms f (x1) and f (y1) that are not congruent in Ec(φ1) and, to
make sure that we can ensure satisfiability, we need to know the relation between x1 and x2.
By definition, the care function therefore returns the care graph G1 = 〈V1, {(x1, x2)}〉.

Moving on to φ2, let’s assume that, in addition to φ2, we are also considering the integer
arithmetic formula φlia

2 = {x1 ≤ y1, x1 ≥ y1, x2 ≤ y2}, thus checking φ2 ∧ φlia
2 for satisfi-

ability in the combined theory T = Teuf ⊕ Tlia. The congruence relations for φ2 alone are
the following

Ec(φ2) = {(
z1, f (x1)

)
,
(
z2, f (y1)

)}
, Nc(φ2) = {(

g(z1, x2), g(z2, y2)
)}

.

Again, from φ2 alone we can not conclude any relationship between the shared variables so,
at this point, the propagator will return Peuf[[V2]](φ2) = ∅. But, since we are combining two
theories, we will compute the combined propagator by exchanging the propagated equalities
and dis-equalities. The propagator for the theory of integer arithmetic might be sophisticated
enough to propagate Plia[[V2]](φlia

2) = {x1 = y1}. If so, this new equality is appended to
φ2, obtaining φ1

2 = φ2 ∪ {x1 = y1} and processed further. With the new information, we can
obtain the stronger equivalence relations

Ec

(
φ1

2

) = {(
z1, f (x1)

)
,
(
z2, f (y1)

)
, (x1, y1),

(
f (x1), f (y1)

)
, (z1, z2)

}
,

Nc

(
φ1

2

) = {(
g(z1, x2), g(z2, y2)

)}
.

The stronger equivalence relations then influence the Teuf propagator to return
Peuf[[V2]](φ1

2) = {x1 = y1} and, in fact, this is the final result of the combined theory prop-
agator PT [[V2]](φ2) = {x1 = y1}.

We can now proceed with computation of the care graph. In the set of shared variables,
the pairs (x1, y1) and (x2, y2) appear as arguments of function terms at the same position.
But, we already know the relationship between x1 and y1, so the only pair that we are
interested is the pair (x2, y2), i.e. the care graph we compute is G2 = 〈V2, {(x2, y2)}〉. If we
now choose the arrangement δG2 = {x2 �= y2}, the pair 〈G2, δG2〉 will in fact be a fix-point
solution to (1), and we check the following formulas for satisfiability

Form Methods Syst Des

Teuf : φ2 ∧ x1 = y1 ∧ x2 �= y2,

Tlia : φlia
2 ∧ x1 = y1 ∧ x2 �= y2.

Both of these formulas are satisfiable, and we can conclude that the original formula φ2 ∧
φlia

2 is satisfiable in the combined theory.
Finally, let’s consider the formula φ3 and its Tlia counterpart φlia

3 = {x1 +x2 +y2 +z2 ≤
1}. The equivalence relations corresponding to φ3 are

Ec(φ3) = {(
y1, f (x1)

)
,
(
y2, f (x2)

)
,
(
z1, g(x1)

)
,
(
z2, g(x2)

)}
,

Nc(φ3) = {(
h(y1), h(z1)

)}
.

In this case, none of the individual theory propagators provide us with any additional in-
formation about the shared variables, so the combined propagator returns PT [[V3]](φ3 ∧
φlia

3) = ∅. We proceed to compute the care graph by noting that the only pair of shared
variables under the same function symbol are x1 and x2, and so the care graph we com-
pute is G1

3 = 〈V3, {(x1, x2)}〉. We can now choose the arrangement δG1
3

= {x1 = x2}. As
this pair is still not a fix-point of (1), we continue with the computation, by considering
φ1

3 = φ3 ∪ {x1 = x2}.
With the new information, the stronger equivalence relations are

Ec

(
φ1

3

) = Ec(φ3) ∪ {
(y1, y2), (z1, z2),

(
f (x1), f (x2)

)
,
(
g(x1), g(x2)

)}
,

Nc

(
φ1

3

) = {(
h(y1), h(z1)

)}
.

We are now in a similar situation as when considering φ1. The variables y1 and z1 are
not shared, but under the equivalence relation Ec(φ

1
3) are in fact aliases for the shared

variables y2 and z2, respectively. Since x2 and z2 appear as arguments of h in the for-
mula, we now care about the pair (y2, z2), so we add it to the care graph to obtain
G2

3 = 〈V3, {(x1, x2), (y2, z2)}〉. We can now choose that y2 and z2 are different obtaining
the arrangement δG2

3
= 〈V3, {x1 = x2, y2 �= z2}〉. This pair is a fix-point of (1), so we check

the following formulas for satisfiability in the individual theories

Teuf : φ3 ∧ x1 = x2 ∧ y2 �= z2,

Tlia : φlia
3 ∧ x1 = x2 ∧ y2 �= z2.

With both of the formulas satisfiable, we conclude that φ3 ∧ φlia
3 is satisfiable in the com-

bined theory T .

We prove correctness of the care function for Ceuf[[·]] by relying on the following well-
known proposition.

Proposition 1 A set φ of flat literals is Teuf-satisfiable if and only if, for each dis-equality
x �= y ∈ φ, we have that (x, y) �∈ Ec(φ).

Theorem 3 Let Teuf be the theory of uninterpreted functions with equality over the sig-
nature Σeuf. Ceuf[[·]] is a care function for Teuf with respect to the equality propagator
Peuf[[·]].

Form Methods Syst Des

Proof Let φ be a satisfiable set of flat literals, V a set of variables, and G = Ceuf[[V]](φ) =
〈V,∅〉. Suppose we are given an arrangement δV , corresponding to equivalence relation
EV , with Peuf[[V]](φ) ⊆ δV . We must show that φ ∧ δV is Teuf-satisfiable. We know, by
Proposition 1 above, that if x �= y ∈ φ, then (x, y) �∈ Ec(φ). In order to prove the theorem it
suffices to show that:

if x �= y ∈ φ ∪ δV then (x, y) �∈ Ec(φ ∪ δV).

First, it is clear that, since δV is compatible with the propagated equalities from φ, we
must have that:

if v,w ∈ V and (v,w) ∈ Ec(φ) then (v,w) ∈ EV . (2)

We now show that:

if v,w ∈ V and (v,w) ∈ E
(

Ec(φ) ∪ EV

)
then (v,w) ∈ EV . (3)

Suppose v,w ∈ V and (v,w) ∈ E (Ec(φ) ∪ EV) but (v,w) �∈ EV . We know (v,w) �∈ Ec(φ)

by (2). The only other possibility is that there is some transitive chain from v to w using
pairs from both Ec(φ) and EV . Let (t0, t1), (t1, t2), . . . , (tn−1, tn) be the smallest such chain
(with v = t0 and w = tn). Let (ti , ti+1) be the first pair such that ti ∈ V but ti+1 �∈ V . Such
a pair must exist since, by (2), every pair in Ec(φ) ∩ (V × V) is also in EV , so that if
tk ∈ V for all k, we would have (t0, tn) ∈ EV . Then, let (tj , tj+1) be first pair such that j > i

and tj �∈ V and tj+1 ∈ V (there must be such a pair since tn ∈ V). Notice that every pair
from (ti , ti+1) to (tj , tj+1) must be in Ec(φ) since each contains a term not in V . But then
(ti , tj+1) ∈ Ec(φ) which contradicts the assumption that (t0, t1), (t1, t2), . . . , (tn−1, tn) is the
smallest chain from t0 to tn. This establishes (3).

The following property follows:

if (s, t) ∈ E
(

Ec(φ) ∪ EV

)
then (s, t) �∈ Nc(φ). (4)

Suppose (s, t) ∈ E (Ec(φ) ∪ EV) and (s, t) ∈ Nc(φ). Because φ is satisfiable, we know that
(s, t) �∈ Ec(φ). So, as above, there must be some transitive chain from s to t using pairs from
both Ec(φ) and EV . Let v be the first term in this chain such that v ∈ V and w the last term
in the chain such that w ∈ V . By definition, we must have (v,w) ∈ Nc(φ). It follows that
v �= w ∈ δV and thus (v,w) �∈ EV . But by (3), it follows that (v,w) ∈ EV . This establishes
(4).

We can then conclude:

Ec(φ ∪ δV) = E
(

Ec(φ) ∪ EV

)
. (5)

To see this, note first that by basic properties of equivalence and congruence closures we
have that

Ec(φ ∪ δV) = Ec

(
Ec(φ) ∪ E (δV)

) = Ec

(
Ec(φ) ∪ EV

)
.

To see that Ec(Ec(φ) ∪ EV) = E (Ec(φ) ∪ EV), suppose that this is not the case. Then there
must exist a pair of function applications t1 = f (x1, x2, . . . , xn) and t2 = f (y1, y2, . . . , yn),
appearing in φ, such that (t1, t2) �∈ Ec(φ) but for each 1 ≤ j ≤ n, (xj , yj) ∈ E (Ec(φ) ∪ EV)

(from which it follows by (4) that (xj , yj) �∈ Nc(φ)). Since Ec(φ) is closed under congruence,
there must be some i such that (xi, yi) �∈ Ec(φ) and (xi, yi) ∈ E (Ec(φ) ∪ EV).

Form Methods Syst Des

But then we must have a chain of equalities connecting xi to yi , such that at least one
equality comes from EV . This chain then has to contain at least two variables from V . Let x

be the first variable from V , and y the last variable from V , in this equality chain. Since the
chains from xi to x, and yi to y do not contain any variables from V , all these equalities must
come from Ec(φ), so it must be that (xi, x) ∈ Ec(φ) and (yi, y) ∈ Ec(φ). We can conclude
that (x, y) �∈ Ec(φ) since otherwise we could deduce that (xi, yi) ∈ Ec(φ). Additionally, it
must be that (x, y) �∈ Nc(φ), as otherwise we would have x �= y ∈ δV and thus (x, y) �∈ EV ,
but we know from (3) that (x, y) ∈ EV .

But now we can see that x and y satisfy all the requirements necessary to ensure that
the edge (x, y) must be in the care graph G, contradicting the fact that it should be empty,
which establishes (5).

Finally, we return to the main proof and show that if x �= y ∈ φ ∪ δV , then (x, y) �∈
Ec(φ ∪ δV). We consider two cases.

– First, suppose x �= y ∈ δV (and thus x, y ∈ V). Clearly, we cannot also have x = y ∈ δV ,
so (x, y) �∈ EV . It follows by (3) that (x, y) �∈ E (Ec(φ) ∪ EV), and thus, by (5), (x, y) �∈
Ec(φ ∪ δV).

– On the other hand, suppose that x �= y ∈ φ. This means that (x, y) ∈ Nc(φ). By (4), it
follows that (x, y) �∈ E (Ec(φ) ∪ EV), and thus, by (5), (x, y) �∈ Ec(φ ∪ δV).

�

5 Theory of arrays

The extensional theory of arrays Tarr operates over the signature Σarr that contains the
sorts {array, index,elem} and function symbols

read : array × index �→ elem, write : array × index × elem �→ array,

where read represents reading from an array at a given index, and write represents writing
a given value to an array at an index. The semantics of the theory are given by the three
axioms:

∀a:array.∀i:index.∀v:elem.read
(
write(a, i, v), i

) = v, (A1)

∀a:array.∀i, j :index.∀v:elem.i �= j → read
(
write(a, i, v), j

) = read(a, j), (A2)

∀a, b:array.
(∀i:index.read(a, i) = read(b, i)

) → a = b. (A3)

The flat literals of the theory are of the form x = read(a, i), a = write(b, i, x), i = j , i �= j ,
x = y, x �= y, a = b, a �= b, where here and below we use the convention that x, y, v are
variables of sort elem; i, j are variables of sort index; a, b, c are variables of sort array; and
w,z are variables of any sort. For a set φ of flat Tarr-literals, we also define α(φ) to be the
subset of φ that does not contain literals of the form a = write(b, i, v).

5.1 Decision procedure

Before presenting the equality propagator and care function, it will be helpful to present a
simple rule-based decision procedure for Tarr. The procedure we present is based on [9],
with the main difference that in our procedure, we exclude literals containing write terms

Form Methods Syst Des

from the Teuf-satisfiability check as they are not needed and this allows us to have a simpler
care function.

Given a set Γ of flat Tarr-literals, we define Ea(Γ) as Ec(α(Γ)) and, as usual, the corre-
sponding dis-equality relation Na(Γ) as the smallest relation satisfying:

if
(
w,w′) ∈ Ea(Γ) and

(
z, z′) ∈ Ea(Γ) and w′ �= z′ ∈ Γ then (w, z) ∈ Na(Γ).

As a matter of notational convenience in this section we write x ≈Γ
a for (x, y) ∈ Ea(Γ) and

x �=Γ
a y for (x, y) ∈ Na(Γ). The following lemma is a straightforward consequence of the

fact that adding additional information can only increase the set of consequences of a set of
formulas.

Lemma 1 Suppose φ and Γ are sets of flat Tarr-literals with φ ⊆ Γ . Then:

– s ≈φ
a t =⇒ s ≈Γ

a t , and
– s �=φ

a t =⇒ s �=Γ
a t .

We now present the inference rules of the decision procedure for Tarr. For a set of literals
Γ , we write Γ [l1, . . . , ln] to denote that literals l1, . . . , ln appear in Γ . For every pair (a, b)

of variables from varsarray(Γ), we let ka,b be a distinguished fresh variable of sort index. Let
Darr be the following set of inference rules.

RIntro1
Γ [a = write(b, i, v)]

Γ,v = read(a, i)
if v �≈Γ

a read(a, i)

RIntro2
Γ [a = write(b, i, v), x = read(c, j)]
Γ, i = j Γ, read(a, j) = read(b, j)

if

⎧
⎨

⎩

a ≈Γ
a c or b ≈Γ

a c,

i �≈Γ
a j, and

read(a, j) �≈Γ
a read(b, j)

ArrDiseq
Γ [a �= b]

Γ, read(a, ka,b) �= read(b, ka,b)
if not read(a, ka,b) �=Γ

a read(b, ka,b)

Note that although non-flat literals appear in the conclusions of rules RIntro2 and ArrDiseq,
we only use this as a shorthand for the flattened version of these literals. For example,
read(a, j) = read(b, j) is shorthand for x = read(a, j) ∧ y = read(b, j) ∧ x = y, where x

and y are fresh variables (there are other possible flattenings, especially if one or more of
the terms appears already in Γ , but any of them will do). We say that a set Γ of literals is
Darr-saturated if no rules from Darr can be applied.

Theorem 4 The inference rules of Darr are sound and terminating.

Proof By sound, we mean that for each rule, the set of literals in the premise is Tarr-
satisfiable iff one of the conclusion sets is Tarr-satisfiable. It is not hard to see that the
soundness of the RIntro1 rule follows from axiom (A1) of Tarr, the soundness of RIntro2
follows from axiom (A2), and the soundness of ArrDiseq from axiom (A3).

To see that the rules are terminating, first notice that applying a rule results in a new set Γ

which no longer satisfies the side conditions of the rule just applied, so every application of
a rule along a derivation branch must involve different “trigger” formulas (the ones in square
brackets). Now, no rule introduces array dis-equalities, so it is clear that ArrDiseq can only
be applied a finite number of times. Similarly, no rule introduces a new literal containing
write, so RIntro1 can only be applied a finite number of times. Now, suppose we have a

Form Methods Syst Des

set Γ in which both the RIntro1 rule and the ArrDiseq rule no longer apply, and consider
rule RIntro2 which may introduce new read terms. The rule cannot, however, introduce new
array or index variables, so there are only a finite number of read terms that can be generated.
Each application of RIntro2 merges the equivalence classes of either two index terms or two
read terms. Since there are a finite number of both, eventually, no more merges will be
possible. �

Theorem 5 Let Γ be a Darr-saturated set of flat Tarr-literals. Then Γ is Tarr-satisfiable
if and only if α(Γ) is Teuf-satisfiable.

Proof Since Teuf also includes all the structures of Tarr, and α(Γ) ⊆ Γ , the only-if direc-
tion is trivial. For the other direction, suppose Γ is a Darr-saturated set of flat Tarr-literals.
Let A be a maximally diverse Teuf model of α(Γ) (for instance, the ≈Γ

a -quotient of the
term model) and note that it has the property that for any two terms s and t of the same
sort, s ≈Γ

a t iff sA = t A . We will show that Γ is Tarr-satisfiable by constructing a Tarr
interpretation B that satisfies Γ . We define the domains of B as

Bindex = Aindex,

Belem = Aelem,

Barray = { f |f : Bindex �→ Belem}.
We further define the interpretations of function symbols as

readB = λa : Barray.λi : Bindex.a(i),

writeB = λa : Barray.λi : Bindex.λx : Belem.
(
λj : Bindex.if i = j then x else a(j)

)
,

iB = iA,

xB = xA.

We interpret each array a ∈ varsarray(Γ) as the corresponding function from A in a restricted
manner. Let e0 be some distinguished element of Belem. Then

aB = λe : Bindex.

{
xA if x = read(b, i) ∈ Γ and a ≈Γ

a b and iA = e

e0 otherwise.

To see that this interpretation is well-defined, suppose that for some variable a, we have both
x = read(b, i) ∈ Γ and y = read(c, j) ∈ Γ , with a ≈Γ

a b ≈Γ
a c and iA = j A = e. Clearly,

bA = cA , but then it must be the case that read(b, i)A = read(c, j)A and so xA = yA .
It is easy to see that the definitions of read and write satisfy the axioms of Tarr. Now,

we proceed to show that B |= Γ . First, note that by definition, equalities and dis-equalities
between variables of sort index or elem are trivially satisfied. Next, consider an equality of
the form x = read(a, i). Since this equality is in Γ , we know by the definition of aB that
aB(iB) = xB , so by the definition of read, such equalities must be satisfied. This shows that
for terms t of sort index or elem, t B = t A and thus if s is a term of the same sort as t , s ≈Γ

a t

iff sB = t B . Similarly, it is not hard to see that since α(Γ) is satisfiable, we must have that
if s �=Γ

a t then sB �= t B .
Next, consider equalities and dis-equalities between array-variables. For every dis-

equality a �= b ∈ Γ , we know that (because Γ is saturated), read(a, ka,b) �=Γ
a read(b, ka,b),

Form Methods Syst Des

and thus read(a, ka,b)
B �= read(b, ka,b)

B , from which it is clear that aB �= bB . To see that
equalities a = b are satisfied, note that we have a ≈Γ

a b, and thus the definitions of aB and
bB will yield the same function.

Finally, consider an equality of the form a = write(b, i, v). Let fa = aB and fwrite =
write(b, i, v)B . We will show that for all index-elements ι, fa(ι) = fwrite(ι). First, suppose
that ι = iB . In this case, it is clear that fwrite(ι) = vB by the definition of writeB . Also, by the
RIntro1 rule (and saturation of Γ), we know that v ≈Γ

a read(a, i) and so read(a, i)B = vB .
Then, by the definition of aB , we must have fa(ι) = vB .

Suppose, on the other hand that ι �= iB . Note that by the definition of writeB , this im-
plies that fwrite(ι) = bB(ι). Suppose now that we have x = read(c, j) ∈ Γ with a ≈Γ

a c and
j B = ι. In this case, the definition of aB ensures that fa(ι) = read(c, j)B . Looking at rule
RIntro2, we can see that because Γ is saturated and iB �= j B , we must have read(a, j)B =
read(b, j)B . But the first is equal to read(c, j)B by saturation and rule RIntro1, and the sec-
ond is equal to bB(ι) by the definition of readB . Thus, fwrite(ι) = fa(ι). A similar case is
when x = read(c, j) ∈ Γ with b ≈Γ

a c and j B = ι. Here, we have fwrite(ι) = read(c, j)B by
definition, and we can again conclude that read(a, j)B = read(b, j)B by rule RIntro2. But
the first is equal to fa(ι) by the definition of read and the second is equal to read(c, j)B and
thus to fwrite(ι). In the final case, when neither of the previous cases hold, the definitions of
aB and bB ensure that fa(ι) = aB(ι) = e0 = bB(ι) = fwrite(ι).

Since B satisfies the axioms and each of the literals in Γ , this shows that Γ is Tarr-
satisfiable. �

5.2 Equality propagator

Let φ be a set of flat literals and V a set of variables. Consider the following modified ver-
sions of RIntro2 that are enabled only if one of the branches can be ruled out as unsatisfiable:

RIntro2a
Γ [a = write(b, i, v), x = read(c, j)]

Γ, i = j
if

⎧
⎨

⎩

a ≈Γ
a c or b ≈Γ

a c,

i �≈Γ
a j, and

read(a, j) �=Γ
a read(b, j)

RIntro2b
Γ [a = write(b, i, v), x = read(c, j)]

Γ, read(a, j) = read(b, j)
if

a ≈Γ
a c or b ≈Γ

a c,

i �=Γ
a j, and

read(a, j) �≈Γ
a read(b, j)

Let D′
arr be obtained from Darr by replacing RIntro2 with the above rules. Since these

rules mimic RIntro2 when they are enabled, but are enabled less often, it is clear that D′
arr

remains sound and terminating. Let Γ ′ be the result of applying D′
arr to Γ until no more

rules apply (for the sake of determinism, assume that rules are applied in order of appearance
when there is a choice). We say that Γ ′ is D′

arr-saturated. We define the equality propagator
as:

Parr[[V]](Γ) = {
w = z|w,z ∈ V, (w, z) ∈ Ea

(
Γ ′)}

∪ {
w �= z|w,z ∈ V, (w, z) ∈ Na

(
Γ ′)}.

It is easy to see that Parr[[·]] satisfies the requirements for a propagator. Though not neces-
sary for the care function we present here, a more powerful propagator can be obtained by
additionally performing congruence closure over write terms.

Form Methods Syst Des

5.3 Care function

Let φ be a set of flat literals and V a set of variables. First, since a simple propagator cannot
compute all equalities between array variables, we will ensure that the relationships between
all pairs of array variables in V have been determined. To do so, we define the set Eφ

a of
pairs of array variables in V that are not yet known equal or dis-equal. Let Va = varsarray(V).
Then,

Eφ
a = (Va × Va) \ (

Ea(φ) ∪ Na(φ)
)
.

Next, since the inference rules can introduce new read terms, we compute the smallest set
Rφ that includes all possible such terms, i.e.,

– if x = read(a, i) ∈ φ or a = write(b, i, v) ∈ φ, then read(a, i) ∈ Rφ ,
– if a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, i �≈φ

a j , and a ≈φ
a c or b ≈φ

a c, then both
read(a, j) ∈ Rφ and read(b, j) ∈ Rφ ,

– if a �= b ∈ φ, then both read(a, ka,b) ∈ Rφ and read(b, ka,b) ∈ Rφ .

Crucial in the introduction of the above read terms is the set of index variables whose equal-
ity could affect the application of the RIntro2 rule. We capture these variables by defining
the set E

φ

i as the set of all pairs (i, j) such that:

– i �≈φ
a j and not i �=φ

a j

– ∃a, b, c, v.a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, and a ≈φ
a c or b ≈φ

a c.

Finally, we claim that with the variables in Eφ
a and E

φ

i decided, we can essentially use
the same care function as for Teuf, treating the read function symbol as uninterpreted. We
therefore define the third set Eφ

r to be the set of all pairs (i, j) ∈ V × V of undecided
indices (i �≈φ

a j and not i �=φ
a j) such that there are a, b, i ′, j ′ with a ≈φ

a b, i ≈φ
a i ′, j ≈φ

a j ′,
read(a, i ′) ∈ Rφ , read(b, j ′) ∈ Rφ , and read(a, i ′) �≈φ

a read(b, j ′).
With the definitions above, we can define the care function as Carr[[V]](φ) = G =

〈V,E〉, where the set of edges is defined as:

E =
⎧
⎨

⎩

Eφ
a if Eφ

a �= ∅,

E
φ

i if E
φ

i �= ∅, and
Eφ

r otherwise.

Note that as defined, E
φ

i may include pairs of index variables, one or more of which are not
in V . Unfortunately, the care function fails if E

φ

i is not a subset of V × V . We can ensure
that it is either by expanding the set V until it includes all variables in E

φ

i or doing additional
case-splitting up front on pairs in E

φ

i , adding formulas to φ, until E
φ

i ⊆ V × V .

Example 6 Consider the following constraints involving arrays and bit-vectors of size m,
where ×m denotes unsigned bit-vector multiplication:

n∧

k=1

(
read(ak, ik) = read(ak+1, ik+1) ∧ ik = xk ×m xk+1

)
. (6)

Assume that only the index variables are shared, i.e. V = {i1, . . . , in+1}. In this case, both Eφ
a

and E
φ

i will be empty and the only read terms in Rφ will be those appearing in the formula.
Since none of these are reading from equivalent arrays, the empty care graph is a fix-point
for our care function, and we do not need to guess an arrangement.

Form Methods Syst Des

Note that in the case when V contains array variables, the care graph requires us to split
on all pairs of these variables (i.e. we use the trivial care function over these variables).
Fortunately, in practice it appears that index and element variables are typically shared, and
only rarely are array variables shared.

Lemma 2 Let φ be a set of flat Tarr-literals, and suppose that Carr[[V]](φ) = 〈V,∅〉. If
Γ is a satisfiable set of literals obtained from φ via a sequence of Darr-inferences, and
read(a, i) appears in Γ , then read(a, i) ∈ Rφ .

Proof The proof is by induction on inference rule applications. For the base case, suppose
Γ = φ. The first rule defining Rφ ensures that read(a, i) ∈ Rφ .

For the inductive case, suppose every term read(a, i) appearing in Γ is in Rφ and let
Γ ′ be obtained by applying an inference rule to Γ . Suppose the inference rule is RIntro1.
This introduces a term of the form read(a, i). It also requires that we have an equality
a = write(b, i, v) ∈ Γ . But no rule introduces such equalities, so it must have been in φ

originally. Again, the first rule defining Rφ then ensures that read(a, i) ∈ Rφ .
Next, suppose the inference rule is RIntro2. The right branch of this rule may introduce

read(a, j) and read(b, j). In this case, we know there are equalities a = write(b, i, v) and
x = read(c, j) in Γ with i �≈Γ

a j , and either a ≈Γ
a c or b ≈Γ

a c. As before, we must have
a = write(b, i, v) ∈ φ, and by the inductive hypothesis, we know that read(c, j) ∈ Rφ . Fur-
thermore, because Eφ

a = ∅, we know that all relationships between array variables are al-
ready determined by φ, so either a ≈φ

a c or b ≈φ
a c; and we know from Lemma 1 that i �≈φ

a j .
We can then see that the second rule defining Rφ ensures that read(a, j) and read(b, j) are
in Rφ .

Finally, suppose that the inference rule is ArrDiseq. This rule may introduce read(a, ka,b)

and read(b, ka,b). This can only happen if a �= b ∈ Γ . Since no rules introduce dis-equalities
between array variables, this implies that a �= b ∈ φ, and so the last rule defining Rφ ensures
that read(a, ka,b) ∈ Rφ and read(b, ka,b) ∈ Rφ . �

Theorem 6 Let Tarr be the theory of arrays. Carr[[·]] is a care function for Tarr with respect
to the equality propagator Parr[[·]] for all sets φ of literals and V of variables such that
E

φ

i ⊆ V × V .

Proof Assume that we are given a set φ of flat Σarr-literals and a set V of variables with
E

φ

i ⊆ V × V . Let Carr[[V]](φ) = 〈V,∅〉, and assume that φ is Tarr-satisfiable and δV is a
variable arrangement such that δV ⊇ Parr[[V]](φ). Because φ is Tarr-satisfiable, Theorem 5
ensures we can find a set Γ ⊇ φ such that:

– Γ is derivable from φ using the rules of Darr (applying rules in order of appearance if
there is a choice).

– Γ is Darr-saturated,
– α(Γ) is Teuf-satisfiable.

Again, for notational convenience, we will write s ∼c t and s �=c t for (s, t) ∈ Ec(α(Γ)) and
(s, t) ∈ Nc(α(Γ)), respectively. Furthermore, notice that by definition we have s ∼c t iff
s ≈Γ

a t and s �=c t iff s �=Γ
a t .

We claim that δV ⊇ Peuf[[V]](α(Γ)). We know that δV ⊇ Parr[[V]](φ), so it suffices
to show that Peuf[[V]](α(Γ)) = Parr[[V]](φ). Notice that, if Γ ′ is the D′

arr-saturated set
obtained starting from φ, then by matching up the definitions, it is clear that Parr[[V]](φ) =
Peuf[[V]](α(Γ ′)). Thus, it suffices to show that Peuf[[V]](α(Γ)) = Peuf[[V]](α(Γ ′)). In

Form Methods Syst Des

fact, we can show that Γ = Γ ′. Suppose not. The only way this could happen is if there
is some Darr-derivation starting from φ in which rule RIntro2 applies but rules RIntro2a
and RIntro2b do not. Let Γ ′′ be the first set in the Darr-derivation from φ to Γ in which
this is the case. In order for the rule to be enabled, we must have a = write(b, i, v), x =
read(c, j) ∈ Γ ′′. As we have noted before, derivations do not introduce equalities containing
applications of write, so we must have a = write(b, i, v) ∈ φ. We also know by Lemma 2 that
read(c, j) ∈ Rφ . We also have a ≈Γ ′′

a c or b ≈Γ ′′
a c, so it follows from the fact that Eφ

a = ∅
that a ≈φ

a c or b ≈φ
a c. But now, since E

φ

i = ∅, clearly we must have i ≈φ
a j or i �=φ

a j .
In the first case, we know that i ≈Γ ′′

a j , so rule RIntro2 is not applicable, contradicting
our assumption. In the second case, we know that i �=Γ ′′

a j which means that RIntro2b is
applicable, which also contradicts our assumption.

Now, let G = 〈V,E〉 = Ceuf[[V]](α(Γ)) be the Teuf care graph based on α(Γ) (with
read treated as an uninterpreted function). We claim that E = ∅. First note that because
Eφ

a = ∅, we know that for variables a, b ∈ varsarray(V), either a ≈φ
a b or a �=φ

a b (and thus
a ∼c b or a �=c b), so it is impossible to have (a, b) ∈ E. Next, notice that since variables of
sort elem cannot appear as arguments to functions in α(Γ), there are no pairs (x, y) ∈ E.
Finally, suppose we have a pair of variables (i, j) of sort index such that (i, j) ∈ E. By the
definition of Ceuf[[·]], we know that there exist a, b, i ′, j ′ such that

1. read(a, i ′) and read(b, j ′) appear in α(Γ),
2. read(a, i ′) �≈Γ

a read(b, j ′),
3. not a �=Γ

a b, and
4. i ≈Γ

a i ′, and j ≈Γ
a j ′.

We can immediately conclude from property 1 that read(a, i ′) ∈ Rφ and read(b, j ′) ∈ Rφ by
Lemma 2. Also, property 2 implies that read(a, i ′) �≈φ

a read(b, j ′) by Lemma 1.
We next consider the implications of property 4. Notice that the only equalities between

index variables that could have been introduced during the derivation from φ to Γ are those
introduced by rule RIntro2. But if this rule is enabled and could introduce i = j , then (i, j) ∈
E

φ

i . But we know that E
φ

i = ∅. It follows that no equalities between index variables are
introduced in the derivation. So, if i ≈Γ

a i ′, then i ≈φ
a i ′. Similarly, if j ≈Γ

a j ′, then j ≈φ
a j ′.

But now notice that if we can establish a ≈φ
a b (see below), it will follow from the definition

of Eφ
r (and the fact that Eφ

r = ∅) that either i ≈φ
a j (and thus i ∼c j) or i �=φ

a j (and thus
i �=c j). This contradicts our assumption that (i, j) ∈ E. It remains to show a ≈φ

a b. By
property 3, we know that it is not the case that a �=Γ

a b, and thus by Lemma 1, it is not the
case that a �=φ

a b. But since Eφ
a = ∅, we must then have a ≈φ

a b.
We have thus established that E = ∅. Now, because δV ⊇ Peuf[[V]](α(Γ)), by Theo-

rem 3, α(Γ) ∪ δV must be Teuf-satisfiable. But α(Γ) ∪ δV = α(Γ ∪ δV), so α(Γ ∪ δV) is
Teuf-satisfiable. Finally, since Γ is Darr-saturated, and δV can only add new equalities and
disequalities between variables of sort index or elem, it is clear that Γ ∪ δV must also be
Darr-saturated, so by Theorem 5, Γ ∪ δV is Tarr-satisfiable, from which we can conclude
that φ ∪ δV is Tarr-satisfiable. �

6 Experimental evaluation

We implemented the new method in the Cvc3 solver [2], and in the discussion below, we
denote the new implementation as Cvc3+C. We focused our attention on the combination
of the theory of arrays and the theory of fixed-size bit-vectors (QF_AUFBV). This seemed
like a good place to start because there are many benchmarks which generate a significant

Form Methods Syst Des

Table 1 Experimental results of the evaluation. For each solver, the first column reports the total time (in
seconds) used by that solver on the problem instances it solved. The second column reports the number of
instances solved. The best results for each benchmark are in bold

Boolector Yices MathSAT Z3 Cvc3 Cvc3+C

crafted (40) 2100.13 40 6253.32 34 468.73 30 112.88 40 388.29 9 14.22 40

matrix (11) 1208.16 10 683.84 6 474.89 4 927.12 11 831.29 11 45.08 11

unconstr (10) 3.00 10 0 706.02 3 54.60 2 185.00 5 340.27 8

copy (19) 11.76 19 1.39 19 1103.13 19 4.79 19 432.72 17 44.75 19

sort (6) 691.06 6 557.23 4 82.21 4 248.94 3 44.89 6 44.87 6

delete (29) 3407.68 18 1170.93 10 2626.20 14 1504.46 10 1766.91 17 1302.32 17

member (24) 2807.78 24 185.54 24 217.35 24 112.23 24 355.41 24 320.80 24

10229.57 127 8852.25 97 5678.53 98 2965.02 109 4004.51 89 2112.31 125

number of shared variables, and additional splits on shared bit-vector variables can be quite
expensive. This allowed us to truly examine the merits of the new combination method. In
order to evaluate our method against the current state-of-the-art, we compared to Boolector
[4], Yices [10], Cvc3, and MathSAT [5], the top solvers in the QF_AUFBV category from the
2009 SMT-COMP competition (in order). Additionally, we included the Z3 solver [8] so as
to compare to the model-based theory combination method [7]. All tests were conducted on
a dedicated Intel Pentium E2220 2.4 GHz processor with 4 GB of memory. Individual runs
were limited to 15 minutes.

We crafted a set of new benchmarks based on Example 6 from Sect. 5, taking n =
10, . . . ,100, with increments of 10, and m = 32, . . . ,128, with increments of 32. We also
included a selection of problems from the QF_AUFBV division of the SMT-LIB library. Since
most of the benchmarks in the library come from model-checking of software and use a flat
memory model, they mostly operate over a single array representing the heap. Our method
is essentially equivalent to the standard Nelson-Oppen approach for such benchmarks, so we
selected only the benchmarks that involved constraints over at least two arrays. We antici-
pate that such problems will become increasingly important as static-analysis tools become
more precise and are able to infer separation of the heap (in the style of Burstall, e.g. [17]).
All the benchmarks and the Cvc3 binaries used in the experiments are available from the
authors’ website.4

The combined results of our experiments are presented in Table 1, with columns reporting
the total time (in seconds) that a solver used on the problem instances it solved (not including
time spent on problem instances it was unable to solve), and the number of solved instances.
Compared to Cvc3, the new implementation Cvc3+C performs uniformly better. On the first
four classes of problems, Cvc3+C greatly outperforms Cvc3. On the last three classes of
problems, the difference is less significant. After examining the benchmarks, we concluded
that the multitude of arrays in these examples is artificial—the many array variables are just
used for temporary storage of sequential updates on the same starting array—so there is not
a great capacity for improvement using the care function that we described. A scatter-plot
comparison of Cvc3 vs Cvc3+C is shown in Fig. 1(a). Because the only difference between
the two implementations is the inclusion of the method described in this paper, this graph
best illustrates the performance impact this optimization can have.

4http://cs.nyu.edu/~dejan/sharing-is-caring/.

http://cs.nyu.edu/~dejan/sharing-is-caring/

Form Methods Syst Des

Fig. 1 Comparison of Cvc3, Cvc3+C and Boolector. Both axes use a logarithmic scale and each point repre-
sents the time needed to solve an individual problem

When compared to the other solvers, we find that whereas Cvc3 is not particularly com-
petitive, Cvc3+C is very competitive and in fact, for several sets of benchmarks, performs
better than all of the others. This again emphasizes the strength of our results and suggests
that combination methods can be of great importance for performance and scalability of
modern solvers. Overall, on this set of benchmarks, Boolector solves the most (solving 2
more than Cvc3+C). However, Cvc3+C is significantly faster on the benchmarks it solves.
Figure 1(b) shows a scatter-plot comparison of Cvc3+C against Boolector.

7 Conclusion

We presented a reformulation of the classic Nelson-Oppen method for combining theories.
The most notable novel feature of the new method is the ability to leverage the structure
of the individual problems in order to reduce the complexity of finding a common arrange-
ment over the interface variables. We do this by defining theory-specific care functions that
determine the variable pairs that are relevant in a specific problem. We proved the method
correct, and presented care functions for the theories of uninterpreted functions and arrays.
The new method is asymmetric as only one of the theories takes charge of creating the ar-
rangement graph over the interface variables. Since many theories we combine in practice
are parametrized by other theories, the non-symmetric approach has an intuitive appeal. We
draw intuition for the care functions and correctness proofs directly from the decision pro-
cedures for specific theories, leaving room for new care functions backed by better decision
algorithms. Another benefit of the presented method is that it is orthogonal to the previous
research on combinations of theories. For example, it would be easy to combine our method
with a model-based combination approach—instead of propagating all equalities between
shared variables implied by the model, one could restrict propagation to only the equalities
that correspond to edges in the care graph, gaining advantages from both methods.

We also presented an experimental evaluation of the method, comparing the new method
to a standard Nelson-Oppen implementation and several state-of-the art solvers. Compared
to the other solvers on a selected set of benchmarks, the new method performs competitively,
and shows a robust performance increase over the standard Nelson-Oppen implementation.

Form Methods Syst Des

References

1. Barrett C, Nieuwenhuis R, Oliveras A, Tinelli C (2006) Splitting on demand in SAT modulo theories.
In: Logic for programming, artificial intelligence, and reasoning. LNCS, vol 4246. Springer, Berlin,
pp 512–526

2. Barrett C, Tinelli C (2007) CVC3. In computer aided verification. LNCS, vol 4590. Springer, Berlin,
pp 298–302

3. Bozzano M, Bruttomesso R, Cimatti A, Junttila T, Ranise S, van Rossumd P, Sebastiani R (2006) Effi-
cient theory combination via Boolean search. Inf Comput 204(10):1493–1525

4. Brummayer R, Biere A (2009) Boolector: an efficient SMT solver for bit-vectors and arrays. In: Tools
and algorithms for the construction and analysis of systems. LNCS, vol 5505. Springer, Berlin, pp 174–
177

5. Bruttomesso R, Cimatti A, Franzén A, Griggio A, Sebastiani R (2008) The MathSAT 4 SMT solver. In:
Computer aided verification. LNCS, vol 5123. Springer, Berlin, pp 299–303

6. Bruttomesso R, Cimatti A, Franzén A, Griggio A, Sebastiani R (2009) Delayed theory combination vs.
Nelson-Oppen for satisfiability modulo theories: a comparative analysis. Ann Math Artif Intell 55(1):63–
99

7. de Moura L, Bjørner N (2008) Model-based theory combination. In: 5th international workshop on satis-
fiability modulo theories. Electronic notes in theoretical computer science, vol 198. Elsevier, Amsterdam,
pp 37–49

8. de Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: Tools and algorithms for the construction
and analysis of systems. LNCS, vol 4963. Springer, Berlin, p 337

9. de Moura L, Bjørner N (2009) Generalized, efficient array decision procedures. In: Formal methods in
computer-aided design. IEEE, New York, pp 45–52

10. Dutertre B, de Moura L (2006) The YICES SMT solver. Tool paper at http://yices.csl.sri.com/
tool-paper.pdf

11. Enderton HB (1972) A mathematical introduction to logic. Academic Press, New York
12. Jovanović D, Barrett C (2010) Technical Report TR2010-922, Department of Computer Science, New

York University, January 2010
13. Jovanović D, Barrett C (2010) Polite theories revisited. In: Logic for programming, artificial intelligence,

and reasoning. LNCS, vol 6397. Springer, Berlin, pp 402–416
14. Jovanović D, Barrett C (2011) Sharing is caring: combination of theories. In: Frontiers of combining

systems, pp 195–210
15. Nelson G, Oppen DC (1979) Simplification by cooperating decision procedures. ACM Trans Program

Lang Syst 1(2):245–257
16. Oppen DC (1980) Complexity, convexity and combinations of theories. Theor Comput Sci 12(3):291–

302
17. Rakamarić Z, Hu AJ (2009) A scalable memory model for low-level code. In: Verification, model check-

ing, and abstract interpretation. LNCS, vol 5403. Springer, Berlin, p 304
18. Ranise S, Ringeissen C, Calogero GZ (2005) Combining data structures with nonstably infinite theories

using many-sorted logic. In: Frontiers of combining systems. LNCS, vol 3717. Springer, Berlin, pp 48–
64

19. Shostak RE (1977) An algorithm for reasoning about equality. In: 5th international joint conference on
artificial intelligence. Morgan Kaufmann, San Mateo, pp 526–527

20. Tinelli C, Harandi MT (1996) A new correctness proof of the Nelson–Oppen combination procedure. In:
Frontiers of combining systems, applied logic. Kluwer Academic, Dordrecht, pp 103–120

21. Tinelli C, Zarba C (2004) Combining decision procedures for sorted theories. In: Logic in artificial
intelligence. LNAI, vol 3229. Springer, Berlin, pp 641–653

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

	Being careful about theory combination
	Abstract
	Introduction
	Preliminaries
	New combination method
	Combination method
	Extension to polite combination

	Theory of uninterpreted functions
	Equality propagator
	Care function

	Theory of arrays
	Decision procedure
	Equality propagator
	Care function

	Experimental evaluation
	Conclusion
	References

