Exploring and Categorizing Error Spaces using BMC and SMT

Tim King!, Clark Barrett!
'New York University, taking|barrett@cs.nyu.edu

Abstract

We describe an abstract methodology for exploring and categorizing the space of error traces for a
system using a procedure based on Satisfiability Modulo Theories and Bounded Model Checking. A
key component required by the technique is a way to generalize an error trace into a category of error
traces. We describe tools and techniques to support a human expert in this generalization task. Finally,
we report on a case study in which the methodology is applied to a simple version of the Traffic Air and
Collision Avoidance System.

1 Introduction

Finding traces that represent errors in hardware and software by the means of Bounded Model Checking
(BMC) has been one of the great recent success stories in formal methods [4]. Both Boolean Satisfiability
(SAT) and Satisfiability Modulo Theories (SMT) solvers have been used as effective engines for BMC [10].
While SAT techniques are more established, SMT solvers have the advantage of being able to reason natively
at a higher level of abstraction, easing the modeling process and often leading to efficiency gains as well [5]].

In this paper, we suggest a novel use of BMC: instead of searching for a single error trace, we develop
a method for exploring and categorizing the space of all errors. Our proposed approach is to repeatedly
complete the following steps: first, use SMT-based BMC to find an error trace; second, generalize the trace
into a set of traces (we call this set a category); third, specify the category formally (using the language of
the SMT solver); and finally, use the formal specification to exclude this category from the next iteration
of the BMC search. If the system is finite, or the categories can be made sufficiently general, the process
terminates with a complete categorization of all error traces together with a sample error trace for each
category.

Such a method may be helpful in situations when a system is known to have many error traces (accord-
ing to some specification) and the system designers believe these error traces to be sufficiently rare or benign
(while changing the system is seen as costly) as to warrant not fixing the errors. By exploring and catego-
rizing the error space, this conjecture can be tested and either confirmed (by verifying that all categories
are non-problematic) or challenged (by finding a category of serious errors that were previously unknown).
Even if no serious errors are found, the procedure can be seen as an aid in developing a more refined speci-
fication (e.g. the original specification can be extended with a formal characterization of “error” categories
that are deemed non-critical).

A key step in our procedure is the generalization of an error trace into a category. This step is challenging
because it must balance generality (which is desirable to ensure the procedure terminates relatively quickly)
with meaningfulness (since each category should be limited to a closely related set of error traces). In this
paper, we specifically and intentionally consider the case in which categories will be evaluated by a human

taking|barrett@cs.nyu.edu

(i.e. no formal specification exists for what an “acceptable” error trace might be). This also motivates the
need for keeping the number of categories to a minimum.

The paper is organized as follows. We begin with a review of SMT, BMC, and other necessary back-
ground information. We then explain the main algorithm for error space exploration and categorization.
Next, we introduce a modeling language called t ransmit, which helps bridge the gap between the sys-
tem model and the SMT back-end. We then describe results on a case study that motivated this work: a
simplified version of the Traffic Air and Collision Avoidance System (TCAS). Finally, we conclude with a
discussion of related and future work.

2 Preliminaries

We assume the reader is familiar with standard notions from many-sorted first order logic and the Satisfi-
ability Modulo Theories (SMT) problem (see for example [12} 5]). We assume SMT-DECIDE is a model-
generating algorithm solving the SMT problem for a theory T with signature ¥z. SMT-DECIDE takes a
Yz-formula ¢ and returns (sat M) if ¢ is satisfiable (where M is a T-interpretation that satisfies) and
(unsat) if the formula is unsatisfiable.

Bounded Model Checking (BMC) is a verification technique for systems that works by considering finite
traces of the system up to some maximum size. While limited in its ability to verify properties, it has been
very effective at bug-finding. For our purposes, BMC refers to the process of: selecting a bound & on the
number of system steps; creating a formula that represents execution of the system from the initial state
through k transitions into an error state; and then using an SMT solver to decide whether this formula is
satisfiable. If the formula is satisfiable, this indicates that the error state is reachable. Furthermore, if the
SMT solver can provide information about the satisfying assignment, this can be used to generate a specific
error trace. On the other hand, if the formula is unsatisfiable, this proves that the error cannot be reached in
k steps.

Formally, given a background theory ¥, we will take as our system model triples of the form (V,Z,T).
Here, V is a set of state variables over sorts from Y5 that describe the state of the system. We call a Y-
formula, all of whose free variables are from V, a state formula. Z is a state formula which is true exactly
when the state variables take on values representing a valid initial state of the system. 7 is a Y¢-formula
whose free variables are from V and V' (a copy of V' containing a variable ’ for each variable x € V) which
is true iff the system can transition from a state represented by V' to a state represented by V’/. We assume
that error states can also be described by state formulas (for simplicity, we consider only safety properties).

Besides V', we also define V; to be a copy of V' (containing variables x; for each z € V') for each i > 0.
Also, for ¢ > 0, the indexing operator (-); takes a state formula ¢ and produces a formula ¢; by replacing
each occurrence of x € V by the corresponding variable x; € V;. Similarly, the indexing operator applied to
T produces a formula 7; obtained by replacing each occurrence of z € V with z; € V; and each occurrence
of ' € V' with ZTit1 € Vig1.

The unrolling function UNROLL takes as input a system and an unrolling depth k, and produces a
formula that represents running the system for k steps from a valid initial state:

k1
UNROLL(V,Z, T, k) :=To A J\ Ti.
i=0

A trace 7 of length £ is a T-interpretation satisfying a k-step unrolling of the system:

EXPLORE(V,Z,T,E&,k)

1 qo+ UNROLL(V,Z,T,E,k)

2 1+0

3 while SMT-DECIDE(g;) = (sat ¢;)
4 do C; < ANALYZE(e;)

5 git1 < ¢ N —C;

6 1 1+1

7 return [Co,...Ci], [eo, - -, €]

Figure 1: The EXPLORE procedure.

7 = UNROLL(V,Z, T, k).

Given a state formula £ describing an error state, an error trace, ¢, is a system trace that additionally satisfies
&; for some . We extend the unrolling function UNROLL to take as an additional input an error formula £
and to produce a formula additionally requiring £ to be satisfied within & transitions:

k-1 k
UNROLL(V,Z, T, &, k) :=To A \ Tin \/ &i.
i=0 =0

We refer to the set of all error traces as the error space of the system.

3 Exploring the Error Space

Applications that employ BMC typically use it to generate a single error trace which is immediately reported
to the user as a bug. The user then analyzes the trace and updates the system accordingly. In a scenario in
which some errors may be deemed acceptable and modifying the system is considered to be expensive, this
simple bug-finding and patch loop may no longer be appropriate. BMC can still be used to produce error
traces, but a more complete picture of the error space is desirable in order to determine whether an update
to the system is warranted.

The EXPLORE procedure employs BMC in a more general loop that explores and categorizes multiple
error traces. A diagram of the procedure is shown in Fig. [l EXPLORE takes as input a system, an error
state, and an unrolling depth k. The procedure unrolls the system to obtain a formula gg that is satisfied if
there are any error states reachable within k steps. ¢; is sent to an SMT solver to decide if it is satisfiable (¢
is initially 0.) If ¢; is satisfiable, the model-generating feature of the SMT solver (SMT-DECIDE) is used to
obtain information about a satisfying interpretation of ¢;. The satisfying interpretation ¢; is an error trace.
The abstract procedure ANALYZE takes ¢; and generalizes it to a category formula C;, such that ¢; = C;. (We
discuss different possible choices for ANALYZE in more detail at the end of the section and in Sec.]) To
exclude the traces in C; and discover a new satisfying error trace, ¢; is conjoined with the negation of C;. The
next iteration of the process then occurs, with the SMT solver being invoked with the new query g;1. If at
some point ¢; is unsatisfiable, then the categories include all the error traces possible for this k. In this case,
the procedure terminates and outputs the set of categories and satisfying error traces, [Co, ... C;], [€o, - - - , €]

EXPLORE is a straightforward generalization of a well-known solution for extracting multiple solutions
of a single formula. Any solution implemented with multiple calls to an SMT solver must guarantee that
the model returned in one iteration is excluded from the next. The easy way to do this is simply to assert the
negation of some formula ¢ that is satisfied by the model. ¢ is an abstraction of the model. In EXPLORE,
this process of abstracting the model and generating such a formula is captured by the ANALYZE procedure.

The choice of category formulas C; introduced by ANALYZE must be done with care as this controls
which future error traces are generated and also determines how quickly the procedure terminates. In
the general presentation above, ANALYZE does not ensure that the different error traces represent mean-
ingful distinctions or make progress. For example, ANALYZE could introduce the sequence of categories
xo = 1,29 = 2, ... restricting the initial value of a variable z to be a different constant each time (as long
as each has a model), resulting in non-termination. On the other hand, suppose ANALYZE introduces the
sequence (xg < %), —(zp < %) In this case, we do have termination, but there may be more than two
substantially different kinds of bugs in the original system, whereas with this categorization, only 2 repre-
sentative error traces will be produced. More (and possibly more efficient forms of) exhaustive case splitting
can be done, but this may produce too many error traces While these models may be helpful for assisting
other computations, if models are going to be validated by hand, the number presented to the user needs to
be quite low. We mention all of this to emphasize that the value of the output of EXPLORE crucially depends
on how ANALYZE guides the search through the error space, and also to highlight the difficulty of designing
such a procedure.

4 Interactive Exploration of the Error Space

One of the main contributions of this paper is to evaluate an implementation of ANALYZE which uses an
interactive approach. In particular, rather than trying to automate this step, we have investigated how best to
support a system expert (the analyst) in analyzing the error traces and constructing the category formulas.
This decision is principally motivated by the observation that the categories need to be meaningful and
comprehensible to human evaluators, often taking into account domain-specific concepts, so that there may
not be a good general mechanism for producing categories automatically.

Note that the analyst’s task is not too different from what must be done by system developers when using
BMC as a bug-finding tool. In particular, in order to determine the severity of and appropriate response to
an error trace, a developer must thoroughly understand the trace, be able to abstract this understanding into
a conceptual idea about what is wrong, and then apply this conceptual understanding to fix the problem.
Here, the analyst must similarly understand the error trace and use this to create an abstract idea capturing
the cause of the problem. The additional step required is to express this idea as a category formula.

There are several advantages of this approach over a simple use of BMC for bug-finding. First of all,
under the assumption that there are many error traces to look at, it may not even be feasible to examine each
one individually. Thus the step of categorization is crucial not just to save time but also to have any hope
of covering all the traces. A second advantage is that if the analyst is able to capture the abstract concept
behind each error trace, this ensures that each new error trace will represent a new conceptual problem.
This is much more interesting and instructive than examining many error traces that are just slight variations
of the same basic problem. Finally, this process is much more likely to lead the analyst to find rare and

'If ANALYZE consistently introduced the negation of the satisfying Boolean assignment to each atom in ¢;, EXPLORE would
be isomorphic to the SMT equivalent of ALLSAT [16], guaranteeing termination. There are a number of possible variations to this
scheme, including predicate abstraction.

unexpected behaviors as they will work quickly to categorize (and thus eliminate) common and understood
behaviors.

With a human analyst, the EXPLORE procedure can be summarized as a means of letting the analyst
interactively search the error space of a system with the help of SMT-based BMC technology. The computer
performs the difficult search for error traces on demand, while the analyst’s job is to examine the error
traces and produce category formulas for them. This is a paradigm similar to the one followed by users of
interactive theorem provers: let the user focus on the big picture, and let the computer deal with the tedious
details.

5 Transmit

As part of this work, we developed t ransmit, a language for quickly encoding BMC queries and cate-
gories for use with SMTE] transmit provides the analyst with tools to support the interactive EXPLORE
procedure. transmit is also an appropriate language for specifying and testing prototypes. A small
example of a t ransmit specification is given in Fig. P]and explained in section[6]

Specifications in t ransmit are written by annotating S-Expressions in an underlying language, such as
SMT-LIB v2. This annotated expression is reduced by t ransmit to an S-Expression in the underlying lan-
guage using simple recursive top-down transformations. The primary constructs of t ransmit are: indexed
state variables ([$v]), support for setting the index to the value of a constant expression ([# c (.) 1),
bounded repetition of an expression ([#for start end (.)]), and binding a parameter to a value
([bind k c1]).

The specification of state predicates and transition relations for BMC problems can be expressed using
transmit in a fairly straightforward definitional style. A typical use of transmit is to bind some
parameters to constants (such as the unroll depth) and then pass the annotated formulas to t ransmit which
produces an SMT query. While declarations of the system generally resemble those in more sophisticated
high-level modeling languages such as SAL or UCLID, transmit specifications are written at a lower
level: just above the level of SMT formulas. transmit can be thought of as a scripting language for
designing SMT-LIB queries, giving the user a large degree of low-level control over the generated query.

transmit is designed to help support the interactive construction of categories during EXPLORE. The
category formulas generated during EXPLORE are formulas over the first & states. It is desirable to make
the specification of the categories hold for multiple choices of k£ and support basic temporal reasoning.
transmit’s approach to this is to have the categories specified using the same underlying language as
the system specification. Like system specifications, categories have access to the parameterization of the
system, and can be parameterized on k as well. The categories are then given k in the same fashion as
the system description, and are compiled by transmit into a well-defined first order logic formula C;
(over Ufzo‘/;) which EXPLORE can use to make progress. t ransmit specifications given access to k are
powerful enough to express Linear Temporal Logic safety properties [8]] with past operators. This shows
that basic temporal reasoning is feasible. By giving the user access to such a powerful specification scheme,
we maximize their ability to interactively explore the space as they see fit.

To assist the analyst, t ransmit provides tools for parsing models output by a number of SMT solversﬂ
into a pair of comma-separated-value files (one for system wide constants, and one for state variables). This
format makes it easy to write short scripts that generate visualizations for the traces using tools such as
gnuplot or R.

2An alpha version of t ransmit is available at http://cs.nyu.edu/~taking.
3Currently CVC3, CVC4 and Z3 are supported.

http://cs.nyu.edu/~taking

[bind k 2]
(set-logic QF_LRA)

{- System Paramters -}
(declare—fun MinFlowRate () Real)
(declare—fun Capacity () Real)

{- State Variables -}

[#for 0 k (declare—fun [S$Stank] () Real)]

[#for 0 k (assert (and (<= [$tank] Capacity) (>= [S$tank] 0))) 1
[#for 0 k (declare-fun [$incoming] () Real)]

[#for 0 k (assert (> [$incoming] 0)) 1]

[#for 0 k (declare-fun [$outgoing] () Real)]

[#for 0 k (assert (< [$Soutgoing] 0))]

{- Initial State -}

(assert (>= [# 0 [Stank]] (* (/ 1 2) Capacity)))

{- Transition relation -}

[#for 0 [- k 1] (assert (= [next [$tank]] (+ [$tank] [$incoming] [$outgoing])))]
[#for 0 [~ k 1] (assert (ite (<= (% 2 [S$Stank]) Capacity)

(> [next [$incoming]] [$incoming]) (< [next [$incoming]] [$incoming]l)))]
[#for 0 k (assert (=> (>= (+ [$tank] MinFlowRate) 0) (<= [$outgoing] MinFlowRate)))]
{- Eventually the error formula is satsified. -}

(assert (or [#for O [- k 1] (> [$Soutgoing] MinFlowRate)]))

(check-sat)

Figure 2: t ransmit specification of a simple hybrid system.

transmit provides tools for facilitating the entire process of the interactive EXPLORE procedure. Do-
ing this with a single tool helps the user maintain consistency between the system description, the categories,
the query, and the satisfying interpretation.

6 Example using transmit and EXPLORE

This section describes an example of a t ransmit specification, and summarizes how a user might employ
the EXPLORE procedure on this example. The example file is given in Fig. [2] This example models a simple
hybrid system consisting of a water tank with an incoming nozzle whose rate is controllable. The liquid is
continually flowing out of the tank, and the flow must be kept above a certain rate, i.e. there is an error if the
amount of outgoing liquid is below some threshold.

transmit annotations use square brackets and LISP style S-expressions to annotate the formula. Ex-
pressions wrapped in {— and —} are comments in transmit (following notation from Haskell). This
example is built on top of SMT-LIB v2, and compiles to an SMT-LIB v2 query. Line 1 in the example binds
k to the constant 2. Line 2 is the header for the SMT query. Line 5 declares the variable MinFlowRate,
the amount that should leave the tank every cycle. Line 6 declares the variable Capacity. Lines 9-10
declare a state variable $tank and assert that its value is always between 0 and Capacity. To see how
the # for construct expands, the t ransmit output for these lines is shown below:

(declare—fun |tank_ _000] () Real)
(declare—-fun |tank_001] () Real)
(declare—fun |tank_ _002] () Real)

(assert (and (<
(assert (and (<
(assert (and (<

= |tank_000| Capacity) (>= |tank_000] 0)))
|[tank_001] Capacity) (>= |tank_001| 0)))
|[tank_002| Capacity) (>= |tank_002| 0)))

Lines 11-14 similarly declare the state variables [$incoming] and [$outgoing] and assert that the
variables are respectively always positive and negative. Line 17 declares that the initial value of [$tank]
([# 0 [Stank]]) is at least half of Capacity. Lines 20-23 specify the transition relation. The first
part of this is that the next value of $tank ([next [$tank]]) isequal to the sum of the current values
of Stank, $incoming and $outgoing. The transmit output for this is 2 lines, the first of which is:

(assert (= |tank_001| (+ |tank_000| |incoming_000| |outgoing_000])))

Lines 21-22 give a basic rule for increasing the incoming rate if the tank is at least half empty and decreasing
the rate otherwise. Line 23 specifies that if [$tank] has at least the minimum flow rate currently in it,
then at least this amount flows out. Line 26 is a statement of the error condition: at some point, less than
MinFlowRate flows out of the tank. The t ransmit output for line 26 is:

(assert (or (> |outgoing_000| MinFlowRate) (> |outgoing_001| MinFlowRate)))

Finally, the file is ended by the SMT (check-sat) command.

We used the EXPLORE procedure on this specification, and generated two categories, after which the
loop terminated with an unsatisfiable result. Our first category was motivated by the observation that the
relationship between MinFlowRate and Capacity is undefined, so it is possible that Capacity is actu-
ally smaller than the magnitude of MinFlowRate (which is negative), meaning that (>= (+ [S$Stank]
MinFlowRate) 0) would always be false. We used the following formula as a generalization of this
category of errors:

(assert (< (+ Capacity (x 2 MinFlowRate)) 0))

Our second category addresses the main problem of the system. At any point, Soutgoing can be suffi-
ciently negative and $incoming sufficiently close to zero that as a result, the value of $tank in the next
state is less than the magnitude of MinF1lowRate. We introduced a category for this problem that captures
exactly these cases: (<= (+ [Stank] [$incoming] [Soutgoing] MinFlowRate) 0). The
negation of these two categories together with the original formula is unsatisfiable and EXPLORE terminates.

7 Case Study

The Traffic Air and Collision Avoidance System (TCAS) is a currently deployed collision avoidance system
for aircraft [[15]. The system provides pilots independent tracking of other aircraft in the local airspace and
in emergency situations provides Resolution Advisories (RAs) to the pilots on how to avoid likely collisions.
TCAS’s RAs are considered a means of defense-in-depth for when normal air traffic management’s separa-
tion procedures have broken down. Due to TCAS’s inherent safety critical nature [1]], it has been the subject
of a number formal studies in the past [[14} 17,7, [18]]. Other aircraft collision avoidance systems have been
studied in detail as well [[19].

TCAS treats the planes as points and attempts to keep the points sufficiently far apart so as to avoid Near
Mid-Air Collisions (NMACs). An NMAC is defined as a situation in which two planes have a horizontal
separation (range) less than the constant NMACw and a vertical separation less than the constant NMAChEI

“We used NMACw = 500ft and NMACh = 100ft.

Geometrically, this means that an NMAC occurs if a second plane enters a cylinder centered around the first
plane. This over-approximation avoids having to model complex and mostly irrelevant plane and helicopter
geometries that more accurate modeling of mid-air collisions would require. TCAS runs a fixed protocol
every second during which it both checks its sensors and performs sense selection (deciding whether to
issue an RA and if so what RA is selected). Non-linear floating point arithmetic calculations are used for
estimating position, velocity, and the time of closest horizontal distance (TCA), as well as for determining
when to issue an RA and when to stop issuing the RA.

TCAS is an excellent case study for our approach because it is a system that needs to be better understood
but which is very difficult and costly to change. Furthermore, if we define any scenario that leads to an
NMAC to be an error trace, it is clear that errors cannot always be avoided (a malicious pilot could always
cause an NMAC for example). The goal of TCAS is to avoid NMACs in reasonable scenarios. However, it
is not clear how to evaluate the success of this goal.

We applied our technique to a simplified version of TCAS called Tiny TCAS. Tiny TCAS was developed
at MIT Lincoln Laboratory for the purpose of experimenting with formal techniquesE] Tiny TCAS restricts
its attention to the case when one plane is equipped with Tiny TCAS and a single intruder is equipped only
with a transponder (which communicates its position and velocity). Tiny TCAS assumes its variables are
real numbers (ignoring approximations and errors introduced by floating point representations). Tiny TCAS
contains non-linear real arithmetic constraints for projecting positions in the future and calculating when an
RA can be released.

While some existing SMT solvers do have limited support for non-linear real arithmetic[9, 3], there
are no currently available solvers able to analyze the Tiny TCAS model without modiﬁcationE] Since Tiny
TCAS already makes many simplifying assumptions, we added one additional simplification (holding con-
stant the horizontal rate at which the aircraft are approaching each other), which allowed us to obtain a linear
model. Formulas generated from the model then fit within the SMT-LIB logic QF_LRA.

Using a Transmit model and the EXPLORE procedure, we generated five categories of system failure
for Tiny TCAS. An automatically generated visualization of an example trace from each category is shown
in Fig. [3] An informal description of the categories is given below. The visualizations are automatically
generated from error traces using a collection of simple scripts. Each figure shows the altitude of the two
planes over time. The blue line is the intruder, and the black line is the plane equipped with Tiny TCAS. The
large orange dots represent an NMAC. The first and last vertical green lines are the first and last time the
horizontal range is small enough for an NMAC to occur (labeled entry and exit). The middle green vertical
line labeled TCA is the time of closest approach or minimum horizontal range. We found automatically
generated visualizations like this to be the key analytical tool in categorizing error traces. Other formal
studies of TCAS have noted the importance of generating visualizations as well [7].

Before explaining the categories, we need the additional concept of a projected NMAC. By extrapolating
based on the current position and velocities of the planes, the future paths of both planes can be estimated.
A projected NMAC exists if an NMAC will occur based on these extrapolated paths.

The intuition behind the categories is as follows:

Doomed There is a projected NMAC from the beginning. Furthermore, even if an RA is issued, the plane
cannot climb or descend fast enough to avoid an NMAC. This is the only category that was anticipated
by the designers. (See Fig. [3a])

>We are working with MIT Lincoln Laboratory to make the description of Tiny TCAS available, but it is not publicly available
yet.

%An integration of interval constraint propagation and Simplex has been done within OpenSMT [13] [6]. Unfortunately at the
time of this writing, this tool is unavailable.

altitude
14000 15000 16000

13000

12000

altitude
16000 16500

15500

15000

entry TCA exit entry TCA
o
8
g]
g
- \
o
g
g]
g
&
i B
2 g
2 g |
v g
B =3
8
g]
&
| o
— ownalt S | — ownar
i §1= m
: : : : : : : : : : :
o 10 20 30 40 50 o 10 20 30 40
time time

(a) Doomed (b) Release

altitude
16000 16500 17000 17500
L

15500

15000

time. time.

(c) Locked (d) LockThenLevel

2 entr TCA exit
S
8 —
3
2 4
&
e
g
8
g |
g
e
=
=
2 4
g
3
=
=
g
g 4
g
3
s
=
2 4
a
3
g
g |
&
S
— ownalt
— inrAlt
T T T T T T
0 10 20 30 40 50

time.

(e) Lazy

Figure 3: Automatically generated visualizations of categories for Tiny TCAS.

Time (in s) Memory (in MB)

k | CVC3 73 CVC4 | CVC3 | Z3 | CVC4
20 3.82 3.77 2.65 306 60 73
40 MO | 59848 | 12.51 MO 486 114
60 MO 47.85 | 20.52 | MO 707 185
80 MO 4345 | 21.50 | MO 899 327
100 | MO | 12191 | 98.10 | MO | 1720 | 331

Table 1: Wall clock time and maximum memory for CVC3, Z3, and CVC4 generating a model for Tiny
TCAS with the constraint ~Doomed A —Release A —Locked with rangeRateMag = 0.016. MO = Memory
Out (> 6GB)

Locked Because of a projected NMAC, Tiny TCAS issues an RA. However, the trajectory projected by
following this RA still leads to an NMAC. (See Fig. [3c])

LockThenLevel Because of a projected NMAC, Tiny TCAS issues an RA. The new projected trajec-
tory does not contain an NMAC. However, the intruder then changes its altitude rate, resulting in
an NMAC. (See Fig. 3d])

Lazy Tiny TCAS does not issue an RA despite an NMAC being projected. This is caused because the
criteria for detecting collision threats are unsound. There are two important sub-cases depending on
whether the TCA is being estimated correctly or not. (See Fig. 3¢])

Release Because of a projected NMAC, Tiny TCAS issues an RA, resulting in a new path on which an
NMAC is not projected. When it appears safe, Tiny TCAS releases the RA. The pilot then changes
the altitude rate in response to the RA being released. This then either directly results in an NMAC,
or an additional change in altitude by the intruder results in an NMAC. (See Fig. [3b])

All of the previously mentioned categories are expressible as safety properties. They are not, however,
easily expressible as state properties, as they require a significant amount of information about the past.
The system is augmented with witness variables that capture a sufficient amount of history to express the
category. An example of a witness variable is the time an intruder levels off, which is used as a part of
projecting the paths. To avoid introducing non-linearity, case splits are done by transmit. This also
shows the advantage of using a low level tool like t ransmit.

While challenging for current SMT solvers, we have been able to use the EXPLORE procedure effectively
to analyze Tiny TCAS. Table [T| shows the running time and memory consumption for a particular formula
from our analysis using three SMT solvers and using different values for k[] The query is immediately after
the categories Doomed, Release and Locked have been discovered, and these categories are being excluded.
The SMT solvers represented are CVC3, Z3, and CVC4 To the best of our knowledge, these are the only
3 SMT solvers that can handle the rewriting of the quasi non-linearity in the constraints correctly. CVC3
runs out of memory on every k& > 20. This is due to the high memory consumption of the Fourier-Motzkin
decision procedure for QF_LRAJ[20]. Z3 and CVC4 both use variants of the simplex method [[11]], and have
significantly better memory performance.

"These experiments were run on an a 2.66GHz Intel Core2 Quad with 8GB memory.

8 We used Z3 version 2.3 (for Linux), CVC4 version “svn co -r1780 https://subversive.cims.nyu.edu/
cvcd/cvcd/branches/arithmetic/preprocess) with “—rewrite-arithmetic-equalities —enable-arithmetic-propagation”
enabled, and CVC3 2.2 with the flag “+model”.

https://subversive.cims.nyu.edu/cvc4/cvc4/branches/arithmetic/preprocess
https://subversive.cims.nyu.edu/cvc4/cvc4/branches/arithmetic/preprocess

8 Related Work

Our use of BMC is quite similar to that found in [2]. Both approaches focus on hybrid systems, reduce
the problem to a single SMT query, and find violations of safety properties. Closest to our work on Tiny
TCAS is the work presented in [7, [18]]. This work focuses on techniques for proving that an alert is always
issued to the pilot on all error traces. The scenario considered there is parallel runway approaches where an
intruder deviates from a normal approach by banking. Their work proves the existence of conditions under
which an aspect of TCAS is guaranteed to issue an alert. Tiny TCAS and our work focuses on both the case
where alerts are issued and not issued, as well as errors that come about as part of conflict resolution. Other
well known formal analysis on TCAS has focused on guaranteeing conditional safety in the case where both
planes are equipped with TCAS [[17]].

9 Conclusion and Future Work

We have proposed a novel technique for efficient interactive exploration of the error space of a system. The
procedure uses SMT-based BMC to generate error traces, and then relies on the user to guide the generation
of additional error traces by generalizing and then excluding the current trace. This interactive approach
allows the user to quickly find and understand multiple sources of system failure for complex fixed systems.
We have used this approach to analyze Tiny TCAS, and have succeeded in identifying four additional error
categories beyond those anticipated by the system designer. This shows the potential use and reasonableness
of this approach.

The most serious limitation of our work is in the handling of non-linearity. We had to resort to sim-
plification of the model in order to obtain linear (or nearly-linear) formulas. We plan on using Tiny TCAS
as a motivating example for developing better techniques for solving quantifier free non-linear real arith-
metic. Another interesting possibility is mixing in automated techniques to heuristically help the ANALYZE
component of the system. Abstract interpretation techniques for trace abstraction seem the mostly likely
candidate for success.

References

[1] Investigation report AX001-1-2/02, May 2004.

[2] AUDEMARD, G., BozzANO, M., CIMATTI, A., AND SEBASTIANI, R. Verifying industrial hybrid
systems with MathSAT. Electronic Notes in Theoretical Computer Science 119, 2 (Mar. 2005), 17-32.

[3] BARRETT, C., AND TINELLI, C. CVC3. In Computer Aided Verification, W. Damm and H. Hermanns,
Eds., vol. 4590 of Lecture Notes in Computer Science. Springer, Berlin, 2007, ch. 34, pp. 298-302.

[4] BIERE, A., CIMATTI, A., CLARKE, E., AND ZHU, Y. Symbolic model checking without BDDs. In
Tools and Algorithms for the Construction and Analysis of Systems, W. Cleaveland, Ed., vol. 1579 of
Lecture Notes in Computer Science. Springer, Berlin, Mar. 1999, ch. 14, pp. 193-207.

[5] BIERE, A., HEULE, M., VAN MAAREN, H., AND WALSH, T. Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications. IOS Press, Feb. 2009.

[6] BRUTTOMESSO, R., PEK, E., SHARYGINA, N., AND TSITOVICH, A. The OpenSMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, J. Esparza and R. Majumdar, Eds.,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

vol. 6015 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, Berlin, Heidelberg,
2010, ch. 12, pp. 150-153.

CARRENO, V., AND MURNOZ, C. Aircraft trajectory modeling and alerting algorithm verification. In
Theorem Proving in Higher Order Logics, M. Aagaard and J. Harrison, Eds., vol. 1869 of Lecture
Notes in Computer Science. Springer, Berlin, 2000, ch. 6, pp. 90-105.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. Model Checking. The MIT Press, Jan. 1999.

DE MOURA, L., AND BJ@RNER, N. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, ch. 24, pp. 337-340.

DE MOURA, L., AND BJ@RNER, N. Bugs, moles and skeletons: Symbolic reasoning for software
development. In Automated Reasoning, J. Giesl and R. Héhnle, Eds., vol. 6173 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010, ch. 34, pp. 400-411.

DUTERTRE, B., AND DE MOURA, L. A fast Linear-Arithmetic solver for DPLL(t). In Computer Aided

Verification, T. Ball and R. Jones, Eds., vol. 4144 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2006, pp. 81-94.

ENDERTON, H., AND ENDERTON, H. B. A Mathematical Introduction to Logic, Second Edition, 2 ed.
Academic Press, Jan. 2001.

GAO, S., GANAI, M., IvaNcic, F., GUPTA, A., SANKARANARAYANAN, S., AND CLARKE, E.
Integrating ICP and LRA solvers for deciding nonlinear real arithmetic. FMCAD (2010).

IEEE. On the formal verification of the TCAS conflict resolution algorithms (1997), vol. 2.

KUCHAR, J. K., AND DRUMM, A. C. The traffic alert and collision avoidance system. Lincoln
Laboratory Journal 16,2 (2007), 277-296.

LAHIRI, S., NIEUWENHUIS, R., AND OLIVERAS, A. SMT techniques for fast predicate abstraction.
In Computer Aided Verification, T. Ball and R. Jones, Eds., vol. 4144 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006, ch. 39, pp. 424-437.

LivaDpAs, C., LYGEROS, J., AND LYNCH, N. A. High-level modeling and analysis of the traffic alert
and collision avoidance system (TCAS). Proceedings of the IEEE 88, 7 (July 2000), 926-948.

MuNOz, C., CARRENO, V., DOWEK, G., AND BUTLER, R. Formal verification of conflict detection

algorithms. International Journal on Software Tools for Technology Transfer (STTT) 4, 3 (May 2003),
371-380.

PLATZER, A., AND CLARKE, E. Formal verification of curved flight collision avoidance maneuvers:
A case study. In FM 2009: Formal Methods, A. Cavalcanti and D. Dams, Eds., vol. 5850 of Lecture
Notes in Computer Science. Springer, Berlin, 2009, ch. 35, pp. 547-562.

SCHRIUJVER, A. Theory of Linear and Integer Programming. Wiley, June 1998.

	Introduction
	Preliminaries
	Exploring the Error Space
	Interactive Exploration of the Error Space
	Transmit
	Example using transmit and Explore
	Case Study
	Related Work
	Conclusion and Future Work

