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With the slowing of Moore’s law, computer architects have turned to domain-specific hardware specialization
to continue improving the performance and efficiency of computing systems. However, specialization typically
entails significant modifications to the software stack to properly leverage the updated hardware. The lack of a
structured approach for updating both the compiler and the accelerator in tandem has impeded many attempts
to systematize this procedure. We propose a new approach to enable flexible and evolvable domain-specific
hardware specialization based on coarse-grained reconfigurable arrays (CGRAs). Our agile methodology
employs a combination of new programming languages and formal methods to automatically generate the
accelerator hardware and its compiler from a single source of truth. This enables the creation of design-space
exploration frameworks that automatically generate accelerator architectures that approach the efficiencies of
hand-designed accelerators, with a significantly lower design effort for both hardware and compiler generation.
Our current system accelerates dense linear algebra applications, but is modular and can be extended to support
other domains. Our methodology has the potential to significantly improve the productivity of hardware-
software engineering teams and enable quicker customization and deployment of complex accelerator-rich
computing systems.

CCS Concepts: • Software and its engineering → Compilers; • Computer systems organization →
Parallel architectures; •Hardware→Hardware description languages and compilation; Application
specific integrated circuits.
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1 INTRODUCTION
As technology scaling slows, domain-specific hardware accelerators will play an increasingly impor-
tant role in improving the performance and energy-efficiency of computing systems. With advances
in machine learning, applications such as image classification, speech recognition, language model-
ing, recommendation systems, and scientific computing are changing at a rapid pace. Maintaining
high end-to-end performance and efficiency requires that hardware accelerators, compilers, and
applications evolve together in lockstep. Unfortunately, existing methodologies to achieve this
involve significant manual effort. Large engineering teams study the accelerator architecture in
detail and modify the compiler in an adhoc manner, leveraging low-level libraries to target specific
hardware features. Because of the large overhead in maintaining the software stack, it remains
challenging to accelerate new domains or to accelerate existing domains as they evolve.

In this work, we propose automating the co-design of accelerators and compilers. We showcase
this accelerator-compiler co-design by targeting a coarse-grained reconfigurable array (CGRA) [2].
CGRAs are a spatial-style architecture [15, 35, 42, 53] analogous to field-programmable gate arrays
(FPGAs), but with coarser-grained processing and memory units along with a word-level intercon-
nect, as shown in Figure 1. By tuning the amount of specialization in these units and the interconnect,
we can span the space between application-specific integrated circuits or ASICs (less flexible, but
more efficient) and FPGAs (more flexible, but much less efficient). For example, a CGRA specialized
for neural networks would look similar to a hand-designed neural network accelerator such as
the tensor processing unit (TPU) [22] with compute units implementing multiply-accumulate
operations, and the interconnect only supporting systolic connections between them. To map
applications to CGRAs, we have created a compiler, shown in Figure 2, which takes applications
written in the high-level domain-specific language (DSL) called Halide [44], lowers them to a
dataflow graph intermediate representation (IR) called CoreIR [12], and then schedules, maps,
places, and routes the graph to produce a CGRA bitstream. Using this compiler, we can accelerate a
wide range of dense linear algebra applications, such as those in image processing and machine
learning. While the current version of our accelerator-compiler system targets dense linear algebra
applications, it must be noted that only portions of the system - the front-end language (Halide),
static scheduling, and the design of the memory units - are tailored for such applications. Our
system is modular and can be extended to support other application domains.
The key feature of our approach is that, unlike previous work, our compiler automatically

updates as the CGRA hardware evolves. We achieve this by creating three mini domain-specific
hardware specification languages—PEak for processing elements, Lake for memories, and Canal for
interconnects. Programs written in each language represent the formal specification, a single source
of truth, for each component. From this specification, our tools generate both the register-transfer
level (RTL) hardware description and the collateral needed by the application compiler as shown
in Figure 2. Changes in the architecture are done simply by modifying the PEak, Lake, and Canal
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Fig. 1. Our system-on-chip (SoC) with a coarse-grained reconfigurable array (CGRA) accelerator. The CGRA
has processing element (PE) and memory (MEM) tiles and a statically-configured word-level interconnect.
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Mconv(x, y) += kernel(r.x, r.y) *
             input(x+r.x, y+r.y);
conv.in().compute_root();
conv.in()
    .tile(x,y,xo,yo,xi,yi,64,64)
    .hw_accelerate(xi, xo);
conv.update()
    .unroll(r.y, 3)
    .unroll(r.x, 3);
conv.compute_at(conv.in(), xo);
input.stream_to_accelerator();
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Fig. 2. Agile flow for co-design of CGRA accelerator and compiler. The compiler maps applications written in
Halide to a CGRA bitstream. It receives updated collateral (rewrite rules, routing graph) from the DSL-based
hardware generators, allowing it to compile to evolving CGRA hardware with no manual updates.

programs; as a result, any changes automatically propagate through the hardware generation and
the compilation flow without manual intervention. These languages could be used to design other
hardware accelerators (for example, ASICs or FPGAs) and are not limited to CGRAs. We have
chosen CGRAs as our target hardware for two key reasons: they allow exploration of a large design
space and have the ability to accelerate a domain of applications. On the other hand, ASICs typically
target a very limited number of applications and FPGAs are fine-grained and designed to handle
applications in several different domains. Our flow enables quick iterative design and presents an
opportunity to automate the large-scale design-space exploration of accelerator architectures that
achieve energy efficiencies that beat general purpose architectures and approach ASICs.

2 RELATEDWORK
With many researchers focused on hardware specialization, domain-specific accelerator generators
and compilers that target accelerators have both become popular areas of study.
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2.1 Domain-Specific Accelerator Generators
Many existing domain-specific accelerator generators start with an application or a class of ap-
plications and generate specialized fixed-function hardware to be instantiated as an ASIC or on an
FPGA. In contrast, our work generates programmable hardware and a compiler that maps a variety
of applications to it. Prior domain-specific accelerator generators that create fixed-function image
processing pipelines include Aetherling [14], Darkroom [16], Halide-HLS [43], Hetero-Halide [30],
HIPACC-FPGA [45], PolyMage-FPGA [10], Rigel [17], and SODA [8]. Similarly, DNNBuilder [60],
DNNWeaver [46], [59], and VTA [37, 38] take deep neural network (DNN) models and generate
hardware to accelerate them on FPGAs. DNNBuilder utilizes a line-buffer-based scheme and a
fine-grained layer-based pipeline architecture, which reduces the pipeline latency and interlayer
memory consumption, and therefore reduces on-chip memory usage. DNNWeaver uses Caffe to
generate synthesizable designs with several layer types, and [59] uses Caffe [21] to optimize DNN
blocking using double buffer structures. VTA develops a hardware-software flow for neural network
layers using a modified Halide IR. It maps DNN layers onto operators which are then offloaded
onto an FPGA. However, all of these systems generate fixed-function hardware on either FPGAs
(which have high overhead) or ASICs (which are inflexible), as opposed to our work which focuses
on generating programmable CGRAs along with complete compilers to map to them.

There is also existing work on generating programmable accelerators as opposed to fixed-function
ones. Work focused on CGRAs includes Plasticine [42], ultra-elastic CGRAs [48], CGRA-ME [9],
DySER [15], and ADRES [35]. Other works propose configurable neural network accelerator
generators such as MAGNet [54], MAERI [28], and AutoDNNchip [58]. However, all of these works
must manually update their compilers for each subsequent generation of the hardware. In contrast,
our work generates not only the programmable hardware but also the collateral needed by the
application compiler as the hardware evolves.

2.2 Compilers that Target Accelerators
Existing compilers struggle to support flexible mapping onto complex, specialized hardware units.
High-level synthesis (HLS) tools including Catapult [36], LegUp [4], Vivado HLS [57], and others
[20, 33], compile C/C++ programs using commonly used compiler frontends, schedule instructions
to an intermediate representation (IR), map instructions to functional units, and emit code. This
method is used for both FPGAs and ASICs where the primitives (i.e., registers, LUTs, gates) are
more fine-grained than the compiler IR instructions. Unfortunately, when the primitives are coarser-
grained than the compiler IR instructions, this approach is no longer sufficient. For example, it
is not straightforward for HLS compilers to determine how to fuse simple instructions to utilize
coarse-grained PEs.
Moreover, while Catapult and Vivado HLS efficiently map arithmetic and exploit parallelism

within individual loop bodies [34], they do not support optimizations for specialized memories [43]
or across loops [61]. Efficiently exploiting parallelism across different loops in a loop nest requires
manual effort to generate high-quality code for deeper pipelines [29]. Our compiler, described in
Section 5, supports both automatic loop fusion and memory optimization.
HeteroCL [29] and Spatial [27] are both academic languages that support a more abstract pro-

gramming model for accelerators, but specifying the memory microarchitecture and its compiler
interface is still left to the user. Similar to Halide, HeteroCL’s frontend splits up the algorith-
mic specification from the schedule and data types, but its backend implementation depends on
manually-written templates. Additionally, Spatial is able to map to different FPGA targets and to
Plasticine, but it does not generate the compiler collateral needed to automatically track changes in
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the hardware. In contrast, we automatically generate the backend of our compiler, which maps the
compiler IR to specific coarse-grained hardware primitives as the primitives evolve.

3 DSL-BASED ACCELERATOR GENERATOR
The key innovation in our flow is the use of high-level domain-specific languages (DSLs) as inputs
to our hardware generators, as opposed to using less expressive parameters [1, 54]. Each component
of the CGRA is written as a program in its own DSL: the PEs in PEak, the memories in Lake, and
the interconnect in Canal. Each DSL’s compiler generates both the hardware RTL and the collateral
needed by the compiler to map applications onto the hardware, thereby always maintaining end-
to-end system functionality. The component DSLs are written on top of the same host language —
magma [49], which is a lower-level hardware generation DSL embedded in Python.
The goal of our system is to cover the general patterns required to construct a CGRA by using

a composition of components written in different DSLs. Each DSL is tailored for the description
of a specific sub-component by providing a specific abstraction: PEak uses sum types to describe
instructions, Lake uses a streaming abstraction for describing memory access patterns, and Canal
uses a graph abstraction for describing the interconnect. While it may be possible to describe other
types of components than those intended by a DSL, the lack of other abstractions useful for other
domains makes this an inconvenient burden unlikely to be taken on by a designer. The goal of the
system is to have the designer understand which DSL best fits the description of their component,
and if none do, then the designer is able to fall back on the magma host language which provides
general purpose abstractions.
To minimize the burden on developers and to make the system easily accessible to hardware

designers familiar with Python, the DSLs employ a shallow embedding architecture where each
language is presented as a native Python library. These languages restrict the user input to the
domain of interest by forcing the user to use specific application programming interfaces (APIs) or by
performing analysis on the abstract syntax tree which raises errors when encountering unsupported
code. By restricting user input to a specific domain, the DSL compilers employ domain-specific
optimizations to provide efficient hardware generation for their abstractions. By maintaining source
mappings through the various compiler stages, the user can effectively iterate on the quality of the
generated hardware by tuning the high level code based on tool feedback.

Using the same host language for each DSL is a key design decision that facilitates the composition
of domain-specific components during the construction of a complete system. By nature, DSLs are
not designed for generic composition; they focus on specific abstractions useful for a limited domain.
In contrast, a complex system incorporates different components written in different DSLs. Having
each DSL compiler target the same general-purpose host hardware description language allows
system designers to cleanly compose components. This avoids complexity in system integration
and reduces the cognitive load of working with different language syntaxes for different parts of
the system, while also allowing the DSLs to share common features of the host language such as
advanced metaprogramming capabilities.
The following three sections are tightly connected. Section 3 describes our hardware DSLs,

Section 4 gives an example of a generated CGRA architecture, and Section 5 describes our compiler
that maps onto the generated hardware. For example, in Section 3 we describe PEak, in Section
4 we describe a processing element generated with PEak, and in Section 5 we describe compute
mapping which utilizes collateral generated by PEak to map an application onto the PE architecture
described in Section 4. Figure 14 (a) illustrates the intuition behind the PE hardware/compiler
automatic update. A specialized PE may implement multiple logical operations. The compiler is
made aware of the possible mappings through a set of rewrite rules generated by the PEak DSL
description.
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1 class Opcode(Enum):

2 Add = 0

3 And = 1

4 class Instruction(Product):

5 op = Opcode

6 invert_A = Bit

7 scale_B = Bit

8 reg_out = Bit

9 Data = Unsigned[16] # BitVector

Fig. 3. PE ISA in PEak DSL.

1 pe = PE()

2 inst = Instruction(

3 Opcode.Add, Bit(0), Bit(1), Bit(0))

4 out, flag = pe(inst,

5 Data(2), Data(3), Data(5), Bit(0))

6 # A, B, C, c_in

7 assert out==Data(17) # out = A + B*C

8 assert flag==Bit(0)

Fig. 4. PE Python execution.

1 class PE(Peak):

2 def __init__(self):

3 self.o_reg = Register(Data)

4 self.f_reg = Register(Bit)

5 def __call__(self, inst: Instruction, A: Data,

6 B: Data, C: Data, c_in: Bit) -> (Data, Bit):

7 if inst.invert_A:

8 A = ~A

9 if inst.scale_B:

10 B = B*C

11 if inst.op == Opcode.Add:

12 res, flag = A.adc(B, c_in) # adc = add with carry

13 else: # inst.op == Opcode.And

14 res = A & B

15 flag = (res == 0)

16 if inst.reg_out:

17 res = self.o_reg(res)

18 flag = self.f_reg(flag)

19 return res, flag

Fig. 5. PE functional specification in PEak DSL.

3.1 PEak
A PEak specification for a PE defines its instruction set architecture (ISA), declares state, and
describes the semantics of each instruction as a function from inputs and current state to outputs
and next state. A PEak program can be compiled to a functional model, an RTL hardware description,
and a formal model encoded using satisfiability modulo theories (SMT) [3], which is used to
automatically synthesize a set of compiler rewrite rules that target the specified PE.

3.1.1 PEak Specification. The example code in Figure 3 and Figure 5 defines the ISA and functional
specification of a simple PE in PEak which supports two operations, can invert or scale the inputs,
and can register the output. Separating the encoding of the ISA from the functional specification lets
designers easily modify the instruction decode logic without modifying the functional specification,
and forces type-safe interactions with instructions. In the functional specification, __init__ defines
sub-components and state (i.e., registers and memories, including pipeline registers). The __call__
method defines the semantics of each PE instruction by determining the desired behavior of each
inst. Both the ISA and the functional specification can be tested using Python execution.
PEak applies multiple interpretations, a concept introduced by the Lava and Hydra functional

HDLs [41], to the PE specification using an abstract type system. Each PEak sub-component
(functional model, hardware generator, and rewrite rule generator) provides a separate concrete
implementation of the language’s primitive abstract types. For example, PEak defines an abstract
BitVector type that supports the & operator. Evaluating a & b with the implementation of
BitVector as a Python type performs a functional simulation, with magma’s Bits type constructs a
circuit, and with the SMTBitVector type constructs an SMT formula. To support multiple interpre-
tations of control flow, the PEak compiler transforms input programs into single static assignment
(SSA) form with phi nodes dispatching to a type-defined conditional operator. This technique allows
the user to describe control flow using native Python if statements while leveraging dynamic
dispatch to define the interpretation of control flow based on the input types.
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3.1.2 Generating PE Hardware. PEak relies on magma to compile specifications to RTL Verilog.
PEak’s syntax extends magma’s sequential circuit syntax with rich types that describe ISAs using
magma’s type protocol, which defines new types by allowing magma to interpret the new type as
one of magma’s built-in primitive types. For example, PEak’s sum type provides a syntax that forces
type-safe interaction with variants. The implementation of the type protocol allows magma to
interpret sum type values as magma Bits. This allows sum types to provide syntax-level constraints
while reusing the semantics of BitVector when generating hardware.

Lowering a PEak specification to magma is a straightforward process that captures the functional
intent of the designer. The __call__ method defines the state transition function that is executed
on every positive edge of the clock. The PEak language encourages high-level specifications that
eschew low-level details such as resource sharing, clock gating, and data gating. Rather than
capturing these details at the PEak level, these concerns are addressed by optimization passes in
the compiler tool chain. The magma compiler intermediate representation, CoreIR [12] is based on
SMT [3], which enables formal equivalence checking of the input and output pairs of each pass.
The magma circuits are tested with the fault [50] Python package using the function call syntax
shown in Figure 4. Designers directly reuse functional tests for the hardware description as well,
and fault generates a test bench for the design using a hardware simulator (e.g., Verilator [55]).
To make writing PEak easier for developers, Peak’s compiler performs a code transformation

(SSA) that places certain restrictions on the user code. For example, the logic to transform the
"return" statement from Python control flow semantics to hardware multiplexers requires that the
user program "always returns" (i.e. there is a return statement in all possible paths of execution
in the control flow graph). If the compiler finds that the user has violated this assumption, it will
report an error (even though the user code might be valid Python).
By utilizing PEak to design our CGRAs, we can specify the operations in a PE, intraconnect of

the PE, and number of inputs to and outputs from the PE. From the PE specification, the PEak
backend automatically updates the application compiler by generating new rewrite rules for the PE
as described in the next subsection.

3.1.3 Generating Rewrite Rules for ComputeMapping. Themapping step in the application compiler
requires rewrite rules (recall Figure 2) that specify how subsets of CoreIR dataflow graphs map to
hardware PEs. The PEak compiler transforms the __call__ method into a normal form where
each name is assigned to at most once, there is a single return at the end of the function, sub-
components are called once, and all if blocks are removed. We do this by first performing a fairly
typical SSA pass. Additionally we replace return statements with assignments to fresh names. Next,
we inline the body of the if blocks and insert ternary expressions to select a final value of each
assigned name. Finally, the return value must be inserted at the end of the function using a nested
ternary expression over the possible return values. We then replace boolean operators with their
corresponding bitwise operators. Finally ternary expressions are replaced with calls to the "ite"
method on their condition, for example, x if c else y becomes c.ite(x, y). Once in this form,
applying __call__ to abstract SMT variables (in the same way __call__ is applied to concrete
Python variables in Figure 4) produces a symbolic execution of the circuit. This symbolic execution
can be used to generate rewrite rules from a CoreIR IR node using a quantified SMT query:

∃𝑖𝑛𝑠𝑡 ∀𝑖𝑛𝑝𝑢𝑡𝑠 : 𝐼𝑅𝑁𝑜𝑑𝑒 (𝑖𝑛𝑝𝑢𝑡𝑠) == 𝑃𝐸 (𝑖𝑛𝑠𝑡, 𝑖𝑛𝑝𝑢𝑡𝑠)

The SMT definition of the 𝐼𝑅𝑁𝑜𝑑𝑒 and the 𝑃𝐸 are both constructed from the SMT interpretation
of their respective PEak programs. For example, if we want to generate a rewrite rule for an add
operation, first we specify the operation in PEak. This can be done simply by writing a PEak program
with 2 16-bit inputs, 𝑎 and 𝑏, that returns 𝑎 + 𝑏. The 𝐼𝑅𝑁𝑜𝑑𝑒 SMT equation can be automatically
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Fig. 6. Left: A program in the Lake DSL (Lake graph specification) serves as the single source of truth from
which the Lake compiler generates (1) a description of capabilities and constraints of the memory hardware
for the application compiler, (2) a list of configuration registers and interface signals as well as optional
constraints on the configuration space for an SMT solver and (3) memory hardware. Right: Lake graph
specifications for the memory tile in our CGRA (generated hardware shown in Figure 9) and the register file
in our PEs (generated hardware shown in Figure 8).

generated using the SMT interpretation of this PEak program. It would include 2 16-bit BitVector
SMT variables and return the SMT equivalent of an add operation. Similarly, the 𝑃𝐸 SMT equation
is automatically generated from the SMT interpretation of the PE specification.
If the SMT solver finds an 𝑖𝑛𝑠𝑡 , we have a rewrite rule between 𝐼𝑅𝑁𝑜𝑑𝑒 and 𝑖𝑛𝑠𝑡 . If it does not,

we know that none exists. Further, a similar technique can be used to ensure optimizations do not
change the behavior of a design. For example, suppose a rewrite rule has been discovered between
𝐼𝑅𝑁𝑜𝑑𝑒 and 𝑖𝑛𝑠𝑡 for 𝑃𝐸. An optimized PE (𝑂𝑃𝐸) can be verified with:

∀𝑖𝑛𝑝𝑢𝑡𝑠 : 𝐼𝑅𝑁𝑜𝑑𝑒 (𝑖𝑛𝑝𝑢𝑡𝑠) == 𝑂𝑃𝐸 (𝑖𝑛𝑠𝑡, 𝑖𝑛𝑝𝑢𝑡𝑠)

3.2 Lake
A Lake specification of a memory follows from the streaming memory abstraction [31] used in
our application compiler (Section 5.2.2). Our abstraction bundles storage, address generation, and
control logic in one structure for efficiency. It specifies the properties of the physical storage unit,
including its type (registers or SRAM), depth, width, and ports. Each port is further specified by:
(1) The iteration domain of the statement instances in the application code that use the port

(such as a read or a write operation). The domain is defined by the bounds of loops in the
loop nest surrounding the statement.

(2) The access map of the operations that maps points of the iteration domain to the value they
read or write on the port.

(3) The schedule of all operations in the iteration domain that specifies the number of unstalled
cycles between reset and each operation occurring.

Currently, our system supports cases where both the access map and the schedule at each port are
affine functions of the iteration domain (ID) variables. This allows the application compiler to use
polyhedral analysis for loop fusion and memory optimization. The ID is implemented using a set
of nested counters, while the access map and the schedule are generated by the address generator
and schedule generator modules, respectively. The address generator and the schedule generator
each implement an affine function of the ID counters, as shown in Figure 13.
The Lake compiler uses the Lake specification as the single source of truth from which it

generates synthesizable Verilog, collateral for the application compiler describing the capabilities

ACM Trans. Embedd. Comput. Syst., Publication date: July 2022.



AHA: An Agile Approach to the Design of Coarse-Grained Reconfigurable Accelerators and Compilers 9

of the specified memory, and collateral for an SMT solver to generate the configuration bitstream
that determines the data access pattern, as shown in Figure 6.

3.2.1 Lake Specification. A Lake specification allows the user to describe a memory as a graph,
where vertices are memory ports and edges describe how these ports are connected, to allow
for a composition of physical storage units. Ports are further grouped together in larger vertices
corresponding to these storage units. To describe constraints on how the iteration domain and
the address and schedule generators can interact with the physical storage unit, each port is
characterized by the following properties:

• Port width: As a multiple of data word width.
• Operation performed: Either read, write, or read/write.
• Latency: The number of cycles between initiating the operation and actual data transfer.
• Initiation interval: The number of cycles between successive operations to the port.

Such a representation enables a user to describe simple memories such as a register file with
one read port and one write port or a more complex memory such as a memory tile with two
read and two write ports. For example, we implement the memory tile in our CGRA with a wide
single-ported memory to emulate a narrow multi-ported memory while achieving higher energy
efficiency. To use such a wide memory, we require additional hardware: Figure 9 shows how SIPOs
(serial-in parallel-out shift registers) aggregate data before writing to the wide memory and how
PISOs (parallel-in serial-out shift registers) reorder and serialize data read from the wide memory.
Figure 6 shows the graph specification for the register file in our PE (generated hardware in Figure 8)
and our memory tile (generated hardware in Figure 9) in Lake.

Since Lake implements our streaming memory abstraction, a Lake specification allows the user to
specify the functionality of the iteration domain, address generator, and schedule generator modules.
Since our abstraction is implementation-agnostic, the user can describe the implementation of
address and schedule generators in a simple counter-based language, which is part of Lake, and
is based on scan from functional programming [18]. This description is not only given to the
application compiler to communicate the capabilities of these modules, but also it serves as a
transformable IR for the Lake compiler to automatically apply rewrite rules to generate efficient
RTL (Section 3.2.2).

3.2.2 Generating Memory Hardware. The Lake compiler generates hardware from the Lake specifi-
cation with the following rules:

• All memories are instantiated, using SRAM macros if specified.
• Every edge is a directed wire connection between memory ports.
• Every edge has an associated schedule generator to generate read enables.
• Every edge has a set of shift registers that delay the write enable from the read enable based
on the latency of the connected ports.

• Every edge has an associated iteration domain module to define the loop bounds for the
affine access pattern.

• Every memory port has an associated address generator.
• Ports with more than one incoming edge generate multiplexers.
• Ports with more than one outgoing edge broadcast output data to all consumers.

The Lake compiler then automatically applies the following rewrite rules to generate more
efficient hardware compared to the above baseline:

• Strength reduction: Multiplications in address and schedule generators are replaced with a
sequence of additions [11]. Instead of computing affine access patterns with multiplications
between iterators and strides (how much to increment loop variables by), we keep track of
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the previous access value and continually add the strides, 𝑑𝑥 and 𝑑𝑦 as shown in Figure 13,
to the access value.

• Resource sharing: Nested counters in the iteration domain module are merged to remove
redundant hardware.

For example, from the graph specification shown in Figure 6 for the memory tile, the Lake
compiler generates the hardware shown in Figure 9, inferring multiplexers, address and schedule
generators, and iteration domain modules.

Lake has the ability to describe a wide range of memories. Lake specifies three different qualities
for each sub-memory in a tile: memory description, scheduling complexity, and addressing com-
plexity. The memory description defines storage size (bitwidth, elements, banks), number of input
and output ports, and whether or not the designer wants the ability to chain several memory tiles
for increased capacity. Scheduling complexity determines the rate at which data can be written
and read, how many reads and writes can be done in parallel per clock cycle, and whether or not
memory allows for reads and writes in the same cycle. Finally, addressing complexity determines
whether address generators are internal (in the MEM) or external (in the PE) and input and output
address generator access pattern parameters if using internal generators. Similar to the PE, after
changing the Lake description, the compiler will automatically update the memory mapping as
described in the next subsection.

3.2.3 Generating Application Compiler Mapping Collateral. The Lake compiler generates the fol-
lowing collateral for the application compiler (see Section 5.2.2):

• The capacity and number of read, write, and read/write ports for each memory.
• The number of operations that can be done with a memory in one cycle (e.g., whether a read
and a write can be performed in one cycle).

• The port width for each memory port.
• The initiation interval for each memory port.
• A list of all the port connections to describe how the memory ports are connected.

The Lake compiler automatically generates a modified version of the Lake graph specification
that connects at most one producer to at most one consumer along every edge to eliminate
any multiplexers that would result in hardware generation. This representation is easier for the
application compiler’s polyhedral rewrite system (see Section 5.2.2) to consume.
Using this collateral, the application compiler generates application schedules that adhere to

the constraints and capabilities of the generated hardware. These schedules directly specify the
configuration register values for the generated memory hardware.

3.2.4 Generating SMT Solver Mapping Collateral. Given cycle-accurate schedules and access pat-
terns generated by the application compiler (Section 5.2.2), the Lake compiler can use an SMT
solver [51] to generate the configuration bitstream for memory hardware. The Lake compiler
generates the following collateral for the SMT solver:

• RTL description of the memory hardware.
• A list of all interface signals and an annotation for each signal indicating whether it (1)
is a configuration register that needs to be solved, (2) can be set to a constant value, (3)
corresponds to a data input or output, (4) is a special signal (clock or reset), or (5) is a
don’t-care value (see example in Figure 7).

• An optional list of constraints on the configuration space based on the hardware (e.g., if the
hardware has some number of bits for a configuration register where the entire range is not
used, such as a three-bit signal with an upper bound of six, this constraint can be specified).
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1 input logic clk CLK

2 input logic rst_n RSTN

3 input logic tile_en SET1

4 input logic [1:0] [15:0] addr_in SET0

5 input logic strg_ub_agg_only_agg_write_sched_gen_0_enable SOLVE

6 input logic [0:0] [15:0] data_in SEQUENCE

7 output logic empty X

Fig. 7. Excerpt from the collateral generated for the SIPO in Figure 9 for SMT solver indicating if interface
signals are clock (CLK) or reset (RSTN), can be assumed to be 1 / 0 (SET1 / SET0), are a configuration register
value to be solved for (SOLVE), an input / output data sequence (SEQUENCE), or a value that does not matter
(X).

• An optional list of dependencies among configuration register values (e.g., if some con-
figuration registers are not used depending on the value of another configuration, these
dependencies can be specified).

To improve the scalability of the SMT solver for larger problems with Lake programs composed
of multiple physical storage units, we can split the formal problem into several sub-problems that
can be solved in parallel, one for each unit. For our memory tile in Figure 9, we solve sub-problems
for the SIPOs, SRAM, and PISOs separately.

3.3 Canal
Canal represents a specification of the interconnect in the form of a directed graph. Notably,
this specification is flexible enough to handle an arbitrary set of potentially heterogeneous PE
and memory cores with different numbers of inputs and outputs. Like PEak and Lake, Canal
generates both the hardware and the compiler collateral — in this case, the routing graph that
the place-and-route (P&R) tool needs to map the dataflow graph onto the generated hardware,
and the configuration bitstream that implements the routing result on the hardware. Canal allows
designers to easily explore interconnect parameters including network topology, placement of
pipeline registers, and switchbox design.

3.3.1 Canal Specification. A Canal program is a directed graph that abstractly represents the
structure of the interconnect. Vertices are terminals, and directed edges are wired connections.
Vertices can havemultiple incoming edges, which abstracts away low-level multiplexers. Each vertex
can be annotated with attributes. For example, a coordinate attribute enables reinterpreting the
graph on a grid-based layout, and a type attribute marks a vertex as a tile port or a pipeline register.
Using an abstract graph-based DSL has several advantages over a simple hardware generator with
parameters. A graph allows staged generation (e.g. use passes to insert pipeline registers), and
different standard interconnect topologies [13] can easily be imported and modified.

3.3.2 Generating Interconnect Hardware. We generate interconnect hardware by following these
rules:

• Every edge is a directed wire connection.
• Vertices with more than one incoming edge generate multiplexers.
• Multiplexer select bits follow the incoming edge ordering.
• Vertices with special hardware attributes (e.g. a pipeline register) generate that hardware.

Canal also verifies structural correctness by comparing the connectivity of the generated hardware
(from the RTL) with the original abstract graph using standard graph isomorphism algorithms [56].

ACM Trans. Embedd. Comput. Syst., Publication date: July 2022.



12 Koul and Raina, et al.

Canal does not perform hardware optimizations, and we rely on the Verilog synthesis tool (Design
Compiler) to optimize the interconnect logic during synthesis.

Utilizing Canal to design our interconnect, we can specify the switchbox and connection topology,
number of routing tracks, and pipeline register placement for a given interconnect. These choices
affect the quality of routing and pipelining, and therefore the maximum clock frequency at which
an application runs on the CGRA. Canal then generates the relevant collateral needed for P&R and
bitstream creation as described in the next two subsections.

3.3.3 Generating Routing Graph for Place-and-Route. Canal mechanically transforms the abstract
graph into a routing graph required by the P&R tool to map the application dataflow graph onto
precisely this instance of generated hardware. It also verifies the structural connectivity of the
routing graph against the original abstract graph, and includes timing-related information (e.g.
wire delays) in the routing graph for timing-driven P&R.

3.3.4 Generating Configuration Bitstream. The output of the place-and-route tool is a routing
result that describes which connections must be made (in the reconfigurable interconnect) in
order to implement the application dataflow graph. Canal takes the routing result and generates a
configuration bitstream that configures these connections on the generated interconnect hardware.

4 ACCELERATOR ARCHITECTURE
Our CGRA [5] is composed of processing element (PE) and memory (MEM) tiles. Each tile has a
core (PE or MEM) and interconnect components (five horizontal and five vertical bi-directional
routing tracks, one switch box that routes all core outputs, and one connection box for each core
input) which connect it to surrounding tiles. The PE, MEM and interconnect are specified in the
PEak, Lake and Canal DSLs respectively, and composed together using magma. The CGRA is a part
of a system on chip (SoC) with a processor that drives applications on the CGRA. The SoC has four
levels of memory hierarchy. Each PE has a small register file, the lowest level (L0) of the hierarchy.
The MEM tile is at level one (L1). The CGRA is fed by the global buffer (L2), which is used for both
bitstream configuration and streaming data in and out. Finally, the SoC is connected to an off-chip
DRAM (L4). Each level of the memory hierarchy on the SoC is not a cache but rather implements the
streaming memory abstraction described in Section 3.2 with software-programmable address and
schedule generators, which can be targeted by our compiler. In the subsections below, we describe
a baseline design for each block in our system, and build upon that design with our architectural
contributions. Three key points of novelty are: (1) unique implementation of complex BFloat16
operations using several processing elements and memories, (2) memories optimized for the affine
nature of access patterns in dense linear algebra applications, and (3) a specialized network for
dynamic partial reconfiguration in the global buffer that allows fast application switching (3.5𝜇s)
and multiple applications to run simultaneously.

4.1 Processing Element (PE) Core
Our baseline PE core consists of a 16-bit datapath that supports both the 16-bit integer (Int16) and
16-bit brain float (BFloat16) operations listed in Figure 8. A 1-bit datapath is driven by comparison
operations or lookup tables (LUTs) to control operations in other PEs. To implement complex
BFloat16 operations (e.g., sine), we use multiple PEs with LUTs programmed in MEM tiles. For
example, for non-local means (NLM) application, this optimization avoids the latency overhead
of having the CPU perform these computations (29.7x speedup) and avoids the area overhead of
including the complex BFloat16 operations in each PE. On top of this baseline architecture, we
data gate energy intensive operations when they are not configured for use, as shown in Figure 8.
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Fig. 9. Architecture of memory (MEM) core [5] and impact of energy and area optimizations.

Additionally, each PE contains a 32×16-bit register file, as the lowest level of the memory hierarchy
for applications with heavy data reuse such as neural networks.

4.2 Memory (MEM) Core
Our MEM architecture is specialized for dense linear algebra applications, which demonstrate
affine access patterns. A baseline memory core consists of a narrow-width SRAM (width equal
to the word-with of the datapath) with a simple affine function implementation (for example,
𝑠𝑥 ∗𝑥 + 𝑠𝑦 ∗𝑦 + offset) for generating the read and write address and enable signals. To improve this
baseline architecture, instead of a narrow-width SRAM, a wide-width SRAM is used to increase the
number of effective ports and to reduce access energy [53]. For example, using a 512×64-bit SRAM
in the MEM core decreases the energy per access per byte by 2.0× from 1.65 pJ to 0.81 pJ when
compared to a 16-bit wide SRAM with the same capacity. Since we are using a wide-width SRAM,
two serial-in, parallel-out (SIPO) and two parallel-in, serial-out (PISO) modules interface between
the SRAM and the smaller-width datapath, supporting two input and two output ports. Further
area optimizations are shown in Figure 9. First, sharing the configuration registers across address
and schedule generators for the SIPOs, PISOs, and SRAM leads to 15% reduction in area. Second,
replacing multipliers by adopting recurrence relations (as shown in Figure 13) to implement the
affine functions in the address and schedule generators reduces area by another 39%. Finally, we
add hardware to support memory tile chaining, which allows the compiler to map buffers in the
application that exceed the capacity of a single MEM tile.
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4.3 Interconnect
Both PE and MEM cores are connected over two island-style data interconnects, one for routing
16-bit signals and another for 1-bit signals. Figure 10 shows how switch boxes (SBs) and connection
boxes (CBs) connect a tile’s core to the data interconnect. SBs route data to and from tiles over 5
incoming and 5 outgoing 16-/1-bit routing tracks in each direction. Internally, SBs use the Imran
topology [32], which “rotates” track numbers (i.e., IW2 links to ON3 mux instead of ON2 and so
on) to increase routability. SBs also optionally pipeline data. CB muxes select input data for the
core from the 20 routing tracks, and one CB is instantiated for each input.
Our CGRA also has tile-level power gating. This allows application P&R to turn off tiles that

are not in use for a given application, eliminating leakage power consumption. To avoid the large
overhead of adding isolation cells, we re-purpose the multiplexers already present in the SBs and
CBs to provide isolation at power domain boundaries as shown in Figure 10 (right). Since all data
going into a tile goes through an SB or a CB, instead of isolating all signals leaving an off domain,
we isolate all signals entering an on domain [40]. This optimization reduces the area overhead of
power domain boundary protection from 9% to 1%.

4.4 Global Buffer
The global buffer (GLB) is situated in between the DRAM and CGRA in the memory hierarchy
and serves the purpose of configuring the CGRA and streaming in and out data. It is composed
of global buffer tiles, each corresponding to two columns of the CGRA as shown in Figure 11.
Each global buffer tile is composed of two SRAM banks, a load DMA (direct memory access), a
store DMA, AXI, JTAG, and configuration switches to move data and configuration to and from
the SoC, a ring switch to chain tiles for increased capacity, and an interconnect, which streams
16-bit words into the array. A baseline design would consist of one global buffer for data only,
a separate configuration controller, and a 192 KB configuration buffer (two times the size of the
CGRA configuration for double buffering).

Optimizations added to the global buffer include supporting fast dynamic partial reconfiguration
(DPR), allowing flexible mapping of application kernels onto partial regions in the CGRA. Figure 11
shows how the GLB tiles not only stream data, but also program partial bitstreams into the
CGRA through a specialized configuration network. This allows the global buffer to double as a
configuration memory and controller, reducing the 3.91mm2 baseline design to a 3.77mm2 design
with a single global buffer and a specialized configuration network. Additionally, a user can set the
configuration network to allow one GLB tile to broadcast the bitstream to all CGRA columns, one
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AXI-Lite DPR DPR Improvement

Peak throughput (MConfigs/s) 92.5 2345 25.3× ↑
Full CGRA configuration time (19824 registers) (𝜇s) 214.3 8.5 25.3× ↓

Full CGRA configuration energy (mJ) 105.6 4.6 23.1× ↓
Application configuration time (Harris) (𝜇s) 31.8 1.53 20.7× ↓

Fig. 12. Measured results for dynamic partial reconfiguration (DPR).

GLB tile to multicast to one or more columns, or multiple GLB tiles to unicast to their corresponding
columns. Within the CGRA, the configuration interconnect distributes (32-bit address, 32-bit data)
bundles vertically down each column and has a set of pipeline registers for higher configuration
clock rates. This enables fast and flexible partial reconfiguration of the CGRA. Additionally, the
GLB has the option to chain several tiles for applications that are data intensive. This allows an
application that does not require a high input bandwidth to still access the capacity of the entire
GLB. Figure 12 shows the impact of leveraging DPR to configure all CGRA partial regions in parallel,
resulting in over 20× higher performance compared with configuring individual tiles through the
system interconnect using the AXI-Lite protocol.

4.5 System on Chip
Figure 1 shows our system on chip (SoC) architecture. It contains the CGRA, GLB, and a processor
(ARM Cortex M3 CPU), with an additional 128 KB of SRAM. The blocks on the SoC communicate
over an ARM CoreLink NIC-400 system interconnect. Two DMA engines efficiently transfer data
on and off chip over an ARM Thin Link (TLX) interface (48-bit) to and from a DRAM. Finally, there
is also a peripheral subsystem to support interrupts, clocks, and UART. The CGRA accelerates the
application, using the global buffer to store the input, output, and intermediate data. The CPU
directs applications running on the CGRA, configuring the global buffer into different modes,
sending the bitstream and input data to the GLB, and transferring the data out of the global buffer
when the application is complete.
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Fig. 13. Flow of a simple example Halide application (brighten then blur) through our compiler. The Halide
application goes through scheduling which produces an intermediate representation with statements enclosed
by loop nests. These loops are then fused to bring consumer statements as close as possible to the producer
statements to minimize the amount of intermediate buffering. Buffer extraction then generates a dataflow
graph of compute kernels and buffers, which is finally mapped to hardware PEs and MEMs on the CGRA.

5 APPLICATION COMPILER
The role of the application compiler is to lower an application onto the CGRA hardware. This
involves scheduling (e.g., tiling, unrolling), mapping logical operations onto physical hardware
primitives (PEs and MEMs) that implement those operations, placement and routing on the CGRA
interconnection network, pipelining for higher performance, CGRA bitstream generation given the
final routing result, and finally code generation for the application processor.

5.1 Scheduling
Halide [44] is a multi-dimensional array processing language that serves as the frontend of our
toolchain. Halide splits programs into two parts: the algorithm and the schedule. The algorithm
specifies how to combine algebraic functions to compute the desired output values. The schedule
specifies how to optimize performance or energy on the target hardware. Our compiler allows
the user to quickly evaluate performance versus resource consumption trade-offs. The scheduling
primitives we use are split, reorder, tile, in, and unroll. Split converts a single loop variable
into two nested variables. Reorder changes the ordering between innermost and outermost loops.
Tile is syntactic sugar for splitting and reordering and is commonly used for 2D image processing.
In is used to specify a copy function to create memory hierarchies. This scheduling function
explicitly copies data across the memory hierarchy, such as from a smaller memory tile to a larger
global buffer memory. Unroll is used to remove loops by duplicating compute, which effectively
decreases computation cycles given sufficient spatial resources.
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The scheduling phase includes memory optimization passes that reduce the number of memory
operations that must be considered for mapping. The simplest optimization is to inline constants.
Naïvely, Halide functions with constant values (e.g., a convolution kernel with predetermined
weights) would result in memories in which all updates are constant values. Inlining constants
eliminates these memories. Second, iterative memory updates can be fused into a single update. For
example, Halide has reduction domains to specify a series of read-modify-write operations (e.g., a
convolution takes the sum of an 𝑁 × 𝑁 window). In the convolution example, Halide combines
this computation, allowing us to use PEs connected in a multiply-add chain or tree, and only the
final accumulated value is written to a memory. Then, the memory mapper is only required to
schedule a single memory update. In Figure 13, we see that the Halide algorithm and schedule are
transformed after scheduling, to a set of nested loops. The blur value is created using a single
update consisting of four adds. Finally, we express LUTs as compute units in the compute graph
rather than as memories, since they cannot be statically analyzed as they have data-dependent
addresses for reading and writing. The compiler removes these LUT memories from the list of
memories to be statically scheduled. In the compute mapping stage, these are mapped such that
compute tiles dynamically calculate the address to read from or write into memory tiles.

The output of the scheduling phase is a compute graph emitted as a list of modules represented
in the CoreIR JSON format (see example CoreIR graph visualized in Figure 2), as well as loop nests
containing the memories’ behavior which are fed into Clockwork [19], a tool that further optimizes
memories using polyhedral analysis for higher performance.

5.2 Mapping
The mapping stage accepts a dataflow graph of logical operations (in CoreIR) that represents each
application kernel. These logical operations must be mapped onto physical hardware units which
can then be configured to implement the operations. The mapping phase includes compute mapping
onto processing element (PE) tiles and memory mapping onto memory (MEM) tiles.

5.2.1 Compute Mapping. In the compute mapping stage, the logical operations to be transformed
are primitive operations (e.g., adds, shifts, and multiplies). Using the method described in Sec-
tion 3.1.3, we automatically generate a table of rewrite rules from the latest hardware specification
of the PE. Each logical operation has a corresponding PE configuration that implements that opera-
tion. Additionally, we also include rewrite rules for complex operations supported by the PE that
can be described as a combination of multiple primitive operations, such as a fused multiply-add
operation. Figure 14 (a) shows how the compute mapping algorithm iteratively considers each
rewrite rule and applies it to the nodes in the application graph until the graph of logical compute
operations is transformed into a graph of PEs. A rewrite rule describes how to change a node in
the application from a logical operation into a PE, so the application of a rewrite rule is simply
replacing a logical operation node with a PE node. For example, in our rewrite rule table, we would
have an entry for an add operation, and the corresponding PE configuration implementing an add
operation. In the application, we would apply this rewrite rule by replacing each add operation
with the PE configured to implement the add operation. Compute mapping is complete when no
logical operations remain to be mapped. In Figure 13, the CoreIR dataflow graphs of the brighten
and the blur compute kernels get transformed into their mapped versions through the application
of rewrite rules corresponding to multiplication, addition and shift operations. Note that the order
in which rewrite rules are considered dictates which will be applied first, so we ensure that rewrite
rules that result in higher PE utilization (e.g. multiply by a constant) are considered before other
rules (e.g. multiply).
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Fig. 14. Compute mapping and packing stages in the compilation flow. (a) Compute mapping transforms a
graph of logical operations into a graph of physical PEs using rewrite rules automatically generated from the
PEak specification. (b) The P&R packing stage combines registers, constants, and operations into PEs.

5.2.2 Memory Mapping. In the memory mapping stage, the buffer abstraction described in Sec-
tion 3.2 is extracted from the loop nest generated from Halide and is further mapped down to a
concrete hardware implementation using the memories described in Sections 4.2 and 4.4. Memory
mapping contains two separate steps, buffer extraction and buffer mapping. The first step uses
polyhedral analysis to turn the multi-dimensional iteration space of a Halide-generated loop into
one-dimensional cycle times at every buffer port. The second step takes the physical memory’s
resource constraints into consideration and recursively breaks the abstract buffers into simpler
ones that can be directly mapped down to our CGRA.
As seen in Figure 13, the Halide-generated loop nest describes computation as operations on

arrays over the iteration domain defined by index variables. Each read from and write to an array
is bundled with a unique port on the corresponding buffer. For each port, the buffer extraction step
computes an iteration domain, an access map that must be implemented by an address generator
and, most importantly, a cycle-accurate schedule that maps operations to the cycle time when they
will be executed in hardware. By using polyhedral analysis [19] to compute the data dependencies
between operations, the memory extraction step fuses the loops and thus brings the consumer close
to the producer yielding pipeline parallelism. For instance, in the brighten then blur application
in Figure 13, the brighten operation produces an intermediate result which is further consumed
by the 2×2 blur kernel. Polyhedral analysis fuses the loops and starts the blur operation as soon
as we get the second pixel on the second row (cycle 65).
After buffer extraction, the memory mapper calculates storage duration from the access infor-

mation of each port, from which it can infer the memory bandwidth and capacity requirements.
The buffer mapping step derives a feasible and efficient memory implementation for each abstract
buffer. The buffer mapping step may run into situations where each physical memory may not
have enough bandwidth or capacity or may be using an SRAM macro with a width that is higher
than the width of the data. We address these challenges in the following ways:

• Bandwidth: Each physical memory on the accelerator may not have enough bandwidth to
support computation without stalling. To address the need for high bandwidth, the buffer
mapping stage has two strategies: shift register optimization and banking. Shift register
optimization is possible when the delay between two ports is constant and the set of values
that appear on the source subsumes the values that appear on the destination. For example,
in Figure 13, the brighten buffer has constant delays of 0, 1, 64 and 65 between the write
port and the four read ports respectively. Remaining ports that cannot be served by shift
registers are served from separate banks of memory with different address generation.

• Capacity: To map buffers with higher capacity than one memory tile on the CGRA, we chain
several memory tiles into a single logical buffer. Our compiler statically analyzes the schedule
and access map of each memory tile in the chain and sets the configuration accordingly.
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• Wide physical memories: To make efficient use of a physical memory with a wide SRAM,
the access pattern of the buffer is broken into sub-sequences with the same length as the
SRAM width. The compiler strip-mines the innermost loops of the original program and adds
wide loads and stores which are further mapped to the SIPO-to-SRAM and SRAM-to-PISO
transfers shown in Figure 9.

Finally, this mapping produces configuration bits for each physical memory in the design.

5.3 Placement and Routing
Our compiler performs efficient power-domain-aware packing as well as placement and routing
(P&R) of application kernels onto the CGRA. The P&R flow is similar to that of an FPGA with
enhancements for power domain management. Utilizing fine-grained power domains, as described
in Section 4.3, gives the P&R tool the freedom to choose any P&R topology. To select which tiles
should be activated, the tool iteratively places and routes the application kernel onto the CGRA
while trying to minimize the number of on tiles. Next we describe the three phases: packing,
placement, and routing.

5.3.1 Packing. Figure 14 (b) shows how the packing stage groups operations into PE tiles, memory
tiles, and the pipeline registers that are available in the interconnect. For example, if the packer
analyzes the application graph and detects a pipeline register in front of a PE configured to perform
an arithmetic operation, it will pack the register into the PE (i.e., the register available within the
PE shown in Figure 8). Additionally, instead of creating PE tiles for constants in applications, we
pack those constants into the registers available in the PEs that consume the constants.

5.3.2 Placement. Placement is performed in two parts: global placement and detailed placement.
We perform analytical global placement, using the standard conjugate gradient method (similar to
APlace [23]) on the summation of the cost of each net (Equation 1), where each net is a connection
between two tiles. The first part of the cost function is the half-perimeter wirelength (HPWL)
between two tiles. In our algorithm, L2 distance is used as an approximation for HPWL. This
approximation is used to reduce tool runtime. The second part of the cost function ensures that the
memory tiles are placed correctly. Since the CGRA consists of both PE and MEM tiles, the memory
placement after each iteration might not be legal and must be legalized to the closest memory
column. Such legalization produces sub-optimal results and slows down the convergence. To speed
up the solving process, we apply potential functions as described in [7] on the MEM columns so
that MEM nodes can be more easily placed into MEM tiles.

𝐶𝑜𝑠𝑡𝑛𝑒𝑡 = 𝐻𝑃𝑊𝐿𝑛𝑒𝑡,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 +𝑀𝐸𝑀𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (1)

After global placement, we perform simulated annealing (SA)-based detailed placement [52]. We
cannot use SA at the global placement stage, because it does not converge. However, after global
placement, SA is a good fit for power-aware placement because a power-related cost can be directly
added to the total annealing cost. In particular, because tiles that only serve to implement pass-
through routing must still be powered on, potentially long routes must be taken into consideration
during placement. For the cost function for SA, we modify the global placement cost function
by calculating the real HPWL, removing the potential function, and adding a new factor (see
Equation 2) that, at each step, approximates the number of tiles used for routing a net (as an area)
and penalizes the addition of new pass-through tiles. 𝛾 is a hyperparameter. The intuition behind
the new adjusted term is that after each new placement, if the net covers a new area on the grid
that has not been covered by any existing nets yet, then additional tiles are likely to be used as
pass-through tiles. Using this cost function allows us to reduce the number of pass-through tiles
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and thus the number of powered-on tiles by encouraging the intersection of a new net area with
existing net areas. An example is shown in Figure 15.

𝐶𝑜𝑠𝑡𝑛𝑒𝑡 = 𝐻𝑃𝑊𝐿𝑛𝑒𝑡 − 𝛾 × (𝐴𝑟𝑒𝑎𝑛𝑒𝑡 ∩𝐴𝑟𝑒𝑎𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔) (2)

5.3.3 Routing. We use an iteration-based routing strategy described in [47] where over-congested
nets are ripped up and re-routed to achieve a final legal result. In each iteration, we first compute
the slack on each net and determine its timing criticality given global timing information. Next, we
perform a routing pass based on the A* algorithm, a widely-used path-search algorithm for weighted
graphs. In this algorithm, costs factors are adjusted dynamically based on historical usage, net
slack, and current congestion. The intuition is to balance routing congestion and timing criticality.
A net with positive slack can use less-congested routes to provide space for timing-critical nets. We
also adjust the wire cost functions to discourage utilizing wire tracks in unused tiles and to favor
tracks in existing tiles. For example, when the first track in a tile has been chosen for routing, we
dynamically reduce the cost of other wiring tracks in the same tile. These modified wiring costs
decrease the number of tiles used. We finish iterating when a legal routing is produced.

5.4 Pipelining
The application compute kernels consist entirely of combinational logic, spanning from inputs
to outputs. Adding pipeline registers along these long paths can greatly increase performance.
An effective pipelining approach will balance delays across all pipeline stages and account for
propagation delays (derived from static timing analysis in the physical design flow) through both
the functional units and the interconnect components.

We add registers at the compute mapping stage and retime them during P&R. First, registers are
added before each PE in the compute kernel. Registers are also added before and after the input
tiles. However, naively adding pipeline registers before each PE results in imbalanced data waves
(i.e., some paths through the compute kernel now take more cycles than others). To correct for this,
every path in a compute kernel must span the same number of stages. We implement an algorithm
that traverses every path in the compute kernel from input nodes to output nodes. For each path,
the algorithm tracks the number of registers, which represents the number of cycles to reach a
particular PE. For each PE, if one input arrives in fewer cycles than another input, the algorithm
inserts registers to match the delays. When complete, all paths in the compute kernel are traversed
in the same number of cycles.

Fully pipelining every functional unit in the compute kernel ensures that the critical path is never
more than the delay through one PE. However, detailed VLSI modeling of our architecture suggests
that the delay through a PE is roughly 3.5× the delay of one hop in the interconnect. Therefore,
long routes (i.e., more than three hops) can easily become critical. As a result, retiming is necessary
during P&R to minimize these long routes. As described in Section 5.3, registers in the application
graph are packed into PEs whenever possible, so most pipeline registers are automatically packed
into PEs. However, chains of additional pipeline registers must be placed in the routing fabric itself
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(see registers available in the switchbox in Figure 10). P&R models the delay along each route and
retimes (i.e., moves) each register along the route until the critical path is minimized. Section 8
shows how pipelining significantly improves the performance of our applications.

5.5 CGRA Bitstream Generation
CGRA bitstream generation takes the output of the P&R stage and converts it into the corresponding
configuration bits for the CGRA. The bitstream is sent to the CGRA through the GLB as described
in Section 4.4. Below are the steps for this conversion.

(1) Generate the routing result (automated by Canal, see Section 3.3.3).
(2) Perform a pass over the routing result to reduce switching power, utilizing a routing fix

which alters the default routing to make sure unnecessary data is not routed over the CGRA.
Specifically, this routing fix makes sure unused SBs do not unnecessarily forward switching
data, by configuring them to forward non-switching nets.

(3) Convert this altered routing result into a bitstream.
(4) Introspect each tile’s core and determine whether it is a PE or a MEM core, and produce the

bitstream for the tile.
(5) Finally, do another pass to select unused tiles in the array and generate the power-gating

configuration to disable them in the bitstream.

5.6 Application Processor Code Generation
The application processor invokes the accelerator (CGRA) for each kernel in an application, and
within each kernel for each tile of an image. The accelerator executes the target kernel but is not
designed to efficiently run the remaining general-purpose code. Therefore, in the Halide schedule
we designate portions of the code to be accelerated on the CGRA and for the remaining portions
we generate application processor code using the base Halide compiler.

To identify the boundaries between the application processor and the accelerator, the user
adds stream_to_accelerator and hw_accelerate calls within the Halide schedule. stream_to
_accelerator is used at each input to designate input values to be copied from the DRAM to
the accelerator’s global buffer. The hw_accelerate call determines the loop level to offload to the
accelerator. An example of these calls is shown in Figure 13, where both the brighten and the
blur kernels are executed on the accelerator and the input image is streamed into the accelerator
in tiles of 64×64 pixels.

6 RUNTIME
Three main components participate in end-to-end execution of an accelerated application: (1)
an application processor capable of running the non-accelerated portion of an application and
managing the accelerator life cycle and memory, (2) the CGRA fabric that is responsible for running
hardware-accelerated functions, and (3) a control processor for the CGRA that configures the CGRA
and orchestrates intermediate data movement. To allow interactions between the Linux-capable
application processor and the RTOS-based control processor, we provide a set of software libraries
and operating system drivers, collectively referred to as the runtime. From an implementation
perspective, this system-level runtime is split into two smaller runtimes, one for the application
processor and the other for the control processor.
Both the application and control processor runtimes are similarly architected: they consist of

two pieces: (1) a static portion that does not need to change across accelerated applications, and
(2) a dynamic and typically application-specific configuration. The static portions of the runtimes
provide services such as buffer allocation, memory transfer, application life cycle management,

ACM Trans. Embedd. Comput. Syst., Publication date: July 2022.



22 Koul and Raina, et al.

Host 
Code

RDAI 
API

RDAI Host 
Runtime

RDAI Platform Runtime 0

RDAI Platform Runtime 1

RDAI Platform Runtime N
……
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runtime.

etc. In essence, these static parts of the runtimes provide the supported "functions" in the system
whereas the dynamic/application-specific configurations provide the parameters to those functions.
Application-specific configurations for the application processor include the interface description
of the generated accelerator (number of input/output ports, sizes of the buffers backing those
inputs/outputs, and the accelerator identification information). On the control processor side, the
application-specific configuration contains the accelerator bitstream, a description of the loop-nest
containing the accelerated kernels from the Halide program, and some system-level metadata used
to configure communication channels between the application processor and the control processor.
The accelerated-kernel loop-nest is used by the control processor to schedule data movement
between the system memory and the CGRA.

6.1 Application Processor and RDAI
The application processor runtime interfaces with both the non-accelerated portion of a Halide
program — in the remainder of this text, we will refer to this code as the Halide C/C++ code —
and the control processor. The interface with the Halide C/C++ code is standardized using an
application programming interface named reconfigurable device access interface (RDAI). RDAI
can be viewed as a subset of the OpenCL runtime API v3 [24] that can be decomposed into three
essential layers: a C/C++ API used by the application to target the host runtime, a host runtime,
and one or more platform runtimes. This layering of the RDAI system supports agility in two ways:
1) Device-specific functionality is pushed down the hierarchy as much as possible. This minimizes
the number of sites where changes are needed when a new device/accelerator is available. 2) Reuse
of the upper-layer services essentially means no changes are needed at the interface between the
host Halide C/C++ code and the runtime.
As shown in Figure 16, the RDAI API decouples the application code from the runtime. Each

execution environment contains a single host runtime. This host runtime is a shim layer that is
responsible for dispatching API calls to appropriate platform runtimes. The RDAI API itself is made
of three groups of API calls: 1) management and life cycle APIs used to identify the execution
environment and to start/stop the accelerator, 2) memory management APIs used to provision and
migrate data buffers, and 3) tracing and error management APIs. The host runtime is a collection
of software libraries and operating system drivers responsible for safely crossing the operating
system boundary, allocating/de-allocating contiguous memory buffers in the shared memory space,
mapping/unmapping buffers in user space, and managing queues for platform runtimes.

6.2 Platform Runtime
Platform runtimes are the true workers in the RDAI world. They have intimate knowledge of the
target platform on which accelerated functions run. Examples of platforms are CGRAs, FPGAs, and
GPUs. While there can be at most one host runtime in an execution environment, multiple platforms
can coexist in the same environment, each being uniquely designated by a vendor-name-version
triple. Platform runtimes provide a unified abstraction over the differing underlying hardware
platforms. Most of the services/APIs exposed by the platform runtimes are naturally similar to
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Fig. 17. A modular approach to physical design flows – (a) Traditional Tcl-based scripts make code
difficult to reuse. Modularity allows for reuse, while flow assembly in a high-level language (e.g., Python)
enables new language features and the chance to augment the flow with agile mechanisms. (b) Our SoC
includes non-trivial physical design complexity that encourages reuse across blocks within a generation as
well as future iterations of the evolvable SoC.

those found in OpenCL: command queues, management of kernel objects, data movement between
shared system memory and device memory, etc. In the two-processor configuration (application
processor and control processor) for our CGRA-based SoC, the platform runtime forms yet another
indirection layer standardizing different communications schemes with the underlying control
processor. Communication between the platform runtimes and the control processor allows actions
to be triggered in the CGRA subsystem. The supported channels for this communication are
hardware mailboxes, software mailboxes, memory-based command queues, and custom protocols
carried over serial links (e.g., UART).

6.3 Control Processor
The ARM Cortex-M3 control processor turns the CGRA subsystem into a master device capable
of initiating memory transactions at the system level. On one hand, this relieves the application
processor of the task of multiplexing and orchestrating all the different execution schedules for
the various hardware platforms in the system. On the other hand, it also simplifies the design of
the control processor task scheduler. That is, the control processor is fed the loop nest schedule as
a dynamic configuration information and it uses that information to 1) schedule DMA transfers
between global system memory and CGRA’s global buffer, 2) prefetch data buffers, and 3) to report
execution status back to its designated platform runtime. The control processor’s runtime is split
into a generic scheduler and a CGRA-specific support library. The scheduler is static (i.e., it does not
change across different CGRA architectures). Software patches to hardware bugs or architectural
changes in the CGRA are directly implemented in the control processor’s CGRA support library.

7 ACCELERATOR IMPLEMENTATION
Within an evolving accelerator-compiler co-design flow, each silicon prototype is not an isolated
effort and is likely to be followed by future iterations. Unfortunately, tapeouts in advanced technolo-
gies involve tremendous effort, and non-recurring engineering costs have only continued to rise.
Physical design (PD) methodologies for evolvable flows must prioritize support for efficient code
reuse from previous iterations, even as scripts are aggressively customized for specific technologies,
vendor libraries, and design considerations.
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We build our design with mflowgen [6], a new tool that adopts an agile approach designed to
support high code reuse based on modular flow generators coupled with a flow consistency and
instrumentation (FCI) layer embedded in Python. Unlike existing parameterized Tcl templates and
generators offered by commercial EDA vendors, the goal of a modular flow generator is not to emit
Tcl but to provide the necessary abstractions to compose and reuse code. Figure 17 (a) shows how
a modular flow generator composes modular nodes from both generic sources (both technology-
and design-agnostic) and custom sources. Nodes may be parameterized and can capture large code
blocks (e.g., synthesis, power) or lightweight operations (e.g., glue scripts) with no restriction on
the language used. Because nodes from different sources can be inconsistent with each other when
composed, we introduce an FCI layer that statically analyzes the constructed graph and includes
mechanisms to check for properties across a distributed code base (e.g., heights of different tiles in
the CGRA must match) that must hold for nodes to compose. The layer also instruments nodes to
support run time assertions and to enable sharing pre-built nodes across a team.
Figure 17 (b) lists the physical design parameters of our silicon prototype. The SoC was con-

structed hierarchically bottom-up with tiles (i.e., PE, memory, and global buffer tiles) abutted to
form arrays (i.e., CGRA compute array, global buffer array), which were then placed into the full
chip along with other blocks (i.e., processor subsystem, global controller, peripherals). Physical
design scripts and features — for example, code to implement power domains — were modularized
into nodes, and each hierarchical block constructed a Python graph representing its physical design
flow. We achieved significant code reuse with 80% of lines of code reused either from custom
nodes designed for previous iterations of the SoC (50% of codebase) or from a common library of
technology- and design-agnostic nodes (30% of codebase).

8 EVALUATION
In this section, we make the case that an agile approach to compiler-accelerator co-design can
deliver competitive efficiency and performance for modern workloads. We evaluate the performance
and energy consumption of our end-to-end system as well as the iteration time to run the complete
agile toolchain. Finally, in the last subsection we explore different PEs, MEMs, and interconnects and
evaluate them, demonstrating the flexibility of our system. For evaluation, we design the complete
SoC shown in Figure 1 with the parameters listed in Table 1 and implement it in a commercial 16
nm technology.

8.1 Applications
We evaluate on the image processing and computer vision applications listed in Table 2. The
applications are written in Halide [39], and we apply a set of techniques including scheduling
optimizations, unrolling, and pipelining to demonstrate how each application can be progressively
tuned to improve performance, energy, and resource utilization on our end-to-end system.

8.2 Impact of Scheduling Optimizations
We first quantify the impact of the scheduling optimizations described in Section 5.2.2 that leverage
polyhedral analysis to transform loops and create more efficient schedules. Without these opti-
mizations, we obtain mappings with high latencies and a large number of MEM tiles, and these
inefficiencies are magnified by later optimizations that unroll and pipeline each application kernel.
Figure 18 shows significant reduction in both the number of memory tiles (2.3×–9.1×) and the
application execution latency (7.6×–34.7×) as a result of fusing loops and scheduling producer and
consumer statements closer together in time.

ACM Trans. Embedd. Comput. Syst., Publication date: July 2022.



AHA: An Agile Approach to the Design of Coarse-Grained Reconfigurable Accelerators and Compilers 25

SoC Parameters
Global Buffer Size 4 MB
Global BufferWordWidth 64 bit
CGRA Dimensions 32×16
Number of PE Tiles 384
Number of MEM Tiles 128
MEM Tile Buffer Size 4 KB
PE/MEMWord Width 16 bit
Table 1. SoC parameters.

Application Description Image Size Tile Size
Harris Harris corner detection 1530×2554×3 64×64×3
Blur Separable 3×3 image blur 6400×4800 56×62
Camera Processes raw image into RGB image using

hot-pixel suppression, demosaicing, color
correction, gamma correction, and contrast
enhancement

2568×1928 64×64

Unsharp Enhances local contrast by isolating the
high-frequency content of an image, and
combining it with the original image

1536×2560×3 64×64×3

Table 2. Applications used for SoC evaluation.

9.1x
2.3x

6.8x

4.3x

34.7x 28.4x 26.9x

7.6x Before Scheduling 
Optimization

After Scheduling 
Optimization

Fig. 18. Impact of scheduling optimizations from Section 5.2.2 on memory tile usage and application latency.

Fig. 19. Measured versus ideal application performance with increasing parallelization (loop unrolling).

8.3 Impact of Unrolling
Unrolling the outer loop around the application kernel allows for increased utilization of CGRA
resources. An input tile is unrolled across the GLB tiles and streamed into the CGRA to produce an
unrolled output tile. To show the benefit and overhead of such parallelization, we show application
performance with different unroll factors for both Blur and Unsharp in Figure 19. The maximum
amount of unrolling is determined by either the I/O (maximum of 16 ports between GLB and CGRA)
or the number of PE and MEM tiles and routing resources needed by the application kernel. For
Blur, we unrolled the kernel by 2, 4, 8, and 14. For Unsharp, we unrolled the kernel by 2 and 3.
The ideal runtime is calculated by taking the result without unrolling and dividing by the unroll
amount. As kernels are further parallelized, there is a slight scheduling overhead introduced by
the compiler, but the measured performance closely tracks ideal performance. Figure 20 visualizes
the CGRA resource utilization for Blur with unroll = 1 and unroll = 14, demonstrating how a
large unroll factor scales utilization. Figure 21 applies maximum unrolling to each application
kernel and shows a significant improvement in runtime over an unroll = 1 baseline. Note that
since unrolled applications have higher utilization, the power consumption increases, but there is a
significant runtime improvement (2.0×–12.1×) resulting in 1.1×–7.1× lower energy consumption,
and a 2.2×–86× improvement in energy delay product (EDP).
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Fig. 20. Visualization of CGRA resource utilization for Blur with unroll = 1 (left) and unroll = 14 (right),
showing how a large unroll factor scales utilization.
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Fig. 21. Runtime, energy and energy delay product (EDP) for applications unrolled fully versus unrolled by 1.

8.4 Impact of Pipelining
Pipelining the application graph as described in Section 5.4 allows our design to run at significantly
higher frequencies. The potential frequency benefit of pipelining can vary widely and is limited
by the need to balance delays across data waves. Specifically, every pipeline register added to the
critical path to increase frequency will delay the arrival of the data at the destination tile. All other
data arriving at that tile must be similarly delayed by one cycle to preserve functionality. When
all available pipeline registers along a path are already allocated and in use (e.g., in switch boxes,
in PEs), the application kernel cannot be pipelined any further, without performing pipelining
and placement and routing iteratively. Such iterative placement and routing with pipelining is our
immediate future work, and it will allow us to achieve frequencies closer to 1 GHz (as evidenced by
the individual operation delays on our CGRA shown in Figure 22). Figure 24 shows how a single
pass of pipelining improves runtime by 5.5×–24.2×, energy consumption by 1.7×–9.1× and EDP by
9.5×–221× for the different applications.

8.5 Comparison with CPU and GPU Platforms
The final resource utilization statistics for each application can be found in Figure 23. We compare
our design against implementations from [39] on CPU and GPU platforms (ARM Cortex A57 CPU, a
single-core Xeon CPU, a multi-core Xeon (12 cores) CPU, and a Tesla K40 GPU). [39] uses the Halide
auto-scheduler to generate highly optimized code that maximally utilizes SIMD and multi-core
capabilities of these platforms. Compared to the ARM Cortex A57, the Intel Xeon CPU (1-core), Intel
Xeon CPU (12-core), and the NVIDIA Tesla K40 GPU, our design performs 130×–887×, 561×–3878×,
291×–986×, and 12×–152× better in terms of EDP, respectively. Our work shows that an agile
approach to compiler-accelerator co-design can deliver competitive efficiency and performance for
modern workloads.
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Op Delay (ns) Op Delay (ns)
SwitchBox 0.14 Abs 0.49

Add 0.52 FpAdd 0.61
Sub 0.48 FpMul 0.75

UMult0 0.57 FpGetMant 0.41
UMult1 0.67 FAddIExp 0.45
UMult2 0.67 FSubExp 0.52
SMult0 0.59 FCnvExp2F 0.52
SMult1 0.65 FGetFInt 0.36
SMult2 0.70 FGetFFrac 0.56
And 0.55 FCnvSInt2F 0.43
Or 0.57 FCnvUint2F 0.36
Abs 0.49 FCnvSInt2F 0.43

Fig. 22. PE operation delays.

Application Blur Unsharp Camera Harris
Target Output Rate

(pixels/cycle)
14 9 3 2

Temporal
Occupancy

72% 83% 73% 83%

Frequency 360 MHz 260 MHz 320 MHz 380 MHz
# PE / 384 266 303 294 206

# MEM / 128 14 36 34 17
# GLB / 16 14 9 3 6

# 1-bit Routing
Tracks / 10240

69 296 417 226

# 16-bit Routing
Tracks / 10240

1743 1892 1410 791

Fig. 23. CGRA resource utilization for applications.
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Fig. 24. Effect of pipelining on fully unrolled applications.
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Fig. 25. Comparison with CPU and GPU platforms.

8.6 Toolchain Runtime
Iterating on a design in an agile manner requires fast turnaround times. Figure 26 shows that
our toolchain takes less than two minutes for scheduling, compute mapping, memory mapping,
placement and routing (P&R), bitstream generation, and CGRA generation. Application P&R has a
low runtime compared to the rest of the compiler since CGRAs are coarse-grained and our current
P&R tool exits on the first routable result. Compared to physical design, our toolchain is extremely
fast and allows generating new designs quickly.
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Fig. 26. Toolchain runtimes to regenerate a CGRA accelerator spanning from the application and hardware
DSL specifications down to physical layout.

PE Design 1 PE Design 2 PE Design 3
Feature 1 16-bit and 1-bit integer ops 16-bit and 1-bit integer ops 16-bit and 1-bit integer ops
Feature 2 + Floating point ops + Floating point ops + Floating point ops
Feature 3 + Register File + MAC and 3-input add
Feature 4 + Register File
PE Area (𝜇𝑚2) 4523 8806 10095
PE Max Frequency (MHz) 1428 1428 909

Table 3. Specifications of PE designs used for PE exploration.

8.7 Design Space Exploration
Our flexible compiler-accelerator generation framework enables quick design space exploration
of PEs, MEMs, and interconnects. For each exploration, several design points are generated and
benchmarked on a suite of applications. In the following subsections, we demonstrate fast design
space exploration on our suite of image processing applications.

8.7.1 PE Exploration. Two important aspects of PE design are what operations they support and
internal storage options. Therefore, we explore PEs with register files as well as different operation
types: integer, floating point, and specialized operations for image processing applications. We
compare the three PEs shown in Table 3. Design 1 is a baseline PE with 16-bit and 1-bit integer
operations, and floating point operations. Design 2 adds a register file to this PE. Design 3 specializes
the PE for image processing applications by adding multiply-accumulate and three input add
instructions. The area and maximum frequency for each PE are shown in Table 3. The runtime and
resource utilization for our set of image processing applications (each with unroll = 1) are shown
in Figure 27. The register file in design 2 allows us to improve runtime in cases where we can use
the registers files to pipeline data. The only exception is camera pipeline, where pipelining with
register files requires more register files than those on the CGRA, so we use interconnect registers
to pipeline this application instead. Specializing the PE in design 3 reduces PE utilization since
several operations can occur in a single PE. This experiment shows that by utilizing PEak and our
generator/compiler framework, we can quickly compare PE designs on application-level metrics.

8.7.2 MEM Exploration. Our accelerator is designed to take advantage of the affine nature of
addressing in image processing applications. However, there are many options on how to implement
this in hardware. For MEM exploration we compare two implementations of a streaming memory
abstraction: a dual-port (DP) SRAM with optimized address generators, and a single-port (SP)
SRAM with a fetch width of 4. Figure 28 compares the area breakdown for the tile and the resource
utilization. Swapping out the DP SRAM for a 4 wide SP SRAM increases the area per MEM tile by
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Application Design 1 Design 2 Design 3
Harris PE 91 91 80

MEM 6 6 6
Reg File 0 132 122
Reg 87 57 47

Camera PE 306 306 303
MEM 26 26 26
Reg File 0 0 0
Reg 253 253 256

Unsharp PE 101 101 74
MEM 11 11 11
Reg File 0 150 124
Reg 97 75 71

Blur PE 20 20 14
MEM 2 2 2
Reg File 0 28 22
Reg 24 18 23

Fig. 27. PE exploration: Application runtime and resource utilization for three different PEs.

MEM Area SRAM
(1000*𝜇m2) Area (%)

DP SRAM with 20 66
Address Generators
4 Wide SP SRAM with 22 25
Address Generators

Application DP SRAM 4 Wide SP SRAM
Harris PE 103 97

MEM 11 5
Camera PE 331 294

MEM 28 14
Unsharp PE 101 101

MEM 9 6
Blur PE 19 19

MEM 3 1

Fig. 28. Memory exploration: Dual port (DP) SRAM vs. 4-wide single port (SP) SRAM-based memory tiles.

2000𝜇m2, but approximately halves the total memories used, since there is higher bandwidth with
2 input and 2 output ports. Note that this does not have an effect on runtime. In some cases the PE
count also decreases as the P&R tool is able to pack constants or registers into PEs (as described in
Section 5.3.1).

8.7.3 Interconnect Exploration. A key decision in interconnect design is determining the number
of tracks per switchbox. In this experiment we continue to use the Imran switchbox in our fabric,
and sweep over the number of tracks per switchbox on our set of image processing applications
(unroll = 1). Figure 29 shows the runtime and area for each switchbox configuration. As we increase
the number of tracks, the tool may find shorter routes and that may lead to higher frequencies, and
therefore lower application runtimes. As expected, at some point, extra tracks are not used and
will only add an area overhead. Here we see that for some applications going from 3 to 5 tracks
reduces runtime, but after that there is no significant reduction. This demonstrates our ability to
change a hardware knob in our design and quickly evaluate its affect on performance on a suite of
applications.

9 FUTUREWORK
Architects often explore many alternatives when designing an accelerator to achieve the best
performance, power and area trade-offs. They analyze application kernels to find common sequences
of operations that they can make faster or more energy-efficient. This is often done incrementally by
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Harris BlurUnsharp
3 4 5 6 Tracks3 4 5 6 3 4 5 6 3 4 5 6

Camera

Number of Switchbox Area
Routing Tracks (𝜇m2)
3 1278
4 1696
5 2158
6 2534

Fig. 29. Interconnect exploration: Runtime and area for designs with different number of routing tracks.

proposing a design change, implementing it, then reevaluating the efficiency. A major impediment
to design space exploration is implementing the software changes needed to compile the application
to the new accelerator. The techniques we describe make it easy to modify an accelerator using
PEak, Lake and Canal, and automatically derive a code generator so that the application can be
compiled. This enables quick iterative design. Using our hardware-compiler co-design approach,
there is a massive opportunity to automate large-scale design space exploration (DSE) of accelerator
architectures. We will explore these DSE frameworks in our future work, particularly, automating
the PE specification process by analyzing a set of application kernels. Automating the specification
of PEs will allow the designer to quickly converge on efficient PE designs for a set of applications.

Another key direction to further develop our hardware-compiler co-design system is accelerating
sparse applications. To accelerate sparse applications, a few portions of the framework must change:
the front-end language (Halide), static scheduling, and memory design, while the rest of the flow can
be reused. To be more specific, by developing new hardware primitives in conjunction with a new
spatial dataflow IR targeted by a TACO [26] front-end, we can easily swap in sparse components
for their dense counterparts (Halide to TACO), (Clockwork to Concrete Index Notation [25]), (dense
MEM to sparse MEM) and leverage the rest of the existing infrastructure to quickly iterate, test,
and build new, highly reconfigurable chips. We will explore these opportunities in our future work.

10 CONCLUSION
We have demonstrated an agile methodology which automates the co-design of accelerators and
compilers by utilizing the key insight that we can automatically update the compiler as the hardware
evolves. We use domain-specific languages and formal methods to automatically generate both the
accelerator hardware and its compiler from a single source of truth. Our system has the potential
to massively improve productivity of hardware-software engineering teams and enable quicker
customization and deployment of complex accelerator-rich computing systems.
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