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Abstract. The cvc5 SMT solver solves quantifier-free nonlinear real
arithmetic problems by combining the cylindrical algebraic coverings
method with incremental linearization in an abstraction-refinement loop.
The result is a complete algebraic decision procedure that leverages effi-
cient heuristics for refining candidate models. Furthermore, it can be used
with quantifiers, integer variables, and in combination with other theo-
ries. We describe the overall framework, individual solving techniques,
and a number of implementation details. We demonstrate its effective-
ness with an evaluation on the SMT-LIB benchmarks.
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1 Introduction

SMT solvers are used as back-end engines for a wide variety of academic and
industrial applications [2,18,19]. Efficient reasoning in the theory of real arith-
metic is crucial for many such applications [5,8]. While modern SMT solvers
have been shown to be quite effective at reasoning about linear real arithmetic
problems [20,42], nonlinear problems are typically much more difficult. This is
not surprising, given that the worst-case complexity for deciding the satisfiabil-
ity of nonlinear real arithmetic formulas is doubly-exponential in the number
of variables in the formula [14]. Nevertheless, a variety of techniques have been
proposed and implemented, each attempting to target a class of formulas for
which reasonable performance can be observed in practice.

Related work. All complete decision procedures for nonlinear real arithmetic
(or the theory of the reals) originate in computer algebra, the most prominent
being cylindrical algebraic decomposition (CAD) [10]. While alternatives ex-
ist [6,24,40], they have not seen much use [26], and CAD-based methods are the
only sound and complete methods in practical use today. CAD-based methods
used in modern SMT solvers include incremental CAD implementations [33,35]
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and cylindrical algebraic coverings [3], both of which are integrated in the tra-
ditional CDCL(T) framework for SMT [39].

In contrast, the NLSAT [29] calculus and the generalized MCSAT [27,38]
framework provide for a much tighter integration of a conflict-driven CAD-based
theory solver into a theory-aware core solver. This has been the dominant ap-
proach over the last decade due to its strong performance in practice. However,
it has the significant disadvantage of being difficult to integrate with CDCL(T)-
based frameworks for theory combination.

A number of incomplete techniques are also used by various SMT solvers:
incremental linearization [9] gradually refines an abstraction of the nonlinear
formula obtained via a naive linearization by refuting spurious models of the ab-
straction; interval constraint propagation [23,35,44] employs interval arithmetic
to narrow down the search space; subtropical satisfiability [21] provides sufficient
linear conditions for nonlinear solutions in the exponent space of the polynomi-
als; and virtual substitution [11,30,45] makes use of parametric solution formulas
for polynomials of bounded degree. Though all of these techniques have limita-
tions, each of them is useful for certain subclasses of nonlinear real arithmetic
or in combination with other techniques.

Contributions. We present an integration of cylindrical algebraic coverings and
incremental linearization, implemented in the cvc5 SMT solver. Crucial to the
success of the integration is an abstraction-refinement loop used to combine the
two techniques cooperatively. The solution is effective in practice, as witnessed
by the fact that cvc5 won the nonlinear real arithmetic category of SMT-COMP
2021 [43], the first time a non-MCSAT-based technique has won since 2013. Our
integrated technique also has the advantage of being very flexible: in particular, it
fits into the regular CDCL(T) schema for theory solvers and theory combination,
it supports (mixed) integer problems, and it can be easily extended using further
subsolvers that support additional arithmetic operators beyond the scope of
traditional algebraic routines (e.g., transcendental functions).

2 Nonlinear solving techniques

The nonlinear arithmetic solver implemented in cvc5 generally follows the ab-
straction-refinement framework introduced by Cimatti et al. [9] and depicted in
Figure 1. The input assertions are first checked by the linear arithmetic solver,
where they are linearized implicitly by treating every application of multipli-
cation as if it were an arithmetic variable. For example, given input assertions
x ·y > 0∧x > 1∧y < 0, the linear solver treats the expression x ·y as a variable.
It may then find the (spurious) model: x 7→ 2, y 7→ −1, and x · y 7→ 1. We call
the candidate model returned by the linear arithmetic solver, where applications
of multiplication are treated as variables, a linear model. If a linear model does
not exist, i.e., the input is unsatisfiable according to the linear solver, the linear
solver generates a conflict that is immediately returned to the CDCL(T) engine.
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Fig. 1: Structural overview of the nonlinear solver

When a linear model does exist, we check whether it already satisfies the
input assertions or try to repair it to do so. We only apply a few very sim-
ple heuristics for repairs such as updating the value for z in the presence of a
constraint like z = x · y based on the values of x and y.

If the model can not be repaired, we refine the abstraction for the linear
solver [9]. This step constructs lemmas, or conflicts, based on the input asser-
tions and the linear model, to advance the solving process by blocking either
the current linear model or the current Boolean model, that is, the propositional
assignment generated by the SMT solver’s SAT engine. The Boolean model is
usually eliminated only by the coverings approach, while the incremental lin-
earization technique generates lemmas with new literals that target the linear
model, e.g., the lemma x > 0∧ y < 0⇒ x · y < 0 in the example above. We next
describe our implementation of cylindrical algebraic coverings and incremental
linearization, and how they are combined in cvc5.

2.1 Cylindrical algebraic coverings

Cylindrical algebraic coverings is a technique recently proposed by Ábrahám et
al. [3] and is heavily inspired by CAD. While the way the computation pro-
ceeds is very different from traditional CAD, and instead somewhat similar to
NLSAT [29], their mathematical underpinnings are essentially identical. The
cylindrical algebraic coverings subsolver in cvc5 closely follows the presentation
in [3]. Below, we discuss some differences and extensions. For this discussion,
we must refer the reader to [3] for the relevant background material because of
space constraints. We note that cvc5 relies on the libpoly library [28] to provide
most of the computational infrastructure for algebraic reasoning.

Square-free basis. As with most CAD projection schemas, the set of projection
polynomials needs to be a square-free basis when computing the characterization
for an interval in [3, Algorithm 4]. However, the resultants computed in this
algorithm combine polynomials from different sets, which are not necessarily
coprime. The remedy is to either make these sets of polynomials pairwise square-
free or to fully factor all projection polynomials. We adopt the former approach.

Starting model. Although the linear model may not satisfy the nonlinear con-
straints, we may expect it to be in the vicinity of a proper model. We thus
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optionally use the linear model as an initial assignment for the cylindrical al-
gebraic coverings algorithm in one of two ways: either using it initially in the
search and discarding it as soon as it conflicts; or using it whenever possible, even
if it leads to a conflict in another branch of the search. Unfortunately, neither
technique has any discernible impact in our experiments.

Interval pruning. As already noted in [3], a covering may contain two kinds
of redundant intervals: intervals fully contained in another interval, or intervals
contained in the union of other intervals. Removing the former kind of redundan-
cies is not only clearly beneficial, but also required for how the characterizations
are computed. It is not clear, however, if it is worthwhile to remove redundancies
of the second kind because, while it can simplify the characterization locally, it
may also make the resulting interval smaller, slowing down the overall solving
process. Note that there may not be a unique redundant interval: e.g., if multi-
ple intervals overlap, it may be possible to remove one of two intervals, but not
both of them. We have implemented a simple heuristic to detect redundancies
of the second kind, always removing the smallest interval with respect to the
interval ordering given in [3]. Even if these redundancies occur in about 7.5%
of all QF NRA benchmarks, using this technique has only a very limited impact.
It may be that for certain kinds of benchmarks, underrepresented in SMT-LIB,
the technique is valuable. Or it may be that some variation of the technique is
more broadly helpful. These are interesting directions for future work.

Lifting and coefficient selection with Lazard. The original cylindrical algebraic
coverings technique is based on McCallum’s projection operator [36], which is
particularly well-studied, but also (refutationally) unsound: polynomial nullifi-
cation may occur when computing the real roots, possibly leading to the loss of
real roots and thus solution candidates. One then needs to check for these cases
and fall back to a more conservative, albeit more costly, projection schema such
as those due to Collins [10] or Hong [25].

Lazard’s projection schema [34], which has been proven correct only re-
cently [37], provides very small projection sets and is both sound and complete.
This comes at the price of a different mathematical background and a modified
lifting procedure, which corresponds to a modified procedure for real root isola-
tion. Although the local projections employed in cylindrical algebraic coverings
have not been formally verified for Lazard’s projection schema yet, we expect
no significant issues there. Adopting it seems to be a logical improvement, as
already mentioned in [3]. The modified real root isolation procedure is a sig-
nificant hurdle in practice, as it requires additional nontrivial algorithms [31,
Section 5.3.2]. We implemented it using CoCoALib [1] in cvc5 [32], achieving
soundness without any discernible negative performance impact.

Using Lazard’s projection schema, for all its benefits, may seem question-
able for the following reasons: (i) the unsoundness of McCallum’s projection
operator is virtually never witnessed in practice [31, Section 6.5][32], and (ii)
the projection sets computed by Lazard’s and McCallums’s projection operator
are identical on more than 99.5% on all of QF NRA [32]. We argue, though, that
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working in the domain of formal verification warrants the effort of obtaining a
(provably) correct result, especially if it does not incur a performance overhead.

Proof generation. Recently, generating formal proofs to certify the result of SMT
solvers has become an area of focus. In particular, there is a large and ongoing
effort to produce proofs in cvc5. The incremental linearization approach can be
seen as an oracle which produces lemmas that are easy to prove individually, so
cvc5 does generate proofs for them; the complex part is finding those lemmas
and making sure they actually help the solver make progress.

The situation is very different for cylindrical algebraic coverings: the pro-
duced lemma is the infeasible subset, and we usually have no simpler proof than
the computations relying on CAD theory. That said, cylindrical algebraic cover-
ings appear to be more amenable to automatic proof generation than traditional
CAD-based approaches [4,13]. In fact, although making these proofs detailed
enough for automated verification is still an open problem, they are already bro-
ken into smaller parts that closely follow the tree-shaped computation of the
algorithm. This allows cvc5 to produce at least a proof skeleton in that case.

2.2 Incremental Linearization

Our theory solver for nonlinear (real) arithmetic optionally uses lemma schemas
following the incremental linearization approaches described by Cimatti et al. [9]
and Reynolds et al. [41]. These schemas incrementally refine candidate models
from the linear arithmetic solver by introducing selected quantifier-free lemmas
that express properties of multiplication, such as signedness (e.g., x > 0 ∧ y >
0⇒ x ·y > 0) or monotonicity (e.g., |x| > |y| ⇒ x ·x > y ·y). They are generated
as needed to refute spurious models that violate these properties.

Most lemma schemas built-in in cvc5 are crafted so as to avoid introducing
new monomial terms or coefficients, since that could lead to non-termination in
the CDCL(T) search. As a notable exception, we rely on a lemma schema for
tangent planes for multiplication [9], which can be used to refute the candidate
model for any application of the multiplication operator · whose value in the
linear model is inconsistent with the standard interpretation of ·. Note that
since these lemmas depend upon the current model value chosen for arithmetic
variables, tangent plane lemmas may introduce an unbounded number of new
literals into the search. The set of lemma schemas used by the solver is user-
configurable, as described in the following section.

2.3 Strategy

The overall theory solver for nonlinear arithmetic is built from several subsolvers,
implementing the techniques described above, using a rather naive strategy,
as summarized in Algorithm 1. After a spurious linear model has been con-
structed that cannot be repaired, we first apply a subset of the lemma schemas
that do not introduce an unbounded number of new terms (with procedure
IncLinearizationLight); then, we continue with the remaining lemma schemas
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1 Function NlSolve(assertions)
2 if not LinearSolve(assertions) then return linear conflict
3 M = linear model for assertions
4 if RepairModel(assertions, M ) then return repaired model
5 if IncLinearizationLight(assertions, M ) then return lemmas
6 if IncLinearizationFull(assertions, M ) then return lemmas
7 return Coverings(assertions, M )

Algorithm 1: Strategy for nonlinear arithmetic solver

(with procedure IncLinearizationFull); finally, we resort to the coverings
solver which is guaranteed to find either a conflict or a model. Internally, each
procedure sequentially tries its assigned lemma schemas from [9,41] until it con-
structs a lemma that can block the spurious model.

The approach is dynamically configured based on input options and the logic
of the input formula. For example, by default, we disable IncLinearizationFull
for QF NRA as it tends to diverge in cases where the coverings solver quickly
terminates.

2.4 Beyond QF NRA

The presented solver primarily targets quantifier-free nonlinear real arithmetic,
but is used also in the presence of quantifiers and with multiple theories.

Quantified logics. Solving quantified logics for nonlinear arithmetic requires solv-
ing quantifier-free subproblems, and thus any improvement to quantifier-free
solving also benefits solving with quantifiers. In practice, however, the instanti-
ation heuristics are just as important for overall solver performance.

Multiple theories. The theory combination framework as implemented in cvc5

requires evaluating equalities over the combined model. To support this func-
tionality, real algebraic numbers had to be properly integrated into the entire
solver; in particular, the ability to compute with these numbers could not be
local to the cylindrical algebraic coverings module or even the nonlinear solver.

3 Experimental results

We evaluate our implementation within cvc5 (commit id 449dd7e) in comparison
with other SMT solvers on all 11552 benchmarks in the quantifier-free nonlinear
real arithmetic (QF NRA) logic of SMT-LIB. We consider three configurations of
cvc5, each of which runs a subset of steps from Algorithm 1. All the configura-
tions run lines 2-4. In addition, cvc5.cov runs line 7, cvc5.inclin runs lines
5 and 6, and cvc5 runs lines 5 and 7. All experiments were conducted on Intel
Xeon E5-2637v4 CPUs with a time limit of 20 minutes and 8GB memory.

We compare cvc5 with recent versions of all other SMT solvers that partici-
pated in the QF NRA logic of SMT-COMP 2021 [43]: MathSAT 5.6.6 [?], SMT-RAT
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QF NRA sat unsat solved

cvc5 5137 5596 10733
Yices2 4966 5450 10416
z3 5136 5207 10343
cvc5.cov 5001 5077 10078
SMT-RAT 4828 5038 9866
veriT 4522 5034 9556
MathSAT 3645 5357 9002
cvc5.inclin 3421 5376 8797

(a) Experiments for QF NRA

Beyond QF NRA sat unsat solved

NRA Yices2 231 3817 4048
z3 236 3812 4048
cvc5.cov 236 3809 4045
cvc5 221 3809 4030
cvc5.inclin 120 3786 3906

QF UFNRA z3 24 11 35
Yices2 23 11 34
cvc5 20 11 31
cvc5.inclin 12 11 23
cvc5.cov 2 11 13

(b) Experiments for NRA and QF UFNRA

19.10.560 [12], veriT [7] (veriT+raSAT+Redlog), Yices2 2.6.4 [17] (Yices-QS for
quantified logics), and z3 4.8.14 [15]. MathSAT employs an abstraction-refinement
mechanism very similar to the one described in Section 2.2; veriT [22] forwards
nonlinear arithmetic problems to the external tools raSAT [44], which uses in-
terval constraint propagation, and Redlog/Reduce [16], which focuses on vir-
tual substitution and cylindrical algebraic decomposition; SMT-RAT, Yices2, and
z3 all implement some variant of MCSAT [29]. Note that SMT-RAT also imple-
ments the cylindrical algebraic coverings approach, but it is less effective than
SMT-RAT’s adaptation of MCSAT [3].

Figure 2a shows that cvc5 significantly outperforms all other QF NRA solvers.
Both the coverings approach (cvc5.cov) and the incremental linearization ap-
proach (cvc5.inclin) contribute substantially to the overall performance of the
unified solver in cvc5, with coverings solving many satisfiable instances, and in-
cremental linearization helping on unsatisfiable ones. Even though cvc5.inclin

closely follows [9], it outperforms MathSAT on unsatisfiable benchmarks, those
where cvc5 relies on incremental linearization the most.

Comparing cvc5 and Yices2 is particularly interesting, as the coverings ap-
proach in cvc5 and the NLSAT solver in Yices2 both rely on libpoly [28], thus
using the same implementation of algebraic numbers and operations over them.
Our integration of incremental linearization and algebraic coverings is compat-
ible with the traditional CDCL(T) framework and outperforms the alternative
NLSAT approach, which is specially tailored to nonlinear real arithmetic.

Going beyond QF NRA, we also evaluate the performance of our solver in
the context of theory combination (with all 37 benchmarks from QF UFNRA) and
quantifiers (with all 4058 benchmarks from NRA). There, cvc5 is a close runner-up
to Yices2 and z3, thanks to the coverings subsolver which significantly improves
cvc5’s performance. We conjecture that the remaining gap is due to components
other than the nonlinear arithmetic solver, such as the solver for equality and
uninterpreted functions, details of theory combination, or quantifier instantiation
heuristics. Interestingly, the sets of unsolved instances in NRA are almost disjoint
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for cvc5.cov, Yices2 and z3, indicating that each tool could solve the remaining
benchmarks with reasonable extra effort.

4 Conclusion

We have presented an approach for solving quantifer-free nonlinear real arith-
metic problems that combines previous approaches based on incremental lin-
earization [9] and cylindrical algebraic coverings [3] into one coherent abstrac-
tion-refinement loop. The resulting implementation is very effective, outperform-
ing other state-of-the-art solver implementations, and integrates seamlessly in
the CDCL(T) framework.

The general approach also applies to integer problems, quantified formulas,
and instances with multiple theories, and can additionally be used in combina-
tion with transcendental functions [9] and bitwise conjunction for integers [46].
Further evaluations of these combinations are left to future work.
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7. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient smt-solver. In: International Conference on Automated De-
duction. pp. 151–156. Springer (2009). https://doi.org/10.1007/978-3-642-02959-
2 12

8. Cashmore, M., Magazzeni, D., Zehtabi, P.: Planning for hybrid systems via sat-
isfiability modulo theories. Journal of Artificial Intelligence Research 67, 235–283
(2020). https://doi.org/10.1613/jair.1.11751

9. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Transactions on Computational Logic 19, 19:1–19:52
(2018). https://doi.org/10.1145/3230639

10. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 smt solver.
In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 93–107. Springer Berlin Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 7

11. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Barkhage, H. (ed.) Automata Theory and Formal Languages.
LNCS, vol. 33, pp. 134–183. Springer (1975). https://doi.org/10.1007/3-540-07407-
4 17
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