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Abstract—As designs grow in size and complexity, design
verification becomes one of the most difficult and costly tasks
facing design teams. Formal verification techniques offer great
promise because of their ability to exhaustively explore design
behaviors. However, formal techniques also have a reputation for
being labor-intensive and limited to small blocks. Is there any
hope for successful application of formal techniques at design
scale? We answer this question affirmatively by digging deeper to
understand what the real technological issues and opportunities
are. First, we look at satisfiability solvers, the engines underlying
formal techniques such as model checking. Given the recent
innovations in satisfiability solving, we argue that there are many
reasons to be optimistic that formal techniques will scale to
designs of practical interest. We use our CoSA model checker as
a demonstration platform to illustrate how advances in solvers
can improve scalability. However, even if solvers become blazingly
fast, applying them well is still labor-intensive. This is because
formal tools are only as useful as the properties they are
given to prove, which traditionally have required great effort to
develop. Symbolic quick error detection (SQED) addresses this
issue by using a single, universal property that checks designs
automatically. We demonstrate how SQED can automatically find
logic bugs in a variety of designs and report on bugs found and
efficiency gains realized in academic and industry designs. We
also present a generator for an improved SQED module that
further reduces the amount of manual effort that has to be spent
by the designer.

Index Terms—symbolic quick error detection, bounded model
checking, SAT solving, verification, validation.

I. INTRODUCTION

Pre-silicon verification accounts for a significant fraction
of overall design effort [1]. Even so, conventional pre-silicon
verification techniques are not thorough enough to find corner-
case logic bugs, especially in large or complicated designs.
These challenges are further magnified by the slowdown of the
classical silicon CMOS (Dennard) scaling [2], as integrated
circuits (ICs) increase design complexity tremendously to meet
speed and energy targets.

As a result of these challenges, critical logic design bugs
frequently escape pre-silicon verification and are detected only
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after ICs are manufactured, during post-silicon validation or
during system operation. Bugs found in post-silicon validation
can be extremely expensive and difficult to localize and fix.
Furthermore, bugs that are not discovered until system operation
can have disastrous consequences, especially in safety-critical
domains such as automotive applications. Even when bugs are
detected early, root-causing and fixing them can take weeks
or months of effort. This is because bugs may take millions
or even billions of clock cycles to detect using traditional
verification techniques. It is then notoriously hard to identify
what went wrong and when.

A promising approach for addressing these challenges is to
employ formal techniques such as model checking [3]. Model
checking constructs a mathematical representation of the system
and then attempts to formally prove that this representation
has certain desired properties. Such a representation can be
constructed in a straightforward way (e.g., from a Verilog model
of the system). Formal techniques are valuable because they are
exhaustive: proving a property guarantees that it holds for all
possible executions of the system. Moreover, when the proof
fails, a counterexample or bug trace is produced (a sequence
of instructions sufficient to trigger and detect a bug). However,
formal techniques have traditionally suffered from two main
drawbacks. First, traditional application of formal techniques
requires substantial experience to write meaningful properties.
Finding the right set of properties to represent an informal,
high-level design specification is challenging [4]. Consequently,
the quality of the formal verification process depends on the
expertise of the verification engineers. The second challenge
is scalability. Even with the right set of properties, formal
techniques have traditionally been unable to scale to a full chip
or SoC, limiting their applicability to small blocks.

In this paper, we present evidence that tremendous progress
is being made on both of these fronts. For scalability, we review
recent progress in automated reasoning tools such as Boolean
satisfiability (SAT) and satisfiability modulo theories (SMT)
solvers. These tools are the main back-end engines used by
modern formal tools [5]–[10]. Improvements to such tools is
an ongoing research effort which has seen dramatic advances
recently, greatly enhancing the scalability of formal tools.

However, such technological progress alone will not lead
to a more widespread application of formal techniques. The
manual effort required to write properties must also be



reduced. To this end, we present symbolic quick error detection
(SQED), an easy-to-apply formal technique that has been
successfully used for pre- and post-silicon design verification
and validation [11], [12]. SQED utilizes model checking to
prove that any instruction sequence up to a certain bound
produces a correct result. SQED leverages the idea of design
self-consistency to formulate a single universal property that
is inherently design-independent. Therefore, SQED does not
require any manual property formulation.

The rest of the paper is organized as follows. We first
provide an overview of SAT, SMT, and model checking and
explain their relevance for hardware verification. Then we
introduce SQED together with a new generator-based approach,
focused on the verification of processor cores. As a formal
technique that is complementary to SQED, we present single-
instruction checking. It detects bugs resulting from incorrect
implementations of single instructions in a processor design.
Finally, we conclude with experimental results that demonstrate:
(i) the impact of SAT and SMT solver improvements on the
performance of formal tools generally, and SQED in particular;
and (ii) the ability of SQED to automatically find real bugs
in a large processor design, specifically the RIDECORE [13]
design, an open-source RISC-V processor core.

II. TOOLS FOR FORMAL HARDWARE VERIFICATION

A. SAT Solving and Satisfiability Modulo Theories

The satisfiability problem of propositional logic (SAT) is the
canonical NP-complete problem [14]. In the 1970s and 1980s,
SAT-related research focused on theory. The advent of powerful
SAT solving algorithms and their efficient implementation in
SAT solvers in the mid 1990s led to a surge of practical SAT
applications, a trend dubbed the “SAT revolution” [15]–[17].

In formal verification, many problems can be encoded as
a SAT problem and solved using a SAT solver. For example,
digital circuits can be modeled as state transition systems,
which can be encoded as propositional formulas. To prove
a property of the system, a SAT problem is constructed by
combining these encodings with an encoding of the property.

Despite the NP-completeness of SAT, modern SAT solvers
such as CryptoMiniSat,1 CaDiCaL [18], or Lingeling [19]
routinely solve problems with millions of variables. On
practically relevant instances, SAT solvers rarely exhibit worst-
case exponential runtime. This is due to structure in instances
that can be exploited by solvers. Moreover, modern solver
implementations are based on sophisticated engineering and
employ advanced heuristics and techniques that greatly improve
upon the original, basic backtracking search approaches.

Satisfiability modulo theories (SMT) [20] is a generalization
of propositional satisfiability to decidable fragments of first-
order logic. Fragments of particular relevance to formal
hardware verification are the theories of bit-vectors and arrays.
Compared to propositional logic, where individual bits are
modeled using propositional variables, the theories of bit-
vectors and arrays make it possible to model memories and

1https://github.com/msoos/cryptominisat

Fig. 1. CoSA Architecture.

words, respectively, in a more natural and concise way. The
concise representation enables reasoning at the word-level
rather than the bit-level. In general, word-level reasoning is
more powerful than bit-level reasoning. Modern SMT solvers
(e.g., Boolector [21], CVC4 [22], Yices2 [23], Z3 [24]) combine
word-level reasoning with low-level SAT reasoning to solve
problems that are beyond the reach of SAT alone.

B. Model Checking

The increased capacity of automated reasoning in SAT and
SMT solvers has been driving formal techniques like model
checking [3]. Two main kinds of model checking are used.
Unbounded model checking is exhaustive: if a property is
proved to hold in a system, then the property holds for all
possible executions of the systems. However, unbounded model
checking may be infeasible for large systems.

Bounded model checking (BMC) [25] guarantees exhaustive-
ness with respect to executions of a certain length. In practice,
the bound on the length of the execution is incrementally
increased up to a computational or user-defined limit, or until a
counterexample to the property is found. BMC always produces
the shortest possible counterexample, if one exists.

BMC is implemented using efficient SAT and SMT solvers.
Thus, checking whether there exists a counterexample to a given
property is reduced to solving a SAT or SMT problem. To do
this, the model of the system is unrolled over time by replicating
the circuit for each time-step. A crucial feature of SAT and
SMT solvers for efficient BMC is incrementality. Incremental
solvers leverage effort spent solving the BMC problem at bound
k when solving the BMC problem at bound k + 1.

C. The Model Checker CoSA

The CoreIR Symbolic Analyzer (CoSA) [26] is an open-
source, SMT-based hardware model checker. CoSA leverages
state-of-the-art satisfiability modulo theories (SMT) solvers and
incorporates word-level design structure to improve verification
performance. Fig. 1 depicts the high-level architecture. CoSA
supports several standard input formats, in addition to the
explicit transition system (ETS) and symbolic transition system
(STS) formats. ETS and STS inputs provide a convenient
method for adding temporal constraints on system executions,



for example providing a reset sequence. The SMT encoding
for BMC implemented in CoSA is a straightforward extension
of the respective SAT encoding to word-level variables.

As demonstrated by competitions [27], [28], SAT and SMT
solvers are improving regularly. CoSA is built modularly to
easily incorporate the latest solver enhancements. The transition
system representation utilizes PySMT [29] which allows
modular swapping of the underlying SMT solver. Moreover,
many SMT solvers also have a modular interface to SAT
solvers. Thus, automated reasoning improvements anywhere
in the toolchain can quickly propagate through the system by
updating or swapping solvers, enabling faster verification times.

III. SYMBOLIC QUICK ERROR DETECTION

A. Overview

In the following, we present the basic concepts behind
symbolic quick error detection (SQED). We start with an
explanation of its predecessor, quick error detection.

1) Quick Error Detection: Quick error detection (QED)
is a testing technique that takes an existing test consisting
of a sequence of instructions and automatically transforms it
into a new test using various QED transformations [30]. The
purpose of these transformations is to improve coverage and
reduce error detection latency (defined as the number of cycles
between when an error occurs and becomes observable). An
error is observable once the architectural state is wrong, for
example, when an incorrect value is stored in a general-purpose
register. One of the most powerful QED transformations is
error detection using duplicated instructions for validation
(EDDI-V) [30]. The EDDI-V QED transformation uses shadow
registers and memory to duplicate the instructions in an
existing instruction sequence. More specifically, the registers
and memory space of the design under test (DUT) are divided
into two halves so that each register or memory location in one
half is mapped to exactly one register or memory location
in the other half by means of a bijective mapping. Each
half is referred to exclusively by the original or duplicated
instructions, respectively. The EDDI-V QED transformation
copies each original instruction to a duplicate one, with the
change that the register and memory locations are mapped to
their corresponding values for duplicate instructions. In a QED
test, both the original and the duplicated instruction sequences
are executed from a system state where original and duplicate
registers and memory locations hold the same values. Such a
state is called QED-consistent. Duplicated instructions execute
in the same relative order as the original ones but may be
interleaved. If the QED test produces a state where the values
held by original and duplicate registers or memory locations
do not match, then the QED test constitutes a bug trace.

2) Symbolic Quick Error Detection: Symbolic quick error
detection (SQED) [11], [12] combines QED transformations
with bounded model checking (BMC) [25]. The model checker
systematically enumerates all possible instruction sequences of
increasing length in a symbolic way. QED transformations
are then applied to the enumerated instruction sequences.
Original and duplicated instruction sequences are symbolically

INPUT: [31:0] instruction, clock
assign opcode = instruction[6:0];
assign funct3 = instruction[14:12];
assign funct7 = instruction[31:25];
assign ADD =
(funct3 == 3’b000) && (opcode == 7’b0110011) &&
(funct7 == 7’b0000000);

// add opcode constraints for all instructions in ISA
...
always @(posedge clock) begin

assume property (ADD ||...||...);
end

Fig. 2. Opcode constraint example: 32-bit register-type ADD of RISC-V ISA.

executed on a model of the DUT represented in some hardware
description language. The use of symbolic methods is in
contrast to traditional QED, which applies QED transformations
to a given, concrete instruction sequence.

Compared to more traditional uses of model checking, the
main advantage of SQED is that the user does not need to
formulate the properties to be checked. Instead, SQED uses a
single universal property: if a QED test is run from a QED-
consistent state, then the resulting state must also be QED-
consistent. For example, for a processor core with 32 general-
purpose registers, a state is QED-consistent if the following
property holds:

15∧
i:=0

regs[i] = regs[i+ 16]

where regs denotes the register file. We assume that registers
zero to 15 are designated original and 16 to 32 are duplicate,
and register i is mapped to register i + 16. SQED also
automatically finds the shortest possible bug trace, if a bug
trace exists, or proves the absence of bug traces with respect
to instruction sequences up to the considered length.

To prevent spurious counterexamples to the universal prop-
erty, the model checker must only select instructions that are
part of the ISA implemented by the DUT. This is achieved by
providing the model checker with constraints that express the
opcodes of all the instructions in the ISA. Fig. 2 shows the
opcode constraint of the 32-bit register-type ADD instruction
of the RISC-V ISA. The constraints are specified to the model
checker as a simple, disjunctive SystemVerilog property.

To implement SQED, a special QED module is integrated
with the DUT. It is used only for pre-silicon verification and
is not added to the manufactured integrated circuit. The QED
module takes as input a stream of original instructions and
produces an output stream of instructions that corresponds to a
QED test based on the original instructions. The input stream
is allowed to be symbolic (selected by the model checker),
and the output stream is fed into the DUT. The QED module
implements a QED-ready signal, which during the run of a QED
test asserts the points in time when the numbers of original and
duplicate instructions executed are the same. At such points
in time, the processor state should be QED-consistent, and
hence the model checker checks whether the universal property
holds. To be valid, the model checker must be started from



INPUT: enable, next_instr, fetch_next, original
OUTPUT: instr_out, instr_valid

//begin initialization
queue := 0, head_instr := 0;
//end initialization

insert_valid := fetch_next & original & ∼queue.full();
delete_valid := fetch_next & ∼original & ∼queue.empty();
instr_valid := insert_valid | delete_valid;

if insert_valid then
queue.enqueue(next_instr);

else if delete_valid then
head_instr := queue.dequeue();

endif

dup_instr := create_duplicate_version (head_instr);
instr_out := (enable & ∼original) ? dup_instr : next_instr;

Fig. 3. Pseudocode for the new QED module.

a QED-consistent state. Such a state can be a reset state, for
example, or a QED-consistent state obtained from simulation.

B. New QED Module

In the following, we present a new QED module [31]
that improves upon previous implementations [12]. The main
improvement is that this module allows original and duplicate
instructions to be interleaved (previous implementations simply
ran all original instructions followed by all duplicate instruc-
tions). As with previous QED modules, it is designed to be
connected to the instruction fetch stage of a processor core.
The pseudocode of the new QED module is given in Fig. 3.

We first explain the QED module inputs and outputs. The
enable signal disables the QED module if set to zero,
resulting in the execution of original instructions only. Signal
next_instr is the next original instruction to be executed;
fetch_next indicates whether the core is ready to receive an
instruction, i.e., the fetch stage is not stalled. Signal original
indicates whether to execute an original or its corresponding
duplicate instruction. Outputs of the QED module are signal
instr_valid, which indicates whether the output instruction
should be considered valid, and the actual original or duplicate
instruction instr_out to be executed.

To apply QED transformations, the QED module maintains
a queue of original instructions which have not yet been dupli-
cated. When original is high, the QED module triggers the
execution of the current original instruction (next_instr)
after enqueueing it for later duplication. When original is
low, an instruction is removed from the queue (head_instr),
then duplicated (dup_instr) and sent for execution. Notice
that both next_instr and original are inputs, thus the
model checker can choose their values freely (as long as
next_instr satisfies the ISA constraints, cf. Fig. 2). Signals
insert_valid and delete_valid provide additional
conditions on enqueueing or dequeueing instructions. Pipeline
stalls invalidate the output instruction of the QED module
(signals fetch_next and instr_valid).

In SQED, the model checker checks the universal prop-
erty each time the same number of original and duplicate

INPUT: write_valid, write_address
OUTPUT: qed_ready

//begin initialization
qed_ready := false, cnt_orig := 0, cnt_dup := 0;
//end initialization

is_original := is_write_to_original_space (write_address);

if write_valid then
if is_original then
// increment number of committed original instructions
cnt_orig++;

else
// increment number of committed duplicate instructions
cnt_dup++;

endif
endif

qed_ready := (cnt_orig == cnt_dup) ? true : false;

Fig. 4. Pseudocode for the QED-ready logic of the new QED module.

instructions have committed. Checking the property pre-
maturely might produce spurious counterexamples. Fig. 4
shows the pseudocode of the QED-ready logic. The output
signal qed_ready goes high whenever the same number
of original and duplicate instructions have committed. The
implementation of the QED-ready logic is design-dependent,
as it has to be customized to different pipeline implemen-
tations. Signal write_address is the address of the data
to be written and signal write_valid tells whether the
input data is valid. Signal is_original indicates whether
the data is written to an original or duplicate register or
memory location, which is determined by applying function
is_write_to_original_space to write_address.
For simplicity, we assume that at most one instruction commits
per cycle. For superscalar processors that can commit multiple
instructions in the same cycle, we track corresponding pairs of
write_valid and write_address signals and maintain
a separate is_original signal for each executed instruction.

The QED-ready logic as shown in Fig. 4 is only applicable
to single processor cores. For multi-core systems, original and
duplicate commits across all cores must be considered. This
can be challenging if the cores operate with a shared address
space. In superscalar processors with explicit register renaming
such as MIPS 10000 [32] and ARMs Cortex-A15 [33], logical
addresses must be mapped to physical ones via the register
mapping table before comparing values held by original and
duplicate registers and memory locations. The RISC-V cores
we consider in our experiments (Section IV) are single cores
and do not apply register renaming.

C. An SQED Generator

Although the implementation of the QED module (Fig. 3)
must be adapted to a given DUT with respect to both the
QED-ready logic (Fig. 4) and the opcode constraints of
the instructions in the ISA (Fig. 2), its basic functionality,
that is, duplicating instructions, is design-independent. We
exploit this design-independence in a generator-based workflow
implemented in Python for processor cores. The generator takes



Fig. 5. Workflow of generator-based SQED.

SECTIONS = ISA QEDCONSTRAINTS REGISTERS BITFIELDS...

_ISA
num_registers = 32
instruction_length = 32

_QEDCONSTRAINTS
half_registers = 1

_REGISTERS
rd rs1 rs2

_R
ADD
funct3 = 000 funct7 = 0000000 opcode = 0110011
...

_BITFIELDS
funct7 = 31 25
funct3 = 14 12
rd = 11 7
rs1 = 19 15
rs2 = 24 20
opcode = 6 0
...

Fig. 6. RISC-V format file example (excerpt).

a structured description of the core and produces a QED module.
Fig. 5 illustrates our workflow. We will use RIDECORE [13],
a RISC-V core, as a running example. A walkthrough for this
example is also available in a GitHub repository [34].

The format file (Fig. 6) specifies parameters of the DUT
and the SQED workflow such as the number of registers,
the length of an instruction, and the mapping of original to
duplicate registers (half_registers = 1) by dividing the
register file in two halves. Section headers like “_ISA” are
prefixed with an underscore. Symbolic names are introduced for
the register operands of instructions (section _REGISTERS).
Section _BITFIELDS lists decoding information needed
to retrieve the register operands and opcode from a given
instruction by extracting the respective bits.

In the RISC-V ISA the opcode is given by the bits at index
zero up to six in the instruction encoding (opcode = 6 0).
We list the opcodes for all instructions in the ISA grouped by
types such as register- (_R) or immediate-type. The format file
for RIDECORE [13] has only about 200 lines of text. Writing
the file is straightforward, as most of the necessary information
should be readily available in the ISA documentation.

Given the format file as input, the generator automatically
generates the Verilog implementation of the QED module. For
RIDECORE, the Verilog implementation consists of about
450 lines of code. In particular, the opcode constraints that
are crucial for the SQED workflow, as they prevent spurious
counterexamples, are generated automatically (cf. generated
opcode constraints for ADD in Fig. 2 and the respective opcode
information in the format file in Fig. 6).

Given the generated QED module, the next step is to wire
it up to the design, connecting it to the instruction fetch stage.
This requires some manual effort. However, the QED module
generator has been designed to make this as straightforward as
possible by providing a general and well-documented interface
for the generated QED module. The goal is for a designer to be
able to do it themselves, even if they have no experience with
formal verification. In future work, we aim to further simplify
the wiring-up process by ensuring that the generated module
interface works cleanly across a variety of ISA’s and designs.

Applying SQED to the design with the wired-up QED
module is completely automatic. If there is a bug in the design
then SQED will produce a shortest bug trace that is sufficient
to reproduce the bug. For example, our model checker CoSA
produces a value change dump (VCD) file from which the
actual bug trace can be extracted.

D. Single-Instruction Checking

SQED is effective in producing short bug traces of bugs that
are otherwise difficult to find [11], [31]. However, it cannot
detect bugs that are triggered by a single faulty instruction.
Such single-instruction bugs affect original and duplicate
instructions in a QED test in the same way. Hence, original and
duplicate registers always hold the same value, thus producing
QED-consistent states. It is thus necessary to use some
complementary technique to detect single-instruction bugs.
Several approaches are possible. These bugs are relatively easy
to find and reproduce, so conventional testing via simulation or
emulation can be quite effective. Formal techniques can also
work well, and several have been proposed (e.g., [10], [31]).

Here, we outline a formal approach to single-instruction
checking using the RISC-V cores Vscale [35] and
RIDECORE [13] as examples (for the latter, a demo is available
online [36]).2 The ideas here are not new; the goal is rather to
show how a simple formal technique can be easily integrated
with SQED. For each instruction, we formulate a correctness
property, which is then checked using a model checker. Once
a property has been formulated for one instruction, it can
be adapted to similar instructions with relatively little effort.
Moreover, the correctness properties for instructions from a
given ISA lend themselves to being easily portable to other
DUTs with the same ISA, since these instructions have the
same semantics regardless of the implementation.

Fig. 7 shows the pseudocode of the correctness properties
of the 32-bit register-type ADD instruction for RIDECORE and
Vscale, respectively. To prevent spurious counterexamples, it
is necessary to include assumptions reflecting design-specific
implementation details such as the pipeline. We maintain a state
counter (stcnt) that is incremented in each clock cycle to be
able to refer to the data values produced in particular pipeline
stages. Along with the data that is necessary for setting up the
correctness properties, the state counter is part of a helper state
transition system (Fig. 7, bottom). A next-state function next

2More complicated cores, including for example support for floating point
instructions are directions for future work, cf. [37].



assumptions: reset = 1;
stcnt = 0 | stcnt >= 2 -> instr = NOP;
stcnt = 1 -> instr = ADD & rd != 0;

property: stcnt = 7 -> val1 + val2 = regs[rd_copy];

Correctness property (RIDECORE).

assumptions: reset = 0;
stcnt = 0 | stcnt >= 2 -> instr = NOP;
stcnt = 1 -> instr = ADD & rd != 0;

property: stcnt = 4 -> val1 + val2 = regs[rd_copy];

Correctness property (Vscale).

next(instr) = stcnt = 0 | stcnt >= 2 ? NOP : instr;
next(stcnt) = stcnt++;
next(val1) = stcnt = 1 ? regs[rs1] : val1;
next(val2) = stcnt = 1 ? regs[rs2] : val2;
next(rd_copy) = stcnt = 1 ? rd : rd_copy;

Helper state transition system.

Fig. 7. Single-instruction checking for RIDECORE and Vscale.

defines how the data values evolve from one clock cycle to
the next. The helper transition system is added to the model
of the DUT via synchronous composition.

We make sure that the core is not in reset mode (reset
= 1 and reset = 0, respectively), where the reset signal
is active-low for RIDECORE and active-high for Vscale. We
run all single-instruction checks from a predefined reset state.3

Instruction fetching is complete in cycle one (stcnt = 1
-> instr = ADD), and the instruction (instr) is restricted
to NOP in cycle zero and cycles greater than or equal to two.
This is necessary to make sure that current operand values do
not interfere with operands of instructions issued subsequently.

We extract the values held by the two source registers rs1
and rs2 in clock cycle one and store them in variables val1
and val2 and make a copy rd_copy of the destination
register rd. Register zero is hard-wired to value zero and
hence cannot be used as a destination register (rd != 0).
Since RIDECORE and Vscale have pipelines with six and three
stages, respectively, we check the actual correctness property
in cycles seven and four, respectively.

The example in Fig. 7 shows the correctness property for the
register-type ADD instruction. The properties for the other ALU
instructions can be obtained easily by replacing addition by the
respective operator in the expression that computes the result
(val1 + val2) and adapting the check for the instruction
opcode (instr = ADD). Immediate-type instructions can be
handled analogously. For checking the instruction opcodes, we
can re-use the constraints from SQED (Fig. 2).

Note that the main difference in the correctness properties
for RIDECORE and Vscale is in the respective pipeline depths.
Consequently, once the correctness properties are formulated for
one design, it is easy to port them to the other design by making
the pipeline depth a parameter. In general, the correctness
properties could also be generated largely automatically using
our generator (Fig. 5), provided that the necessary design-
dependent parameters are listed in the format file (Fig. 6).

3Note that if a single instruction fails only in a non-reset state, then it is not
a deterministically failing instruction, in which case SQED can find the bug.

TABLE I
PREVIOUSLY UNKNOWN BUGS IN RIDECORE.

Bug Activation Bug Effect Runtime (sec)
All but one (buggy) RS-m
entries occupied, MULH
instruction assigned to va-
cant entry.

First source operand of
MULH instruction cor-
rupted.

63

Same as above. Second source operand
of MULH instruction
corrupted.

69

Same as above, but with a
MULHU instruction.

Result of MULHU in-
struction corrupted.

93

IV. CASE STUDIES AND EXPERIMENTAL RESULTS

In the following, we report on experimental results with
our implementations of SQED and single-instruction checking.
Experiments reported in Sec. IV-A were carried out on an
AMD Opteron 6348 with 128GB of RAM, and the experiments
in the other sections on a system with two eight-core AMD
Ryzen 7 2700 processors and 32GB of RAM. We used Questa
version 10.5c from Mentor Graphics and CoSA as bounded
model checking engines for SQED.

A. New QED Module

We demonstrate the effectiveness of our new QED mod-
ule [31] (Sec. III-B) on the two open-source RISC-V processor
cores, Vscale [35], an in-order core targeting embedded
applications, and RIDECORE [13], an out-of-order superscalar
core with a two-way pipeline, 64 maximum instructions in-
flight, two ALUs, one multiplier, and one load/store unit for
high-performance applications. All experiments reported in this
section are based on running the instruction sequences in SQED
starting from a reset state and were obtained using Questa.

Using SQED with our new QED module, we found three
previously unknown logic bugs in the multiplier reservation
station (RS-m) of RIDECORE, all of which were confirmed by
RIDECORE designers [38], as shown in Table I. Importantly,
these bugs were detected only because our new QED module
allows original and duplicate instructions to be interleaved.
To detect the bugs, original and duplicate multiplication
instructions must execute in subsequent clock cycles. The
previous QED module [12] could not trigger that condition.

Using the same setup for SQED, we found two previously
unknown bugs in Vscale (Table II) in less than 40 seconds,
which were also confirmed by designers. These bugs are
due to errors in the Vscale implementation of the RISC-V
privileged ISA affecting specific control status registers (CSRs).
Importantly, Vscale does not implement shadow registers for
CSRs. Therefore, to implement instruction duplication we store
the values of duplicate CSRs in data memory. The first bug in
Table II occurs because of incorrect design of the MIP register
interrupt bit logic. After this bug was fixed, we found a second
bug affecting the MSTATUS register.

B. Single Instruction Checking

Table III shows experimental results for single-instruction
checking applied to RIDECORE and Vscale using CoSA. The



TABLE II
PREVIOUSLY UNKNOWN BUGS IN VSCALE.

Bug Activation Bug Effect Runtime (sec)
Value 1 written to specific
bit positions in the CSR
MIP.

MTIMECMP register
corrupted, causes re-
peated interrupts.

2

Any value with lower two
bits 01 or 10 written to
CSR MSTATUS.

Unspecified privilege
level entered, MEPC
register corrupted.

33

TABLE III
SINGLE-INSTRUCTION CHECKING FOR RIDECORE (R) AND VSCALE (V).

Instructions Checked Runtime/Check (sec)
R V

All instructions except MUL 40 3
All instructions with restricted MUL 40 3
MUL with injected bug 40 14

pipeline depths of the designs (six stages in RIDECORE and
three stages in Vscale) determine the necessary number of
unrollings in BMC, i.e., seven for RIDECORE and four for
Vscale. Except for multiplication (MUL), we successfully
verified the correctness of all instructions within 40s per
instruction check for RIDECORE and 3s for Vscale.

Checking multiplication circuits is a known hard problem
for formal techniques. One approximation that can detect many
bugs is to fix one of the operands.4 Another is to limit the
bit-width of operands;5 and another is to debug multiplication
instructions using extensive tests. There are also specific formal
techniques that target multiplication [39]–[41]. Integrating such
techniques is a topic for future investigation.

C. Applying SQED to RIDECORE

We applied SQED using the new QED module [31] (Sec-
tion III-B) to RIDECORE [13], [34]. Table IV shows results we
obtained using our model checker CoSA. In the experiments,
we consider the third bug in Table I as a case study. To study
the impact of improvements in SAT and SMT solvers, we show
results using two versions of the SMT solver Boolector [21], a
base version and an improved one, which handles incremental
SAT problems more efficiently.6 We also evaluate the impact of
two different SAT solvers, the older Lingeling [19] solver, and
the new CaDiCaL [18] solver (which requires the improved
Boolector version). We consider variations of RIDECORE
obtained by design changes that preserve bug observability.

Columns T (b) and T (c) in Table IV show the time taken
by CoSA (in seconds) to find the bug and, after fixing the
bug, to prove the correctness of the design up to the last BMC
unrolling. Column k shows the number of BMC unrollings.

4The second row of Table III shows the result of restricting the multiplication
instruction to check the simpler property where one of the operands is set
to constant zero or one. That restricted MUL instruction could be checked
within the same time as the other instructions and could easily detect many
bugs that we injected in the multipliers.

5We reduced the bit-width and were able to verify a 13-bit multiplier in
RIDECORE and a 15-bit multiplier in Vscale within a time out of two hours.

6The improved (base) version of Boolector we used is located on the
smtcomp19 (master) branch in the GitHub repository of Boolector at https:
//github.com/Boolector/boolector and has commit ID 176eff (1971ce).

Each line in the table shows the results of one configuration
of RIDECORE. In the default configuration, we applied only
the minimal set of changes to the design needed to wire up
the QED module. The bug is detected with a BMC unrolling
depth of 23. Before executing any QED tests in SQED, we
run a reset sequence and then start SQED from the reset state
of the design. The reset sequence accounts for three of the 23
unrolling steps, and the remaining 20 steps are required for
the instructions in the bug trace to execute and commit.

We can reduce the number of steps required to find the bug
from 20 to 10, resulting in a total depth of 13 including the reset
sequence, by removing behavior triggered on negative clock
edges. This is possible in RIDECORE by disabling branch
prediction and removing the branch target buffer. This does not
affect the bug in question, so we also included this variation
in our experiments. Taking CaDiCaL as an example, removing
negative-edge clock behaviors resulted in a decrease in both
the time required to find the bug (226s vs. 98s) and the time
to prove correctness up to the respective BMC depth after bug
fixing (697s vs. 623s). As another design variation, we ran the
experiment with a smaller data memory (shrinking the size
from 2048 entries to 32 entries). This further improved the
model checking times (98s vs. 86s and 623s vs. 568s). These
design variations illustrate that reducing the BMC depth or the
size of memory can positively affect formal runtimes.

For all configurations of RIDECORE, we observed substan-
tial reductions in the model checking times when using updated
SAT and SMT solvers. These improvements illustrate gains that
come for free as SAT and SMT solvers continue to improve.
These improvements do not require any changes to the CoSA
workflow. For the default configuration and Lingeling, the
improved version of Boolector results in a 7.78X speedup to
find the bug (1658s vs. 213s) and a 6.35X speedup to prove
correctness (4739s vs. 746s). Similarly, for the configuration
with only positive clock-edge behavior and smaller data
memory, swapping out Lingeling and using CaDiCaL instead in
the improved version of Boolector results in speedups of 1.74X
and 1.81X, respectively (150s vs. 86s and 1062s vs. 568s). With
CaDiCaL, we achieved the shortest model checking times in our
experiments across all configurations, SAT solvers, and versions
of Boolector (bold face). Moreover, the model checking times
using CoSA are comparable with those using Questa (Table I).

V. CONCLUSIONS

We presented symbolic quick error detection (SQED) as
a powerful formal approach to pre- and post-silicon design
verification and validation. SQED relies on bounded model
checking (BMC) to check a universal property of the design.
The universal property is design-independent and hence does
not have to be formulated by the user. In a case study, we
applied SQED to RISC-V processor cores and demonstrated
that improvements to the SAT and SMT solvers that underlie
the SQED workflow result in a reduction of the model checking
times. We highlight that SQED addresses a main limitation
of formal verification techniques: labor-intensive property



TABLE IV
APPLYING SQED TO RIDECORE USING DIFFERENT SAT SOLVERS (CADICAL, LINGELING) IN THE SMT SOLVER BOOLECTOR INSIDE COSA.

BMC
Depth

Using CaDiCaL in
Boolector (Improved)

Using Lingeling in
Boolector (Improved)

Using Lingeling in
Boolector (Base)

Design Setup/Modifications k T (b) T (c) T (b) T (c) T (b) T (c)
Default: minimal changes to wire up QED module 23 226 697 213 746 1658 4739
Use only positive-edge clock behaviors 13 98 623 127 634 257 1771
Positive-edge clock, data memory shrinking 13 86 568 150 1062 282 1156

formulation. It thus greatly reduces the technical barrier for non-
experts to apply formal techniques in practice. Moreover, our
automated generator-based approach further increases usability
and thereby enables rapid applications of SQED to different
designs and ISAs. In light of the results of our experiments with
SQED, we provide a strongly affirmative answer to our initial
question whether there is hope for successful applications of
formal techniques at design scale.
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