
Paper 10.1 INTERNATIONAL TEST CONFERENCE 1
978-1-4673-6578-9/15/$31.00 ©2015 IEEE

A Structured Approach to Post-Silicon Validation and Debug Using
Symbolic Quick Error Detection

David Lin1, Eshan Singh1, Clark Barrett3, Subhasish Mitra1,2
1Department of Electrical Engineering and

2Department of Computer Science
Stanford University, Stanford, USA

3Department of Computer Science
New York University

New York, USA

Abstract—During post-silicon validation and debug,
manufactured integrated circuits (ICs) are tested in actual system
environments to detect and fix design flaws (bugs). Existing post-
silicon validation and debug techniques are mostly ad hoc and often
involve manual steps. Such ad hoc approaches cannot scale with
increasing IC complexity. We present Symbolic Quick Error
Detection (Symbolic QED), a structured approach to post-silicon
validation and debug. Symbolic QED combines the following steps
in a coordinated fashion: 1. Quick Error Detection (QED) tests that
quickly detect bugs with short error detection latencies and high
coverage. 2. Formal analysis techniques to localize bugs and
generate minimal-length bug traces upon detection of the
corresponding bugs.

We demonstrate the practicality and effectiveness of Symbolic QED
using the OpenSPARC T2, a 500-million-transistor open-source
multicore System-on-Chip (SoC) design, and using "difficult" logic bug
scenarios that occurred in various state-of-the-art commercial
multicore SoCs. Our results show that Symbolic QED: (i) is fully
automatic (unlike manual techniques in use today that can be
extremely time-consuming and expensive); (ii) requires only a few
hours in contrast to manual approaches that might take days (or even
months) or formal techniques that often take days or fail completely for
large designs; (iii) generates counter-examples (for activating and
detecting logic bugs) that are up to 6 orders of magnitude shorter than
those produced by traditional techniques; and, (iv) does not require
any additional hardware.
Keywords—Bounded Model Checking, Debug, Formal Debugging,
Post-Silicon Validation and Debug, Quick Error Detection, QED,
Symbolic Quick Error Detection

I. INTRODUCTION
During post-silicon validation and debug, manufactured

integrated circuits (ICs) are tested in actual system environments to
detect and fix design flaws (bugs). Design bugs can be broadly
classified into two categories: logic bugs that are caused by (logic)
design errors, and electrical bugs that are caused by subtle
interactions between a design and its “electrical” state. This paper
focuses on logic bugs.

Traditional pre-silicon verification is inadequate for “difficult”
logic bugs. Critical design bugs escape pre-silicon verification and are
detected only during post-silicon validation [Adir 11, Friedler 14,
Foster 15, Keshava 10, Mitra 10]. Existing post-silicon validation and
bug localization practices are often manual and generally ad hoc, and
the associated costs are rising faster than design costs [Abramovici 06,
Friedler 14, Nahir 14, Yerramilli 06,]. Post-silicon bug localization
involves identifying a bug trace (defined as a sequence of inputs, e.g.,
instructions, that activate and detect the bug) and the hardware design
block where the bug is (possibly) located. The effort to localize bugs
from observed system failures (e.g., deadlocks, crashes, output errors)
dominates the overall cost of post-silicon validation and debug
[Amyeen 09, Friedler 14, Keshava 10, Nahir 14]. For example, it
might take days or weeks (or even months) of (manual) work to
localize and debug a single logic bug [Keshava 10, Reick 12]. New
techniques are essential to reverse this trend.

Post-silicon bug localization challenges are primarily caused by
long error detection latencies [Hong 10, Lin 12, 14, 15a]. Error
detection latency is the time elapsed between when a test activates a

bug and creates an error and when the error manifests as an
observable failure (e.g., system crash, timeout, deadlock, exception).
During post-silicon validation and debug, error detection latencies
for “difficult” bugs can exceed several millions or even billions of
clock cycles [Lin 12, 14]. It is extremely difficult to trace that far
back into the history of system operation, especially for large designs
consisting of multiple cores, cache / memory controllers, etc.

Traditional post-silicon validation and debug techniques often
rely on trace buffers to generate bug traces. Trace buffers are small
memories that record the logic values of a selected set of signals.
Typically, trace buffers can record only a few (~1,000) clock cycles
of history (or a longer history at the cost of recording fewer signals)
[Abramovici 06, De Paula 11, Deutsch 14]. However, when dealing
with extremely long error detection latencies (especially for multi-
core chips with many signals to record), trace buffer techniques can
quickly become ineffective.

Assertions might be useful for post-silicon debug. However,
manual assertion creation is difficult, and it is even more difficult to
create assertions that can be efficiently implemented in hardware.
While reconfigurable logic can somewhat ease the implementation
burden [Abramovici 06], it is also difficult to select the “right” set of
assertions to include. This is especially true for automatic assertion
generation [El Mandouh 12, Hangal 05, Li 10, Vasudevan 10] which
can result in an explosion of assertions, many of which are
ineffective at catching bugs.

Many existing bug localization practices rely on failure
reproduction, which involves returning the system to an error-free
state and re-executing the failure-causing stimuli. As explained in
[De Paula 11, 12], failure reproduction is very difficult for complex
ICs due to non-deterministic behaviors, such as interrupts, I/O
functionalities, interactions between multiple processor cores, and
operating system functionalities (e.g., context switches). The sheer
design size also poses major challenges. System-level simulations are
several orders of magnitude slower than actual silicon [Adir 11,
Keshava 07, Schelle 10]. The use of formal analysis and Boolean
Satisfiability techniques for post-silicon validation and debug (e.g.,
[De Paula 08, 12, Zhu 11]) can also be severely limited by design
size (as we also show in Sec. IV).

The field of post-silicon validation and debug urgently needs a
structured, automated, and scalable approach to overcome bug
localization challenges. In this paper, we present such an approach
called Symbolic Quick Error Detection or Symbolic QED. Key
characteristics of Symbolic QED are: 1) It is applicable to any
System-on-Chip (SoC) design as long as it contains at least one
programmable processor core (a generally valid assumption for
existing SoCs [Foster 15]); 2) It is broadly applicable for logic bugs
inside processor cores, accelerators, and uncore components;1 3) It
doesn't require failure reproduction; 4) It doesn't require human
intervention during bug localization; 5) It doesn't require any
additional hardware to localize logic bugs; and, 6) It doesn’t require
design-specific assertions.

1 Uncore components refer to components in an SoC that are neither processor cores nor co-
processors. Examples include interconnect fabrics, and cache / memory controllers.

Paper 10.1 INTERNATIONAL TEST CONFERENCE 2

We demonstrate the effectiveness and practicality of Symbolic
QED by showing that: 1) Symbolic QED correctly and automatically
localizes difficult logic bugs in a few hours (less than 7) for
OpenSPARC T2, a 500-million-transistor open-source SoC (see Sec.
IV). Such bugs would generally take days or weeks (or even months)
of manual work to localize using traditional approaches; 2) Symbolic
QED does not require additional hardware (such as trace buffers) for
localizing logic bugs; 3) For each detected logic bug, Symbolic QED
provides a small list of candidate components representing the
possible locations of the bug in the design; 4) For each detected logic
bug, Symbolic QED automatically generates a minimal-length bug
trace using formal analysis; and, 5) Bug traces generated by
Symbolic QED are up to 6 orders of magnitude shorter than those
produced by traditional techniques.

Symbolic QED relies on the following two steps that work
together in a coordinated fashion: 1) Quick Error Detection (QED)
tests that detect bugs with short error detection latencies and high
coverage (Sec. II); and 2) Formal techniques that enable bug
localization and generation of minimal-length bug traces upon bug
detection (Sec. III).

A. Motivating Example
We present a bug scenario that corresponds to a difficult bug

found during post-silicon validation of a commercial multicore SoC:
Two stores within 2 cycles to adjacent cache lines delay the next

cache coherence message received by that cache by 5 clock cycles.
The bug is only activated when two store operations to adjacent

cache lines occur within 2 clock cycles of each other. The next
cache coherence message (e.g., invalidation) is delayed because of a
delay in the receive buffer of the cache (these details were not
known before the bug was found and localized).

During post-silicon validation, a test running on the SoC
created a deadlock. As shown in Fig. 1, the deadlock occurred
because one of the processor cores (core 4) performed a store to
memory location [A] followed by a store to memory location [B]
within 2 clock cycles ([A] and [B] were cached on adjacent cache
lines). As a result, the bug scenario was activated in cache 4. After
the bug was activated, processor core 1 performed a store to
memory location [C]. Since memory location [C] was cached in
multiple caches (cache 1 and cache 4), the store operation to
memory location [C] had to invalidate other cached copies of
memory location [C] (including the cached copy in cache 4).
However, due to the bug, the invalidation message received by
cache 4 was delayed by 5 clock cycles. Before the invalidation
occurred, processor core 4 loaded from memory location [C]. Since
the cached copy of memory location [C] in cache 4 was still marked
as valid, it loaded a stale copy (which contained the wrong value at
that point). Then, millions of clock cycles later, processor core 4
used the wrong value of memory location [C] in code that
performed locking, resulting in a deadlock.

Figure 1. Example bug scenario.

When such a deadlock is detected (e.g., by using a timeout), the
bug must be localized by identifying the bug trace and the
component where the bug is located. Since it is not known a priori
when the bug was activated or when the system deadlocked, it can
be very difficult to obtain the bug trace. Additionally, the bug trace
can be extremely long due to the long error detection latency,
containing extraneous instructions that are not needed for activating

or detecting the bug. As discussed above, such bugs are extremely
challenging to localize using approaches such as trace buffers,
failure reproduction, simulation, or traditional formal methods.

As shown in Sec. IV, Symbolic QED correctly localizes this
bug to cache 4 and produces a bug trace that is only 3 instructions
long. Symbolic QED takes only 2.5 hours to automatically localize
this bug without requiring any failure reproduction, or any
additional hardware. This is possible because Symbolic QED uses
bounded model checking (BMC), which finds the minimal bug
trace, if one exists [Clarke 01] (details in Sec. III). Additionally,
Symbolic QED employs special “design reduction” techniques to
effectively handle large multi-core SoC designs such as the
OpenSPARC T2 SoC (details in Sec. III and Appendix D). In
contrast, traditional post-silicon bug localization approaches would
likely require manual effort, additional hardware (e.g., trace
buffers), or both, and could take days or weeks (or even months).
Furthermore, the bug traces found by traditional post-silicon
techniques can be significantly longer than those found by Symbolic
QED (empirically demonstrated in Sec. IV).

While the main focus of this paper is post-silicon bug
localization, the Symbolic QED technique can also be used for bug
detection and localization during pre-silicon verification, as well as
emulation-based verification. We plan to explore these use cases in
future work.

The rest of this paper is organized as follows. Section II
provides an overview of the previously-published Quick Error
Detection (QED) technique. Section III presents the Symbolic QED
technique. Results are presented in Sec. IV, followed by related
work in Sec. V. We conclude in Sec. VI, with supplemental
materials in the appendices.

II. BACKGROUND: QUICK ERROR DETECTION (QED)
 QED tests have been demonstrated to be highly effective for

quickly detecting logic and electrical bugs inside processor cores,
uncore components, accelerators, and components related to power-
management features [Campbell 15, Hong 10, Lin 12, 14, 15a]. The
software-only QED technique automatically transforms existing
post-silicon validation tests (original tests) into new QED tests
using various QED transformations, e.g., Error Detection using
Duplicated Instructions for Validation (EDDI-V) and Proactive
Load and Check (PLC).2
A. EDDI-V

EDDI-V [Hong 10, Lin 14] targets bugs inside processor cores
by frequently checking the results of original instructions against the
results of duplicated instructions created by EDDI-V. First, the
registers and memory space are divided into two halves,3 one for the
original instructions and one for the duplicated instructions. Next,
corresponding registers and memory locations for the original and
the duplicated instructions are initialized to the same values. Then,
for every load, store, arithmetic, logical, shift, or move instruction in
the original test, EDDI-V creates a corresponding duplicate
instruction that performs the same operation, but on the registers and
memory reserved for the duplicate instructions. The duplicated
instructions execute in the same order as the original instructions.

The EDDI-V transformation also inserts periodic check
instructions (referred to as Normal checks in this paper) that compare
the results of the original instructions against those of the duplicated
instructions. For every duplicated load instruction, an additional

2 Symbolic QED can utilize the CFCSS-V and CFTSS-V QED transformations [Lin 14] as
well, which are presented in [Lin 15b].
3 For EDDI-V, if it is not possible to divide the registers into two halves (i.e., if the original
test needs to use all of the available registers), we can use memory to store the register
values. The details are in [Lin 14].

<more code>
...
store [C], 3

store [A], 1
store [B], 2
...

load R1, [C]
<very long time>
<deadlock>

 . . .

[C]=0:valid

Processor'Core'1' Processor'Core'4'Cache'1' Cache'4'

Other&processor&&cores&

[A]=1:valid
[B]=2:valid
 . . .

[C]=0,validInvalidate&
delayed&
5&cycles&

…!

Other&caches& Memory&controllers& I/O&controllers&

Paper 10.1 INTERNATIONAL TEST CONFERENCE 3

Load check instruction is inserted immediately after (before the
loaded values are used by any other instructions) to check that the
value loaded by the original instruction matches the value loaded by
the corresponding duplicated instruction. Similarly, for store
instructions, a Store check instruction is inserted immediately before
the original store instruction to check that the value about to be
stored by the original instruction matches the value about to be stored
by the duplicated instruction. Each check instruction is of the form:

CMP Ra, Ra’ ,
where Ra and Ra’ are the original and (corresponding) duplicate
registers, respectively. A mismatch in any check instruction indicates
an error. In order to minimize any intrusiveness [Lin 12, 14, 15a] that
might prevent bug detection by QED, insertion of the duplicated
instructions and the check instructions is controlled by the
parameters Inst_min and Inst_max, the minimum (maximum)
number of instructions from the original test that must (can) execute
before any duplicated or check instructions execute.4

B. PLC
PLC targets bugs inside uncore components by frequently and

proactively performing loads from memory (through uncore
components) and checking the values loaded. PLC first transforms an
original test into an EDDI-V-transformed QED test. Next, PLC
inserts Proactive Load and Check operations (PLC operations)
throughout the transformed test, which runs on all cores and all
threads. Each PLC operation checks the values in memory for a
selected set of variables. For each selected variable, a PLC operation
loads the value from the memory reserved for original instructions
(address A) and then loads the value from the corresponding memory
reserved for duplicated instructions (address A’). Any mismatch
indicates an error. An example of a PLC operation for a single
variable is shown in Fig. 2. Here, CMP Ra, Ra’ is referred to as a
PLC check. In a PLC operation, a lock is used if the variable is
shared between multiple cores / threads or if there are sources of
non-determinism in the system (e.g., due to interrupts, I/O, or OS
functionalities such as context switches). A PLC operation checks all
the variables selected for PLC. Various PLC strategies are discussed
in [Lin 12, 14, 15a].

LOCK(A);
LOCK(A’);
Ra = LOAD(A)
Ra’ = LOAD(A’)
UNLOCK(A’);
UNLOCK(A);
CMP Ra, Ra’ // PLC check

Figure 2. Example of a PLC operation for a single variable.
III. SYMBOLIC QED

Symbolic QED localizes bugs and produces short bug traces
consisting of only a few instructions (often less than 10)
automatically. Within the space of QED-compatible bug traces
(explained below), the traces produced by Symbolic QED are
minimal, meaning no shorter bug traces exist. These short bug traces
make bugs easier to understand and fix.

The Symbolic QED approach presented in this paper relies on
bounded model checking (BMC), a technique used in formal
verification. Given a model of a system (e.g., the RTL) and a
property to be checked (e.g., a check inserted by QED), the system is
formally analyzed to see if the property can be violated in a bounded
number of steps (clock cycles). If so, a counter-example (a concrete
trace violating the property, i.e., a bug trace) is produced. BMC
guarantees that if a counter-example is found, it is a minimal-length
counter-example [Clarke 01]. We first review three challenges
associated with using BMC for post-silicon bug localization: 1)

4 Examples of EDDI-V and PLC transformations with Inst_min and Inst_max parameters are
presented in Appendix A for the convenience of the reader.

BMC needs a property to check. Since the bugs are not known a
priori, it is difficult to craft such properties (and avoid false
positives); 2) Large design sizes limit the effectiveness of BMC. If a
design is too large, a typical BMC tool will not even be able to load
the design (see Sec. IV). Even if a large design can be loaded,
running BMC on it is likely to be very slow; and, 3) The
performance of BMC techniques is affected by the number of cycles
required to trigger and observe a bug. As the number of cycles
increases, BMC performance slows down, especially for large
designs. Thus, unless a short counter-example exists, BMC will take
too long or will be unable to find it.

We address challenge (2) in Sec. III.E. Here, we focus on
challenges (1) and (3). The key idea is to create a BMC problem that
searches through all possible QED tests. As shown in [Hong 10, Lin
12, 14, 15a], QED tests are excellent for detecting a wide variety of
bugs; hence, we use QED checks (i.e., Normal checks, Load checks,
Store checks, and PLC checks) as the properties, thus addressing
challenge (1). QED tests are also designed to detect errors quickly.
By searching all possible QED tests using the minimality guarantees
of BMC, it is usually possible to find a very short trace triggering the
bug, addressing challenge (3). The details of Symbolic QED are
explained in the following subsections.

A. Solving for QED-Compatible Bug Traces Using BMC
Both EDDI-V and PLC QED tests provide very succinct

properties to check using check instructions of the form:
CMP Ra, Ra’ .

For PLC checks and Load checks, Ra and Ra’ hold values loaded
from uncore components; for Normal checks and Store checks, Ra
and Ra’ hold the results of computations executed on the cores. An
error is detected when the two registers are not equal. Thus, we use
BMC to find counter-examples to properties of the form:

Ra==Ra’ ,
where Ra is an original register and Ra’ is the corresponding
duplicated register. However, without additional constraints, the
BMC engine will find trivial counter-examples that do not
correspond to real bugs. For example, the instruction sequence
{MOV R1←1, MOV R17 ←2, CMP R1, R17} results in R1≠R17;
the inequality is not caused by a bug. In order to avoid such
situations, we require that counter-examples must be QED-
compatible. We define a QED-compatible bug trace as a sequence of
inputs with the following properties:

1. Inputs must be valid instructions. Specifications of valid
instructions can be directly obtained from the Instruction Set
Architecture (ISA) of the processor cores.

2. The registers and memory space are divided into two halves:
one for “original” instructions and one for “duplicated” instructions.
For every instruction (excluding control-flow changing instructions)
that operates on the registers and memory space allocated for the
original instructions, there exists a corresponding duplicated
instruction that performs the same operation, but operates on the
registers and memory space allocated for the duplicated instructions.

3. The sequence of original instructions and the sequence of
duplicated instructions must execute in the same order.

4. The comparison (i.e., the property checked by the BMC tool)
between an original register R and its corresponding register R’
occurs only if the original and its corresponding duplicate
instructions have both been executed.

B. QED Module
Ensuring that only QED-compatible bug traces are considered

by BMC requires constraining the inputs to the design. We
accomplish this by adding a new QED module to the fetch stage of
each processor core during BMC. The QED module is only used
within the BMC tool and is not added to the manufactured IC;
i.e., there is no performance/area/power overhead. The QED module
only needs to be designed once for a given ISA, and made available

Paper 10.1 INTERNATIONAL TEST CONFERENCE 4

as a “library component” for use during validation. The design of a
QED module is simple, and can be tested in only a few minutes (see
Sec. IV). Note that, although the QED module is added to processor
cores, Symbolic QED is effective not only for bugs inside processor
cores, but also for bugs in uncore components, as well as bugs
related to power-management features (as demonstrated in Sec. IV).

The QED module automatically transforms a sequence of original
instructions into a QED-compatible sequence. Any control-flow altering
instruction determines the end of the “sequence of original
instructions.”5 The QED module only requires that this sequence is
made up of valid instructions and that they read from or write to only
the registers and memory allocated for the original instructions
(conditions that can be specified directly to the BMC tool). The
sequence of original instructions is first executed unmodified (up to but
not including the control-flow instruction), and the instructions are
committed. Then, it is executed a second time, but instead of using the
original registers and memory, the instructions are modified to use the
registers and memory allocated for the duplicated instructions. Since
duplication is triggered only by a control-flow instruction, the QED
module does not use a fixed value for Inst_min and Inst_max. Instead,
(by design) the BMC tool considers counter-examples (in this case,
sequences of original instructions) starting with smaller sequences and
then moving to longer sequences [Clarke 01]. This makes it possible for
the BMC tool to implicitly (and simultaneously) search through a wide
variety of instruction sequences of increasing lengths in order to find a
bug trace. After the second execution, a signal is asserted to indicate
that the original and corresponding duplicated registers should contain
the same values under bug-free situations, i.e., the BMC tool should
check the property Ra == Ra’.

Note that, because the BMC tool can choose a wide variety of
instructions as input to the QED module (including loads and
stores), it can effectively create checks that could be generated by a
QED transformation, including Normal, Load, Store, and PLC
checks. Also note that a PLC check generated by the QED module
does not require locks. Locks are not needed in this case because: (i)
we ensure that the QED modules for each core are synchronized:
they all start executing duplicated instructions on the same clock
cycle; 6 and (ii) the behavior of the design during BMC is
deterministic. Thus, the original and the duplicate sequences of
instructions must compute the same results unless there is a bug.

Figure 3. The QED module interface.

Figure 3 shows how the QED module integrates with the fetch unit.
The pseudo code of the QED module is shown in Fig. 4. The inputs to
the QED module are: 1) enable, which disables the QED module if 0
(this signal can be set by the validation engineers to disable the QED
module); 2) current_instruction, which is the current instruction to be
executed in the pipeline of the processor core; 3) next_instruction, which
is the next sequential instruction after current_instruction (i.e., the

5 One could alternatively use a pseudo-instruction “QED” to trigger instruction duplication;
the processor would treat this instruction as a NOP. This would allow the QED module to
create sequences that would not be possible otherwise (e.g., an odd number of instructions
between two control-flow altering instructions, such as {BRANCH; ADD; BRANCH}).
6 When executing original instructions, as soon as some QED module encounters a control-
flow instruction, all QED modules switch to WAIT1 (details later), indicating that no new
original instructions should be started. Then, once the original instructions on all cores have
committed, the duplicated instructions begin executing on all cores simultaneously.

instruction to be fetched by the fetch unit after current_instruction); 4)
next_PC, which is the PC corresponding to next_instruction; 5)
target_address, which is equivalent to next_PC unless the current
instruction is a control-flow instruction, in which case it is the control-
flow instruction’s target address; and 6) pipeline_empty, which is a signal
that is true if and only if there are no instructions in the pipelines of any
of the processor cores and all executed instructions on all cores have
been committed (i.e., the results written to registers or to memory).

The outputs from the QED module are: 1) PC, which is used to
override the value of next_PC; 2) PC_override, which determines if
the processor core should use the PC from the QED module or
next_PC from the fetch unit; 3) instruction_out, which is used to
override the value of current_instruction; 4) instruction_override,
which determines whether the processor core should use the modified
instruction (instruction_out) from the QED module or
current_instruction; and 5) qed_ready, which signals when both
original and duplicated registers should have the same values (under
bug-free conditions). qed_ready is false initially; it is only set to true
when both original and duplicated instructions have committed.

INPUT: enable, current_instruction, next_instruction, next_PC, target_address,
 pipeline_empty
OUTPUT: PC, PC_override, instruction_out, instruction_override,
 qed_ready
// initialization
mode ← ORIG; // “mode” is shared by all QED modules
rewind_address ← PC obtained from initial state (Sec. III.C);
qed_ready ← false; PC_override_i ← 0; instruction_override_i ← 0;
// end initialization
PC_override ← enable ? PC_override_i : 0;
instruction_override ← enable ? instruction_override_i : 0;
if mode == CHECK then
 mode ← ORIG; qed_ready ← true;
 PC ← target_address; PC_override_i ← 1;
 rewind_address ← target_address;
end if
if mode == ORIG, then
 qed_ready ← false; instruction_override_i ← 0; PC_override_i ← 0;
 if is_control_flow_instruction(next_instruction) then
 mode ← WAIT1; // all QED modules go to “WAIT1” when any QED
 // module gets a control-flow instruction
 end if
end if
if mode == WAIT1 then // wait until pipelines of all processor cores are empty
 mode ← pipeline_empty ? DUP : WAIT1; qed_ready ← false;
 instruction_out ← NOP; instruction_override_i ← 1;
 PC ← rewind_address; PC_override_i ← 1;
end if
if mode == DUP then
 qed_ready ← false; rewind_address ← next_PC; PC_override_i ← 0;
 if is_control_flow_instruction(next_instruction) then
 mode ← WAIT2; // all QED modules go to “WAIT2” when any QED
 // module gets a control-flow instruction
 end if
 instruction_out ← create_duplicated_version(current_instruction);
 instruction_override_i ← 1;
end if
if mode== WAIT2 then // wait until pipelines of all processor cores are empty
 mode ← pipeline_empty ? CHECK : WAIT2; qed_ready ← false;
 instruction_out ← NOP; instruction_override_i ← 1;
 PC ← rewind_address; PC_override_i ← 1;
end if

Figure 4. Pseudo code for QED module.
The QED module has internal variables: 1) mode, which tracks if

the processor core is executing original instructions (ORIG),
duplicated instructions (DUP), in a wait mode (WAIT1 or WAIT2), or
if the BMC tool should do a check (CHECK). This variable is shared
by all of the QED modules in the design so that they are always in the
same mode; 2) rewind_address, which holds the address of the first
instruction in the sequence of original instructions, (initialized to PC
obtained from the initial state in Sec. III.C); 3) PC_override_i and 4)
instruction_override_i, which are internal versions of PC_override
and instruction_override (the only difference is that when the enable
is set to 0, then both PC_override and instruction_override are also
set to 0, disabling the QED module).

The QED modules start in ORIG mode. When next_instruction is a
control-flow altering instruction, all QED modules go to WAIT1. In
WAIT1, PC is set to rewind_address, and PC_override_i is set to 1 (if

QED$
module$

Fetch&unit&with&QED&module&

PC$

instruc3on_out$

instruc3on_override$

qed_ready$

next_PC$

enable$

target_address$
next_instruc3on$
pipeline_empty$

Exis3ng$
fetch$
unit$

next_PC$$
(modified)$

current_instruc3on$
(modified)$

qed_ready$enable$

pipeline_empty$

1$
0$

1$
0$PC_override$

current_instruc3on$

Paper 10.1 INTERNATIONAL TEST CONFERENCE 5

enable is 1, PC_override is also set to 1). The QED module also outputs
NOP on instruction_out and sets instruction_override_i to 1 (if enable is
1, instruction_override is also set to 1). The QED modules stay in WAIT1
until all of the original instructions have committed (when pipeline_empty
becomes true, i.e., the pipelines of all processor cores are empty). Then,
all QED modules switch to DUP, and each processor core then re-
executes instructions starting from the address stored in rewind_address.
In DUP, the duplicated instruction is produced on instruction_out, and
instruction_override_i is set to 1, so the core executes the duplicated
instruction instead of the original instruction from the fetch unit. In DUP,
rewind_address is constantly updated to next_PC. Then, when
next_instruction is a control-flow altering instruction, all QED modules
switch to WAIT2 and stay in WAIT2 until the duplicated instructions on all
processor cores have committed (the pipeline_empty signal becomes true,
i.e., the pipelines of all processor cores are empty). In WAIT2, PC is set to
rewind_address. The QED module also outputs NOP on instruction_out
and sets instruction_override_i to 1 (if enable is 1, instruction_override is
also set to 1). After the instructions have committed, the original and
corresponding duplicated registers should be equal. Then, the QED
modules switch to CHECK. In CHECK, qed_ready is set to true. Each
QED module also updates rewind_address to target_address (i.e., the
address of the next instruction to execute) and sets PC to target_address
and PC_override_i to 1. After CHECK, the QED modules return to
ORIG.

An example of the transformation performed by the QED module
is shown in Fig. 5. Note that, LOAD(A) is transformed into LOAD(A’)
during the second execution. Thus, comparing the registers (using the
BMC tool) is equivalent to a PLC check on variables A and A’. There
are 4 events here: (1) store to A by core 1, (2) load from A by core 2,
(3) store to A’ by core 1, and (4) load from A’ by core 2. As explained
in [Lin 15b], to avoid false fails without using locks, the QED module
ensures that the order of (3) and (4) is the same as the order of (1) and
(2), even if multiple cores load from A and A’. Because the BMC tool
can choose a wide variety of instructions for the original sequence of
instructions, this does not significantly affect the ability of Symbolic
QED to activate and find bugs in general (which is empirically
demonstrated in Sec. IV). However, in future work, one may want to
allow the processor cores to have more freedom when executing the
duplicated instructions; in that case, locks may be necessary. Memory
initialization is discussed in Sec. III.C.

Figure 5. Example of QED transformation by the QED module.

(a) A sequence of original instructions on core 1 and core 2, and
(b) the actual transformed instructions executed by the cores.

C. Initial State
The approach outlined above ensures that only QED-

compatible traces are considered by BMC. However, the initial
state for the BMC run must be a QED-consistent state, in which the
value of each register (in the processor core) and memory location
allocated for original instructions must match the corresponding
register or memory location for duplicated instructions. This is to
ensure that no false counter-examples are generated. One approach
would be to start the processor from its reset state. However, the
reset state may not be QED-consistent (or it may be difficult to
confirm whether it is). Some designs also go through a reset
sequence that may span several clock cycles, making the BMC

problem more difficult. For example, for OpenSPARC T2, only one
processor core is active after a reset, and the system executes a
sequence of initialization instructions (approximately 600 clock
cycles long) to activate other processor cores in the system.

It is advantageous to start from a QED-consistent state after the
system has executed the reset sequence (if any) to improve the runtime
of BMC (also demonstrated by results in Sec. IV). A simple way to
obtain a QED-consistent state is to run “some” QED test (independent
of specific tests for bug detection and debug) in simulation and to stop
immediately after QED checks have compared all of the register and
memory values (this ensures that each “original” register or memory
location has the same value as its corresponding “duplicate” register or
memory location). This can be accomplished with a simple (short) test
that just writes to the original and corresponding duplicated registers
and memory locations and checks them to ensure that they are in a
QED-consistent state. The register values (including the PC and
next_PC from Sec. III.B) and memory values are read out of the
simulator and then used to set the register values, PC, next_PC, and
memory values of the design when preparing to run BMC. If the design
contains multiple processor cores, the processor cores can be simulated
together. Alternatively, each core can be simulated independently and
the results merged together to set up the BMC run. In this case, some
care must be taken to ensure that the values in shared memory locations
are the same at the end of each simulation (e.g. by running the same test
on each core). One can obtain these values using ultra-fast simulators (at
a higher level of abstraction than RTL) that can simulate large designs
with thousands of processor cores [Sanchez 13]. Thus, this initialization
step does not affect the scalability of Symbolic QED.
D. Finding Counter-Examples using BMC

After inserting the QED module and setting the initial state, we
use BMC to find a counter-example to the property:

qed_ready → 𝑅𝑎 == 𝑅𝑎′!∈{!..!!!!}
,

where n is the number of registers defined by the ISA. Here (for
𝑎 ∈ {0. . 𝑛/2 − 1}), Ra and Ra’ correspond to registers allocated for
original instructions and duplicated instructions respectively. As
mentioned above (e.g. Fig. 5), because we allow the instructions
chosen by BMC to include load and store instructions, our approach
can generate PLC checks, and can thus activate and detect bugs in
uncore components as well as those in processor cores.
E. Handling Large Designs

A state-of-the-art commercial BMC tool may not be able to load
a complete SoC (e.g., this is the case for OpenSPARC T2). Here, we
discuss two techniques for handling such large designs that do not
require any additional hardware. A third technique, which uses small
hardware structures referred to as change detectors, is discussed in
Appendix D. Design reduction techniques are important not only for
handling large design, but also for better bug localization.
Bugs Inside Processor Cores vs. Outside Processor Cores

If a (standard, not symbolic) QED test fails either a Normal
check or a Store check, we can immediately deduce that the bug is
inside the processor core where the check failed.7 This is because, by
design, Normal and Store checks catch any incorrect value produced
by a processor core before it leaves the processor core and
propagates to the uncore components or to other processor cores.
Thus, we just need to perform BMC on the single processor core
where the check failed in order to find a bug trace. If the test fails at a
Load check or a PLC check, we cannot immediately infer where the
bug is. For these cases, we consider the Partial Instantiation
technique to simplify the design to be analyzed by BMC.

7 The entire test must be transformed by QED for this to work. If some QED checks are left
out, then this cannot be guaranteed. For example, if some Normal checks and Store checks
are omitted, an error caused by a bug inside the core may propagate to an uncore component.

Core 1
A = STORE(R1)
R2 = R3 + R4
R5 = LOAD(A)
BRANCH label

Core 2
R2 = R3 – R4
R1 = LOAD(A)
R5 = LOAD(B)

Core 1
A = STORE(R1)
R2 = R3 + R4
R5 = LOAD(A) // PLC load
A’ = STORE(R17)
R18= R19 + R20
R21= LOAD(A’) // PLC load
BRANCH label

Core 2
R2 = R3 – R4
R1 = LOAD(A) // PLC load
R5 = LOAD(B)
R18 = R19 – R20
R17 = LOAD(A’) // PLC Load
R21 = LOAD(B’)

(a)$

(b)$

Paper 10.1 INTERNATIONAL TEST CONFERENCE 6

Partial Instantiation

Partial instantiation works through two design reduction
techniques. Technique 1 takes all components with multiple
instances and repeatedly reduces their count by half until there is
only 1 left. For example, in a multi-core SoC, the processor cores
are removed from the design until there is only 1 processor core left.
Technique 2 removes a module as long as its removal does not
divide the design into two disconnected components. For example,
if a design has a processor core connected to a cache through a
crossbar, the crossbar is not removed (without also removing the
cache). This is because if the crossbar is removed, the processor
core is disconnected from the cache. All possible combinations and
repetitions of the two techniques are considered when producing
candidates for analysis. Since we find bug traces in the form of
instructions that execute on processor cores, each analyzed design
must contain at least one processor core. Fig. 6 shows the steps for
this approach. Once the full set of simplified (partially instantiated)
designs is created, they can be analyzed using the BMC tool
independently (in parallel). An example is presented below.

Figure 6. The partial instantiation approach for design reduction.

 Consider the OpenSPARC T2 design with 8 processor cores, 1
crossbar, 8 banks of shared L2 cache, 4 memory controllers, and an I/O
controller (Fig. 7). This entire design is too big to be analyzed by the
BMC tool, so it is not saved as a partial instance. One possibility is to
remove the I/O controller, resulting in 8 processor cores, 1 crossbar, 8
banks of cache, and 4 memory controllers; this is still too big for the
BMC tool, and it is not saved as a partial instance. Alternatively,
components with multiple instances (e.g., the cores, caches, and
memory controllers) can be halved, reducing the design to 4 processor
cores, 1 crossbar, 4 banks of cache, 2 memory controllers, and the I/O
controller. This still does not fit in the BMC tool, and so again, it is not
saved as a partial instance. At this point, we can take either of our two
reduced designs as candidates for further reduction. Let us consider
the second one. The crossbar is not removed, as it would disconnect
the processor cores from the other components. Suppose instead that
we apply technique 1 again. This reduces the design to 2 processor
cores, 1 crossbar, 2 banks of cache, 1 memory controller, and the I/O
controller. This design still does not fit. Next, either the I/O controller
or the memory controller can be removed by applying technique 2. By
removing the I/O controller, we are left with 2 processor cores, 1
crossbar, 2 banks of cache, and 1 memory controller. This does fit in
the BMC tool and so the configuration is saved. Alternatively, by
removing the memory controller, we are left with 2 processor cores, 1
crossbar, 2 banks of cache, and the I/O controller, which also fits and is
saved. Now, even though at this point we have two candidate
configurations for BMC, we continue to apply design reduction
techniques to generate more partial instances. The reason for this is for
better localization: if BMC can find a bug trace in a smaller
configuration, then this indicates that the components removed by the
design reduction techniques are not necessary for activating and
detecting the bug. Continuing with the reduction, by applying
technique 1, the number of cores and caches can be reduced, resulting
in 1 processor core, 1 crossbar, 1 bank of cache, 1 memory controller,
and the I/O controller. Further reductions result in smaller and smaller
subsets of the design, each of which fits in the BMC tool and is saved.
When no more reductions are possible (i.e., when the design is reduced

down to just a single core), all of the saved designs are analyzed
independently (in parallel) by the BMC tool.

IV. RESULTS
We demonstrate the effectiveness of Symbolic QED using the

OpenSPARC T2 SoC [OpenSPARC] (Fig. 7), which is the open-source
version of the UltraSPARC T2, a 500-million-transistor SoC with 8
processor cores (64 hardware threads), private L1 caches, 8 banks of
shared L2 cache, 4 memory controllers, a crossbar interconnect, and I/O
controllers. We simulated logic bug scenarios from [Lin 12, 14, 15a],
which represent a wide variety of “difficult” bug scenarios that occurred
in various commercial multicore SoCs. The bug scenarios include bugs
in the processor cores, bugs in the uncore components, and bugs related
to power-management features.8 They are considered difficult because
they took a long time (days to weeks) to localize.

We modified the RTL of the OpenSPARC T2 SoC to incorporate
these bug scenarios. For the 80 bug scenarios from [Lin 12, 14], we
set the bug scenario parameter X to 2 clock cycles and bug scenario
parameter Y to 2 clock cycles. The details of X and Y are in [Lin 14];
note that smaller values for X and Y imply that the bugs are more
difficult to activate and detect. For example, consider the activation
criterion 1 from [Lin 14]: “two stores within X clock cycles to
different cache lines;” and two sequences of instructions: 1) {STORE
[a], Rx; STORE [b], Ry} and 2) {STORE [a], Rx; MOV R0, 0;
STORE [b], Ry}. While both sequence 1 and sequence 2 will satisfy
the activation criterion when X=3 (i.e., two stores within 3 clock
cycles to different cache lines), only sequence 1 will satisfy the
activation criterion when X=2. For the 12 power management bug
scenarios in [Lin 15a], the activation criterion is set to a sequence of
5 instructions randomly selected from the original test, executed on a
designated processor core. This is to emulate a power management
controller which puts the system into a power-saving state when it
executes a specific sequence of instructions. If a bug is inserted into a
component, the bug is included in all instances of that component.

Figure 7. OpenSPARC T2 diagram.

For BMC, we used the Questa Formal tool (version 10.2c_3)
from Mentor Graphics on an AMD Opteron 6438 with 128GB of
RAM. We used the EDDI-V and the PLC (Sec. II) QED
transformations to transform an 8-thread version of the FFT test
(from SPLASH-2 [Woo 95]) and an in-house 8-thread version of the
matrix multiplication test (MMULT) into QED tests to detect bugs.
The Inst_min and Inst_max QED transformation parameters were set
to 100, a setting which typically allows bugs to be detected within a
few hundred clock cycles (as shown in [Hong 10, Lin 12, 14]).9
Trying additional tests (beyond FFT and MMULT) was deemed
unnecessary because both tests (after QED transformation) were able
to detect all 92 bugs (and the BMC step in Symbolic QED is
independent of the QED tests that detect the bug).

We added the QED module described in Sec. III.B to the RTL of
the fetch unit in the OpenSPARC T2 processor core. The resulting
fetch unit with the QED module was tested using Questa to ensure it
correctly transforms a sequence of original instructions into a QED-
compatible bug trace. The testing process for 50 sequences of
original instructions of varying lengths (1 to 10 instructions long)
took approximately 1 minute of runtime. Moreover, we simulated all

8 Bug scenarios are in the appendix. The bug scenarios were simulated by modifying the
RTL of the OpenSPARC T2 SoC design so that, for each bug scenario, if the bug activation
criterion is satisfied, the bug effect is simulated.
9 These Inst_min and Inst_max parameters do not affect the bug traces found by Symbolic
QED shown later; they are only used to create the QED tests for detecting bugs.

no# Can#the#design#fit#in#the#
BMC#tool?#

Design#
Reduc6on:#to#fit#
in#BMC#tool#

Output#design#for#BMC#tool#
yes#

Input#design#

Can#the#design#be#reduced#
further?#

Par6al#
Instan6a6on#

designs#

Run#par6al#instan6a6ons#independently#(in#parallel)#on#
BMC#tool#

Check#design#size#

yes#
Design#

Reduc6on:#to#
localize#to#

smaller#design#
no#

Processor'cores'

Processor'cores'

Crossbar'
L2'

L2' L2'

L2'L2'

L2'MCUs' MCUs'

I
O

I
O

Processor'cores'

IO'

L2'

MCUs'

Crossbar'

Misc.'uncore'

Components)

Paper 10.1 INTERNATIONAL TEST CONFERENCE 7

of the bug traces produced by Symbolic QED (which depends on the
QED module) to ensure that they indeed activate and detect the
corresponding bugs. No additional hardware (e.g., trace buffers or
change detectors discussed in Appendix D) was added to the design.

The results are summarized in Table 1. The Original (No QED)
column shows results for the original validation tests (FFT or
MMULT) using end-result-checks (that check the results of the test vs.
pre-computed, known correct results). The QED column shows results
from running the same tests after applying QED transformations. Note
that, unlike Symbolic QED, both the Original (No QED) and the QED
tests (without the analysis techniques discussed in Sec. III.E) are only
able to report the existence of a bug; they cannot localize the bug (i.e.,
determine if the bug is in the processor core, in any of the uncore
components, or is caused by interactions between the components); nor
can they determine very precisely how the bug is activated. The table is
categorized into processor core bugs, uncore bugs (bugs that are inside
uncore components as well as in the interface between processor cores
and uncore components), and power management bugs. Each entry
contains two sets of numbers, corresponding to results obtained from
the FFT test (top), and results obtained from the MMULT test
(bottom).
Table 1. Results comparing original tests (No QED), QED tests,
and Symbolic QED on FFT (top values) and MMULT (bottom
values). For bug traces, we report the [minimum, average,
maximum] length in instructions and clock cycles. We also report
[minimum, average, maximum] BMC runtimes.

 Original
(No QED)

QED Symbolic
QED

P
ro

ce
ss

or
 c

or
e

on
ly

Bug trace length
(instructions)

[643,551k,4.9M]
[12k,534k,2.3M]

[324,57k,233k]†
[421,67k,321k]†

[3, 3, 3]
[3, 3, 3]

Bug trace length
(clock cycles)

[842,572k,5.1M]
[15k,544k,2.5M]

[367,66k,265k] †
[522,69k,272k] †

[13, 15, 16]
[13, 15, 16]

Coverage 50.0%
54.2%

100%
100%

100%
100%

BMC runtime
(minutes)

N/A N/A [22, 46, 90]
[22, 47, 89]

Bugs localized 0%
0%

0%
0%

100%*
100%*

U
nc

or
e

Bug trace length
(instructions)

[620,1.6M,9.8M]
[1k,536k,2.5M]

[231,59k,232k] †
[392,80k,421k] †

[3, 4, 4]
[3, 4, 4]

Bug trace length
(clock cycles)

[722,1.9M,11M]
[2k,550k,2.7M]

[292,72k,289k]†
[442,95k,435k]†

[14, 22, 29]
[14, 22, 29]

Coverage 55.3%
57.1%

100%
100%

100%
100%

BMC runtime
(minutes)

N/A N/A [78,164,188]
[76,163,190]

Bugs localized 0%
0%

0%
0%

100%*
100%*

P
ow

er

m
an

ag
em

en
t

Bug trace length
(instructions)

[1.5k,236k,495k]
[963,213k,422k]

[10k,68k,302k]†
[1k,47k,134k]†

[5, 5, 5]
[5, 5, 5]

Bug trace length
(clock cycles)

[1.9k,251k,512k]
[1.5k,220k,430k]

[13k,75k,319k]†
[2k,49k,149k]†

[17, 19, 22]
[17, 19, 22]

Coverage 66.7%
66.7%

100%
100%

100%
100%

BMC runtime
(minutes)

N/A N/A [205,266,333]
[206,264,335]

Bugs localized 0%
0%

0%
0%

100%*
100%*

* Symbolic QED localizes 100% of the bugs without using trace buffers.
† If trace buffers are used for QED, then the trace lengths in terms of
instructions are: for FFT, [63, 451, 863] for processor core bugs, [29, 487, 832]
for uncore bugs, and [42, 297, 742] for power management bugs; and for
MMULT, [44, 309, 874] for processor bugs, [32, 502, 884] for uncore bugs, and
[67, 392, 742] for power management bugs. The trace lengths in terms of clock
cycles are: for FFT, [82, 512, 922] for processor core bugs, [38, 532, 930] for
uncore bugs, and [66, 412, 912] for power management bugs; and for MMULT,
[69, 420, 921] for processor core bugs, [58, 582, 944] for uncore bugs, and [79,
482, 801] for power management bugs. Other entries remain the same.

In Table 1, “Bug trace length (instructions)” shows the
[minimum, average, maximum] number of instructions in the bug
trace. “Bug trace length (cycles)” represents the [minimum, average,
maximum] number of clock cycles required to execute the bug trace.
The two numbers are different because the number of cycles per
instruction (CPI) is not 1 for all instructions (for example, a load or
store instruction may take multiple clock cycles to execute). For
Symbolic QED, the reported length for bug traces corresponds to the
number of instructions in the trace found by the BMC tool (not

including duplicated instructions created by the QED modules). For
bugs that are only found by executing instructions on multiple
processor cores, the number of instructions for each core may be
different. For example, one core could have a bug trace that is 3
instructions long, while another core has a bug trace that is 1
instruction long. We report the length of the longest bug trace in such
situations (3 in this example), because all cores must completely
execute their corresponding instructions to activate and detect the
bug (and the cores execute the instructions in parallel).

Observation 1: Symbolic QED automatically produces bug
traces that are up to 6 orders of magnitude shorter than traditional
post-silicon validation tests that rely on end-result-checks, and up to
5 orders of magnitude shorter than QED tests. The bug traces
produced by Symbolic QED are very short (we confirmed their
correctness using simulation), and are significantly shorter than those
for QED and No QED. This is because (as discussed in Sec. III)
Symbolic QED uses BMC to search through all possible QED-
compatible bug traces to find the minimal-length bug trace required
to activate and detect the bug. Symbolic QED does not need trace
buffers (or any additional hardware) to produce correct bug
traces. These are very difficult bugs that took many days or weeks of
(manual) work to localize use traditional approaches (also evident by
the long bug traces produced by traditional techniques). Short bug
traces make debugging much easier. A more detailed visualization of
the trace lengths for each bug scenario is presented in Fig. 10.
 In Table 1, “Coverage” is the percentage of the 92 bugs detected.
Both Symbolic QED and QED detected all 92 bugs, while the
original tests detected only a little more than half of the bugs. This is
because original tests (No QED) may not contain the instructions
needed to activate a bug, and even if they do, there may not be
sufficient checks to detect it. In contrast, QED performs extensive
checks to detect errors. Symbolic QED searches through a wide
variety of QED tests to find a sequence of instructions that will
activate and detect the bug. “BMC runtime” represents the
[minimum, average, maximum] number of minutes it took for the
BMC tool to find the bug traces. And “Bugs localized” represents
the percentage of bugs localized. Note that both original (No QED)
and QED tests can only detect bugs, not localize bugs.

 We did not include any results from running BMC without our
Symbolic QED technique for two reasons: (i) the full design does not
load into the BMC tool; and (ii) even if it did, we would need
properties to check to run BMC, and there is no clear way to create
such properties (other than manual creation which would be
subjective and extremely time-consuming). Indeed, the Symbolic
QED technique for expressing a generic property to check is one of
our key contributions.
 Observation 2: Symbolic QED correctly and automatically
produces short bug traces for all bugs in less than 7 hours, without
relying on trace buffers or any other additional hardware.
Symbolic QED is effective for large designs such as the
OpenSPARC T2, which are challenging when using traditional post-
silicon techniques.

For Symbolic QED, all of the processor core bugs were detected
by either a Normal check or a Store check. Thus (as described in
Sec. III.E) we are able to determine that the bug must be inside the
processor cores. This was determined solely based on the QED
checks, not because we knew which bugs were simulated. The BMC
runtime reported for these bugs corresponds to a BMC run in which
only the processor core was loaded.

For uncore and power management bugs, the partial instantiation
technique (Sec. III.E) was used. The BMC tool analyzed the partial
instances in parallel. For the OpenSPARC T2, there were 9 parallel
BMC runs for each bug; each run corresponded to one of the following
partial instances, which are ranked by size in descending order.10 1) 2

10 Partial instantiation 1 is the largest that will fit into the BMC tool; all designs also contain
the crossbar that connects the components together.

Paper 10.1 INTERNATIONAL TEST CONFERENCE 8

processor cores, 2 L2 cache banks, and the I/O controller; 2) 2
processor cores, 2 L2 cache banks, and 1 memory controller; 3) 2
processor cores, and 2 L2 cache banks; 4) 1 processor core, 1 L2 cache
bank, 1 memory controller, and the I/O controller; 5) 1 processor core,
1 L2 cache bank, and the I/O controller; 6) 1 processor core, 1 L2
cache bank, and 1 memory controller; 7) 1 processor core and the I/O
controller; 8) 1 processor core, 1 L2 cache bank; and 9) 1 processor
core. Recall that if a bug is in a component, it is in all instances of the
component. For these bugs, the BMC runtime reported corresponds to
the runtime of the smallest partial instance that produced a counter-
example. For example, for a given bug, if both partial instances 6 and 8
produced a counter-example, then only the result from partial instance
8 was reported. This example reveals that the additional components in
partial instance 6 were not required for activating or detecting the bug.
Specifically, for this example, while both partial instances 6 and 8
contain processor cores and caches, partial instance 8 does not have a
memory controller. Thus the memory controller was not required to
activate and detect the bug. Note that this partial instance also provides
a small candidate list of components that may contain the bug.
 Observation 3: Symbolic QED correctly localizes bugs and
provides a list of components corresponding to possible bug locations.

Figure 8 reports a breakdown of the bugs localized by Symbolic
QED, which correctly localized all 92 bugs. Symbolic QED localized
26.1% the bugs to exactly 1 processor core; for 56.5% of the bugs,
Symbolic QED localized the bug to 1 processor core, 1 L2 cache
bank and the crossbar that connects the two; and for 17.4% of the
bugs, Symbolic QED localized the bug to 2 processor cores, 2 L2
cache banks, and the crossbar that connects the components.

Figure 8. Graph showing the percentage breakdown (by list of
candidate modules) of bugs localized by Symbolic QED. All 92

bugs were correctly localized.

Figure 9. The BMC runtimes for Symbolic QED.

Figure 10. Trace length (in terms of number of instructions).
The BMC runtimes reported in Table 1 for Symbolic QED use

the QED-consistent initial state constraint discussed in Sec. III.B.
The detailed runtimes for each bug are also presented in Fig. 9. In
Fig. 9, we report three runtimes for each bug: the runtime when
starting from the state immediately after a reset sequence (which is
QED-consistent in this case), the runtime when starting from a QED-
consistent initial state obtained by running the FFT QED test and

seeding BMC with the resulting register and memory values (Sec.
III.B), and the runtime when similarly seeding BMC after running
MMULT. Results show that using a QED-consistent initial state
obtained by running a QED test improves runtimes by up to 5X
compared to starting from the state immediately after a reset
sequence. No significant differences were observed between the
results from using the FFT test and those using the MMULT test.

In this paper, we demonstrated the effectiveness of Symbolic
QED on the OpenSPARC T2. However, Symbolic QED does not
rely on any information about the specific implementation of
OpenSPARC T2, making it applicable to a wide variety of SoCs.

V. RELATED WORK
The Symbolic QED technique in this paper mostly relies on

QED [Hong 10, Lin 12, 14] for creating post-silicon validation tests,
but there are important differences. Unlike Symbolic QED, QED
alone does not directly localize bugs at a fine level of hardware
granularity. As shown in Sec. IV, the bug traces obtained by QED
can be very long (up to 5 orders of magnitude longer when no trace
buffers are used) compared to Symbolic QED. For bugs inside
processor cores, Symbolic QED may be further enhanced using
techniques such as self-consistency checking [Jones 05]. However,
[Jones 05] addresses only processor core bugs. Our experience with
bugs in commercial SoCs indicate that uncore components are also
an important source of difficult bugs in SoCs [Lin 12, 14, 15a].

The growing importance of post-silicon validation and debug
has motivated recent publications on bug localization and bug trace
generation. IFRA and the related BLoG [Park 09, 10] techniques for
post-silicon bug localization target processors only and the
published results target electrical bugs. Their effectiveness for bugs
inside uncore components is unclear. They also require manual
efforts and additional hardware, unlike Symbolic QED.

Many post-silicon bug localization approaches rely on trace buffers
and assertions. Sec. I discussed the inadequacy of these techniques
(some of the heuristics for trace buffer insertion, e.g., restoration ratio
and its derivatives, only work for logic bugs, since they use simulations
to compute the logic values of signals that are not traced). In contrast,
Symbolic QED doesn’t require any trace buffers (or any additional
hardware) or design-specific assertions and provides a very succinct and
generic property to quickly detect and localize logic bugs.

BackSpace and its derivatives [De Paula 08, 11, 12] provide a
concrete bug trace once an error is detected or the system crashes by
using formal methods to stitch together multiple short traces (or
system states) into a longer trace. Some BackSpace derivatives
require failure reproduction, which, as discussed in Sec. I and in [De
Paula 11, 12], is challenging due to Heisenbug effects [Gray 85].
nuTAB-BackSpace addresses some of the failure reproduction
challenges but requires design-specific “rewrite rules” to determine
if two similar states are equivalent. These rewrite rules have to be
manually crafted by designers and require designer intuition, which
may be difficult for large designs. Furthermore, the bug traces
found may be very long, and unlike Symbolic QED, these
techniques cannot reduce the length of the bug traces. Moreover,
techniques that rely solely on formal methods for bug localization
(e.g., [De Paula 08, 11, 12, Zhu 11]) are not scalable to large
designs (e.g. OpenSPARC T2). Some formal techniques require
specific bug models (e.g., [Zhu 11] which targets a specific model
for electrical bugs) and may not work for logic bugs, since it is
difficult to create models for all logic bugs [ITRS 09].

Approaches that rely on detailed RTL simulations to obtain the
internal states of a design are not scalable for large designs because
full system RTL-level simulation of large designs is extremely slow,
less than 10 clock cycles per second [Schelle 10]. [DeOrio 11]
presented a technique for post-silicon bug diagnosis, but it requires
multiple detailed RTL simulations of the internal states of a design

1"processor"core,"26.1%""

1"processor"core"+""
1"L2"cache"bank"+""
crossbar,"56.5%""

2"processor"core"+""
2"L2"cache"bank"+""
crossbar,"17.4%""

Processor
core
bugs

Uncore bugs Power
management

bugs

0

500

1000

0 20 40 60 80 100

R
un

tim
e

(m
in

ut
es

)

Bug scenarios

Symbolic QED: Initial state
immediately after reset
sequence

Symbolic QED: With QED-
consistent initial state
obtained from running FFT
QED test

Symbolic QED: With QED-
consistent initial state
obtained from running
MMULT QED test

Paper 10.1 INTERNATIONAL TEST CONFERENCE 9

to guide the insertion of hardware structures for debugging.
BuTraMin [Chang 09] is a pre-silicon technique for shortening the
length of a bug trace. For use in post-silicon validation and debug of
large designs, it requires massive simulations to capture logic values
of all flip-flops in the system, which will be difficult. There may be
opportunities to use such techniques after Symbolic QED localizes
bugs and produces short bug traces (as demonstrated in this paper).

VI. CONCLUSION
We presented the Symbolic QED technique, a structured and

automated approach that overcomes post-silicon validation and
debug challenges. It automatically detects and localizes logic bugs in
post-silicon validation and provides a list of components that may
contain the bugs. Symbolic QED produces bug traces that are up to 6
orders of magnitude shorter than traditional post-silicon validation
tests that rely on end-result-checks, and up to 5 orders of magnitude
shorter than QED. It is completely automated, does not require
human intervention, and does not need any additional hardware.

Symbolic QED is both effective and practical, as demonstrated on
the OpenSPARC T2, where it correctly localized difficult logic bug
scenarios that occurred during post-silicon validation of various
commercial multicore SoCs. These difficult bug scenarios originally
took many days or weeks of (mostly manual) debug work to localize.
Other formal techniques for debugging may take days or fail completely
for large designs such as the OpenSPARC T2. As demonstrated in this
paper, Symbolic QED is effective for bugs inside processor cores, bugs
inside uncore components, as well as bugs related to power-
management features. Symbolic QED is applicable to any SoC design
as long as it contains at least one programmable processor core (a
generally valid assumption for existing SoCs [Foster 15]).

There are several directions for future work. Symbolic QED can
be expanded to: 1) detect and localize bugs during pre-silicon or
emulation-based verification; 2) localize electrical bugs during post-
silicon validation (this paper’s focus was on logic bugs); 3) perform
full system-level bug localization; 4) perform diagnosis of
manufacturing defects during system-level testing; 5) localize bugs in
analog and mixed signal components; and 6) use a more general QED
module that does not require duplicated instructions to start execution
on the same clock cycle on all processor cores (locks may be needed
to avoid false fails) and that uses a pseudo-instruction “QED” (instead
of a control-flow instruction) to trigger duplication.

ACKNOWLEDGEMENT
We thank the reviewers for their valuable suggestions.

REFERENCES
[Abramovici 06] Abramovici, M. “A Reconfigurable Design-for-Debug

Infrastructure for SoCs,” Proc. IEEE/ACM Design Automation Conf., pp. 7-
12, 2006.

[Adir 11] Adir, A., et al., “Threadmill: A Post-Silicon Exerciser for Multi-
Threaded Processors,” IEEE/ACM Design Automation Conf., 2011.

[Amyeen 09] Amyeen, M. E., S. Venkataraman and M. W. Mak,
“Microprocessor System Failures Debug and Fault Isolation Methodology,”
Proc. IEEE Intl. Test Conf., pp. 1-10, 2009.

[Bohr 09] Bohr, M., “The New Era of Scaling in an SoC World,” Proc. IEEE
Solid-State Circuits Conf., pp. 23-28, 2009.

[Campbell 15] Campbell, K., D. Lin, S. Mitra, D. Chen, “Hybrid Quick Error
Detection (H-QED): Accelerator Validation and Debug Using High-Level
Synthesis Principles,” Proc. IEEE/ACM Design Automation Conf., pp. 1-6,
2015.

[Chang 09] Chang, K., I. L. Markov, V. Bertacco, “Bug Trace Minimization,”
Functional Design Errors in Digital Circuits, Vol. 32, pp. 77-103, 2009

[Clarke 01] Clarke, E., A. Biere, R. Raimi, Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” Formal Methods in System Design, Vol. 19, No.
1, pp. 7-34, 2001.

[De Paula 08] De Paula, F. M., et al., “BackSpace: Formal Analysis for Post-
Silicon Debug,” Proc. Formal Methods in CAD, pp. 1-10, 2008.

[De Paula 11] De Paula, F. M., et al., “TAB-BackSpace: Unlimited-Length Trace
Buffers with Zero Additional On-Chip Overhead,” Proc. IEEE/ACM Design
Automation Conf., pp. 411-416, 2011.

[De Paula 12] De Paula, F. M., A.J. Hu, and A. Nahir, “nuTAB-BackSpace:
Rewriting to Normalize Non-Determinism in Post-Silicon Debug Traces,”
Proc. Intl. Conf. on Computer Aided Verification, pp. 513-531, 2012.

[DeOrio 11] DeOrio, A., D. S. Khudia, and V. Bertacco, “Post-Silicon Bug
Diagnosis with Inconsistent Executions,” Proc IEEE Intl. Conf. Computer-
Aided Design, pp. 755-761, 2011.

[Deutsch 14] Deutsch, S., and K. Chakrabarty, “Massive Signal Tracing Using
On-Chip DRAM for In-System Silicon Debug,” Proc. IEEE Intl. Test Conf.,
pp. 1-10, 2014.

[El Mandouh 12] El Mandouh, E., and A.G. Wassal, “Automatic Generation of
Hardware Design Properties from Simulation Traces,” Proc IEEE Intl. Symp.
Circuits and Systems, pp. 2317-2320, 2012.

[Foster 15] Foster, H. D., “Trends in Functional Verification: A 2014 Industry
Study,” Proc. IEEE/ACM Design Automation Conf., pp. 48-52, 2015.

[Friedler 14] Friedler, O., et al., “Effective Post-Silicon Failure Localization
Using Dynamic Program Slicing,” Proc. IEEE/ACM Design Automation Test
in Europe, pp. 1-6, 2014.

[Gray 85] Gray, J., “Why Do Computers Stop and What Can Be Done About It?”
Tandem Computer, Tech. Report 85.7, PN 87614, 1985.

[Hangal 05] Hangal S., et al.. “IODINE: A Tool to Automatically Infer Dynamic
Invariants,” Proc. IEEE/ACM Design Automation Conf., pp. 775-778, 2005.

[Hong 10] Hong, T., et al., “QED: Quick Error Detection Tests for Effective
Post-Silicon Validation,” Proc. IEEE Intl. Test Conf., pp. 1-10, 2010.

[ITRS 09] http://www.itrs.net/Links/2009ITRS/Home2009.htm.
[Jones 05] Jones, R. B., C.-J. H. Seger, D. L. Dill, “Self-Consistency Checking,”

Proc. Formal Methods in CAD, pp. 159-171, 2005.
[Keshava 10] Keshava, J., N. Hakim, and C. Prudvi, “Post-silicon Validation

Challenges: How EDA and Academia Can Help,” Proc. IEEE/ACM Design
Automation Conf., pp. 3-7, 2010.

[Li 10] Li, W., F. Alessandro, and S. A. Seshia, “Scalable Specification Mining for
Verification and Diagnosis,” Proc. IEEE/ACM Design Automation Conf., 2010.

[Lin 12] Lin, D., et al., “Quick Detection of Difficult Bugs for Effective Post-
Silicon Validation,” Proc. IEEE/ACM Design Automation Conf., pp. 561-
566, 2012.

[Lin 14] Lin, D., et al., “Effective Post-Silicon Validation of System-on-Chips
Using Quick Error Detection,” IEEE Trans. Computer Aided Design of
Integrated Circuits Systems, Vol. 33, No. 10, pp. 1573-1590, 2014.

[Lin 15a] Lin, D., et al., “Quick Error Detection Tests with Fast Runtimes for
Effective Post-Silicon Validation and Debug,” to appear in IEEE Design
Automation and Test in Europe Conf., 2015.

[Lin 15b] Lin, D., “QED Post-Silicon Validation and Debug,” Stanford Ph.D.
Dissertation, 2015.

[Mitra 10] Mitra, S., S. A. Seshia, and N. Nicolici, “Post-Silicon Validation
Opportunities, Challenges and Recent Advances,” Proc. IEEE/ACM Design
Automation Conf., pp. 12-17, 2010.

[Nahir 14] Nahir, A., et al., “Post-Silicon Validation of the IBM POWER8
Processor,” Proc. IEEE/ACM Design Automation Conf., pp. 1-6, 2014.

[OpenSPARC] Available: http://www.opensparc.net
[Park 09] Park, S.-B., T. Hong, and S. Mitra, “Post-silicon Bug Localization In

Processors Using Instruction Footprint Recording and Analysis (IFRA),”
IEEE. Trans. Computer Aided Design Integrated Circuits System, Vol. 28,
No. 10, pp. 1545–1558, 2009.

[Park 10] Park, S.-B., et al., “BLoG: Post-Silicon Bug Localization in Processors
Using Bug Localization Graph”, Proc. IEEE/ACM Design Automation Conf.,
pp. 368-373, 2010.

[Reick 12] Reick, K., “Post-Silicon Debug – DAC Workshop on Post-Silicon
Debug: Technologies, Methodologies, and Best-Practices,” IEEE/ACM
Design Automation Conf., 2012

[Sanchez 13] Sanchez, D., and C. Kozyrakis, “ZSIM: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems,” Proc. ACM Intl.
Symp. Computer Architecture, pp. 475-486, 2013.

[Schelle 10] Schelle, G., et al., “Intel Nehalem Processor Core Made FPGA
Synthesizable,” Proc. ACM/SIGDA Intl. Symp. Field Programmable Gate
Arrays, pp. 3-12, 2010.

[Vasudevan 10] Vasudevan, S., et al., “GoldMine: Automatic Assertion
Generation Using Data Mining and Static Analysis,” Proc. IEEE Design
Automation and Test in Europe Conf., pp. 626-629, 2010.

[Woo 95] Woo, S. C., et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” Proc. ACM/IEEE Intl. Symp. Computer
Architecture, pp. 24-36, 1995.

[Yerramilli 06] Yerramilli, S., “Addressing Post-Silicon Validation Challenges:
Leverage Validation & Test Synergy,” Keynote, IEEE Intl. Test Conf., 2006.

[Zhu 11] Zhu, C.S., G. Weissenbacher, and S. Malik, “Post-Silicon Fault
Localisation Using Maximum Satisfiability and Backbones,” Proc.
IEEE/ACM Formal Methods Computer-Aided Design, pp. 63-66, 2011.

APPENDIX
A. EDDI-V Transformation Example

An EDDI-V example is shown in Fig. A1. Fig. A1(a) is the original
test. Fig. A1(b) is the transformed test with Inst_min = Inst_max = 3.
//initialization
R1 = 1
R2 = 2
R3 = 3
R4 = 4
R5 = 5
R6 = 6
//code
R1 = R2 + R3
R4 = R5 – R6
R4 = R1 – R4
B label
...

(a)

//initialization
R1 = 1 R17 = 1
R2 = 2 R18 = 2
R3 = 3 R19 = 3
R4 = 4 R20 = 4
R5 = 5 R21 = 5
R6 = 6 R22 = 6
//code
R1 = R2 + R3
R4 = R5 – R6
R4 = R1 – R4
R17 = R18 + R19
R20 = R21 – R22
R20 = R17 – R20
CMP R4, R20
BNE ERROR_DETECTED
B label
...

(b)
Figure A1. EDDI-V example with Inst_min = Inst_max = 3.

Paper 10.1 INTERNATIONAL TEST CONFERENCE 10

B. PLC Transformation Example
In Fig. A2(a), Inst_min = Inst_max = 4 instructions. In Fig. A2(b),

PLC_list is a list of tuples of the form <original variable pointer, EDDI-
V variable pointer>, where original variable pointer is the address of a
variable from the original test selected to be checked by PLC operations
and EDDI-V variable pointer is the address of the corresponding EDDI-
V variable. A PLC operation checks all tuples in PLC_list. Variable
selection strategies for PLC are given in [Lin 12, 14]. The runtime of
PLC-based QED tests can be significantly shortened with a small amount
of additional hardware support [Lin 15a].

Transformed Code PLC Operation
...
<PLC Operation>	

R1 = R2 + R3
R4 = R5 – R6
R17 = R18 + R19
R20 = R21 – R22
<PLC Operation>	

R7 = R1 – R4
R9 = R7 * R8
R23 = R17 – R20
R25 = R23 * R24
<PLC Operation>
...

(a)

for <A,A’> in PLC_list do
 LOCK(A)
 LOCK(A’)
 Rt = LOAD(A)
 Rt’ = LOAD(A’)
 UNLOCK(A’)
 UNLOCK(A’)
 CMP Rt, Rt’
 BNE ERROR_DETECTED
end for

(b)
Figure A2. PLC example. with Inst_min = Inst_max = 4.

C. Bug Scenarios
 A bug scenario is formed by pairing one bug activation criterion with
one bug effect.

Table A1.A. Bug activation criterion from [Lin 12, 14].
Uncore
components

1. Two stores within X clock cycles to different cache lines.
2. Two stores within X clock cycles to the same cache line.
3. Two stores within X clock cycles to adjacent cache lines.
4. Two cache misses within X cycles.
5. A sequence of loads and/or stores within X clock cycles.

Processor
cores

6. Data forwarding between pipeline stages.
7. Two branch instructions within X clock cycles.

Other 8. A randomly chosen clock cycle.

Table A1.B. Bug effects from [Lin 12, 14].
Uncore
components

A. Next received cache* coherence message dropped.
B. Next received cache* coherence message delayed.
C. Next store operation not allocated a cache* line.
D. Next store update to cache* delayed by Y clock cycles.
E. Next data accessed from cache* corrupted.
F. Next data coming from main memory to cache* / core*
corrupted.
G. Processor core’s* load value corrupted.

Processor
cores

H. Core* jumps to incorrect (random) address in the next cycle.
I. Error in decoding next instruction’s operand inside core*.
J. Processor core* incorrectly decodes next instruction to a NOP
instruction.

* Where activation criterion is satisfied.
Table A2.A. Power management bug activation criterion [Lin 15a].

ID Description
1 When exiting from power-saving state.

Table A2.B. Power management bug effects [Lin 15a].
Type ID Description

Uncore
components

A The value of the next load operation from data cache is
corrupted to all 0’s.

B Next load operation from data cache delayed (1 clock cycle) by
cache controller.

C Data cache drops the next load operation.
D The value of the next load operation from main memory is

corrupted to all 0’s.
E Next load operation from main memory delayed (1 clock cycle)

by memory controller.
F Next load request to main memory is dropped.
G Next load operation is delayed for 1 clock cycle by the

interconnection network.
H Next load operation is corrupted to all 0’s by the

interconnection network.
I Next load operation is dropped by the interconnection network.

Processor
cores

J Processor jumps to a random address.
K Next instruction is corrupted to NOP
L The value of the next register read is corrupted to all 0’s.

D. Change Detectors for Design Reduction
In this supplemental section, we present a design reduction technique

that uses small hardware structures, referred to as change detectors. We
insert change detectors (Fig. A3) to record changes in the logic values of

signals during validation. These change detectors are inserted at the
boundaries of all components that may potentially be removed when
creating partial instantiations (e.g., at a certain level in the RTL
hierarchy). For example, for the results below, change detectors were
inserted on all signals one hierarchical level below the main SoC module
of the OpenSPARC T2. They monitored signals between all modules at
that level, which includes processor cores, L2 cache banks, memory
controllers, and I/O controllers.

Figure A3. Change detector.

A change detector consists of a k-bit ripple counter that is initialized
to all 1’s and is reset to all 0’s whenever a change in signal values is
detected. Due to the short error detection latencies of QED tests, k≈10 is
generally sufficient (change window of 1,023). When a QED test detects
an error, the system is stopped and the change detector counter values are
scanned out and saved. Using the recorded values in the change
detectors, a reduced design is created for further analysis. A component
is excluded from the analysis by BMC if, during the change window, the
change detectors did not record any changes in the logic values of the
component’s input or output signals.
 To evaluate the change detectors for reducing the design size, we
used the same 92 bug scenarios in OpenSPARC T2 and ran the QED-
transformed (EDDI-V and PLC) FFT and MMULT tests. With a change
window of 1,023 cycles, we observed that for these tests, only the
processor cores, crossbar, L2 caches, and memory controllers were part
of the reduced design. Other components such as the I/O controllers
could thus be removed from the design. For the 92 bugs, as shown in Fig.
A4, the number of L2 cache banks (L2C) and memory controllers
(MCU) also varied. For 3 of the bugs (with FFT benchmark) the design
size reduced enough to eliminate a component (in each case a memory
controller) from the partially instantiated designs.
 We performed synthesis using the Synopsys Design Compiler with
the Synopsys EDK 32 nm library to calculate the chip-level area
overhead of the change detectors on OpenSPARC T2. We inserted
change detectors on 1,067 signals (24,214 bits total), requiring 24,214
change detectors for the entire design. This resulted in a 1.86% chip-
level area overhead. However, given that the change detectors did not
reduce the number of memory controllers or caches enough to
completely eliminate a partial instance (Sec. IV) for most of the bugs
(Fig. A4), in this example we could have omitted the change detectors
that only observe signals between those components. Then the number of
signals monitored is 899 (12,734 bits total). The area overhead reduces to
0.98%. The use of change detectors on only peripheral components that
see intermittent activity appears to be the most cost-effective strategy;
monitoring components such as caches and memory controllers that have
high utilization may not add significant value. The overhead is
significantly less than the 4% overhead of reconfigurable logic for post-
silicon debugging proposed by [Abramovici 06]. This also entirely
avoids the use of trace buffers (and the associated area overhead), as
implemented by [Chang 09, De Paula 08, 11, 12, Park 08, 09].

Figure A4. Change detector reduced design results for 92 bugs
simulated during the FFT and MMULT benchmark tests.

Change
Detector

D Q Monitored
Signal

Component Flip-flop

Component Boundary

Internal
Logic

(a)

A
B

Out

Change Detector

D Q

RST
Q

…

k …… D

RST
Q
Q D

RST
 Q

Q

A

B

(b)

Out

