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Abstract—During post-silicon validation and debug, 
manufactured integrated circuits (ICs) are tested in actual system 
environments to detect and fix design flaws (bugs). Existing post-
silicon validation and debug techniques are mostly ad hoc and often 
involve manual steps.  Such ad hoc approaches cannot scale with 
increasing IC complexity. We present Symbolic Quick Error 
Detection (Symbolic QED), a structured approach to post-silicon 
validation and debug. Symbolic QED combines the following steps 
in a coordinated fashion: 1. Quick Error Detection (QED) tests that 
quickly detect bugs with short error detection latencies and high 
coverage. 2. Formal analysis techniques to localize bugs and 
generate minimal-length bug traces upon detection of the 
corresponding bugs.  

We demonstrate the practicality and effectiveness of Symbolic QED 
using the OpenSPARC T2, a 500-million-transistor open-source 
multicore System-on-Chip (SoC) design, and using "difficult" logic bug 
scenarios that occurred in various state-of-the-art commercial 
multicore SoCs. Our results show that Symbolic QED: (i) is fully 
automatic (unlike manual techniques in use today that can be 
extremely time-consuming and expensive); (ii) requires only a few 
hours in contrast to manual approaches that might take days (or even 
months) or formal techniques that often take days or fail completely for 
large designs; (iii) generates counter-examples (for activating and 
detecting logic bugs) that are up to 6 orders of magnitude shorter than 
those produced by traditional techniques; and, (iv) does not require 
any additional hardware. 
Keywords—Bounded Model Checking, Debug, Formal Debugging, 
Post-Silicon Validation and Debug, Quick Error Detection, QED, 
Symbolic Quick Error Detection 

I. INTRODUCTION 
During post-silicon validation and debug, manufactured 

integrated circuits (ICs) are tested in actual system environments to 
detect and fix design flaws (bugs). Design bugs can be broadly 
classified into two categories: logic bugs that are caused by (logic) 
design errors, and electrical bugs that are caused by subtle 
interactions between a design and its “electrical” state. This paper 
focuses on logic bugs. 

Traditional pre-silicon verification is inadequate for “difficult” 
logic bugs. Critical design bugs escape pre-silicon verification and are 
detected only during post-silicon validation [Adir 11, Friedler 14, 
Foster 15, Keshava 10, Mitra 10]. Existing post-silicon validation and 
bug localization practices are often manual and generally ad hoc, and 
the associated costs are rising faster than design costs [Abramovici 06, 
Friedler 14, Nahir 14, Yerramilli 06,]. Post-silicon bug localization 
involves identifying a bug trace (defined as a sequence of inputs, e.g., 
instructions, that activate and detect the bug) and the hardware design 
block where the bug is (possibly) located. The effort to localize bugs 
from observed system failures (e.g., deadlocks, crashes, output errors) 
dominates the overall cost of post-silicon validation and debug 
[Amyeen 09, Friedler 14, Keshava 10, Nahir 14]. For example, it 
might take days or weeks (or even months) of (manual) work to 
localize and debug a single logic bug [Keshava 10, Reick 12]. New 
techniques are essential to reverse this trend. 

Post-silicon bug localization challenges are primarily caused by 
long error detection latencies [Hong 10, Lin 12, 14, 15a].  Error 
detection latency is the time elapsed between when a test activates a 

bug and creates an error and when the error manifests as an 
observable failure (e.g., system crash, timeout, deadlock, exception). 
During post-silicon validation and debug, error detection latencies 
for “difficult” bugs can exceed several millions or even billions of 
clock cycles [Lin 12, 14]. It is extremely difficult to trace that far 
back into the history of system operation, especially for large designs 
consisting of multiple cores, cache / memory controllers, etc. 

Traditional post-silicon validation and debug techniques often 
rely on trace buffers to generate bug traces. Trace buffers are small 
memories that record the logic values of a selected set of signals.  
Typically, trace buffers can record only a few (~1,000) clock cycles 
of history (or a longer history at the cost of recording fewer signals) 
[Abramovici 06, De Paula 11, Deutsch 14]. However, when dealing 
with extremely long error detection latencies (especially for multi-
core chips with many signals to record), trace buffer techniques can 
quickly become ineffective.  

Assertions might be useful for post-silicon debug. However, 
manual assertion creation is difficult, and it is even more difficult to 
create assertions that can be efficiently implemented in hardware. 
While reconfigurable logic can somewhat ease the implementation 
burden [Abramovici 06], it is also difficult to select the “right” set of 
assertions to include. This is especially true for automatic assertion 
generation [El Mandouh 12, Hangal 05, Li 10, Vasudevan 10] which 
can result in an explosion of assertions, many of which are 
ineffective at catching bugs.  

Many existing bug localization practices rely on failure 
reproduction, which involves returning the system to an error-free 
state and re-executing the failure-causing stimuli.  As explained in 
[De Paula 11, 12], failure reproduction is very difficult for complex 
ICs due to non-deterministic behaviors, such as interrupts, I/O 
functionalities, interactions between multiple processor cores, and 
operating system functionalities (e.g., context switches). The sheer 
design size also poses major challenges. System-level simulations are 
several orders of magnitude slower than actual silicon [Adir 11, 
Keshava 07, Schelle 10]. The use of formal analysis and Boolean 
Satisfiability techniques for post-silicon validation and debug (e.g., 
[De Paula 08, 12, Zhu 11]) can also be severely limited by design 
size (as we also show in Sec. IV). 

The field of post-silicon validation and debug urgently needs a 
structured, automated, and scalable approach to overcome bug 
localization challenges. In this paper, we present such an approach 
called Symbolic Quick Error Detection or Symbolic QED. Key 
characteristics of Symbolic QED are: 1) It is applicable to any 
System-on-Chip (SoC) design as long as it contains at least one 
programmable processor core (a generally valid assumption for 
existing SoCs [Foster 15]); 2) It is broadly applicable for logic bugs 
inside processor cores, accelerators, and uncore components;1 3) It 
doesn't require failure reproduction; 4) It doesn't require human 
intervention during bug localization; 5) It doesn't require any 
additional hardware to localize logic bugs; and, 6) It doesn’t require 
design-specific assertions. 

                                                
1 Uncore components refer to components in an SoC that are neither processor cores nor co-
processors. Examples include interconnect fabrics, and cache / memory controllers. 
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We demonstrate the effectiveness and practicality of Symbolic 
QED by showing that: 1) Symbolic QED correctly and automatically 
localizes difficult logic bugs in a few hours (less than 7) for 
OpenSPARC T2, a 500-million-transistor open-source SoC (see Sec. 
IV). Such bugs would generally take days or weeks (or even months) 
of manual work to localize using traditional approaches; 2) Symbolic 
QED does not require additional hardware (such as trace buffers) for 
localizing logic bugs; 3) For each detected logic bug, Symbolic QED 
provides a small list of candidate components representing the 
possible locations of the bug in the design; 4) For each detected logic 
bug, Symbolic QED automatically generates a minimal-length bug 
trace using formal analysis; and, 5) Bug traces generated by 
Symbolic QED are up to 6 orders of magnitude shorter than those 
produced by traditional techniques. 

Symbolic QED relies on the following two steps that work 
together in a coordinated fashion: 1) Quick Error Detection (QED) 
tests that detect bugs with short error detection latencies and high 
coverage (Sec. II); and 2) Formal techniques that enable bug 
localization and generation of minimal-length bug traces upon bug 
detection (Sec. III). 

A. Motivating Example 
We present a bug scenario that corresponds to a difficult bug 

found during post-silicon validation of a commercial multicore SoC:  
Two stores within 2 cycles to adjacent cache lines delay the next 

cache coherence message received by that cache by 5 clock cycles. 
The bug is only activated when two store operations to adjacent 

cache lines occur within 2 clock cycles of each other.  The next 
cache coherence message (e.g., invalidation) is delayed because of a 
delay in the receive buffer of the cache (these details were not 
known before the bug was found and localized). 

During post-silicon validation, a test running on the SoC 
created a deadlock. As shown in Fig. 1, the deadlock occurred 
because one of the processor cores (core 4) performed a store to 
memory location [A] followed by a store to memory location [B] 
within 2 clock cycles ([A] and [B] were cached on adjacent cache 
lines). As a result, the bug scenario was activated in cache 4. After 
the bug was activated, processor core 1 performed a store to 
memory location [C]. Since memory location [C] was cached in 
multiple caches (cache 1 and cache 4), the store operation to 
memory location [C] had to invalidate other cached copies of 
memory location [C] (including the cached copy in cache 4).   
However, due to the bug, the invalidation message received by 
cache 4 was delayed by 5 clock cycles. Before the invalidation 
occurred, processor core 4 loaded from memory location [C]. Since 
the cached copy of memory location [C] in cache 4 was still marked 
as valid, it loaded a stale copy (which contained the wrong value at 
that point).  Then, millions of clock cycles later, processor core 4 
used the wrong value of memory location [C] in code that 
performed locking, resulting in a deadlock.  

 
Figure 1. Example bug scenario. 

When such a deadlock is detected (e.g., by using a timeout), the 
bug must be localized by identifying the bug trace and the 
component where the bug is located. Since it is not known a priori 
when the bug was activated or when the system deadlocked, it can 
be very difficult to obtain the bug trace. Additionally, the bug trace 
can be extremely long due to the long error detection latency, 
containing extraneous instructions that are not needed for activating 

or detecting the bug.  As discussed above, such bugs are extremely 
challenging to localize using approaches such as trace buffers, 
failure reproduction, simulation, or traditional formal methods. 

As shown in Sec. IV, Symbolic QED correctly localizes this 
bug to cache 4 and produces a bug trace that is only 3 instructions 
long. Symbolic QED takes only 2.5 hours to automatically localize 
this bug without requiring any failure reproduction, or any 
additional hardware. This is possible because Symbolic QED uses 
bounded model checking (BMC), which finds the minimal bug 
trace, if one exists [Clarke 01] (details in Sec. III). Additionally, 
Symbolic QED employs special “design reduction” techniques to 
effectively handle large multi-core SoC designs such as the 
OpenSPARC T2 SoC (details in Sec. III and Appendix D).  In 
contrast, traditional post-silicon bug localization approaches would 
likely require manual effort, additional hardware (e.g., trace 
buffers), or both, and could take days or weeks (or even months). 
Furthermore, the bug traces found by traditional post-silicon 
techniques can be significantly longer than those found by Symbolic 
QED (empirically demonstrated in Sec. IV).  

While the main focus of this paper is post-silicon bug 
localization, the Symbolic QED technique can also be used for bug 
detection and localization during pre-silicon verification, as well as 
emulation-based verification. We plan to explore these use cases in 
future work. 

The rest of this paper is organized as follows.  Section II 
provides an overview of the previously-published Quick Error 
Detection (QED) technique.  Section III presents the Symbolic QED 
technique. Results are presented in Sec. IV, followed by related 
work in Sec. V.  We conclude in Sec. VI, with supplemental 
materials in the appendices. 

II. BACKGROUND: QUICK ERROR DETECTION (QED) 
 QED tests have been demonstrated to be highly effective for 

quickly detecting logic and electrical bugs inside processor cores, 
uncore components, accelerators, and components related to power-
management features [Campbell 15, Hong 10, Lin 12, 14, 15a]. The 
software-only QED technique automatically transforms existing 
post-silicon validation tests (original tests) into new QED tests 
using various QED transformations, e.g., Error Detection using 
Duplicated Instructions for Validation (EDDI-V) and Proactive 
Load and Check (PLC).2 
A. EDDI-V 

EDDI-V [Hong 10, Lin 14] targets bugs inside processor cores 
by frequently checking the results of original instructions against the 
results of duplicated instructions created by EDDI-V. First, the 
registers and memory space are divided into two halves,3 one for the 
original instructions and one for the duplicated instructions. Next, 
corresponding registers and memory locations for the original and 
the duplicated instructions are initialized to the same values. Then, 
for every load, store, arithmetic, logical, shift, or move instruction in 
the original test, EDDI-V creates a corresponding duplicate 
instruction that performs the same operation, but on the registers and 
memory reserved for the duplicate instructions. The duplicated 
instructions execute in the same order as the original instructions.  

The EDDI-V transformation also inserts periodic check 
instructions (referred to as Normal checks in this paper) that compare 
the results of the original instructions against those of the duplicated 
instructions. For every duplicated load instruction, an additional 

                                                
2 Symbolic QED can utilize the CFCSS-V and CFTSS-V QED transformations [Lin 14] as 
well, which are presented in [Lin 15b].  
3 For EDDI-V, if it is not possible to divide the registers into two halves (i.e., if the original 
test needs to use all of the available registers), we can use memory to store the register 
values. The details are in [Lin 14]. 

<more code>
...
store [C], 3
 

store [A], 1
store [B], 2
...

load  R1, [C]
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   . . .
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   . . .
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Load check instruction is inserted immediately after (before the 
loaded values are used by any other instructions) to check that the 
value loaded by the original instruction matches the value loaded by 
the corresponding duplicated instruction. Similarly, for store 
instructions, a Store check instruction is inserted immediately before 
the original store instruction to check that the value about to be 
stored by the original instruction matches the value about to be stored 
by the duplicated instruction.  Each check instruction is of the form: 

CMP Ra, Ra’ , 
where Ra and Ra’ are the original and (corresponding) duplicate 
registers, respectively. A mismatch in any check instruction indicates 
an error. In order to minimize any intrusiveness [Lin 12, 14, 15a] that 
might prevent bug detection by QED, insertion of the duplicated 
instructions and the check instructions is controlled by the 
parameters Inst_min and Inst_max, the minimum (maximum) 
number of instructions from the original test that must (can) execute 
before any duplicated or check instructions execute.4 

B. PLC 
PLC targets bugs inside uncore components by frequently and 

proactively performing loads from memory (through uncore 
components) and checking the values loaded. PLC first transforms an 
original test into an EDDI-V-transformed QED test.  Next, PLC 
inserts Proactive Load and Check operations (PLC operations) 
throughout the transformed test, which runs on all cores and all 
threads. Each PLC operation checks the values in memory for a 
selected set of variables. For each selected variable, a PLC operation 
loads the value from the memory reserved for original instructions 
(address A) and then loads the value from the corresponding memory 
reserved for duplicated instructions (address A’).  Any mismatch 
indicates an error. An example of a PLC operation for a single 
variable is shown in Fig. 2.  Here, CMP Ra, Ra’ is referred to as a 
PLC check. In a PLC operation, a lock is used if the variable is 
shared between multiple cores / threads or if there are sources of 
non-determinism in the system (e.g., due to interrupts, I/O, or OS 
functionalities such as context switches). A PLC operation checks all 
the variables selected for PLC. Various PLC strategies are discussed 
in [Lin 12, 14, 15a]. 

LOCK(A);   
LOCK(A’); 
Ra  = LOAD(A) 
Ra’ = LOAD(A’) 
UNLOCK(A’);  
UNLOCK(A); 
CMP Ra, Ra’ // PLC check 

Figure 2. Example of a PLC operation for a single variable. 
III. SYMBOLIC QED 

Symbolic QED localizes bugs and produces short bug traces 
consisting of only a few instructions (often less than 10) 
automatically. Within the space of QED-compatible bug traces 
(explained below), the traces produced by Symbolic QED are 
minimal, meaning no shorter bug traces exist. These short bug traces 
make bugs easier to understand and fix. 

The Symbolic QED approach presented in this paper relies on 
bounded model checking (BMC), a technique used in formal 
verification. Given a model of a system (e.g., the RTL) and a 
property to be checked (e.g., a check inserted by QED), the system is 
formally analyzed to see if the property can be violated in a bounded 
number of steps (clock cycles).  If so, a counter-example (a concrete 
trace violating the property, i.e., a bug trace) is produced. BMC 
guarantees that if a counter-example is found, it is a minimal-length 
counter-example [Clarke 01]. We first review three challenges 
associated with using BMC for post-silicon bug localization: 1) 

                                                
4 Examples of EDDI-V and PLC transformations with Inst_min and Inst_max parameters are 
presented in Appendix A for the convenience of the reader. 

BMC needs a property to check. Since the bugs are not known a 
priori, it is difficult to craft such properties (and avoid false 
positives); 2) Large design sizes limit the effectiveness of BMC.  If a 
design is too large, a typical BMC tool will not even be able to load 
the design (see Sec. IV).  Even if a large design can be loaded, 
running BMC on it is likely to be very slow; and, 3) The 
performance of BMC techniques is affected by the number of cycles 
required to trigger and observe a bug.  As the number of cycles 
increases, BMC performance slows down, especially for large 
designs.  Thus, unless a short counter-example exists, BMC will take 
too long or will be unable to find it. 

We address challenge (2) in Sec. III.E. Here, we focus on 
challenges (1) and (3).  The key idea is to create a BMC problem that 
searches through all possible QED tests.  As shown in [Hong 10, Lin 
12, 14, 15a], QED tests are excellent for detecting a wide variety of 
bugs; hence, we use QED checks (i.e., Normal checks, Load checks, 
Store checks, and PLC checks) as the properties, thus addressing 
challenge (1). QED tests are also designed to detect errors quickly. 
By searching all possible QED tests using the minimality guarantees 
of BMC, it is usually possible to find a very short trace triggering the 
bug, addressing challenge (3). The details of Symbolic QED are 
explained in the following subsections. 

A. Solving for QED-Compatible Bug Traces Using BMC 
Both EDDI-V and PLC QED tests provide very succinct 

properties to check using check instructions of the form: 
CMP Ra, Ra’ . 

For PLC checks and Load checks, Ra and Ra’ hold values loaded 
from uncore components; for Normal checks and Store checks, Ra 
and Ra’ hold the results of computations executed on the cores. An 
error is detected when the two registers are not equal. Thus, we use 
BMC to find counter-examples to properties of the form: 

Ra==Ra’ , 
where Ra is an original register and Ra’ is the corresponding 
duplicated register. However, without additional constraints, the 
BMC engine will find trivial counter-examples that do not 
correspond to real bugs.  For example, the instruction sequence 
{MOV R1←1, MOV R17 ←2, CMP R1, R17} results in R1≠R17; 
the inequality is not caused by a bug. In order to avoid such 
situations, we require that counter-examples must be QED-
compatible. We define a QED-compatible bug trace as a sequence of 
inputs with the following properties:  

1. Inputs must be valid instructions. Specifications of valid 
instructions can be directly obtained from the Instruction Set 
Architecture (ISA) of the processor cores.  

2. The registers and memory space are divided into two halves: 
one for “original” instructions and one for “duplicated” instructions. 
For every instruction (excluding control-flow changing instructions) 
that operates on the registers and memory space allocated for the 
original instructions, there exists a corresponding duplicated 
instruction that performs the same operation, but operates on the 
registers and memory space allocated for the duplicated instructions. 

3. The sequence of original instructions and the sequence of 
duplicated instructions must execute in the same order. 

4. The comparison (i.e., the property checked by the BMC tool) 
between an original register R and its corresponding register R’ 
occurs only if the original and its corresponding duplicate 
instructions have both been executed. 

B. QED Module 
Ensuring that only QED-compatible bug traces are considered 

by BMC requires constraining the inputs to the design. We 
accomplish this by adding a new QED module to the fetch stage of 
each processor core during BMC. The QED module is only used 
within the BMC tool and is not added to the manufactured IC; 
i.e., there is no performance/area/power overhead. The QED module 
only needs to be designed once for a given ISA, and made available 
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as a “library component” for use during validation. The design of a 
QED module is simple, and can be tested in only a few minutes (see 
Sec. IV). Note that, although the QED module is added to processor 
cores, Symbolic QED is effective not only for bugs inside processor 
cores, but also for bugs in uncore components, as well as bugs 
related to power-management features (as demonstrated in Sec. IV). 

The QED module automatically transforms a sequence of original 
instructions into a QED-compatible sequence. Any control-flow altering 
instruction determines the end of the “sequence of original 
instructions.”5 The QED module only requires that this sequence is 
made up of valid instructions and that they read from or write to only 
the registers and memory allocated for the original instructions 
(conditions that can be specified directly to the BMC tool). The 
sequence of original instructions is first executed unmodified (up to but 
not including the control-flow instruction), and the instructions are 
committed. Then, it is executed a second time, but instead of using the 
original registers and memory, the instructions are modified to use the 
registers and memory allocated for the duplicated instructions. Since 
duplication is triggered only by a control-flow instruction, the QED 
module does not use a fixed value for Inst_min and Inst_max. Instead, 
(by design) the BMC tool considers counter-examples (in this case, 
sequences of original instructions) starting with smaller sequences and 
then moving to longer sequences [Clarke 01]. This makes it possible for 
the BMC tool to implicitly (and simultaneously) search through a wide 
variety of instruction sequences of increasing lengths in order to find a 
bug trace. After the second execution, a signal is asserted to indicate 
that the original and corresponding duplicated registers should contain 
the same values under bug-free situations, i.e., the BMC tool should 
check the property Ra == Ra’. 

Note that, because the BMC tool can choose a wide variety of 
instructions as input to the QED module (including loads and 
stores), it can effectively create checks that could be generated by a 
QED transformation, including Normal, Load, Store, and PLC 
checks.  Also note that a PLC check generated by the QED module 
does not require locks. Locks are not needed in this case because: (i) 
we ensure that the QED modules for each core are synchronized: 
they all start executing duplicated instructions on the same clock 
cycle; 6  and (ii) the behavior of the design during BMC is 
deterministic. Thus, the original and the duplicate sequences of 
instructions must compute the same results unless there is a bug. 

 
Figure 3. The QED module interface.   

Figure 3 shows how the QED module integrates with the fetch unit. 
The pseudo code of the QED module is shown in Fig. 4.  The inputs to 
the QED module are: 1) enable, which disables the QED module if 0 
(this signal can be set by the validation engineers to disable the QED 
module); 2) current_instruction, which is the current instruction to be 
executed in the pipeline of the processor core; 3) next_instruction, which 
is the next sequential instruction after current_instruction (i.e., the 

                                                
5 One could alternatively use a pseudo-instruction “QED” to trigger instruction duplication; 
the processor would treat this instruction as a NOP. This would allow the QED module to 
create sequences that would not be possible otherwise (e.g., an odd number of instructions 
between two control-flow altering instructions, such as {BRANCH; ADD; BRANCH}). 
6 When executing original instructions, as soon as some QED module encounters a control-
flow instruction, all QED modules switch to WAIT1 (details later), indicating that no new 
original instructions should be started. Then, once the original instructions on all cores have 
committed, the duplicated instructions begin executing on all cores simultaneously. 

instruction to be fetched by the fetch unit after current_instruction); 4) 
next_PC, which is the PC corresponding to next_instruction; 5) 
target_address, which is equivalent to next_PC unless the current 
instruction is a control-flow instruction, in which case it is the control-
flow instruction’s target address; and 6) pipeline_empty, which is a signal 
that is true if and only if there are no instructions in the pipelines of any 
of the processor cores and all executed instructions on all cores have 
been committed (i.e., the results written to registers or to memory). 

The outputs from the QED module are: 1) PC, which is used to 
override the value of next_PC; 2) PC_override, which determines if 
the processor core should use the PC from the QED module or 
next_PC from the fetch unit; 3) instruction_out, which is used to 
override the value of current_instruction; 4) instruction_override, 
which determines whether the processor core should use the modified 
instruction (instruction_out) from the QED module or 
current_instruction; and 5) qed_ready, which signals when both 
original and duplicated registers should have the same values (under 
bug-free conditions). qed_ready is false initially; it is only set to true 
when both original and duplicated instructions have committed. 

INPUT: enable, current_instruction, next_instruction, next_PC, target_address,  
             pipeline_empty 
OUTPUT: PC, PC_override, instruction_out, instruction_override,   
                 qed_ready 
// initialization 
mode ← ORIG; // “mode” is shared by all QED modules 
rewind_address ← PC obtained from initial state (Sec. III.C);  
qed_ready ← false;   PC_override_i ← 0;        instruction_override_i ← 0; 
// end initialization 
PC_override ←  enable ? PC_override_i : 0; 
instruction_override ← enable ? instruction_override_i : 0; 
if mode == CHECK then 
  mode  ← ORIG;                                              qed_ready ← true; 
  PC ← target_address;                                    PC_override_i ← 1;  
  rewind_address ← target_address; 
end if 
if mode == ORIG, then 
  qed_ready ← false;  instruction_override_i ← 0; PC_override_i ← 0; 
  if is_control_flow_instruction(next_instruction) then 
    mode ← WAIT1; // all QED modules go to “WAIT1” when any QED       
                                // module gets a control-flow instruction 
  end if 
end if 
if mode == WAIT1 then // wait until pipelines of all processor cores are empty 
  mode ← pipeline_empty ? DUP : WAIT1;        qed_ready ← false; 
  instruction_out ← NOP;                                    instruction_override_i ← 1; 
  PC ← rewind_address;                                     PC_override_i ← 1; 
end if 
if mode == DUP then 
  qed_ready ← false;    rewind_address ← next_PC;   PC_override_i ← 0; 
  if is_control_flow_instruction(next_instruction) then 
    mode ← WAIT2; // all QED modules go to “WAIT2” when any QED  
                               // module gets a control-flow instruction 
  end if  
  instruction_out ← create_duplicated_version(current_instruction); 
  instruction_override_i ← 1; 
end if 
if mode== WAIT2 then // wait until pipelines of all processor cores are empty 
  mode ← pipeline_empty ? CHECK : WAIT2;   qed_ready ← false; 
  instruction_out ← NOP;                                    instruction_override_i ← 1; 
  PC ← rewind_address;                                     PC_override_i ← 1; 
end if 

Figure 4. Pseudo code for QED module. 
The QED module has internal variables: 1) mode, which tracks if 

the processor core is executing original instructions (ORIG), 
duplicated instructions (DUP), in a wait mode (WAIT1 or WAIT2), or 
if the BMC tool should do a check (CHECK). This variable is shared 
by all of the QED modules in the design so that they are always in the 
same mode; 2) rewind_address, which holds the address of the first 
instruction in the sequence of original instructions, (initialized to PC 
obtained from the initial state in Sec. III.C); 3) PC_override_i and 4) 
instruction_override_i, which are internal versions of PC_override 
and instruction_override (the only difference is that when the enable 
is set to 0, then both PC_override and instruction_override are also 
set to 0, disabling the QED module). 

The QED modules start in ORIG mode. When next_instruction is a 
control-flow altering instruction, all QED modules go to WAIT1. In 
WAIT1, PC is set to rewind_address, and PC_override_i is set to 1 (if 
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enable is 1, PC_override is also set to 1). The QED module also outputs 
NOP on instruction_out and sets instruction_override_i to 1 (if enable is 
1, instruction_override is also set to 1). The QED modules stay in WAIT1 
until all of the original instructions have committed (when pipeline_empty 
becomes true, i.e., the pipelines of all processor cores are empty). Then, 
all QED modules switch to DUP, and each processor core then re-
executes instructions starting from the address stored in rewind_address. 
In DUP, the duplicated instruction is produced on instruction_out, and 
instruction_override_i is set to 1, so the core executes the duplicated 
instruction instead of the original instruction from the fetch unit. In DUP, 
rewind_address is constantly updated to next_PC. Then, when 
next_instruction is a control-flow altering instruction, all QED modules 
switch to WAIT2 and stay in WAIT2 until the duplicated instructions on all 
processor cores have committed (the pipeline_empty signal becomes true, 
i.e., the pipelines of all processor cores are empty). In WAIT2, PC is set to 
rewind_address. The QED module also outputs NOP on instruction_out 
and sets instruction_override_i to 1 (if enable is 1, instruction_override is 
also set to 1). After the instructions have committed, the original and 
corresponding duplicated registers should be equal. Then, the QED 
modules switch to CHECK. In CHECK, qed_ready is set to true. Each 
QED module also updates rewind_address to target_address (i.e., the 
address of the next instruction to execute) and sets PC to target_address 
and PC_override_i to 1. After CHECK, the QED modules return to 
ORIG. 

An example of the transformation performed by the QED module 
is shown in Fig. 5. Note that, LOAD(A) is transformed into LOAD(A’) 
during the second execution. Thus, comparing the registers (using the 
BMC tool) is equivalent to a PLC check on variables A and A’. There 
are 4 events here: (1) store to A by core 1, (2) load from A by core 2, 
(3) store to A’ by core 1, and (4) load from A’ by core 2. As explained 
in [Lin 15b], to avoid false fails without using locks, the QED module 
ensures that the order of (3) and (4) is the same as the order of (1) and 
(2), even if multiple cores load from A and A’. Because the BMC tool 
can choose a wide variety of instructions for the original sequence of 
instructions, this does not significantly affect the ability of Symbolic 
QED to activate and find bugs in general (which is empirically 
demonstrated in Sec. IV). However, in future work, one may want to 
allow the processor cores to have more freedom when executing the 
duplicated instructions; in that case, locks may be necessary. Memory 
initialization is discussed in Sec. III.C. 

 
Figure 5. Example of QED transformation by the QED module. 

(a) A sequence of original instructions on core 1 and core 2, and 
(b) the actual transformed instructions executed by the cores. 

C. Initial State  
The approach outlined above ensures that only QED-

compatible traces are considered by BMC.  However, the initial 
state for the BMC run must be a QED-consistent state, in which the 
value of each register (in the processor core) and memory location 
allocated for original instructions must match the corresponding 
register or memory location for duplicated instructions.  This is to 
ensure that no false counter-examples are generated. One approach 
would be to start the processor from its reset state.  However, the 
reset state may not be QED-consistent (or it may be difficult to 
confirm whether it is). Some designs also go through a reset 
sequence that may span several clock cycles, making the BMC 

problem more difficult. For example, for OpenSPARC T2, only one 
processor core is active after a reset, and the system executes a 
sequence of initialization instructions (approximately 600 clock 
cycles long) to activate other processor cores in the system.  

It is advantageous to start from a QED-consistent state after the 
system has executed the reset sequence (if any) to improve the runtime 
of BMC (also demonstrated by results in Sec. IV). A simple way to 
obtain a QED-consistent state is to run “some” QED test (independent 
of specific tests for bug detection and debug) in simulation and to stop 
immediately after QED checks have compared all of the register and 
memory values (this ensures that each “original” register or memory 
location has the same value as its corresponding “duplicate” register or 
memory location). This can be accomplished with a simple (short) test 
that just writes to the original and corresponding duplicated registers 
and memory locations and checks them to ensure that they are in a 
QED-consistent state. The register values (including the PC and 
next_PC from Sec. III.B) and memory values are read out of the 
simulator and then used to set the register values, PC, next_PC, and 
memory values of the design when preparing to run BMC.  If the design 
contains multiple processor cores, the processor cores can be simulated 
together. Alternatively, each core can be simulated independently and 
the results merged together to set up the BMC run. In this case, some 
care must be taken to ensure that the values in shared memory locations 
are the same at the end of each simulation (e.g. by running the same test 
on each core). One can obtain these values using ultra-fast simulators (at 
a higher level of abstraction than RTL) that can simulate large designs 
with thousands of processor cores [Sanchez 13]. Thus, this initialization 
step does not affect the scalability of Symbolic QED.  
D. Finding Counter-Examples using BMC 

After inserting the QED module and setting the initial state, we 
use BMC to find a counter-example to the property: 

qed_ready → 𝑅𝑎 == 𝑅𝑎′!∈{!..!!!!}
, 

where n is the number of registers defined by the ISA. Here (for 
𝑎 ∈ {0. . 𝑛/2 − 1}), Ra and Ra’ correspond to registers allocated for 
original instructions and duplicated instructions respectively. As 
mentioned above (e.g. Fig. 5), because we allow the instructions 
chosen by BMC to include load and store instructions, our approach 
can generate PLC checks, and can thus activate and detect bugs in 
uncore components as well as those in processor cores. 
E. Handling Large Designs 

A state-of-the-art commercial BMC tool may not be able to load 
a complete SoC (e.g., this is the case for OpenSPARC T2). Here, we 
discuss two techniques for handling such large designs that do not 
require any additional hardware. A third technique, which uses small 
hardware structures referred to as change detectors, is discussed in 
Appendix D. Design reduction techniques are important not only for 
handling large design, but also for better bug localization. 
Bugs Inside Processor Cores vs. Outside Processor Cores 

If a (standard, not symbolic) QED test fails either a Normal 
check or a Store check, we can immediately deduce that the bug is 
inside the processor core where the check failed.7  This is because, by 
design, Normal and Store checks catch any incorrect value produced 
by a processor core before it leaves the processor core and 
propagates to the uncore components or to other processor cores. 
Thus, we just need to perform BMC on the single processor core 
where the check failed in order to find a bug trace. If the test fails at a 
Load check or a PLC check, we cannot immediately infer where the 
bug is. For these cases, we consider the Partial Instantiation 
technique to simplify the design to be analyzed by BMC.   

                                                
7 The entire test must be transformed by QED for this to work.  If some QED checks are left 
out, then this cannot be guaranteed. For example, if some Normal checks and Store checks 
are omitted, an error caused by a bug inside the core may propagate to an uncore component.  

Core 1
A  = STORE(R1)
R2 = R3 + R4  
R5 = LOAD(A)
BRANCH label 

Core 2
R2 = R3 – R4
R1 = LOAD(A)
R5 = LOAD(B)

Core 1
A  = STORE(R1)
R2 = R3 + R4  
R5 = LOAD(A)  // PLC load
A’ = STORE(R17)
R18= R19 + R20  
R21= LOAD(A’) // PLC load
BRANCH label 

Core 2
R2 = R3 – R4
R1 = LOAD(A)   // PLC load
R5 = LOAD(B)
R18 = R19 – R20
R17 = LOAD(A’) // PLC Load
R21 = LOAD(B’)

(a)$

(b)$
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Partial Instantiation 

Partial instantiation works through two design reduction 
techniques. Technique 1 takes all components with multiple 
instances and repeatedly reduces their count by half until there is 
only 1 left. For example, in a multi-core SoC, the processor cores 
are removed from the design until there is only 1 processor core left. 
Technique 2 removes a module as long as its removal does not 
divide the design into two disconnected components. For example, 
if a design has a processor core connected to a cache through a 
crossbar, the crossbar is not removed (without also removing the 
cache). This is because if the crossbar is removed, the processor 
core is disconnected from the cache. All possible combinations and 
repetitions of the two techniques are considered when producing 
candidates for analysis. Since we find bug traces in the form of 
instructions that execute on processor cores, each analyzed design 
must contain at least one processor core. Fig. 6 shows the steps for 
this approach. Once the full set of simplified (partially instantiated) 
designs is created, they can be analyzed using the BMC tool 
independently (in parallel). An example is presented below. 

 
Figure 6. The partial instantiation approach for design reduction. 

 Consider the OpenSPARC T2 design with 8 processor cores, 1 
crossbar, 8 banks of shared L2 cache, 4 memory controllers, and an I/O 
controller (Fig. 7). This entire design is too big to be analyzed by the 
BMC tool, so it is not saved as a partial instance. One possibility is to 
remove the I/O controller, resulting in 8 processor cores, 1 crossbar, 8 
banks of cache, and 4 memory controllers; this is still too big for the 
BMC tool, and it is not saved as a partial instance. Alternatively, 
components with multiple instances (e.g., the cores, caches, and 
memory controllers) can be halved, reducing the design to 4 processor 
cores, 1 crossbar, 4 banks of cache, 2 memory controllers, and the I/O 
controller. This still does not fit in the BMC tool, and so again, it is not 
saved as a partial instance. At this point, we can take either of our two 
reduced designs as candidates for further reduction.  Let us consider 
the second one.  The crossbar is not removed, as it would disconnect 
the processor cores from the other components. Suppose instead that 
we apply technique 1 again. This reduces the design to 2 processor 
cores, 1 crossbar, 2 banks of cache, 1 memory controller, and the I/O 
controller. This design still does not fit. Next, either the I/O controller 
or the memory controller can be removed by applying technique 2. By 
removing the I/O controller, we are left with 2 processor cores, 1 
crossbar, 2 banks of cache, and 1 memory controller.  This does fit in 
the BMC tool and so the configuration is saved. Alternatively, by 
removing the memory controller, we are left with 2 processor cores, 1 
crossbar, 2 banks of cache, and the I/O controller, which also fits and is 
saved. Now, even though at this point we have two candidate 
configurations for BMC, we continue to apply design reduction 
techniques to generate more partial instances.  The reason for this is for 
better localization: if BMC can find a bug trace in a smaller 
configuration, then this indicates that the components removed by the 
design reduction techniques are not necessary for activating and 
detecting the bug.  Continuing with the reduction, by applying 
technique 1, the number of cores and caches can be reduced, resulting 
in 1 processor core, 1 crossbar, 1 bank of cache, 1 memory controller, 
and the I/O controller. Further reductions result in smaller and smaller 
subsets of the design, each of which fits in the BMC tool and is saved. 
When no more reductions are possible (i.e., when the design is reduced 

down to just a single core), all of the saved designs are analyzed 
independently (in parallel) by the BMC tool.  

IV. RESULTS 
We demonstrate the effectiveness of Symbolic QED using the 

OpenSPARC T2 SoC [OpenSPARC] (Fig. 7), which is the open-source 
version of the UltraSPARC T2, a 500-million-transistor SoC with 8 
processor cores (64 hardware threads), private L1 caches, 8 banks of 
shared L2 cache, 4 memory controllers, a crossbar interconnect, and I/O 
controllers. We simulated logic bug scenarios from [Lin 12, 14, 15a], 
which represent a wide variety of “difficult” bug scenarios that occurred 
in various commercial multicore SoCs.  The bug scenarios include bugs 
in the processor cores, bugs in the uncore components, and bugs related 
to power-management features.8 They are considered difficult because 
they took a long time (days to weeks) to localize.  

We modified the RTL of the OpenSPARC T2 SoC to incorporate 
these bug scenarios. For the 80 bug scenarios from [Lin 12, 14], we 
set the bug scenario parameter X to 2 clock cycles and bug scenario 
parameter Y to 2 clock cycles. The details of X and Y are in [Lin 14]; 
note that smaller values for X and Y imply that the bugs are more 
difficult to activate and detect. For example, consider the activation 
criterion 1 from [Lin 14]: “two stores within X clock cycles to 
different cache lines;” and two sequences of instructions: 1) {STORE 
[a], Rx; STORE [b], Ry} and 2) {STORE [a], Rx; MOV R0, 0; 
STORE [b], Ry}. While both sequence 1 and sequence 2 will satisfy 
the activation criterion when X=3 (i.e., two stores within 3 clock 
cycles to different cache lines), only sequence 1 will satisfy the 
activation criterion when X=2. For the 12 power management bug 
scenarios in [Lin 15a], the activation criterion is set to a sequence of 
5 instructions randomly selected from the original test, executed on a 
designated processor core. This is to emulate a power management 
controller which puts the system into a power-saving state when it 
executes a specific sequence of instructions. If a bug is inserted into a 
component, the bug is included in all instances of that component.  

 
Figure 7. OpenSPARC T2 diagram.  

For BMC, we used the Questa Formal tool (version 10.2c_3) 
from Mentor Graphics on an AMD Opteron 6438 with 128GB of 
RAM. We used the EDDI-V and the PLC (Sec. II) QED 
transformations to transform an 8-thread version of the FFT test 
(from SPLASH-2 [Woo 95]) and an in-house 8-thread version of the 
matrix multiplication test (MMULT) into QED tests to detect bugs. 
The Inst_min and Inst_max QED transformation parameters were set 
to 100, a setting which typically allows bugs to be detected within a 
few hundred clock cycles (as shown in [Hong 10, Lin 12, 14]).9 
Trying additional tests (beyond FFT and MMULT) was deemed 
unnecessary because both tests (after QED transformation) were able 
to detect all 92 bugs (and the BMC step in Symbolic QED is 
independent of the QED tests that detect the bug). 

We added the QED module described in Sec. III.B to the RTL of 
the fetch unit in the OpenSPARC T2 processor core. The resulting 
fetch unit with the QED module was tested using Questa to ensure it 
correctly transforms a sequence of original instructions into a QED-
compatible bug trace. The testing process for 50 sequences of 
original instructions of varying lengths (1 to 10 instructions long) 
took approximately 1 minute of runtime. Moreover, we simulated all 

                                                
8 Bug scenarios are in the appendix. The bug scenarios were simulated by modifying the 
RTL of the OpenSPARC T2 SoC design so that, for each bug scenario, if the bug activation 
criterion is satisfied, the bug effect is simulated.   
9 These Inst_min and Inst_max parameters do not affect the bug traces found by Symbolic 
QED shown later; they are only used to create the QED tests for detecting bugs. 
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of the bug traces produced by Symbolic QED (which depends on the 
QED module) to ensure that they indeed activate and detect the 
corresponding bugs. No additional hardware (e.g., trace buffers or 
change detectors discussed in Appendix D) was added to the design. 

The results are summarized in Table 1. The Original (No QED) 
column shows results for the original validation tests (FFT or 
MMULT) using end-result-checks (that check the results of the test vs. 
pre-computed, known correct results). The QED column shows results 
from running the same tests after applying QED transformations. Note 
that, unlike Symbolic QED, both the Original (No QED) and the QED 
tests (without the analysis techniques discussed in Sec. III.E) are only 
able to report the existence of a bug; they cannot localize the bug (i.e., 
determine if the bug is in the processor core, in any of the uncore 
components, or is caused by interactions between the components); nor 
can they determine very precisely how the bug is activated. The table is 
categorized into processor core bugs, uncore bugs (bugs that are inside 
uncore components as well as in the interface between processor cores 
and uncore components), and power management bugs.  Each entry 
contains two sets of numbers, corresponding to results obtained from 
the FFT test (top), and results obtained from the MMULT test 
(bottom). 
Table 1. Results comparing original tests (No QED), QED tests, 
and Symbolic QED on FFT (top values) and MMULT (bottom 
values). For bug traces, we report the [minimum, average, 
maximum] length in instructions and clock cycles. We also report 
[minimum, average, maximum] BMC runtimes. 

  Original  
(No QED) 

QED Symbolic 
QED 

P
ro

ce
ss

or
 c

or
e 

on
ly

 

Bug trace length 
(instructions) 

[643,551k,4.9M] 
[12k,534k,2.3M] 

[324,57k,233k]† 
[421,67k,321k]† 

[3, 3, 3] 
[3, 3, 3] 

Bug trace length 
(clock cycles) 

[842,572k,5.1M] 
[15k,544k,2.5M] 

[367,66k,265k] † 
[522,69k,272k] † 

[13, 15, 16] 
[13, 15, 16] 

Coverage 50.0% 
54.2% 

100% 
100% 

100% 
100% 

BMC runtime 
(minutes) 

N/A N/A [22, 46, 90] 
[22, 47, 89] 

Bugs localized 0% 
0% 

0% 
0% 

100%* 
100%*  

U
nc

or
e 

Bug trace length 
(instructions) 

[620,1.6M,9.8M] 
[1k,536k,2.5M] 

[231,59k,232k] † 
[392,80k,421k] † 

[3, 4, 4] 
[3, 4, 4] 

Bug trace length 
(clock cycles) 

[722,1.9M,11M] 
[2k,550k,2.7M] 

[292,72k,289k]† 
[442,95k,435k]† 

[14, 22, 29] 
[14, 22, 29] 

Coverage 55.3% 
57.1% 

100% 
100% 

100% 
100% 

BMC runtime 
(minutes) 

N/A N/A [78,164,188] 
[76,163,190]  

Bugs localized 0% 
0% 

0% 
0% 

100%*  
100%*  

P
ow

er
 

m
an

ag
em

en
t  

Bug trace length 
(instructions) 

[1.5k,236k,495k] 
[963,213k,422k]  

[10k,68k,302k]† 
[1k,47k,134k]†  

[5, 5, 5] 
[5, 5, 5] 

Bug trace length 
(clock cycles) 

[1.9k,251k,512k] 
[1.5k,220k,430k] 

[13k,75k,319k]† 
[2k,49k,149k]† 

[17, 19, 22] 
[17, 19, 22] 

Coverage 66.7% 
66.7% 

100% 
100% 

100% 
100% 

BMC runtime 
(minutes) 

N/A N/A [205,266,333] 
[206,264,335]  

Bugs localized 0% 
0% 

0% 
0% 

100%* 
100%*  

* Symbolic QED localizes 100% of the bugs without using trace buffers.  
† If trace buffers are used for QED, then the trace lengths in terms of 
instructions are: for FFT, [63, 451, 863] for processor core bugs, [29, 487, 832] 
for uncore bugs, and [42, 297, 742] for power management bugs; and for 
MMULT, [44, 309, 874] for processor bugs, [32, 502, 884] for uncore bugs, and 
[67, 392, 742] for power management bugs. The trace lengths in terms of clock 
cycles are: for FFT, [82, 512, 922] for processor core bugs, [38, 532, 930] for 
uncore bugs, and [66, 412, 912] for power management bugs; and for MMULT, 
[69, 420, 921] for processor core bugs, [58, 582, 944] for uncore bugs, and [79, 
482, 801] for power management bugs. Other entries remain the same. 

In Table 1, “Bug trace length (instructions)” shows the 
[minimum, average, maximum] number of instructions in the bug 
trace. “Bug trace length (cycles)” represents the [minimum, average, 
maximum] number of clock cycles required to execute the bug trace. 
The two numbers are different because the number of cycles per 
instruction (CPI) is not 1 for all instructions (for example, a load or 
store instruction may take multiple clock cycles to execute). For 
Symbolic QED, the reported length for bug traces corresponds to the 
number of instructions in the trace found by the BMC tool (not 

including duplicated instructions created by the QED modules). For 
bugs that are only found by executing instructions on multiple 
processor cores, the number of instructions for each core may be 
different. For example, one core could have a bug trace that is 3 
instructions long, while another core has a bug trace that is 1 
instruction long. We report the length of the longest bug trace in such 
situations (3 in this example), because all cores must completely 
execute their corresponding instructions to activate and detect the 
bug (and the cores execute the instructions in parallel).  

Observation 1: Symbolic QED automatically produces bug 
traces that are up to 6 orders of magnitude shorter than traditional 
post-silicon validation tests that rely on end-result-checks, and up to 
5 orders of magnitude shorter than QED tests. The bug traces 
produced by Symbolic QED are very short (we confirmed their 
correctness using simulation), and are significantly shorter than those 
for QED and No QED.  This is because (as discussed in Sec. III) 
Symbolic QED uses BMC to search through all possible QED-
compatible bug traces to find the minimal-length bug trace required 
to activate and detect the bug. Symbolic QED does not need trace 
buffers (or any additional hardware) to produce correct bug 
traces. These are very difficult bugs that took many days or weeks of 
(manual) work to localize use traditional approaches (also evident by 
the long bug traces produced by traditional techniques). Short bug 
traces make debugging much easier. A more detailed visualization of 
the trace lengths for each bug scenario is presented in Fig. 10. 
 In Table 1, “Coverage” is the percentage of the 92 bugs detected. 
Both Symbolic QED and QED detected all 92 bugs, while the 
original tests detected only a little more than half of the bugs. This is 
because original tests (No QED) may not contain the instructions 
needed to activate a bug, and even if they do, there may not be 
sufficient checks to detect it.  In contrast, QED performs extensive 
checks to detect errors.  Symbolic QED searches through a wide 
variety of QED tests to find a sequence of instructions that will 
activate and detect the bug. “BMC runtime” represents the 
[minimum, average, maximum] number of minutes it took for the 
BMC tool to find the bug traces.  And “Bugs localized” represents 
the percentage of bugs localized. Note that both original (No QED) 
and QED tests can only detect bugs, not localize bugs. 

 We did not include any results from running BMC without our 
Symbolic QED technique for two reasons: (i) the full design does not 
load into the BMC tool; and (ii) even if it did, we would need 
properties to check to run BMC, and there is no clear way to create 
such properties (other than manual creation which would be 
subjective and extremely time-consuming).  Indeed, the Symbolic 
QED technique for expressing a generic property to check is one of 
our key contributions. 
 Observation 2: Symbolic QED correctly and automatically 
produces short bug traces for all bugs in less than 7 hours, without 
relying on trace buffers or any other additional hardware. 
Symbolic QED is effective for large designs such as the 
OpenSPARC T2, which are challenging when using traditional post-
silicon techniques. 

For Symbolic QED, all of the processor core bugs were detected 
by either a Normal check or a Store check.  Thus (as described in 
Sec. III.E) we are able to determine that the bug must be inside the 
processor cores. This was determined solely based on the QED 
checks, not because we knew which bugs were simulated. The BMC 
runtime reported for these bugs corresponds to a BMC run in which 
only the processor core was loaded.  

For uncore and power management bugs, the partial instantiation 
technique (Sec. III.E) was used. The BMC tool analyzed the partial 
instances in parallel. For the OpenSPARC T2, there were 9 parallel 
BMC runs for each bug; each run corresponded to one of the following 
partial instances, which are ranked by size in descending order.10 1) 2 

                                                
10 Partial instantiation 1 is the largest that will fit into the BMC tool; all designs also contain 
the crossbar that connects the components together. 
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processor cores, 2 L2 cache banks, and the I/O controller; 2) 2 
processor cores, 2 L2 cache banks, and 1 memory controller; 3) 2 
processor cores, and 2 L2 cache banks; 4) 1 processor core, 1 L2 cache 
bank, 1 memory controller, and the I/O controller; 5) 1 processor core, 
1 L2 cache bank, and the I/O controller; 6) 1 processor core, 1 L2 
cache bank, and 1 memory controller; 7) 1 processor core and the I/O 
controller; 8) 1 processor core, 1 L2 cache bank; and 9) 1 processor 
core. Recall that if a bug is in a component, it is in all instances of the 
component. For these bugs, the BMC runtime reported corresponds to 
the runtime of the smallest partial instance that produced a counter-
example. For example, for a given bug, if both partial instances 6 and 8 
produced a counter-example, then only the result from partial instance 
8 was reported. This example reveals that the additional components in 
partial instance 6 were not required for activating or detecting the bug.  
Specifically, for this example, while both partial instances 6 and 8 
contain processor cores and caches, partial instance 8 does not have a 
memory controller. Thus the memory controller was not required to 
activate and detect the bug. Note that this partial instance also provides 
a small candidate list of components that may contain the bug. 
 Observation 3: Symbolic QED correctly localizes bugs and 
provides a list of components corresponding to possible bug locations.   

Figure 8 reports a breakdown of the bugs localized by Symbolic 
QED, which correctly localized all 92 bugs. Symbolic QED localized 
26.1% the bugs to exactly 1 processor core; for 56.5% of the bugs, 
Symbolic QED localized the bug to 1 processor core, 1 L2 cache 
bank and the crossbar that connects the two; and for 17.4% of the 
bugs, Symbolic QED localized the bug to 2 processor cores, 2 L2 
cache banks, and the crossbar that connects the components. 

 
Figure 8. Graph showing the percentage breakdown (by list of 
candidate modules) of bugs localized by Symbolic QED. All 92 

bugs were correctly localized. 

 
Figure 9. The BMC runtimes for Symbolic QED. 

 

 
Figure 10. Trace length (in terms of number of instructions). 
The BMC runtimes reported in Table 1 for Symbolic QED use 

the QED-consistent initial state constraint discussed in Sec. III.B. 
The detailed runtimes for each bug are also presented in Fig. 9.  In 
Fig. 9, we report three runtimes for each bug: the runtime when 
starting from the state immediately after a reset sequence (which is 
QED-consistent in this case), the runtime when starting from a QED-
consistent initial state obtained by running the FFT QED test and 

seeding BMC with the resulting register and memory values (Sec. 
III.B), and the runtime when similarly seeding BMC after running 
MMULT. Results show that using a QED-consistent initial state 
obtained by running a QED test improves runtimes by up to 5X 
compared to starting from the state immediately after a reset 
sequence. No significant differences were observed between the 
results from using the FFT test and those using the MMULT test. 

In this paper, we demonstrated the effectiveness of Symbolic 
QED on the OpenSPARC T2. However, Symbolic QED does not 
rely on any information about the specific implementation of 
OpenSPARC T2, making it applicable to a wide variety of SoCs. 

V. RELATED WORK 
The Symbolic QED technique in this paper mostly relies on 

QED [Hong 10, Lin 12, 14] for creating post-silicon validation tests, 
but there are important differences. Unlike Symbolic QED, QED 
alone does not directly localize bugs at a fine level of hardware 
granularity. As shown in Sec. IV, the bug traces obtained by QED 
can be very long (up to 5 orders of magnitude longer when no trace 
buffers are used) compared to Symbolic QED. For bugs inside 
processor cores, Symbolic QED may be further enhanced using 
techniques such as self-consistency checking [Jones 05]. However, 
[Jones 05] addresses only processor core bugs. Our experience with 
bugs in commercial SoCs indicate that uncore components are also 
an important source of difficult bugs in SoCs [Lin 12, 14, 15a].  

The growing importance of post-silicon validation and debug 
has motivated recent publications on bug localization and bug trace 
generation. IFRA and the related BLoG [Park 09, 10] techniques for 
post-silicon bug localization target processors only and the 
published results target electrical bugs. Their effectiveness for bugs 
inside uncore components is unclear. They also require manual 
efforts and additional hardware, unlike Symbolic QED.  

Many post-silicon bug localization approaches rely on trace buffers 
and assertions. Sec. I discussed the inadequacy of these techniques 
(some of the heuristics for trace buffer insertion, e.g., restoration ratio 
and its derivatives, only work for logic bugs, since they use simulations 
to compute the logic values of signals that are not traced). In contrast, 
Symbolic QED doesn’t require any trace buffers (or any additional 
hardware) or design-specific assertions and provides a very succinct and 
generic property to quickly detect and localize logic bugs. 

BackSpace and its derivatives [De Paula 08, 11, 12] provide a 
concrete bug trace once an error is detected or the system crashes by 
using formal methods to stitch together multiple short traces (or 
system states) into a longer trace. Some BackSpace derivatives 
require failure reproduction, which, as discussed in Sec. I and in [De 
Paula 11, 12], is challenging due to Heisenbug effects [Gray 85]. 
nuTAB-BackSpace addresses some of the failure reproduction 
challenges but requires design-specific “rewrite rules” to determine 
if two similar states are equivalent. These rewrite rules have to be 
manually crafted by designers and require designer intuition, which 
may be difficult for large designs.  Furthermore, the bug traces 
found may be very long, and unlike Symbolic QED, these 
techniques cannot reduce the length of the bug traces. Moreover, 
techniques that rely solely on formal methods for bug localization 
(e.g., [De Paula 08, 11, 12, Zhu 11]) are not scalable to large 
designs (e.g. OpenSPARC T2). Some formal techniques require 
specific bug models (e.g., [Zhu 11] which targets a specific model 
for electrical bugs) and may not work for logic bugs, since it is 
difficult to create models for all logic bugs [ITRS 09]. 

Approaches that rely on detailed RTL simulations to obtain the 
internal states of a design are not scalable for large designs because 
full system RTL-level simulation of large designs is extremely slow, 
less than 10 clock cycles per second [Schelle 10]. [DeOrio 11] 
presented a technique for post-silicon bug diagnosis, but it requires 
multiple detailed RTL simulations of the internal states of a design 
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to guide the insertion of hardware structures for debugging. 
BuTraMin [Chang 09] is a pre-silicon technique for shortening the 
length of a bug trace. For use in post-silicon validation and debug of 
large designs, it requires massive simulations to capture logic values 
of all flip-flops in the system, which will be difficult. There may be 
opportunities to use such techniques after Symbolic QED localizes 
bugs and produces short bug traces (as demonstrated in this paper). 

VI. CONCLUSION 
We presented the Symbolic QED technique, a structured and 

automated approach that overcomes post-silicon validation and 
debug challenges. It automatically detects and localizes logic bugs in 
post-silicon validation and provides a list of components that may 
contain the bugs. Symbolic QED produces bug traces that are up to 6 
orders of magnitude shorter than traditional post-silicon validation 
tests that rely on end-result-checks, and up to 5 orders of magnitude 
shorter than QED. It is completely automated, does not require 
human intervention, and does not need any additional hardware. 

Symbolic QED is both effective and practical, as demonstrated on 
the OpenSPARC T2, where it correctly localized difficult logic bug 
scenarios that occurred during post-silicon validation of various 
commercial multicore SoCs.  These difficult bug scenarios originally 
took many days or weeks of (mostly manual) debug work to localize. 
Other formal techniques for debugging may take days or fail completely 
for large designs such as the OpenSPARC T2. As demonstrated in this 
paper, Symbolic QED is effective for bugs inside processor cores, bugs 
inside uncore components, as well as bugs related to power-
management features. Symbolic QED is applicable to any SoC design 
as long as it contains at least one programmable processor core (a 
generally valid assumption for existing SoCs [Foster 15]). 

There are several directions for future work.  Symbolic QED can 
be expanded to: 1) detect and localize bugs during pre-silicon or 
emulation-based verification; 2) localize electrical bugs during post-
silicon validation (this paper’s focus was on logic bugs); 3) perform 
full system-level bug localization; 4) perform diagnosis of 
manufacturing defects during system-level testing; 5) localize bugs in 
analog and mixed signal components; and 6) use a more general QED 
module that does not require duplicated instructions to start execution 
on the same clock cycle on all processor cores (locks may be needed 
to avoid false fails) and that uses a pseudo-instruction “QED” (instead 
of a control-flow instruction) to trigger duplication. 
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APPENDIX 
A. EDDI-V Transformation Example 

An EDDI-V example is shown in Fig. A1. Fig. A1(a) is the original 
test. Fig. A1(b) is the transformed test with Inst_min = Inst_max = 3. 
//initialization 
R1  = 1 
R2  = 2 
R3  = 3 
R4  = 4 
R5  = 5 
R6  = 6 
//code 
R1 = R2 + R3 
R4 = R5 – R6 
R4 = R1 – R4 
B label 
... 
 
 
 

(a) 

 

//initialization 
R1  = 1   R17  = 1 
R2  = 2   R18  = 2 
R3  = 3   R19  = 3 
R4  = 4   R20  = 4 
R5  = 5   R21  = 5 
R6  = 6   R22  = 6 
//code 
R1  = R2  + R3 
R4  = R5  – R6 
R4  = R1  – R4 
R17 = R18 + R19 
R20 = R21 – R22 
R20 = R17 – R20 
CMP R4, R20 
BNE ERROR_DETECTED 
B label 
... 

(b) 
Figure A1. EDDI-V example with Inst_min = Inst_max = 3.  
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B. PLC Transformation Example 
In Fig. A2(a), Inst_min = Inst_max = 4 instructions. In Fig. A2(b), 

PLC_list is a list of tuples of the form <original variable pointer, EDDI-
V variable pointer>, where original variable pointer is the address of a 
variable from the original test selected to be checked by PLC operations 
and EDDI-V variable pointer is the address of the corresponding EDDI-
V variable. A PLC operation checks all tuples in PLC_list. Variable 
selection strategies for PLC are given in [Lin 12, 14]. The runtime of 
PLC-based QED tests can be significantly shortened with a small amount 
of additional hardware support [Lin 15a]. 

Transformed Code PLC Operation 
... 
<PLC Operation>	
  
R1  = R2  + R3 
R4  = R5  – R6 
R17 = R18 + R19 
R20 = R21 – R22 
<PLC Operation>	
  
R7  = R1  – R4 
R9  = R7  * R8 
R23 = R17 – R20 
R25 = R23 * R24 
<PLC Operation> 
... 

(a) 

for <A,A’> in PLC_list do 
  LOCK(A) 
  LOCK(A’) 
  Rt  = LOAD(A) 
  Rt’ = LOAD(A’) 
  UNLOCK(A’) 
  UNLOCK(A’) 
  CMP Rt, Rt’ 
  BNE ERROR_DETECTED 
end for 
 
 
 

(b) 
Figure A2. PLC example. with Inst_min = Inst_max = 4.  

C. Bug Scenarios 
 A bug scenario is formed by pairing one bug activation criterion with 
one bug effect. 

Table A1.A. Bug activation criterion from [Lin 12, 14]. 
Uncore 
components  

1. Two stores within X clock cycles to different cache lines. 
2. Two stores within X clock cycles to the same cache line. 
3. Two stores within X clock cycles to adjacent cache lines. 
4. Two cache misses within X cycles. 
5. A sequence of loads and/or stores within X clock cycles. 

Processor 
cores 

6. Data forwarding between pipeline stages. 
7. Two branch instructions within X clock cycles. 

Other 8. A randomly chosen clock cycle. 
 

Table A1.B.  Bug effects from [Lin 12, 14]. 
Uncore 
components 

A. Next received cache* coherence message dropped. 
B. Next received cache* coherence message delayed. 
C. Next store operation not allocated a cache* line. 
D. Next store update to cache* delayed by Y clock cycles. 
E. Next data accessed from cache* corrupted. 
F. Next data coming from main memory to cache* / core* 
corrupted. 
G. Processor core’s* load value corrupted. 

Processor 
cores 

H. Core* jumps to incorrect (random) address in the next cycle. 
I. Error in decoding next instruction’s operand inside core*. 
J. Processor core* incorrectly decodes next instruction to a NOP 
instruction. 

*  Where activation criterion is satisfied.  
Table A2.A. Power management bug activation criterion [Lin 15a]. 

ID Description 
1 When exiting from power-saving state. 

 

Table A2.B. Power management bug effects [Lin 15a]. 
Type ID Description 

Uncore 
components 

A The value of the next load operation from data cache is 
corrupted to all 0’s. 

B Next load operation from data cache delayed (1 clock cycle) by 
cache controller. 

C Data cache drops the next load operation. 
D The value of the next load operation from main memory is 

corrupted to all 0’s. 
E Next load operation from main memory delayed (1 clock cycle) 

by memory controller. 
F Next load request to main memory is dropped. 
G Next load operation is delayed for 1 clock cycle by the 

interconnection network. 
H Next load operation is corrupted to all 0’s by the 

interconnection network. 
I Next load operation is dropped by the interconnection network. 

Processor 
cores 

J Processor jumps to a random address. 
K Next instruction is corrupted to NOP 
L The value of the next register read is corrupted to all 0’s. 

D. Change Detectors for Design Reduction 
In this supplemental section, we present a design reduction technique 

that uses small hardware structures, referred to as change detectors. We 
insert change detectors (Fig. A3) to record changes in the logic values of 

signals during validation. These change detectors are inserted at the 
boundaries of all components that may potentially be removed when 
creating partial instantiations (e.g., at a certain level in the RTL 
hierarchy). For example, for the results below, change detectors were 
inserted on all signals one hierarchical level below the main SoC module 
of the OpenSPARC T2. They monitored signals between all modules at 
that level, which includes processor cores, L2 cache banks, memory 
controllers, and I/O controllers. 

 
Figure A3. Change detector. 

A change detector consists of a k-bit ripple counter that is initialized 
to all 1’s and is reset to all 0’s whenever a change in signal values is 
detected. Due to the short error detection latencies of QED tests, k≈10 is 
generally sufficient (change window of 1,023). When a QED test detects 
an error, the system is stopped and the change detector counter values are 
scanned out and saved. Using the recorded values in the change 
detectors, a reduced design is created for further analysis. A component 
is excluded from the analysis by BMC if, during the change window, the 
change detectors did not record any changes in the logic values of the 
component’s input or output signals. 
 To evaluate the change detectors for reducing the design size, we 
used the same 92 bug scenarios in OpenSPARC T2 and ran the QED-
transformed (EDDI-V and PLC) FFT and MMULT tests. With a change 
window of 1,023 cycles, we observed that for these tests, only the 
processor cores, crossbar, L2 caches, and memory controllers were part 
of the reduced design. Other components such as the I/O controllers 
could thus be removed from the design. For the 92 bugs, as shown in Fig. 
A4, the number of L2 cache banks (L2C) and memory controllers 
(MCU) also varied. For 3 of the bugs (with FFT benchmark) the design 
size reduced enough to eliminate a component (in each case a memory 
controller) from the partially instantiated designs. 
 We performed synthesis using the Synopsys Design Compiler with 
the Synopsys EDK 32 nm library to calculate the chip-level area 
overhead of the change detectors on OpenSPARC T2. We inserted 
change detectors on 1,067 signals (24,214 bits total), requiring 24,214 
change detectors for the entire design. This resulted in a 1.86% chip-
level area overhead. However, given that the change detectors did not 
reduce the number of memory controllers or caches enough to 
completely eliminate a partial instance (Sec. IV) for most of the bugs 
(Fig. A4), in this example we could have omitted the change detectors 
that only observe signals between those components. Then the number of 
signals monitored is 899 (12,734 bits total). The area overhead reduces to 
0.98%. The use of change detectors on only peripheral components that 
see intermittent activity appears to be the most cost-effective strategy; 
monitoring components such as caches and memory controllers that have 
high utilization may not add significant value. The overhead is 
significantly less than the 4% overhead of reconfigurable logic for post-
silicon debugging proposed by [Abramovici 06]. This also entirely 
avoids the use of trace buffers (and the associated area overhead), as 
implemented by [Chang 09, De Paula 08, 11, 12, Park 08, 09]. 

 
Figure A4. Change detector reduced design results for 92 bugs 
simulated during the FFT and MMULT benchmark tests. 

Change 
Detector 

D Q Monitored 
Signal 

Component Flip-flop 

Component Boundary 

Internal 
Logic 

(a) 

A
B

Out 

Change Detector 

D Q 

RST 
Q 

… 

k …… D 

RST 
Q 
Q D 

RST 
 Q 

Q 

A 

B 

(b) 

Out 


