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ABSTRACT

With the rise of programmable network switches, network in-
frastructure is becoming more flexible and more capable than
ever before. Programming languages such as P4 lower the
barrier for changing the inner workings of network switches
and offer a uniform experience across different devices. How-
ever, this programmability also brings the risk of introducing
hard-to-catch bugs at a level that was previously covered
by well-tested devices with a fixed set of capabilities. Subtle
discrepancies between different implementations pose a risk
of introducing bugs at a layer that is opaque to the user.

To reap the benefit of programmable hardware and keep—
or improve upon—the reliability of traditional approaches,
new tools are needed. In this work, we present p4pktgen, a
tool for automatically generating test cases for P4 programs
using symbolic execution. These test cases can be used to
validate that P4 programs act as intended on a device.
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1 INTRODUCTION

Historically, a lot of the functionality of network devices was
directly implemented in custom hardware for performance
reasons. Faster hardware and research on software defined
networking have recently made it practical to make network
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hardware programmable all the way down to the data plane.

This advance makes network infrastructure more flexible
and capable. Devices can be reprogrammed to better suit
the needs of users and programming languages offer a uni-
form way of programming hardware from different vendors.
However, this ultimately results in replacing critical pieces
of the network infrastructure that have a well-tested, fixed
set of capabilities. While the design and testing was tightly
coupled for this kind of hardware in the past, those new
programmable programmable architectures introduce new
layers and components that can fail. In addition to the danger
of bugs in the software written for these devices, there is
also the danger of subtle, hard-to-catch bugs in toolchains.
Toolchains for traditional programming languages, such as
C compilers, and hardware, such as x86, have been around
for years or even decades but there are still hundreds of
bugs that have been discovered in the past years [25, 27].
Unfortunately, toolchains for network hardware are unlikely
to fare better, and subtle differences between toolchains—
either due to bugs or different interpretations of the language
specification—pose a risk of introducing bugs at a layer that
is opaque to the user.

To reap the benefits of programmable hardware and keep—
or improve upon—the reliability of traditional approaches,
new tools are needed. Testing is one way to increase confi-
dence in a system. For devices with a fixed set of capabilities,
it is possible to generate a large amount of test cases once.
Programmable devices, however, require not only hardware
testing but also the associated toolchains to make sure that
programs behave as intended by the user.

P4 [4] is a popular programming language for the data
plane of network devices. It is backed by multiple commercial
vendors—there are currently at least seven P4 compilers
under development [10], each exposed to the aforementioned
risks. The fact that we found several issues in the open source
reference compiler, p4c [8], during the course of this work
illustrates that those risks are real, as we discuss in Section 5.

In this work, we present p4pktgen,! an open source tool
for automatically generating test cases for P4 programs. The
generated test cases consist of test packets, table entries,
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and expected paths. p4pktgen validates the test cases with
BMv2 [7], a software reference implementation of a P4 switch.
To generate test cases, it uses symbolic execution along con-
crete paths. Symbolic execution is a well-established analysis
technique that translates programs into logical formulas to
examine their behavior across all possible inputs. This tech-
nique can reason about programs with bit-level precision
and has been used successfully to find bugs and vulnerabil-
ities in software [5, 14, 15, 22]. Often, satisfiability modulo
theories (SMT) solvers such as Z3 [11] or CVC4 [2] are used
to perform the actual reasoning. Instead of re-purposing an
existing tool, e.g. by translating P4 programs into a language
supported by another tool, we created a new symbolic execu-
tion platform for P4 so that we could take advantage of the
structure of the language for domain-specific optimizations.

Test cases generated by p4pktgen can be employed in
a wide range of scenarios. One of the primary uses that
we envision is to validate that P4 programs act as intended
on their target devices, by running the same test packets
through a software reference implementation and the target
hardware and comparing the output of the two implementa-
tions. Alternatively, P4 can be used to express a specification
of existing, non-programmable hardware, which can then
be tested against a software reference implementation. Ad-
ditionally, p4pktgen can be used for debugging purposes to
quickly generate a packet for a given path.

To summarize, our contributions are as follows:

e We have formalized a large portion of the intermediate
representation that the P4 compiler produces for BMv2,
which closely resembles P4 and thus we indirectly provide
a formalization of P4.

e We present p4pktgen, a tool that implements this formal-
ization and is able to generate test cases fully automatically.

e We show that p4pktgen can generate test cases for large
programs and that the threat of flawed toolchains is real.

2 RELATED WORK

There are multiple ongoing projects that involve formal-
izing components of software-defined networking. Foster
et al. [13] have presented work on the verification of P4
programs. At the time of this writing, no publication is avail-
able, but the presentation indicates that they translate P4
programs to a small imperative language and then verify
that user-annotated properties hold using an SMT solver.
Like p4pktgen, their approach requires a formalization of
P4, but their focus is on verifying the P4 programs them-
selves, which is desirable but complementary to our work.
Kheradmand et al. [17] have presented work on formaliz-
ing P4 programs in the K framework [21]. Their focus is on
P4,4 whereas our approach is version-agnostic used and a
direct formalization in SMT. Test case generation is one of
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their side-goals. Lopes et al. [20] developed a tool to check
that a P4 program only delivers well-formed packets, model-
ing a small network of P4 switches in Datalog. While their
focus is on verification, they also recognize that compilers
may introduce bugs and suggest that their approach could
be useful for verifying compiler optimizations by proving
the equivalence of a P4 program before and after an opti-
mization. NICE [6] is a tool that performs model checking to
find issues in the controller programs of OpenFlow networks.
p4pktgen is complementary to that approach since it focuses
on testing the switches themselves but not the control plane.
Dobrescu et al. [12] have proposed an approach to verify
that binaries of a software data plane created with Click [18]
satisfy a set of properties. This is desirable, but developers
have to specify the properties and still have to trust that
the switch executes what was analyzed. SOFT [19] is an ap-
proach for testing the interoperability between OpenFlow
switches. Their approach performs symbolic execution of
OpenFlow implementations to generate test cases and then
uses these inputs to find differences between the implemen-
tations. The focus is on the OpenFlow interface and not the
behavior of the data plane.

The problem of automatically generating test cases has
been researched extensively. KLEE [5] is a well-established
tool that performs symbolic execution of the LLVM IR along
concrete execution paths to generate interesting test cases.
Driller [23] combines fuzzing within code that is guarded
with specific checks with symbolic execution for passing
those checks. Some of these techniques may be applicable
when generating test cases for P4 programs. There has also
been work on fuzzing of network devices without symbolic
execution. For example, Classbench [24] automatically gen-
erates packets for testing longest-prefix match algorithms.
Our work does not systematically test matching algorithms
but focuses on the packet processing pipeline as a whole.
Zeng et al. [26] describe an approach for automatically gener-
ating test packets for testing and debugging networks. Their
approach uses the header space framework [16] to model
packet processing, requiring the implementation of protocol
and vendor-specific translations into their model and assum-
ing a fixed table configuration. We focus on a single switch
and generate table configurations automatically.

3 THE P4 LANGUAGE

Below, we illustrate P46 using an implementation of Equal
Cost Multi Path (ECMP) routing, shown in Figures 1 and 2.
A common function of routers is to calculate shortest paths
through the network and install routes in the form of IP
address prefixes mapped to output ports. Redundant paths in
networks can be used to improve performance by balancing
traffic to the same destination over multiple paths of the
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1 header ethernet_t { bit<48> dst; bit<48> src; bit<16> etherType; }
2 struct headers { ethernet_t ethernet; ipv4_t ipv4; }

3 parser ParserImpl(packet_in packet, out headers hdr,

4 inout metadata meta, inout standard_metadata_t std_metadata) {

5 state start { transition parse_ethernet; }

6 state parse_ethernet {

7 packet.extract(hdr.ethernet);

8 transition select(hdr.ethernet.etherType) {

9 0x0800: parse_ipv4; default: accept;

10 3}

11 state parse_ipv4 {

12 packet.extract(hdr.ipv4);

13 verify(hdr.ipv4.version == 4 && ...
14 error.BadIPv4Header);

15 transition accept;

16 }}

&& hdr.ipv4.ttl != 0,

Figure 1: An Ethernet and IPv4 parser in P4.

1 control compute_ipv4_hashes(out bit<16> hash1, in headers hdr) {
2 apply { // Cheap, but low quality, hash function

3 hashl = (hdr.ipv4.srcAddr[31:16] + hdr.ipv4.srcAddr[15:0]

4 + ... + (bit<16>) hdr.ipv4.protocol);

51}

6 control ingress(inout headers hdr, inout metadata meta,

7 inout standard_metadata_t std_metadata) {

8 // ... actions set_12ptr, set_ecmp_group_idx ...

9 table ipv4_da_lpm { key = { hdr.ipv4. : lpm; 3

10 actions = { set_l2ptr; set_ecmp_group_idx; } }
11 // ... action set_ecmp_path_idx ...

12 table ecmp_group { key = { meta. . exact; }

13 actions = { set_l2ptr; set_ecmp_path_idx; } }
14 table ecmp_path { key = { meta. : exact;

15 meta. : exact; }

16 actions = { set_l2ptr; } }

17 action set_bd_dmac_intf(bit<48> dmac, bit<9> intf) {
18 hdr.ethernet.dstAddr = dmac;

19 std_metadata.egress_spec = intf;

20 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

21 3

22 table mac_da { key = { meta. . exact; }

23 actions = { set_bd_dmac_intf; } }
24 apply {

25 if (hdr.ipv4.isvalid()) {

26 compute_ipv4_hashes.apply(meta.hash1, hdr);

27 ipv4_da_lpm.apply();

28 if (meta.nexthop_type != L2PTR) {

29 ecmp_group.apply();

30 if (meta.nexthop_type != L2PTR) ecmp_path.apply();
31}

32 mac_da.apply();

33 33}

Figure 2: A match-action pipeline for ECMP routing.

same length. We now explain the three parts of P4 programs:
the parser, the match-action pipeline, and the deparser.

Parser A P4 parser is a state machine that contains parser
states, starting with the state start. The select statements
define the transitions between the parser states based on the
values of a list of fields. In Figure 1, the two parser states,
parse_ethernet and parse_ipv4, parse raw Ethernet pack-
ets and IPv4 packets encapsulated in Ethernet packets. The
parser state parse_ethernet has a transition to parse_ipv4
that is executed if the Ethernet type matches 0x0809; oth-
erwise, the packet is accepted as a raw Ethernet packet by
transitioning to accept. The extract statements extract
information from a packet. They take a destination, and con-
sume enough bits from the packet to fill it. In the example,
the extract on line 7 fills the ethernet header, which is of
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type ethernet_t, defined on line 1. Using the verify state-
ment, parser states can ensure that a condition is fulfilled. If
the condition is not met, the parser exits and sets an error
flag but does not drop the packet. Lines 13-14 use verify to
perform sanity checks on the IPv4 packet.

Match-Action Pipeline The match-action pipeline does
the actual computation in a P4 program. The underlying con-
trol flow of the ECMP example is on lines 24-33 in Figure 2. If
the packet has an IPv4 header, then compute_ipv4_hashes
calculates a hash of several of its fields. On line 27, the pro-
gram performs a lookup in the table ipv4_da_lpm using the
packet’s destination address as a key. The router’s control
plane is responsible for installing table entries, which map
keys to actions: set_12ptr if there is a single shortest path
to the destination, or set_ecmp_group_idx otherwise.

The action set_12ptr assigns the constant L2PTR to the
variable meta.nexthop_type, causing the multi-path code
to be skipped. The action set_ecmp_group_idx on the other
hand, assigns a value to the variable meta.ecmp_group_idx,
indicating the group of paths that the packet should be sent
to. This value is used as a key in the table ecmp_group on
line 29. This table has again two actions: (1) set_12ptr
mentioned above and (2) set_ecmp_path_idx, which as-
signs a value to the variable meta.ecmp_path_selector
that uniquely identifies the path to take within the group,
based upon the hash calculated earlier in the control block
compute_ipv4_hashes. In the last case, the table ecmp_path
is looked up, always resulting in the action set_12ptr. By
the time we apply the table mac_da, we have a value for
meta.l2ptr, which is used as a key. The table has a sin-
gle action, set_bd_dmac_intf, which performs standard IP
routing header modifications and sets the output port for the
packet through egress_spec.

Deparser The deparser assembles the final output pack-
ets from the values computed by the match-action pipeline.
Typically it only contains a sequence of emit calls, which
copy the contents of headers to the output packet. Currently,
p4pktgen does not model the deparser because most of the
program’s control flow happens in the parser and pipeline.
Instead, it generates a test input and relies on BMv2 to deter-
mine the expected output packet.

4 IMPLEMENTATION

In the following, we discuss how p4pktgen generates test
cases for P4 programs by symbolically executing concrete
paths. First, we describe the process at a high level; then, we
describe the formalization of P4; and finally, we explain the
optimizations that we added to generate test cases efficiently.
Atahigh level, p4pktgen takes a P4 program and produces
test cases in the form of packets and table configurations.
Instead of consuming P4 programs directly, p4pktgen
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parses the JSON files that the p4c compiler produces for
BMv2. The format [1] is a relatively straightforward transla-
tion of the original P4 source code. The JSON format makes
parsing easier because we do not have to parse P4 directly
and because the format is largely agnostic to the P4 version
(P414 or P446) used. An additional benefit is that p4c per-
forms type-checking and desugaring, such as inlining calls
to control blocks (e.g. p4c inlines compute_ipv4_hashes in
ingress when compiling the program in Figure 2).

From the JSON file, p4pktgen extracts the parser state
graph and the control flow graph of the input program. P4
guarantees that any loops in these graphs have upper bounds
on the number of times they can get executed. Thus, P4
programs execute only a bounded number of steps for each
packet.? This allows us to unroll all loops a bounded number
of times while preserving the semantics.

Given a path through the program, the goal of p4pktgen
is to generate a packet that exercises that path. To do this,
a packet has to be crafted that triggers the correct parser
transitions, the correct conditional branches, and the correct
table actions. These requirements can be translated into a set
of SMT constraints by symbolic execution of a given path.
Starting from symbolic inputs, we encode the operations on
the path as SMT constraints. If the constraints can be satis-
fied, the SMT solver returns concrete values for the symbolic
inputs, which can be used to construct both the packet and
the table entries needed to ensure that the program takes
the given path. If the solver determines that the constraints
are unsatisfiable, no packet can possibly take the given path.

After p4pktgen generates the test packet and table config-
urations for a path, it configures the BMv2 tables and sends
the test packet. It compares the path extracted from BMv2’s
log to the expected path to sanity check the test case. A
failing check indicates either a bug in p4pktgen or BMv2. If
the check passes, the test case can be used to test other P4
implementations by comparing their output packets for the
test case against the output packets of BMv2.

4.1 Modeling P4

Given a path, p4pktgen executes each step in the path sym-
bolically by modeling the impact of each step on the state
of the program as SMT constraints. SMT solvers support
a rich constraint language based on theories, which define
theory-specific functions and predicates. p4pktgen uses the
theory of bitvectors, which defines functions and predicates
on integers consisting of a fixed number of bits. Because
p4pktgen only uses quantifier-free bitvectors, all the prob-
lems that it generates are decidable—given enough time, the
solver can either find a satisfying assignment or decide that
no such assignment exists. In the following, we discuss how

2Except in cases of recirculation, which we currently do not model.
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we model various aspects of P4. In Section 6, we discuss our
future plans for covering the remaining features.

Input Representation When modeling a language, one of
the primary design decisions is how to represent inputs. The
parser in P4 programs contains valuable information about
the relationships between header fields, so p4pktgen uses
a symbolic network packet as the main input and models
the parser. We model the input packet as a large bitvector
of a fixed size and keep track of the symbolic packet length
in a separate bitvector variable packet_length. For every P4
program, there is a (statically computable) upper limit to
the number of bits it can read from a packet. Thus, we can
always choose a bitvector of that size to ensure it is large
enough for all executions. We explain the motivation for this
encoding below. If the solver decides that a particular path is
feasible, p4pktgen retrieves a concrete value n for the packet
length from the solver; it then obtains the packet by taking
the first n bits of the large bitvector that models the packet.
Extracting Fields While parsing, P4 extracts fields from a
packet. Because of variable-length fields, p4pktgen keeps
track of the current position in the packet as a symbolic value.
Thus, p4pktgen has to be able to extract fields with symbolic
length from a packet at a symbolic position. The SMT input
language for bitvectors does not support extracting bits from
symbolic positions but the same effect can be obtained by
using a variable-length shift followed by an extract:

field_val(pos, sz) := (packet > pos)[sz—1: 0]

where > is the right-shift operator. Notice that this would
be difficult to model if the packet were split into different
bitvectors, because each bitvector has a fixed size and so
there would be no easy way to determine which bits to read,
given a symbolic offset into the packet. Because we model the
packet as a single, large bitvector, lookahead can be treated
in the exact same way as extracting a header field.

For variable-length fields, we extract the maximum num-
ber of bits and then zero out the number of bits that are
outside of its actual (symbolic) length:

field_val_var(pos, sz, max_sz) =
eld_val(pos, max_sz) & ((—1)['”“’6*32] > (max_sz — sz))
p

where & represents the bitwise-and operator, and (—1)"]
represents the bitvector of all ones of length n. We also add
the constraint that sz <, max_sz where <, is an unsigned
comparison and a constraint that sz & 0x7 = 0 to make sure
that sz is divisible by eight, as required by P4,4.

Context As p4pktgen steps through a path in a program, it
keeps track of the current symbolic values in a context. The
context maps header fields and other variables to symbolic
values and keeps track of metadata such as the validity of
headers. For reads, p4pktgen looks up the symbolic value
in the context, and for writes, it updates the correspond-
ing value in the context. Thus, the context always contains
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the current symbolic expression of all variables. When read-
ing values from the context that have not been initialized,
p4pktgen supports treating them as zero-initialized (P44 se-
mantics) or as undefined values where each read may result
in a different value (P44 semantics). Similarly, p4pktgen can
warn about writing to fields in headers that are not valid,
which some implementations may treat as a memory cor-
ruption even though it is defined as a no-op in P44. When
changing a header to invalid, all values in the header are
removed from the context.

Parser States In parser states, we translate all the parser
operations, e.g. header extractions, one-by-one. Header ex-
tractions are modeled as a series of field extractions and
marking the header as valid. The path determines which
case of a select statement the input has to hit. This en-
tails matching the required case and ensuring that none
of the cases before could apply, resulting in the constraint
=(c1) A -+- A =(cy—1) A ¢, where ¢; are the conditions for
the cases and n is the index of the case that corresponds to
the path. For select statements that match tuples instead of
single fields, p4pktgen concatenates all the elements in the
tuple and performs checks on the concatenated bitvector.

Conditionals The path determines the outcome of a con-
ditional, e.g. whether hdr.ipv4.1isValid() should be true
or false in Figure 2. We simply translate the condition and
add a constraint that sets it equal to the desired outcome.

Actions, Tables and Table Entries Table entries are set at
runtime, thus p4pktgen has to generate the table entries for
a given path. For each table, the path determines the action
that needs to be executed. Our current implementation as-
sumes that each table can only appear once in a single path,
mirroring a limitation of the JSON format. Thus, p4pktgen
has to generate at most a single table entry for each table. To
get the values for the key, p4pktgen records the symbolic
values of the match keys each time a table is used. p4pktgen
retrieves the concrete values from the SMT solver’s assign-
ment and uses them to generate the keys of table entries.
Additional constraints are not necessary. All match types
(exact, longest-prefix match, ternary, and range) support the
special case of exact match on all bits, and p4pktgen always
creates such table entries. Table entries include values for
the action parameters. Each time an action appears in a path,
p4pktgen generates fresh variables for the action parameters
and records them in the context indexed by a table-action
pair for later retrieval. The actions themselves consist of
primitive operations that are translated sequentially.

Assuming that a table only appears once on a given path is
not a fundamental limitation of our approach. If we wanted
to support a table appearing multiple times, we could add
the following constraint for each reuse of a table:

keys; = keys, = action; = actiony A params; = params,
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Note that we know the value of action; = action, statically
from the path. If the values of the keys are the same for both
uses of the table, then we must pick the same action and the
action parameters remain the same because the table will
execute the same action for the same input. In this case a
single table entry is required. Otherwise, the actions and
action parameters can be different and a separate table entry
must be generated.

Error Paths Packet processing in a P4 program can result in
errors. It is important to exercise those corner cases because
they are not used as often during normal execution. Recall
that parser states use verify to check whether a packet
fulfills a requirement and reject it otherwise. To generate
a test case that fails a verify statement, p4pktgen simply
adds the negation of the condition to the constraints.

If an extract or a lookahead should fail in a given path
because a packet is too short, p4pktgen does not perform the
operation and instead restricts the packet length to be shorter
than the length required by the operation but long enough
that no preceding operation fails. Variable-length fields can
exceed their maximum length when doing an extract. In that
case, we add a constraint that the value of the expression
that computes the length of the variable-length field has to
be greater than the maximum length.

4.2 Optimizations
In p4pktgen, we generate paths by visiting nodes in a depth-
first order. Instead of attempting to find packets for complete
paths, p4pktgen first tries to solve prefixes of paths and back-
tracking as soon as it determines that a prefix is impossible
to satisfy. This allows p4pktgen to discard infeasible pieces
of the search space early. For the parser, we do not attempt
to solve prefixes because unsatisfiable parser paths are rare.
State-of-the-art SMT solvers support incremental solving
as defined by SMT-LIB [3]: The user can push (save) and pop
(restore) the set of assertions and check for satisfiability in
between. This mechanism works well with our backtracking
optimization. Whenever p4pktgen tries to solve a prefix,
it pushes the current context and pops the context when it
backtracks. This allows the solver to reuse work from shorter
prefixes when solving longer ones.

5 EVALUATION

Our evaluation of p4pktgen focuses on two questions: (1) Can
p4pktgen effectively generate test cases for large P4 pro-
grams? (2) Can p4pktgen’s test cases reveal bugs in a P4
toolchain? For the former, we show that p4pktgen is able to
produce a large number of test cases for P4 programs. For
the latter, we describe four bugs that we discovered in p4c.

Performance We ran p4pktgen on four P4 programs using
an Intel Core i5-4258U CPU: the ECMP example, two mTag
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Program Runtime  Total paths  Test cases  Imp. Prefixes
ECMP 4.8s 210 28 14
mTag-aggregation 83.5s 1,728 1,345 3
mTag-edge 176.6s 3,456 1,974 465
switch.p4 1,800s (t/0) 2.7 x 103 3,425 3,664

Table 1: Results of running p4pktgen on P4 programs.
“Imp. Prefixes” refers to path prefixes that p4pktgen
found to be impossible to generate a packet for.

programs, and a slightly simplified version of switch.p4 [9].
The mTag example originates from the original P4 paper [4]
and implements simple tag-based packet forwarding. It con-
sists of mTag-edge, which inserts and removes tags in switches
attached to hosts and mTag-aggregation, which forwards
packets based on the tags. We modified switch.p4 to remove
features not yet supported by p4pktgen (such as header
stacks, hashing, and action profiles) and we replaced a call to
random by an action parameter to make the program deter-
ministic. We summarize the results in Table 1. The runtime
includes the time of checking the test cases with BMv2.

We were able to generate test cases for all paths in the
smaller three programs in less than 3 minutes each. Our
largest test case switch.p4, is too large to run to completion
due to the explosion in the number of paths, a common issue
when doing symbolic execution of paths. For this case, we
limited the runtime to 30 minutes. p4pktgen generated 16.1
test cases per second in the best case (nTag-aggregation)
and 1.9 test cases per second in the worst case (switch.p4).
In the case of mTag-aggregation, the control block consists
only of three table applications, so the control block does not
introduce any constraints, which makes finding test cases a
matter of picking the right values for the parser and adding
the correct table entries. For switch.p4, the process gets
significantly more complicated due to the size of the program:
the average length of a successful path is 41 nodes. Thus,
this shows that our method is able to create test cases for
programs that are significantly larger than toy examples.

For ECMP, the sum of test cases generated and impossible
prefixes (i.e. the paths explored) is significantly smaller than
the total number of paths, indicating that pruning is effective.
This is due to conditions such as the check at the beginning of
the control block that requires an IPv4 header. Thanks to the
pruning described in Section 4.2, p4pktgen does not explore
any paths beyond that condition if the path does not parse an
IPv4 header. In mTag-edge, pruning is also effective, cutting
roughly 30% of the total paths. Solving took 8-27% of the
runtime and running the test cases through the BMv2 took 21—
39%. The rest of the time was used to initialize the translator,
start BMv2, generate paths, and generate constraints.

Case Studies While developing p4pktgen, we wrote simple
P4 programs that ultimately uncovered bugs in p4c. When
the test cases that p4pktgen generated did not produce the
results we expected, we investigated the cause and found,

A. Notzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas

in all cases reported below, that the issue was the p4c JSON

backend. With two compiler implementations, it is possible

to find these bugs fully automatically by checking for dif-

ferences in the output of the two compiled programs. We

reported the following issues that have since been fixed:®

e Issue #914: Incorrect JSON for select statements with
multiple key fields.

o Issue #983: Incorrect JSON when bit-wise negating a bitvec-
tor, then casting it to a wider bitvector.

e Issue #995: Incorrect JSON for select statements that use
masks for ternary matching.

e Issue #1025: incorrect JSON specifying maximum length
of headers with variable-length fields.

This list of issues shows that the danger of bugs in P4 com-
pilers is real and that the test cases can help reveal them.
We also found p4pktgen useful for finding the root cause
of an issue reported by a third party (issue #950), where p4c
generated incorrect JSON for Boolean variables in conditions.

6 LIMITATIONS AND FUTURE WORK

We plan to add support for more P4 features in p4pktgen
such as header stacks, header unions, hashes, and action pro-
files. Those features do not require fundamental changes to
our approach. P4 also allows state to be maintained between
packets, e.g. using registers and meters. For P4 implemen-
tations that allow setting the state using the control plane,
p4pktgen can be modified to simply generate commands to
set the desired state before each test case. However, some P4
programs may assume that the state is never modified exter-
nally after initialization. To support such behavior, we would
have to find an efficient way to model sequences of packets.
Currently, p4pktgen does not model the egress pipeline, but
it is similar to the ingress pipeline, so modeling it does not
require fundamental changes except for the recirculation of
packets, which can result in arbitrary length loops.
Exploring all paths on large P4 programs is impossible,
thus we are working on a mode that prioritizes branch cov-
erage instead of path coverage. The challenge is to efficiently
find a set of paths that exercise all branches. We are consider-
ing adding support for user-supplied constraints to express
assertions and assumptions on table entries and action pa-
rameters to better capture the intention of the programmer.
Finally, we would like to use the generated test cases to
test different P4 implementations to realize the full potential
of p4pktgen. We believe that our approach is one of several
tools required for reliable P4 implementations.
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