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Abstract. SMT solvers are highly complex pieces of software with per-
formance, robustness, and correctness as key requirements. Complement-
ing traditional testing techniques for these solvers with randomized stress
testing has been shown to be quite effective. Recent work has showcased
the value of input fuzzing for finding issues, but this approach typically
does not comprehensively test a solver’s API. Previous work on model-
based API fuzzing was tailored to a single solver and a small subset of
SMT-LIB. We present Murxla, a comprehensive, modular, and highly
extensible model-based API fuzzer for SMT solvers. Murxla randomly
generates valid sequences of solver API calls based on a customizable
API model, with full support for the semantics and features of SMT-LIB.
It is solver-agnostic but extensible to allow for solver-specific testing and
supports option fuzzing, cross-checking with other solvers, translation to
SMT-LIBv2, and SMT-LIBv2 input fuzzing. Our evaluation confirms its
efficacy in finding issues in multiple state-of-the-art SMT solvers.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers determine the satisfiability of for-
mulas over first-order theories and their combinations. They serve as back-
end reasoning engines for a wide range of applications in academia and in-
dustry [9, 18], including hardware and software verification [5, 20, 22, 26, 29, 31],
model checking [14,15,35], security [3,24], automated test-case generation [13,39],
and synthesis [1,25]. Notable SMT solvers include Bitwuzla [33], Boolector [35],
cvc5 [4], MathSAT [17], OpenSMT2 [27], SMTInterpol [16], SMT-RAT [19],
STP [23], veriT [11], Yices2 [21], and Z3 [32]. State-of-the-art SMT solvers are
complex pieces of software with up to hundreds of thousands lines of code. Be-
cause of their frequent use as back-ends in higher-level tool chains, strong re-
quirements include performance, robustness, and a high level of trust. Due to
their complex nature, full verification of SMT solvers has so far remained out of
reach. Furthermore, most SMT solvers are under active development, meaning
that there is a constant risk of introducing new issues. While traditional testing
techniques such as unit testing and a regression test suite are important, these
techniques alone are insufficient for achieving high levels of robustness.
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SMT solvers usually provide two user-facing interfaces: (i) a textual interface
(expecting input in either SMT-LIBv2 [6] or some solver-specific format); and
(ii) the application programming interface (API), which allows users to directly
integrate the solver into a tool chain. Randomized stress testing (fuzz testing)
can be used as a complement to traditional testing to attack these interfaces
and has been shown to be very effective at finding issues and thereby helping
to improve the correctness and robustness of SMT solvers. In 2009, Brummayer
et al. [12] presented a grammar-based generative black-box input fuzzer for the
SMT-LIBv1 language [37] called FuzzSMT, and in 2017, Niemetz et al. [34] pre-
sented a model-based API fuzz testing framework called BtorMBT for the SMT
solver Boolector. More recently, fuzz testing of SMT solvers via their textual
interface has gained even more traction with a series of papers on the subject in
top venues [10,30,36,38,40,41]. Note that these approaches (and this paper) as-
sume full knowledge of the input structure, i.e., they only generate valid textual
input or sequences of API calls. Fuzz testing approaches that are unaware of the
input structure can also be useful for testing whether invalid inputs or API calls
are handled correctly. This is, however, not a direction we address in this paper.

As mentioned, recent work has focused on fuzzing the textual interface. This
is not surprising, as it typically requires significantly less effort than API fuzzing.
Input fuzzers generate a new input file or mutate an existing (so-called) seed in-
put file and pass it to a solver binary. Fuzz testing of the solver API is more
involved since it requires interaction with the solver—API fuzzers generate se-
quences of calls to the solver API and typically link against the solver library.

There are, however unique advantages that API fuzzers have. For example,
API call sequences generated by API fuzzers may include features and extensions
that are not supported by or cannot be expressed via the textual interface.
Moreover, even if restricted to standard features, API fuzzers may be able to
generate sequences of calls that are not possible using the textual interface, even
if the textual interface is built on top of the user-facing API, and especially if it
is not. On the other hand, API fuzzing cannot find bugs in parser code. Thus,
both fuzzing strategies have unique benefits.

API fuzzing has been an integral part of the development workflow of the
SMT solver Boolector [35] since 2013. Boolector supports quantified bit-vector
formulas and quantifier-free formulas in the theories of fixed-size bit-vectors,
arrays and uninterpreted functions. It ships with BtorMBT [34], an API fuzzer
tailored to Boolector, which covers all features of Boolector except quantifiers.
BtorMBT has been regularly and rigorously applied during active development
of Boolector (locally, prior to major commits to master, and in a cluster setting
on 30 nodes prior to every release), with great success. Notably, recent SMT
fuzzing campaigns did not report any issues in code covered by BtorMBT [30];
in particular, the few that have been reported all made use of quantified formulas,
which are unsupported by BtorMBT. To the best of our knowledge,1 Boolector

1 The first two authors of this paper are the main developers of the SMT solvers
Bitwuzla [33] and Boolector [35], and all three authors are part of the development
team of the SMT solver CVC4 [7] and its successor cvc5 [4].



is the only SMT solver for which API fuzzing has been integrated as a core
component of the development workflow.

One of BtorMBT’s major weaknesses, however, is that it cannot (easily be
extended to) be used with other SMT solvers—it is monolithic, tailored towards
the supported theories, and directly calls Boolector’s API. Further, it lacks sup-
port for quantified formulas, only supports a subset of the theories standardized
in SMT-LIB, and even for those, not the full feature set since Boolector only
supports a subset. For recording API call sequences, it relies on the API tracing
feature of Boolector, the system under test. And for replaying and minimizing
such recorded sequences, it requires additional tools.

Contributions. In this paper, we present Murxla, a modular and highly extensible
model-based API fuzzer for SMT solvers. Murxla is a comprehensive fuzzing
tool that generates valid sequences of solver API calls, records these sequences
in a simple text-based trace format, and provides support for minimizing and
replaying these traces while preserving the original behavior of the solver. Murxla
builds on top of a generic solver interface that can be used with any SMT solver
and provides full SMT-LIB support in terms of semantics, features, and standard
theories. It further has experimental support for some non-standard theories
(sequences, sets, bags) and is fully compatible with and configurable for solver-
specific features, extensions, and restrictions. Murxla provides support for option
fuzzing (randomly configuring solver options based on the options model of the
solver) and can be run in cross-checking mode, where the answers of two different
solvers are compared with each other. It additionally implements correctness
checks for retrieved model values, unsat assumptions, and unsat cores. Finally,
it can optionally translate generated API traces to SMT-LIBv2 (provided that
the traces do not contain solver-specific extensions), and can thus be used as a
textual interface fuzzer for any solver that supports SMT-LIBv2.

Murxla currently supports the SMT solvers Bitwuzla [33], Boolector [35],
cvc5 [4], and Yices2 [21]. Our goal so far has been to fully cover solvers we are
actively developing (the first three). We additionally added support for Yices2 as
a proof of concept for showing that the tool is sufficiently general and modular
to be used with solvers other than our own.

Related Work. The first application of model-based API fuzzing in the context
of verification back-ends was proposed by Artho et al. [2] for the SAT solver
Lingeling [8]. In the context of SMT solvers, the first and only integration of
model-based API fuzzing as a core component of the development workflow was
for the solver Boolector [34], as described above. In both instances, the authors
showed the effectiveness of the approach for testing solvers, in particular in
combination with option fuzzing and delta debugging.

The first input fuzzer for the SMT-LIB language was FuzzSMT [12], a genera-
tive grammar-based fuzzer supporting most of SMT-LIBv1 [37]. In 2018, Blotsky
et al. [10] presented an SMT-LIBv2 input fuzzer specifically for strings, which
generates and mutates SMT-LIBv2 input and mainly targets performance is-
sues. In 2020, Winterer et al. [40, 41] proposed two mutational approaches, one
based on merging two inputs and the other based on mutating operators. The



former supports only integers, reals, and strings, whereas the latter supports all
benchmarks in SMT-LIB but only mutations for the most basic operators. In
the same year, Mansur et al. [30] presented Storm, an SMT-LIBv2 fuzzer based
on mutating the Boolean structure of an input. Most recently, Park et al. [36]
presented TypeFuzz, a hybrid approach for integers, reals, and strings which
mutates SMT-LIBv2 by replacing expressions with newly generated expressions.
Finally, Scott et al. [38] recently proposed a mutational fuzzer for all of SMT-LIB
which leverages reinforcement learning and targets performance issues.

2 Model-Based API Fuzzing for SMT Solvers

Generally speaking, model-based API fuzzing can be seen as lifting grammar-
based input fuzzing to the API level: it requires a “model” of the solver that
defines what sequences of API calls are valid. For convenience, we consider this
model to be made up of three distinct parts: (i) the semantic (or data) model,
which defines constructs (such as theories, sorts, operators, and commands) and
their semantics (usually based on the SMT-LIBv2 [6] standard); (ii) the API
model, which defines the usage of the API itself; and (iii) the options model,
which defines configuration options and how they may or may not be combined.

The main requirements for SMT solvers, especially when used as back-ends
of higher-level tool chains, are correctness, performance, and robustness. Within
the SMT community, the notion of “issue” is thus commonly defined as one of
the following: (i) soundness issues—either refutation unsoundness (the solver
answers unsat when the input is sat) or model unsoundness (the solver answers
sat when the input is unsat); (ii) incorrect witnesses—models (values), proofs,
unsat cores, or unsat assumptions; (iii) crashes—assertion failures, segmentation
faults; and (iv) performance regressions. The most critical issues are soundness
issues. Refutation unsoundness is especially problematic, as most solvers provide
limited or no means for checking the correctness of an unsat result. Model un-
soundnessis less problematic, since state-of-the-art SMT solvers usually provide
models for satisfiable formulas, which are easier to check for correctness. The
easiest way to identify soundness issues is to check one solver against a second
solver, unless the satisfiability of the input formula is known or can be deter-
mined by construction. Witnesses are very often checked inside the solver when
in debug mode, and their correctness can be determined outside the solver with
relatively little effort for all but proofs, which require more involved checking.

As SMT solver developers, we are interested in catching issues as close to the
source as possible. For that purpose, in the context of model-based API fuzzing,
we configure solvers under test in debug mode with assertions enabled.

3 Murxla

Murxla is a modular model-based API fuzzing tool for SMT solvers which gen-
erates valid solver API call sequences and supports the recording, replaying, and
minimizing of these sequences for debugging purposes. Murxla is written in C++
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Fig. 1. Murxla architecture.

and available under the GPLv3 on GitHub2 with extensive documentation3. A
high-level view of its architecture is given as a call graph in Figure 1. Murxla can
be used with any SMT solver (provided that it exposes an API in a programming
language that can be integrated). Murxla provides a solver API abstraction, the
Generic Solver API, which is then specialized via a solver wrapper for a specific
solver. Solver-specific components are indicated in blue in Figure 1 and consist of
the solver wrappers and solver-specific extensions of the general API model and
options model implemented by Murxla. The four main components of Murxla
(green) are the API Fuzzer, the Tracer, the Untracer, and the Trace Minimizer.

The API Fuzzer is responsible for generating random but valid API call
sequences to the solver under test. The Tracer records these sequences in an
API trace, which stores all the information required to replay the trace with
the Untracer. Replaying a trace with the Untracer executes the exact same API
call sequence that was executed when recording the trace. This is particularly
useful for replicating interesting behavior that was uncovered while fuzzing the
API of the solver under test. The Trace Minimizer takes an API trace as input
and tries to minimize it while preserving its behavior with respect to the solver
under test. Murxla’s core connects all of these components. It is also responsible
for interfacing with the SMT solvers and maintaining all sorts and terms created
by a solver. In the following, we will describe these components in more detail.

3.1 The Core

Murxla’s Core manages communication and the sorts and terms created by a
solver. It consists of three modules: the Actions, the Solver Manager, and the
Generic Solver API.

Actions. An action is an abstraction defining a particular interaction with the
solver under test. These interactions are represented internally as a set of calls

2 https://github.com/murxla/murxla
3 https://murxla.github.io
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to the Generic Solver API. Actions are responsible for three tasks: (1) randomly
generating API call arguments; (2) executing API calls with a given set of argu-
ments; and (3) replaying a traced copy of the action.

Murxla currently implements a base set of 25 actions which wrap the methods
of the Generic Solver API and include creating and deleting a solver instance,
configuring solver options, creating sorts and terms, asserting formulas, altering
the context levels via push and pop, checking satisfiability of asserted formu-
las (with assumptions), and many more. When executing API calls, actions may
perform sanity checks on results retrieved from solver API calls. For this, Murxla
provides a macro MURXLA_TEST which allows C-style assertion checks. These re-
main in the code even if the tool is compiled without assertions. If a solver
supports more functionality than that covered by the Generic Solver API, the
solver wrapper can extend the base set with solver-specific actions which directly
interact with the solver API.

Solver Manager. The Solver Manager is the central manager for sorts, oper-
ators, and terms created by the solver. It exposes an interface for actions to (i)
randomly pick enabled sorts and operators based on certain criteria, and (ii)
notify the manager of new terms and sorts. The Solver Manager further main-
tains solver-specific configurations of supported theories, sorts, and operators. It
configures solver-specific behavior by querying the solver (via the Generic Solver
API) to obtain solver-specific configuration information (e.g., solver-specific op-
erators) and restrictions (e.g., unsupported sorts and operators).

Generic Solver API. The Generic Solver API provides a common solver inter-
face for interacting with a solver under test. It covers the majority of the features
defined in SMT-LIB, and defines abstract base classes for sort, term and solver
implementations. It further provides an interface for configuring the Solver Man-
ager as mentioned above. Integrating a new SMT solver into Murxla amounts to
implementing these three classes, and optionally, solver-specific configurations,
in a solver wrapper.

The Generic Solver API aims at being as general as possible while support-
ing all semantic features of the SMT-LIB data model. The Generic Solver API
further supports “meta” solvers for different purposes. Murxla implements meta
solvers for: (i) performing checks of witnesses that require additional solver in-
stances (model value, unsat core, and unsat assumptions checks); (ii) checking
the results of one solver instance against another to identify soundness issues;
(iii) translating API call sequences to the SMT-LIBv2 format; and (iv) SMT-
LIBv2 input fuzzing of SMT solver binaries in interactive SMT-LIB mode.

3.2 API Fuzzer

The API Fuzzer is responsible for generating random but valid API call se-
quences and is the central component of Murxla. Valid API call sequences are
generated based on an API model which is implemented as a weighted finite-
state machine (FSM), where states correspond to the current state of the SMT
solver, and transitions have a weight, a pre-condition, and an associated action.



Each state of the FSM may provide a pre-condition that defines when it is legal
to transition into that state. Taking a transition also executes its action. The
associated action of a transition may be empty, in which case it leads to the
next state without calling the solver. The pre-condition of a transition and the
pre-condition of its next state define the conditions under which the transition
can be selected, whereas its weight determines the probability of it being taken
in cases where multiple transitions are enabled at the same time.

By default, the FSM implements an API model that captures the functional-
ity and constraints defined in the SMT-LIB standard. And as described above,
its associated actions call the Generic Solver API. Murxla supports arbitrary
solver-specific modifications to this FSM by providing a configuration interface
for solver wrappers (which we discuss in section 3.3 below).

Configuration of the API Fuzzer and execution of its FSM to generate API
call sequences for a single run is performed using the following steps.

1. The solver wrapper makes solver-specific modifications to the FSM.
2. The API Fuzzer picks a set of enabled theories, with or without quantifiers.
3. The Solver Manager queries the solver wrapper via the Generic Solver API

to configure solver-specific extensions and restrictions.
4. The FSM and Murxla’s core components are finalized, and the FSM is set

to its initial state; this also creates and initializes the actual solver instance.
5. Next, a set of compatible solver options is selected and configured.
6. After that, the API fuzzer chooses an execution of the FSM and executes

the actions associated with that execution, thereby generating a sequence of
calls to the solver. This continues until either the solver crashes, the final
state is reached, or a configured time limit is exceeded.

In contrast to some recent mutation-based SMT-LIBv2 input fuzzing ap-
proaches [30,38,40,41], the API Fuzzer is generation-based : it generates expres-
sions that, importantly, respect the semantic and API models of the solver under
test. Non-leaf terms are generated by combining leaf terms (variables or theory-
specific constants) and previously generated terms via any of the enabled opera-
tors. To bias the generated terms towards more variety and structure, each term
maintains a reference count, and terms with lower reference counts are selected
with a higher probability when constructing new terms. For indexed operator
kinds (e.g., the extract operator in the theory of fixed-size bit-vectors), random
integer values up to a configured maximum value (if not otherwise restricted by
the semantics of the operator) are selected. Similarly, arguments to sort construc-
tors (e.g., Array) are sampled from previously generated sorts, and sorts with
numeric parameters (e.g., bit-vector and floating-point sorts) are constructed
from randomly selected integer values up to a configured maximum value.

The API fuzzer utilizes a random number generator (RNG) for random de-
cisions, which is deterministic in the sense that it is guaranteed to produce the
same sequence of values when given the same starting seed. The API fuzzer
supports two usage modes: (i) single run, starting with a specific seed; and (ii)
continuous, consisting of repeated single runs with seeds selected by a dedicated
Seed Generator, which uses the current time and process ID to generate seeds.



Each mode can be restricted to a given set of theories (with or without quan-
tifiers) via the command line (in this case, step two of the fuzzer configuration
detailed above is skipped). When in single run mode, Murxla by default sends
a trace of the run to stdout (and optionally to a file). In continuous mode, each
run is first executed without tracing. If a run uncovers an issue, it is replayed
with the same seed and recorded to a trace file. In this mode, Murxla maintains
a statistics summary with the current number of issues, timeouts, and sat, unsat,
and unknown results. When an issue is discovered, it reports the corresponding
seed and solver output. On termination, it provides an overview of all issues,
deduplicated based on fuzzy matching on the solver output.

Murxla only reports false positives in rare cases where false positives may
only be avoided with unreasonable effort, e.g., implementing well-formedness
checks for algebraic datatypes.

3.3 Solver Wrappers

As mentioned above, a solver wrapper is used to connect Murxla to a solver.
Solver wrappers are typically 2k–4k LOC in size and implement the Generic
Solver API. If a solver provides features that are different from those covered by
the Generic Solver API, a solver wrapper can accommodate these differences by
reconfiguring the FSM of the API Fuzzer to add or remove states, transitions, and
actions (added actions can be configured to call the API of the solver under test
directly). Solver wrappers are further responsible for configuring the semantic
model of the API Fuzzer by (i) adding or removing supported theories and their
corresponding sorts and operators; and (ii) extending or restricting the set of
operators for supported theories. Solver wrappers may also implement sanity
checks of arbitrary complexity by utilizing the MURXLA_TEST macro.

The option model of a solver is implemented as part of the Generic Solver
API. For Bitwuzla, Boolector, and cvc5, this amounts to 15-55 LOC since all
three can be queried for available options and valid configuration values via the
API. This allows an automated registration of options with the Solver Manager.
Yices2 does not provide this feature which requires that options are registered
explicitly. Note that its option model is currently not implemented.

Each solver wrapper maintains its own RNG which is used to make choices
when there are multiple alternative solver API calls for one specific task. This
RNG is independent from the main RNG of the API Fuzzer and is seeded with
a value generated by the main RNG for each action execution. These seeds are
recorded by the Tracer to ensure that random choices can be deterministically
replicated when replaying a traced run of the API Fuzzer.

3.4 Tracer, Untracer, Trace Minimizer

The Tracer records all action executions with their corresponding arguments
and return values in a text-based format. Each action line in the trace follows the
pattern <seed> <action> [<args...>], optionally followed by a return statement
of the form return <values...> for actions that create sorts or terms. The <seed>



74761 new

65471 set -logic QF_BV

33949 mk -sort SORT_BOOL

return s1

64345 mk -sort SORT_BV 8

return s2

49391 mk -const s2 "a"

return t1

89712 mk -const s2 "b"

return t2

6548 mk-term OP_EQUAL SORT_BOOL 2 t1 t2

return t3 s1

20351 assert -formula t3

47017 check -sat

74496 delete

Fig. 2. Murxla trace for checking a = b for bit-vectors a and b of size 8.

in an action is the seed of the solver wrapper’s RNG when executing the action.
It is recorded to ensure that random choices made by the solver wrapper can
be deterministically replicated. This is especially important when minimizing a
trace, since modifying trace lines may change the way the main RNG behaves
when replaying the trace. Sorts are recorded as s<id> and terms as t<id>, and
the <args...> of an action line determine all sort, term and numerical arguments
required to replay the execution of the given action. Similarly, the <values..> of
a return statement record all of its sort and term return values. Figure 2 shows
an example of a trace generated by Murxla. It records the action sequence for
checking the satisfiability of a = b, where a and b are bit-vectors of size 8.

The Untracer takes a trace as input and replays each recorded action,
thereby replicating the behavior of the original execution. This is especially
useful for debugging erroneous behavior of the solver under test. Additionally, if
a trace does not contain any solver-specific extensions, the Untracer can replay
it using a different solver or translate it to the SMT-LIBv2 format. Tracing ac-
tions instead of calls to the Generic Solver API has the advantage that both the
API Fuzzer and the Untracer can use the same infrastructure for communicating
with the solver under test. Furthermore, supporting solver-specific actions does
not require changes to any component other than the solver wrapper.

The Trace Minimizer is built on top of the Untracer and minimizes a
given trace while preserving the behavior of the original execution. It implements
simple ddmin-style [42] minimization techniques in three phases: (i) line-based
minimization to reduce the number of trace lines; (ii) minimization of action
lines to reduce the number of arguments; and (iii) term substitution, where
terms are replaced with simpler terms of the same sort. Even though all of these
minimization techniques are rather basic, the Trace Minimizer typically reduces
the size of a trace to less than 10% of the original trace. If the minimized trace
can be translated to SMT-LIB, then it can often be further reduced using a



delta-debugging tool such as ddSMT [28]. Even if a minimized trace cannot be
expressed in SMT-LIB due to solver-specific extensions, we have found that in
practice, the reduction due to the Trace Minimizer is typically good enough to
allow efficient debugging.

4 Evaluation

We evaluate the efficacy of Murxla in three experiments, comparing: (1) Murxla
and BtorMBT, testing Boolector; (2) Murxla and the current state-of-the-art
input fuzzers STORM [30] and TypeFuzz [36]; and (3) Murxla with and without
option fuzzing. For this evaluation, we target soundness issues and crashes, and
do not consider performance regressions. In the following, we use issues to mean
crashes unless explicitly otherwise noted. We use Bitwuzla commit eea09734,
Boolector commit b157b105, cvc5 commit 0f5ee6b6, and Yices2 commit 09f16217.
For each experiment we compare the number of issues uncovered by each tool,
and the code coverage of the solver under test. Code coverage was measured
with gcov, which is part of the GNU Compiler Collection.8 We performed all
experiments in an Ubuntu 21.04 Docker container on a machine with an AMD
Threadripper 3970X CPU and 128GB of memory and used a one hour wall-clock
time limit for each experiment and tool.

Murxla vs. BtorMBT. We compare the effectiveness of fuzzing Boolector with
Murxla against that of its own custom API fuzzer BtorMBT. We ran both tools
in continuous mode with a one second time limit per single run. Murxla achieves
a line (function) coverage of 81% (88%) and finds 18 issues (including 3 known
reported issues). BtorMBT achieves 72% (81%) coverage, but does not find any
issues. BtorMBT does not support quantifiers, and three of the issues found by
Murxla are located in Boolector’s quantifiers module. The other issues, however,
occur in code that is covered by BtorMBT.

Murxla vs. STORM, TypeFuzz. We test cvc5 with Murxla, STORM, and
TypeFuzz on QF SLIA problems. We use all QF SLIA benchmarks in the SMT-
LIB benchmark library as seed files for STORM and TypeFuzz. Both Storm
and TypeFuzz mainly target soundness issues. TypeFuzz requires using at least
two SMT solvers as it relies on comparing their results, whereas Storm creates
satisfiable formulas by construction and does not require cross-checking. Hence,
we additionally use a cross-checking configuration of Murxla (Murxla-cc), which
compares Z3 version 4.8.14 and cvc5. Since Murxla does not yet integrate Z3,
we use it via Murxla’s SMT-LIBv2 interface in interactive SMT-LIB mode (the
input fuzzing mode). Note that this requires disabling solver-specific extensions
of cvc5, since they are unsupported by Z3. The results are shown in Table 1.

4 https://github.com/bitwuzla/bitwuzla
5 https://github.com/boolector/boolector
6 https://github.com/cvc5/cvc5
7 https://github.com/SRI-CSL/yices2
8 https://gcc.gnu.org/
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Murxla STORM Murxla-cc TypeFuzz
L [%] F [%] I L [%] F [%] I L [%] F [%] I L [%] F [%] I

37.8 52.5 7 20.2 34.3 0 21.5 36.3 1 17.4 30.8 0

Option Bitwuzla Boolector cvc5 Yices2
Fuzzing L [%] F [%] I L [%] F [%] I L [%] F [%] I L [%] F [%] I

no 47.4 63.9 7 68.5 79.2 6 38.9 56.8 11 37.0 42.4 1
yes 62.9 75.8 23 81.1 87.7 13 49.1 66.8 21 - -

Table 1. Number of issues (I), and line (L) and function (F) coverage for experiments
two (top) and three (bottom). Option fuzzing for Yices2 is not yet implemented (-).

Murxla and Murxla-cc have consistently higher coverage than the other tools
and find 8 issues, whereas the other tools find none. Most notably Murxla-cc was
able to find a model unsoundness issue in cvc5, where cvc5 incorrectly reports
satisfiable due to an incorrect rewrite rule for the re.loop operator9.

Option Fuzzing. We evaluate the effectiveness of Murxla with and without op-
tion fuzzing on all supported solvers. We use the default configuration of Murxla,
which tests all supported features for each solver. The results are shown in Ta-
ble 1 and showcase the efficacy of option fuzzing both for improving coverage
and for finding issues. In its best configuration, Murxla achieves an API func-
tion coverage of 85% for Bitwuzla, 94% for Boolector, 68% for cvc5, and 46% for
Yices2. cvc5 provides the richest API, supporting not only all of SMT-LIB but
also non-standard theories and non-SMT features like SyGuS and high-order rea-
soning, which are not yet supported in Murxla. Bitwuzla and Boolector export
parsing via the API, which is currently only supported in Murxla for Boolector.
Coverage for Yices2 is low in comparison as it was integrated as proof of concept
and its wrapper does not yet implement all of its features nor its option model.

5 Conclusion

Our experimental evaluation shows that Murxla quickly and effectively finds
issues in multiple state-of-the-art SMT solvers—even for logics like QF SLIA
which have been the subject of month-long fuzzing campaigns [30,36,40,41] over
the last two years. Furthermore, during the past few months, while finalizing
and testing Murxla, we found many more issues in these solvers—more than 100
for cvc5 alone, and some of them critical10. Based on this success, we believe
that Murxla will be a valuable tool for stress-testing SMT solvers and thereby
improving their correctness and robustness. We are currently in the process of
integrating it into the development workflow of Bitwuzla, Boolector and cvc5.

9 https://github.com/cvc5/cvc5-projects/issues/409
10 https://github.com/cvc5/cvc5/issues?q=is:open+is:issue+label:murxla,

https://github.com/cvc5/cvc5-projects/issues?q=is:issue+is:open+label:murxla

https://github.com/cvc5/cvc5-projects/issues/409
https://github.com/cvc5/cvc5/issues?q=is:open+is:issue+label:murxla
https://github.com/cvc5/cvc5-projects/issues?q=is:issue+is:open+label:murxla
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26. Hajdu, Á., Jovanovic, D.: solc-verify: A modular verifier for solidity smart con-

tracts. In: VSTTE. LNCS, vol. 12031, pp. 161–179. Springer (2019)
27. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: Opensmt2: An SMT

solver for multi-core and cloud computing. In: SAT. LNCS, vol. 9710, pp. 547–553.
Springer (2016)

28. Kremer, G., Niemetz, A., Preiner, M.: ddsmt 2.0: Better delta debugging for the
smt-libv2 language and friends. In: CAV (2). LNCS, vol. 12760, pp. 231–242.
Springer (2021)

29. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: LPAR (Dakar). LNCS, vol. 6355, pp. 348–370. Springer (2010)
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